WO2021229961A1 - Vapor chamber - Google Patents

Vapor chamber Download PDF

Info

Publication number
WO2021229961A1
WO2021229961A1 PCT/JP2021/014797 JP2021014797W WO2021229961A1 WO 2021229961 A1 WO2021229961 A1 WO 2021229961A1 JP 2021014797 W JP2021014797 W JP 2021014797W WO 2021229961 A1 WO2021229961 A1 WO 2021229961A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
area
microchannel
vapor chamber
chamber according
Prior art date
Application number
PCT/JP2021/014797
Other languages
French (fr)
Japanese (ja)
Inventor
朗人 内藤
信人 椿
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/874,898 external-priority patent/US20210356211A1/en
Priority claimed from US16/874,801 external-priority patent/US11473850B2/en
Priority claimed from US16/874,782 external-priority patent/US11473849B2/en
Priority claimed from US16/874,937 external-priority patent/US11585606B2/en
Priority claimed from US16/874,853 external-priority patent/US11013145B1/en
Priority claimed from US16/874,878 external-priority patent/US20210356214A1/en
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202190000458.0U priority Critical patent/CN219037720U/en
Priority to JP2022504714A priority patent/JP7088435B2/en
Publication of WO2021229961A1 publication Critical patent/WO2021229961A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • One embodiment of the present invention relates to a vapor chamber.
  • Japanese Patent Application Laid-Open No. 2019-20001 discloses a vapor chamber.
  • the vapor chamber disclosed in Japanese Patent Application Laid-Open No. 2019-20001 includes an upper housing sheet 6 having a pillar 3, a lower housing sheet 7 having a convex portion 5, and an upper housing sheet 6 and a lower housing sheet 7. It is arranged in a closed space and includes a wick 4 sandwiched between a convex portion 5 and a pillar 3.
  • the upper housing sheet 6 and the lower housing sheet 7 enclose a hydraulic fluid such as water in the internal space.
  • the hydraulic fluid is vaporized by the heat from the heat source, moves in the internal space, and then releases heat to the outside to return to the liquid.
  • the hydraulic fluid that has returned to the liquid moves between the columns 3 due to the capillary force of the wick 4, returns to the vicinity of the heat source again, and is vaporized again.
  • the vapor chamber can diffuse heat at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the hydraulic fluid without requiring external power.
  • the maximum heat transport amount For the characteristics of the vapor chamber, it is important to prevent a decrease in the maximum heat transport amount. For example, when the amount of heat transferred to the wick is low, the maximum heat transport amount is greatly reduced. Further, when the opening of the wick becomes small, the amount of vaporization of the hydraulic fluid is insufficient, and the maximum heat transport amount also greatly decreases.
  • one embodiment of the present invention relates to a vapor chamber characterized by preventing a decrease in the maximum heat transport amount.
  • the vapor chamber according to the embodiment of the present invention has the following configuration in order to solve the problem.
  • the vapor chamber includes a housing, a hydraulic fluid, a microchannel, and a wick.
  • the housing includes an opposite upper housing sheet and a lower housing sheet joined at an outer edge portion, and has an internal space.
  • the hydraulic fluid is sealed in the internal space.
  • the microchannel is arranged in the internal space of the lower housing sheet and constitutes a flow path of the hydraulic fluid.
  • the wick is in the form of a sheet arranged in the internal space of the housing and in contact with the microchannel. The contact area between the wick and the microchannel is 5% to 40% with respect to the plan-viewed area of the internal space.
  • FIG. 1 is a cross-sectional view of the vapor chamber 1 according to the embodiment of the present invention.
  • FIG. 2 is a plan view of the lower housing sheet 7.
  • FIG. 3 is a plan view of the wick 4. It should be noted that all the drawings shown in the present embodiment are schematically shown for the sake of ease of explanation, and are not diagrams that faithfully show the actual size.
  • the vapor chamber 1 includes a flat plate-shaped housing 10.
  • the housing 10 has an upper housing sheet 6, a lower housing sheet 7, and a joining member 8.
  • the upper housing sheet 6 and the lower housing sheet 7 are joined by a joining member 8 at the outer edge portion.
  • the joining member 8 is arranged outside the broken line shown at the outer edge of the lower housing sheet 7.
  • the joining member 8 is made of, for example, phosphor bronze wax.
  • the housing 10 has an internal space sandwiched between the upper housing sheet 6 and the lower housing sheet 7.
  • a hydraulic fluid 20 such as water is sealed in the internal space.
  • the upper housing sheet 6 has a support column 3 arranged in an internal space.
  • the lower housing sheet 7 has a microchannel 5 arranged in an internal space.
  • the upper housing sheet 6 and the lower housing sheet 7 are made of copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing these as a main component (for example, nickel-copper alloy or phosphor bronze), and have high thermal conductivity. Have a rate.
  • the upper housing sheet 6 and the lower housing sheet 7 have a rectangular shape in a plan view.
  • the upper housing sheet 6 and the lower housing sheet 7 may have a polygonal shape or a circular shape in a plan view.
  • the shape of the internal space may be any shape.
  • the microchannel 5 is an uneven portion having a plurality of prismatic convex portions.
  • the unevenness of the microchannel 5 is formed, for example, by etching the upper surface of the lower housing sheet 7.
  • the uneven shape of the microchannel 5 is not limited to the prism.
  • the uneven shape of the microchannel 5 may be, for example, a cylinder.
  • the uneven shape of the microchannel 5 is a pyramidal trapezoidal shape when it is formed by etching. Further, the uneven shape of the microchannel 5 may be arranged in a grid pattern, may be arranged in a honeycomb shape, or may be randomly arranged.
  • the pillar 3 is a pillar for keeping the vapor chamber 1 in a thin plate shape.
  • the support column 3 is also formed by etching a portion of the upper housing sheet 6 other than the support column 3.
  • the support column 3 has a prismatic shape.
  • the shape of the support column 3 is not limited to the prism.
  • the shape of the support column 3 may be, for example, a cylinder.
  • the cross-sectional area of the columns 3 is larger than the cross-sectional area of the convex portions of the microchannel 5, and the distance between the adjacent columns 3 is larger than the pitch of the convex portions of the microchannel 5.
  • the wick 4 is arranged in the internal space so as to be sandwiched between the lower housing sheet 7 and the support column 3.
  • the wick 4 is made of a metal material thinner than the upper housing sheet 6 and the lower housing sheet 7.
  • the wick 4 is adhered (diffusion bonded) to the microchannel 5 of the lower housing sheet 7.
  • the wick 4 may be made of the same material as the upper housing sheet 6 and the lower housing sheet 7, or may be made of different materials.
  • the wick 4 has a rectangular shape in a plan view. However, the wick 4 may have a polygonal shape or a circular shape in a plan view. The shape of the wick 4 is appropriately set according to the shape of the internal space.
  • the wick 4 has a plurality of fine holes 41.
  • the holes 41 are formed, for example, by etching.
  • the hole 41 has a circular shape, but may be rectangular. However, since the holes 41 have a circular shape, the gas-liquid interface becomes spherical, and the hydraulic fluid 20 can be uniformly evaporated.
  • the holes 41 are arranged in a honeycomb shape.
  • the angle ⁇ formed by two holes 41 adjacent to an arbitrary hole 41 is 60 °.
  • may be, for example, 45 °.
  • the holes 41 may be arranged in a grid pattern.
  • the holes 41 may be arranged irregularly.
  • the hydraulic fluid 20 changes from a liquid to a gas in the holes 41 due to heat from a heat source in close contact with the lower housing sheet 7. That is, the hydraulic fluid 20 constitutes a gas-liquid interface in the hole 41.
  • the vaporized hydraulic fluid 20 releases heat in the internal space of the housing 10 and returns to the liquid.
  • the hydraulic fluid 20 that has returned to the liquid moves through the microchannel 5 by the capillary force of the hole 41 of the wick 4 and is carried near the heat source again.
  • the vapor chamber 1 can diffuse heat at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the hydraulic fluid 20 without requiring external power.
  • a strong capillary force is secured by the hole 41 of the wick 4 having a relatively small opening area, and the permeation cross-sectional area (operation) of the hydraulic fluid 20 is secured by the microchannel 5 having a relatively large opening area.
  • the permeation amount of the liquid 20) is secured.
  • the vapor chamber 1 of the present embodiment has the following features.
  • the area of the wick 4 in a plan view is larger than the area of the area where the microchannel 5 is arranged.
  • FIG. 4 is a plan view in which the lower housing sheet 7 and the wick 4 are overlapped with each other through a part of the wick 4.
  • the wick 4 is larger than the area of the area where the microchannel 5 is arranged in a plan view.
  • the wick 4 is sandwiched between the lower housing sheet 7 and the support column 3, but may be displaced in the plane direction.
  • the wick 4 is larger than the area of the region where the microchannel 5 is arranged in a plan view. Therefore, even if the wick 4 is displaced in the plane direction, there is a low possibility that the wick 4 will deviate from the region where the microchannel 5 is arranged.
  • the wick 4 is formed by cutting out from a mother sheet such as one copper plate.
  • burrs may be formed on the edge portion in the cutting process. Therefore, as shown in FIG. 5, the edge portion of the wick 4 may float away from the lower housing sheet 7 due to burrs.
  • the heat of the heat source is less likely to be transferred to the wick 4.
  • the wick 4 is wider than the area of the area where the microchannel 5 is arranged in a plan view, even if the edge portion floats, the lower housing is located in the area where the microchannel 5 is arranged. It is possible to suppress floating from the sheet 7. Therefore, the wick 4 can ensure proper heat conduction from the microchannel 5.
  • the length h1 from the edge portion of the microchannel 5 to the edge portion of the wick 4 is the height h2 or more of the burr. If h1 ⁇ h2, even if the edge portion of the wick 4 floats, the area floating from the lower housing sheet 7 can be sufficiently suppressed in the region where the microchannel 5 is arranged, and appropriate heat can be obtained. Conduction can be ensured.
  • the contact area between the wick 4 and the microchannel 5 is 5% to 40% with respect to the area in which the internal space is viewed in a plan view. Further, more preferably, the contact area between the wick 4 and the microchannel 5 is 10% to 20% with respect to the area in which the internal space is viewed in a plan view.
  • FIG. 4 the convex portion of the microchannel 5 that contacts the wick 4 is shown by hatching.
  • the area of the internal space in a plan view is the area of the inner region shown by the alternate long and short dash line in the figure.
  • the outside of the one-dot broken line is the portion joined by the joining member 8.
  • the vapor chamber 1 when the contact area between the wick 4 and the microchannel 5 is less than 5% with respect to the plan-viewed area of the internal space, the amount of heat transferred from the microchannel 5 to the wick 4 becomes low, and the hole 41 of the wick 4 becomes available. It becomes impossible to form a gas-liquid interface. In this case, the maximum heat transport amount is greatly reduced. Further, when the contact area between the wick 4 and the microchannel 5 exceeds 40% of the plan-viewed area of the internal space, the amount of the hydraulic fluid 20 vaporized from the hole 41 of the wick 4 is insufficient, and the maximum heat transport amount increases. It drops significantly. Therefore, when the contact area between the wick 4 and the microchannel 5 is 5% to 40% with respect to the area in which the internal space is viewed in a plan view, the vapor chamber 1 can secure a predetermined maximum heat transport amount.
  • the area of the wick 4 is larger than the area of the area where the microchannel 5 is arranged as in (1) above, the area including the area where the wick 4 contacts the lower housing sheet 7 becomes larger. It is preferably 5% to 40% with respect to the area of the internal space viewed in a plan view.
  • the opening width W1 of the microchannel 5 is 50 to 200 ⁇ m
  • the thickness D2 of the wick 4 is 5 to 35 ⁇ m
  • D2: W1 5: 200 to 30:50.
  • the thickness D2 of the wick 4 is 15 to 20 ⁇ m, and the opening width W1 of the microchannel 5 is 200 ⁇ m.
  • FIG. 6 is a partially enlarged cross-sectional view of the vapor chamber 1.
  • FIG. 6 shows the height D1 of the microchannel 5, the thickness D2 of the wick 4, the opening width W1 of the microchannel 5, the width W2 of the protrusion of the microchannel 5, the opening pitch P1 of the microchannel 5, and the opening of the wick 4.
  • the pitch P1 is shown.
  • the wick 4 sinks into the opening portion of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4. .. Therefore, it is necessary that the thickness D2 of the wick 4 is 5 ⁇ m or more and the opening width W1 is 500 ⁇ m or less. On the other hand, if the thickness D2 of the wick 4 is too thick, it becomes difficult for heat to be transferred from the heat source in contact with the lower housing sheet 7. Therefore, the thickness of the wick 4 needs to be 35 ⁇ m or less. Further, if the opening width W1 is too small, the permeation cross-sectional area of the hydraulic fluid 20 decreases. Therefore, the opening width W1 of the microchannel 5 needs to be 50 ⁇ m or more.
  • the area ratio of the convex portion of the microchannel 5 to the entire microchannel 5 in a plan view is 5% to 40%.
  • the hydraulic fluid 20 returns from the gas to the liquid and passes through the opening of the microchannel 5. Therefore, the smaller the number of convex portions forming the flow path of the hydraulic fluid 20, the larger the permeation cross-sectional area of the hydraulic fluid 20. However, if the area of the opening of the microchannel 5 is too large, the wick 4 sinks into the opening of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4. Therefore, the area ratio of the convex portion to the entire microchannel 5 in a plan view is preferably at least 5% or more.
  • the area ratio of the convex portion to the entire microchannel 5 in a plan view is preferably 40% or less at the maximum.
  • the area ratio of the convex portion to the entire microchannel 5 in a plan view is 18 to 30%.
  • the area ratio of the convex portion of the microchannel 5 to the entire microchannel 5 in a plan view is 5% to 40%, and the height D1 of the convex portion of the microchannel 5 is 5 to 50 ⁇ m. .. However, when D1 is 50 ⁇ m, the area ratio is 40%.
  • the wick 4 sinks into the opening of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4.
  • the area of the opening of the microchannel 5 is too small, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases.
  • the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases.
  • the height D1 of the convex portion of the microchannel 5 is too high, the distance from the heat source to the wick 4 becomes long, so that it becomes difficult for heat to be transferred from the heat source.
  • the vapor chamber 1 has the area of the convex portion of the microchannel 5 with respect to the entire microchannel 5 in a plan view.
  • the ratio is 5% to 40%, and the height D1 of the convex portion of the microchannel 5 is 5 to 50 ⁇ m.
  • the area ratio of the convex portion is set to about 40%, which is the highest, to ensure heat conduction.
  • the aperture ratio of the holes in the wick (the area of the holes 41 with respect to the total area of the wick 4) is 5 to 50%, the thickness D2 of the wick is 5 to 35 ⁇ m, and the convex portion of the microchannel 5 is cut off.
  • the area (D1 ⁇ W2) 150 to 25000 ⁇ m 2 , and the pitch P1 (W1 + W2) of the convex portion of the microchannel 5 is 100 to 1000 ⁇ m. More preferably, the pitch P1 is 100 to 500 ⁇ m.
  • the thickness of the wick 4 is too thick, it will be difficult for heat to be transferred from the heat source. On the other hand, if the thickness of the wick 4 is too thin, the wick 4 sinks into the opening portion of the microchannel 5. If the aperture ratio of the wick 4 is too high, it becomes difficult for heat to be transferred from the heat source. On the other hand, if the aperture ratio of the wick 4 is too low, the evaporation amount of the hydraulic fluid 20 decreases, and the maximum heat transport amount decreases. However, when D2 is 35 ⁇ m, heat is most difficult to be transferred from the heat source to the wick 4, so the aperture ratio is set to about 5%, which is the lowest, to ensure heat conduction.
  • the wick 4 sinks into the opening portion of the microchannel 5. If the cross-sectional area of the convex portion of the microchannel 5 is too large and the pitch is too small, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases.
  • the ratio of the opening width L1 on the first surface (upper surface) side and the opening width L2 on the second surface (lower surface) side of the hole 41 of the wick 4 is 1: 3 to 1: 1.
  • FIG. 7 is an enlarged cross-sectional view of the wick 4.
  • the holes 41 of the wick 4 are formed by etching. When the etching is in an ideal state, the ratio of the upper surface side opening width L1 and the lower surface side opening width L2 of the hole 41 of the wick 4 is 1: 1.
  • the ratio of the upper surface side opening width L1 to the lower surface side opening width L2 is preferably 1: 3 or less.
  • the side having a small hole diameter is arranged on the gas-liquid interface side which is the upper surface side, and the side having a large hole diameter is arranged on the micro channel side which is the lower surface side.
  • the side with the smaller diameter of the hole may be arranged on the lower surface side, and the side with the larger diameter of the hole may be arranged on the upper surface side.
  • the ratio of the upper surface side opening width L1 to the lower surface side opening width L2 does not have to be 1: 3 to 1: 1 in all the holes 41.
  • the holes 41 satisfying the ratio may be 90% or more of the total.
  • the lower surface side of the wick 4 may also be scraped off, and a portion that does not come into contact with the microchannel 5 may occur. In this case, the heat conduction amount decreases in the non-contact portion, but the hydraulic fluid 20 permeates through the gap, so that the permeation amount of the hydraulic fluid 20 improves.
  • the difference between the thickness of the joining member 8 and the thickness of the wick 4 is 20 ⁇ m or less.
  • the difference between the thickness of the joining member 8 and the thickness of the wick 4 is 10 ⁇ m or less.
  • the thickness of the joining member 8 of the present embodiment is 25 ⁇ m, and the thickness of the wick 4 is 15 ⁇ m. This improves the smoothness of the housing 10. Therefore, the sealing performance by the joining member 8 is improved.
  • the joining member 8 has an injection port (not shown) for injecting the hydraulic fluid 20. When the vertical position of the injection port is about the same as that of the wick 4, the vapor chamber 1 can directly inject the hydraulic fluid 20 into the wick 4 from the injection port, and the hydraulic fluid can be easily injected. 20 can be injected.
  • pitch P1 350 ⁇ m
  • pitch P2 60 ⁇ m.
  • the end portion of the hole 41 and the end portion of the convex portion are unlikely to overlap in a plan view. Therefore, the wick 4 is less likely to sink into the opening of the microchannel 5.
  • the wick 4 has a region in which the hole 41 is not formed in a plan view, the width W3 of the portion constituting the region is 0.1 to 10 mm, and the area of the region in a plan view. Is 90% or less of the area of the wick 4.
  • the pitch P3 is 0.1 to 10 mm.
  • FIG. 9 is a plan view of the wick 4.
  • the number of holes 41 is displayed larger and smaller than that in FIG.
  • the non-formed region of the holes 41 consists of linear portions arranged in a grid pattern.
  • the width W3 of each straight line portion constituting the grid is 0.1 mm.
  • the pitch P3 is 0.26 mm.
  • the wick 4 has a region in which the hole 41 is not formed, and the width W3 of the narrowest portion of the portions constituting the region is 0.1 to 10 mm, and is viewed in a plan view.
  • the area of the region is 90% or less of the area of the wick 4, the adhesiveness with the microchannel 5 is improved and the adhesion is made uniform. Therefore, even if an impact such as a drop is applied to the vapor chamber 1 or stress is generated at the time of bending, the wick 4 is unlikely to rise from the microchannel 5. Therefore, the vapor chamber 1 can suppress the change in the maximum heat transport amount.
  • the portion constituting the above area is not limited to the example of FIG.
  • the portions constituting the region may be arranged diagonally. Further, the parts constituting the region do not need to be regularly arranged.
  • the portions constituting the region may have a random shape and may be randomly arranged.

Abstract

A vapor chamber (1) includes a housing (10), a hydraulic fluid (20), a microchannel (5), and a wick (4). The housing (10) includes an upper housing sheet (6) and a lower housing sheet (7) that face each other and are joined at an outer edge portion, and has an internal space. The hydraulic fluid (20) is sealed in the internal space. The microchannel (5) is arranged in the internal space of the lower housing sheet (7) and constitutes a flow path of the hydraulic fluid (20). The wick (4) is in the form of a sheet arranged in the internal space of the housing (10) and arranged in contact with the microchannel (5). The contact area between the wick (4) and the microchannel (5) is 5-40% of the plan-viewed area of the internal space.

Description

ベイパーチャンバーVapor chamber
 本発明の一実施形態は、ベイパーチャンバーに関する。 One embodiment of the present invention relates to a vapor chamber.
 例えば、特開2019-20001号公報は、ベイパーチャンバーを開示している。特開2019-20001号公報に開示されたベイパーチャンバーは、柱3を有する上部筐体シート6と、凸部5を有する下部筐体シート7と、上部筐体シート6および下部筐体シート7の密閉空間内に配置され、凸部5および柱3に挟まれるウィック4と、を備える。上部筐体シート6および下部筐体シート7は、内部空間に水等の作動液を封入している。 For example, Japanese Patent Application Laid-Open No. 2019-20001 discloses a vapor chamber. The vapor chamber disclosed in Japanese Patent Application Laid-Open No. 2019-20001 includes an upper housing sheet 6 having a pillar 3, a lower housing sheet 7 having a convex portion 5, and an upper housing sheet 6 and a lower housing sheet 7. It is arranged in a closed space and includes a wick 4 sandwiched between a convex portion 5 and a pillar 3. The upper housing sheet 6 and the lower housing sheet 7 enclose a hydraulic fluid such as water in the internal space.
 作動液は熱源からの熱で気化し、内部空間内を移動した後、外部に熱を放出して液体に戻る。液体に戻った作動液はウィック4の毛細管力により柱3の間を移動して再び熱源付近に戻り、再び気化する。これにより、ベイパーチャンバーは、外部動力を必要とせずに、作動液の蒸発潜熱および凝縮潜熱を利用して、高速に熱を拡散することができる。 The hydraulic fluid is vaporized by the heat from the heat source, moves in the internal space, and then releases heat to the outside to return to the liquid. The hydraulic fluid that has returned to the liquid moves between the columns 3 due to the capillary force of the wick 4, returns to the vicinity of the heat source again, and is vaporized again. As a result, the vapor chamber can diffuse heat at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the hydraulic fluid without requiring external power.
特開2019-20001号公報Japanese Unexamined Patent Publication No. 2019-20001
 ベイパーチャンバーの特性のためには、最大熱輸送量の低下を防止することが重要である。例えば、ウィックに伝わる熱量が低くなると最大熱輸送量が大きく低下する。また、ウィックの開口が小さくなると作動液の気化する量が足りず、やはり最大熱輸送量が大きく低下する。 For the characteristics of the vapor chamber, it is important to prevent a decrease in the maximum heat transport amount. For example, when the amount of heat transferred to the wick is low, the maximum heat transport amount is greatly reduced. Further, when the opening of the wick becomes small, the amount of vaporization of the hydraulic fluid is insufficient, and the maximum heat transport amount also greatly decreases.
 そこで、本発明の一実施形態は、最大熱輸送量の低下を防止することを特徴とするベイパーチャンバーに関する。 Therefore, one embodiment of the present invention relates to a vapor chamber characterized by preventing a decrease in the maximum heat transport amount.
 本発明の一実施形態に係るベイパーチャンバーは、当該課題を解決するために以下の構成を備える。 The vapor chamber according to the embodiment of the present invention has the following configuration in order to solve the problem.
 ベイパーチャンバーは、筐体と、作動液と、マイクロチャネルと、ウィックと、を備える。筐体は、外縁部で接合された対向する上部筐体シートと下部筐体シートとを含み、内部空間を有する。作動液は、前記内部空間に封入される。マイクロチャネルは、前記下部筐体シートのうち前記内部空間に配置され、前記作動液の流路を構成する。ウィックは、前記筐体の前記内部空間に配置され、前記マイクロチャネルに接触して配置されたシート状である。前記ウィックと前記マイクロチャネルの接触面積は、前記内部空間の平面視した面積に対して5%~40%である。 The vapor chamber includes a housing, a hydraulic fluid, a microchannel, and a wick. The housing includes an opposite upper housing sheet and a lower housing sheet joined at an outer edge portion, and has an internal space. The hydraulic fluid is sealed in the internal space. The microchannel is arranged in the internal space of the lower housing sheet and constitutes a flow path of the hydraulic fluid. The wick is in the form of a sheet arranged in the internal space of the housing and in contact with the microchannel. The contact area between the wick and the microchannel is 5% to 40% with respect to the plan-viewed area of the internal space.
本発明の一実施形態のベイパーチャンバー1の断面図である。It is sectional drawing of the vapor chamber 1 of one Embodiment of this invention. 下部筐体シート7の平面図である。It is a top view of the lower housing sheet 7. ウィック4の平面図である。It is a top view of the wick 4. ウィック4の一部を透過して、下部筐体シート7およびウィック4を重ねた平面図である。It is a top view in which the lower housing sheet 7 and the wick 4 are overlapped with each other through a part of the wick 4. ベイパーチャンバー1の断面拡大図である。It is a cross-sectional enlarged view of a vapor chamber 1. ベイパーチャンバー1の一部断面拡大図である。It is a partial cross-sectional enlarged view of the vapor chamber 1. ウィック4の断面拡大図である。It is a cross-sectional enlarged view of the wick 4. ウィック4の断面拡大図である。It is a cross-sectional enlarged view of the wick 4. ウィック4の断面拡大図である。It is a cross-sectional enlarged view of the wick 4. ウィック4の断面拡大図である。It is a cross-sectional enlarged view of the wick 4.
 図1は、本発明の一実施形態のベイパーチャンバー1の断面図である。図2は、下部筐体シート7の平面図である。図3は、ウィック4の平面図である。なお、本実施形態に示す図面は、全て説明を容易にするために模式的に表したものであり、実際の大きさを忠実に示した図ではない。 FIG. 1 is a cross-sectional view of the vapor chamber 1 according to the embodiment of the present invention. FIG. 2 is a plan view of the lower housing sheet 7. FIG. 3 is a plan view of the wick 4. It should be noted that all the drawings shown in the present embodiment are schematically shown for the sake of ease of explanation, and are not diagrams that faithfully show the actual size.
 ベイパーチャンバー1は、平板状の筐体10を備える。筐体10は、上部筐体シート6、下部筐体シート7、および接合部材8を有する。上部筐体シート6および下部筐体シート7は、外縁部で接合部材8により接合される。図2の平面図に示す様に、下部筐体シート7の外縁部に示す破線よりも外側は、接合部材8が配置される。接合部材8は、例えばりん銅ろうからなる。 The vapor chamber 1 includes a flat plate-shaped housing 10. The housing 10 has an upper housing sheet 6, a lower housing sheet 7, and a joining member 8. The upper housing sheet 6 and the lower housing sheet 7 are joined by a joining member 8 at the outer edge portion. As shown in the plan view of FIG. 2, the joining member 8 is arranged outside the broken line shown at the outer edge of the lower housing sheet 7. The joining member 8 is made of, for example, phosphor bronze wax.
 筐体10は、上部筐体シート6および下部筐体シート7で挟まれる内部空間を有する。内部空間には、水等の作動液20が封入されている。上部筐体シート6は、内部空間に配置される支柱3を有する。下部筐体シート7は、内部空間に配置されるマイクロチャネル5を有する。 The housing 10 has an internal space sandwiched between the upper housing sheet 6 and the lower housing sheet 7. A hydraulic fluid 20 such as water is sealed in the internal space. The upper housing sheet 6 has a support column 3 arranged in an internal space. The lower housing sheet 7 has a microchannel 5 arranged in an internal space.
 上部筐体シート6および下部筐体シート7は、銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄あるいは、これらを主成分とする合金等(例えばニッケル銅合金またはリン青銅等)からなり、高い熱伝導率を有する。本実施形態では、上部筐体シート6および下部筐体シート7は、平面視して矩形状である。ただし、上部筐体シート6および下部筐体シート7は、平面視して多角形状でも円形状でもよい。内部空間の形状もどの様なものであってもよい。 The upper housing sheet 6 and the lower housing sheet 7 are made of copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing these as a main component (for example, nickel-copper alloy or phosphor bronze), and have high thermal conductivity. Have a rate. In the present embodiment, the upper housing sheet 6 and the lower housing sheet 7 have a rectangular shape in a plan view. However, the upper housing sheet 6 and the lower housing sheet 7 may have a polygonal shape or a circular shape in a plan view. The shape of the internal space may be any shape.
 図2に示す様に、マイクロチャネル5は、複数の角柱形状の凸状部を有する凹凸形状の部分である。マイクロチャネル5の凹凸は、例えば下部筐体シート7の上面をエッチングすることにより形成される。ただし、マイクロチャネル5の凹凸形状は、角柱に限らない。マイクロチャネル5の凹凸形状は、例えば円柱であってもよい。 As shown in FIG. 2, the microchannel 5 is an uneven portion having a plurality of prismatic convex portions. The unevenness of the microchannel 5 is formed, for example, by etching the upper surface of the lower housing sheet 7. However, the uneven shape of the microchannel 5 is not limited to the prism. The uneven shape of the microchannel 5 may be, for example, a cylinder.
 なお、マイクロチャネル5の凹凸形状は、エッチングで形成される場合、厳密には角錐台形状になる。また、マイクロチャネル5の凹凸形状は、格子状に配列されていてもよいし、ハニカム状に配列されていてもよいし、ランダムに配置されていてもよい。 Strictly speaking, the uneven shape of the microchannel 5 is a pyramidal trapezoidal shape when it is formed by etching. Further, the uneven shape of the microchannel 5 may be arranged in a grid pattern, may be arranged in a honeycomb shape, or may be randomly arranged.
 支柱3は、ベイパーチャンバー1を薄板状の形状に保つための柱である。支柱3も、上部筐体シート6のうち支柱3を除く部分をエッチングすることにより形成される。支柱3は、角柱形状からなる。ただし、支柱3の形状は、角柱に限らない。支柱3の形状は、例えば円柱であってもよい。なお、支柱3の断面積は、マイクロチャネル5の凸状部の断面積より大きく、隣り合う支柱3の間隔はマイクロチャネル5の凸状部のピッチよりも大きい。 The pillar 3 is a pillar for keeping the vapor chamber 1 in a thin plate shape. The support column 3 is also formed by etching a portion of the upper housing sheet 6 other than the support column 3. The support column 3 has a prismatic shape. However, the shape of the support column 3 is not limited to the prism. The shape of the support column 3 may be, for example, a cylinder. The cross-sectional area of the columns 3 is larger than the cross-sectional area of the convex portions of the microchannel 5, and the distance between the adjacent columns 3 is larger than the pitch of the convex portions of the microchannel 5.
 ウィック4は、下部筐体シート7および支柱3に挟まれる様に内部空間に配置される。ウィック4は、上部筐体シート6および下部筐体シート7よりも薄い金属材料からなる。ウィック4は、下部筐体シート7のマイクロチャネル5に接着(拡散接合)される。ウィック4は、上部筐体シート6および下部筐体シート7と同じ材料であってもよいし、異なる材料であってもよい。図3に示す様に、ウィック4は、平面視して矩形状である。ただし、ウィック4は、平面視して多角形状でも円形状でもよい。ウィック4の形状は、内部空間の形状に合わせて適宜設定する。 The wick 4 is arranged in the internal space so as to be sandwiched between the lower housing sheet 7 and the support column 3. The wick 4 is made of a metal material thinner than the upper housing sheet 6 and the lower housing sheet 7. The wick 4 is adhered (diffusion bonded) to the microchannel 5 of the lower housing sheet 7. The wick 4 may be made of the same material as the upper housing sheet 6 and the lower housing sheet 7, or may be made of different materials. As shown in FIG. 3, the wick 4 has a rectangular shape in a plan view. However, the wick 4 may have a polygonal shape or a circular shape in a plan view. The shape of the wick 4 is appropriately set according to the shape of the internal space.
 ウィック4は、複数の微細な孔41を有する。孔41は、例えばエッチングにより形成される。図3の例では、孔41は円形状であるが、矩形状でもよい。ただし、孔41が円形状であることで、気液界面は球面状になり、作動液20を均一に蒸発することができる。 The wick 4 has a plurality of fine holes 41. The holes 41 are formed, for example, by etching. In the example of FIG. 3, the hole 41 has a circular shape, but may be rectangular. However, since the holes 41 have a circular shape, the gas-liquid interface becomes spherical, and the hydraulic fluid 20 can be uniformly evaporated.
 また、孔41は、ハニカム状に配列されている。図3の例では、ある任意の孔41と隣り合う二つの孔41のなす角度θは60°である。ただし、θは、例えば45°であってもよい。また、孔41は、格子状に配列されていてもよい。無論、孔41は、不規則に配列されていてもよい。作動液20は、下部筐体シート7に密着した熱源からの熱により、孔41において液体から気体に変化する。つまり、作動液20は、孔41において気液界面を構成する。気化した作動液20は、筐体10の内部空間で熱を放出して液体に戻る。液体に戻った作動液20は、ウィック4の孔41による毛細管力により、マイクロチャネル5を移動して、再び熱源の近くに運ばれる。これにより、ベイパーチャンバー1は、外部動力を必要とせずに、作動液20の蒸発潜熱および凝縮潜熱を利用して、高速に熱を拡散することができる。 Further, the holes 41 are arranged in a honeycomb shape. In the example of FIG. 3, the angle θ formed by two holes 41 adjacent to an arbitrary hole 41 is 60 °. However, θ may be, for example, 45 °. Further, the holes 41 may be arranged in a grid pattern. Of course, the holes 41 may be arranged irregularly. The hydraulic fluid 20 changes from a liquid to a gas in the holes 41 due to heat from a heat source in close contact with the lower housing sheet 7. That is, the hydraulic fluid 20 constitutes a gas-liquid interface in the hole 41. The vaporized hydraulic fluid 20 releases heat in the internal space of the housing 10 and returns to the liquid. The hydraulic fluid 20 that has returned to the liquid moves through the microchannel 5 by the capillary force of the hole 41 of the wick 4 and is carried near the heat source again. As a result, the vapor chamber 1 can diffuse heat at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the hydraulic fluid 20 without requiring external power.
 本実施形態のベイパーチャンバー1は、相対的に開口面積の小さいウィック4の孔41によって強い毛細管力を確保し、かつ相対的に開口面積の大きいマイクロチャネル5によって作動液20の透過断面積(作動液20の透過量)を確保している。 In the vapor chamber 1 of the present embodiment, a strong capillary force is secured by the hole 41 of the wick 4 having a relatively small opening area, and the permeation cross-sectional area (operation) of the hydraulic fluid 20 is secured by the microchannel 5 having a relatively large opening area. The permeation amount of the liquid 20) is secured.
 さらに、本実施形態のベイパーチャンバー1は、以下の特徴を有する。 Further, the vapor chamber 1 of the present embodiment has the following features.
 (1)平面視してウィック4の面積は、マイクロチャネル5の配置されている領域の面積よりも広い。 (1) The area of the wick 4 in a plan view is larger than the area of the area where the microchannel 5 is arranged.
 図4は、ウィック4の一部を透過して、下部筐体シート7およびウィック4を重ねた平面図である。ウィック4は、平面視して、マイクロチャネル5の配置されている領域の面積よりも広い。ウィック4は、下部筐体シート7および支柱3により挟まれているが、平面方向にずれる可能性がある。しかし、ウィック4は、平面視して、マイクロチャネル5の配置されている領域の面積よりも広い。したがって、ウィック4が仮に平面方向にずれたとしてもマイクロチャネル5の配置されている領域から外れるおそれは低くなる。 FIG. 4 is a plan view in which the lower housing sheet 7 and the wick 4 are overlapped with each other through a part of the wick 4. The wick 4 is larger than the area of the area where the microchannel 5 is arranged in a plan view. The wick 4 is sandwiched between the lower housing sheet 7 and the support column 3, but may be displaced in the plane direction. However, the wick 4 is larger than the area of the region where the microchannel 5 is arranged in a plan view. Therefore, even if the wick 4 is displaced in the plane direction, there is a low possibility that the wick 4 will deviate from the region where the microchannel 5 is arranged.
 また、ウィック4は、1つの銅板等のマザーシートから切り出されることで形成される。ウィック4は、切り出し工程において、辺縁部にバリが形成される可能性がある。したがって、図5に示す様に、ウィック4の辺縁部は、バリにより下部筐体シート7から離れて浮いてしまう可能性がある。ウィック4が下部筐体シート7から離れると、熱源の熱がウィック4に伝わり難くなる。しかし、ウィック4は、平面視して、マイクロチャネル5の配置されている領域の面積よりも広いため、辺縁部が浮いたとしても、マイクロチャネル5の配置されている領域においては下部筐体シート7から浮くことを抑制できる。したがって、ウィック4は、マイクロチャネル5からの適切な熱伝導を確保することができる。 Further, the wick 4 is formed by cutting out from a mother sheet such as one copper plate. In the wick 4, burrs may be formed on the edge portion in the cutting process. Therefore, as shown in FIG. 5, the edge portion of the wick 4 may float away from the lower housing sheet 7 due to burrs. When the wick 4 is separated from the lower housing sheet 7, the heat of the heat source is less likely to be transferred to the wick 4. However, since the wick 4 is wider than the area of the area where the microchannel 5 is arranged in a plan view, even if the edge portion floats, the lower housing is located in the area where the microchannel 5 is arranged. It is possible to suppress floating from the sheet 7. Therefore, the wick 4 can ensure proper heat conduction from the microchannel 5.
 なお、好ましくは、マイクロチャネル5の辺縁部からウィック4の辺縁部までの長さh1は、バリの高さh2以上である。h1≧h2であれば、ウィック4の辺縁部が浮いたとしても、マイクロチャネル5の配置されている領域においては下部筐体シート7から浮く面積を十分に抑制することができ、適切な熱伝導を確保することができる。 It should be noted that preferably, the length h1 from the edge portion of the microchannel 5 to the edge portion of the wick 4 is the height h2 or more of the burr. If h1 ≧ h2, even if the edge portion of the wick 4 floats, the area floating from the lower housing sheet 7 can be sufficiently suppressed in the region where the microchannel 5 is arranged, and appropriate heat can be obtained. Conduction can be ensured.
 (2)ウィック4とマイクロチャネル5の接触面積は、内部空間を平面視した面積に対して5%~40%である。また、より好ましくは、ウィック4とマイクロチャネル5の接触面積は、内部空間を平面視した面積に対して10%~20%である。 (2) The contact area between the wick 4 and the microchannel 5 is 5% to 40% with respect to the area in which the internal space is viewed in a plan view. Further, more preferably, the contact area between the wick 4 and the microchannel 5 is 10% to 20% with respect to the area in which the internal space is viewed in a plan view.
 図4においては、マイクロチャネル5のうちウィック4に接触する凸状部をハッチングで示している。内部空間を平面視した面積とは、図中の一点破線で示す内側の領域の面積である。一点破線の外側は、接合部材8により接合される部分である。 In FIG. 4, the convex portion of the microchannel 5 that contacts the wick 4 is shown by hatching. The area of the internal space in a plan view is the area of the inner region shown by the alternate long and short dash line in the figure. The outside of the one-dot broken line is the portion joined by the joining member 8.
 ベイパーチャンバー1は、ウィック4とマイクロチャネル5の接触面積が内部空間の平面視した面積に対して5%よりも低い場合、マイクロチャネル5からウィック4に伝わる熱量が低くなり、ウィック4の孔41に気液界面を形成できなくなる。この場合、最大熱輸送量が大きく低下する。また、ウィック4とマイクロチャネル5の接触面積が内部空間の平面視した面積に対して40%を超えると、作動液20がウィック4の孔41から気化する量が足りず、最大熱輸送量が大きく低下する。したがって、ウィック4とマイクロチャネル5の接触面積が内部空間を平面視した面積に対して5%~40%であることで、ベイパーチャンバー1は、所定の最大熱輸送量を確保することができる。 In the vapor chamber 1, when the contact area between the wick 4 and the microchannel 5 is less than 5% with respect to the plan-viewed area of the internal space, the amount of heat transferred from the microchannel 5 to the wick 4 becomes low, and the hole 41 of the wick 4 becomes available. It becomes impossible to form a gas-liquid interface. In this case, the maximum heat transport amount is greatly reduced. Further, when the contact area between the wick 4 and the microchannel 5 exceeds 40% of the plan-viewed area of the internal space, the amount of the hydraulic fluid 20 vaporized from the hole 41 of the wick 4 is insufficient, and the maximum heat transport amount increases. It drops significantly. Therefore, when the contact area between the wick 4 and the microchannel 5 is 5% to 40% with respect to the area in which the internal space is viewed in a plan view, the vapor chamber 1 can secure a predetermined maximum heat transport amount.
 なお、上記(1)の様にウィック4の面積がマイクロチャネル5の配置されている領域の面積よりも広い場合には、ウィック4が下部筐体シート7に接触する面積も含めた面積が、内部空間を平面視した面積に対して5%~40%であることが好ましい。 When the area of the wick 4 is larger than the area of the area where the microchannel 5 is arranged as in (1) above, the area including the area where the wick 4 contacts the lower housing sheet 7 becomes larger. It is preferably 5% to 40% with respect to the area of the internal space viewed in a plan view.
 (3)マイクロチャネル5の開口幅W1が50~200μmであり、ウィック4の厚みD2が5~35μmであり、D2:W1=5:200~30:50である。 (3) The opening width W1 of the microchannel 5 is 50 to 200 μm, the thickness D2 of the wick 4 is 5 to 35 μm, and D2: W1 = 5: 200 to 30:50.
 より好ましくは、ウィック4の厚みD2が15~20μmであり、マイクロチャネル5の開口幅W1が200μmである。 More preferably, the thickness D2 of the wick 4 is 15 to 20 μm, and the opening width W1 of the microchannel 5 is 200 μm.
 図6は、ベイパーチャンバー1の一部断面拡大図である。図6は、マイクロチャネル5の高さD1、ウィック4の厚みD2、マイクロチャネル5の開口幅W1、マイクロチャネル5の凸出部の幅W2、マイクロチャネル5の開口ピッチP1、およびウィック4の開口ピッチP1を示している。 FIG. 6 is a partially enlarged cross-sectional view of the vapor chamber 1. FIG. 6 shows the height D1 of the microchannel 5, the thickness D2 of the wick 4, the opening width W1 of the microchannel 5, the width W2 of the protrusion of the microchannel 5, the opening pitch P1 of the microchannel 5, and the opening of the wick 4. The pitch P1 is shown.
 ウィック4の厚みD2が薄く、かつマイクロチャネル5の開口幅W1が大きくなると、ウィック4がマイクロチャネル5の開口部分に沈み込み、ウィック4の孔41に作動液20の気液界面が形成されなくなる。したがって、ウィック4の厚みD2が5μm以上であり、開口幅W1が500μm以下である必要がある。一方で、ウィック4の厚みD2が厚すぎると、下部筐体シート7に接している熱源から熱が伝わり難くなる。したがって、ウィック4の厚みは35μm以下である必要がある。また、開口幅W1が小さすぎると作動液20の透過断面積が低下する。したがって、マイクロチャネル5の開口幅W1は50μm以上である必要がある。 When the thickness D2 of the wick 4 is thin and the opening width W1 of the microchannel 5 is large, the wick 4 sinks into the opening portion of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4. .. Therefore, it is necessary that the thickness D2 of the wick 4 is 5 μm or more and the opening width W1 is 500 μm or less. On the other hand, if the thickness D2 of the wick 4 is too thick, it becomes difficult for heat to be transferred from the heat source in contact with the lower housing sheet 7. Therefore, the thickness of the wick 4 needs to be 35 μm or less. Further, if the opening width W1 is too small, the permeation cross-sectional area of the hydraulic fluid 20 decreases. Therefore, the opening width W1 of the microchannel 5 needs to be 50 μm or more.
 ウィック4の厚みD2が大きくなるほど熱源から熱が伝わり難くなるため、開口幅W1を小さくしてウィック4およびマイクロチャネル5の接触面積を増やし、熱伝導を確保する必要がある。したがって、ベイパーチャンバー1は、D2:W1=5:200~30:50とすることで、所定の最大熱輸送量を確保することができる。 As the thickness D2 of the wick 4 becomes larger, it becomes more difficult for heat to be transferred from the heat source. Therefore, it is necessary to reduce the opening width W1 to increase the contact area between the wick 4 and the microchannel 5 to secure heat conduction. Therefore, the vapor chamber 1 can secure a predetermined maximum heat transport amount by setting D2: W1 = 5: 200 to 30:50.
 (4)平面視してマイクロチャネル5の全体に対するマイクロチャネル5の凸状部の面積率は、5%~40%である。 (4) The area ratio of the convex portion of the microchannel 5 to the entire microchannel 5 in a plan view is 5% to 40%.
 作動液20は、気体から液体に戻り、マイクロチャネル5の開口部を透過する。したがって、作動液20の流路を構成する凸状部は、できるだけ少ないほうが作動液20の透過断面積が大きくなる。しかし、マイクロチャネル5の開口部の面積が大きすぎると、ウィック4がマイクロチャネル5の開口部分に沈み込み、ウィック4の孔41に作動液20の気液界面が形成されなくなる。したがって、平面視してマイクロチャネル5全体に対する凸状部の面積比は、最低でも5%以上であることが好ましい。 The hydraulic fluid 20 returns from the gas to the liquid and passes through the opening of the microchannel 5. Therefore, the smaller the number of convex portions forming the flow path of the hydraulic fluid 20, the larger the permeation cross-sectional area of the hydraulic fluid 20. However, if the area of the opening of the microchannel 5 is too large, the wick 4 sinks into the opening of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4. Therefore, the area ratio of the convex portion to the entire microchannel 5 in a plan view is preferably at least 5% or more.
 一方で、マイクロチャネル5の開口部の面積が小さ過ぎると、作動液20の透過断面積が小さくなり、最大熱輸送量が低下する。したがって、平面視してマイクロチャネル5全体に対する凸状部の面積比は、最大でも40%以下であることが好ましい。 On the other hand, if the area of the opening of the microchannel 5 is too small, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases. Therefore, the area ratio of the convex portion to the entire microchannel 5 in a plan view is preferably 40% or less at the maximum.
 なお、より好ましくは、平面視してマイクロチャネル5全体に対する凸状部の面積比は、18~30%である。 More preferably, the area ratio of the convex portion to the entire microchannel 5 in a plan view is 18 to 30%.
 (5)平面視してマイクロチャネル5の全体に対するマイクロチャネル5の凸状部の面積率が5%~40%であり、かつマイクロチャネル5の凸状部の高さD1が5~50μmである。ただし、D1が50μmである場合には前記面積率は40%である。 (5) The area ratio of the convex portion of the microchannel 5 to the entire microchannel 5 in a plan view is 5% to 40%, and the height D1 of the convex portion of the microchannel 5 is 5 to 50 μm. .. However, when D1 is 50 μm, the area ratio is 40%.
 上述の様に、マイクロチャネル5の開口部の面積が大き過ぎると、ウィック4がマイクロチャネル5の開口部分に沈み込み、ウィック4の孔41に作動液20の気液界面が形成されなくなる。一方で、マイクロチャネル5の開口部の面積が小さ過ぎると、作動液20の透過断面積が小さくなり、最大熱輸送量が低下する。 As described above, if the area of the opening of the microchannel 5 is too large, the wick 4 sinks into the opening of the microchannel 5, and the gas-liquid interface of the hydraulic fluid 20 is not formed in the hole 41 of the wick 4. On the other hand, if the area of the opening of the microchannel 5 is too small, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases.
 また、マイクロチャネル5の凸状部の高さD1が低過ぎる場合も、作動液20の透過断面積が小さくなり、最大熱輸送量が低下する。一方でマイクロチャネル5の凸状部の高さD1が高過ぎると、熱源からウィック4までの距離が長くなるため、熱源から熱が伝わり難くなる。 Further, when the height D1 of the convex portion of the microchannel 5 is too low, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases. On the other hand, if the height D1 of the convex portion of the microchannel 5 is too high, the distance from the heat source to the wick 4 becomes long, so that it becomes difficult for heat to be transferred from the heat source.
 そこで、ベイパーチャンバー1は、熱伝導および作動液の透過断面積を確保しつつ、ウィック4の沈み込みを防止するため、平面視してマイクロチャネル5の全体に対するマイクロチャネル5の凸状部の面積率が5%~40%であり、かつマイクロチャネル5の凸状部の高さD1が5~50μmとする。ただし、D1が50μmである場合には熱源から熱が最もウィック4に伝わり難くなるため、凸状部の面積率は最も高い40%程度にし、熱伝導を確保する。 Therefore, in order to prevent the wick 4 from sinking while ensuring heat conduction and the permeation cross-sectional area of the hydraulic fluid, the vapor chamber 1 has the area of the convex portion of the microchannel 5 with respect to the entire microchannel 5 in a plan view. The ratio is 5% to 40%, and the height D1 of the convex portion of the microchannel 5 is 5 to 50 μm. However, when D1 is 50 μm, heat is most difficult to be transferred from the heat source to the wick 4, so the area ratio of the convex portion is set to about 40%, which is the highest, to ensure heat conduction.
 (6)ウィックの孔の開口率(ウィック4の全体の面積に対する孔41の面積)が5~50%であり、ウィックの厚みD2が5~35μmであり、マイクロチャネル5の凸状部の断面積(D1×W2)=150~25000μmであり、マイクロチャネル5の凸状部のピッチP1(W1+W2)=100~1000μmである。より好ましくは、ピッチP1は、100~500μmである。 (6) The aperture ratio of the holes in the wick (the area of the holes 41 with respect to the total area of the wick 4) is 5 to 50%, the thickness D2 of the wick is 5 to 35 μm, and the convex portion of the microchannel 5 is cut off. The area (D1 × W2) = 150 to 25000 μm 2 , and the pitch P1 (W1 + W2) of the convex portion of the microchannel 5 is 100 to 1000 μm. More preferably, the pitch P1 is 100 to 500 μm.
 ウィック4の厚みが厚過ぎると、熱源から熱が伝わり難くなる。一方で、ウィック4の厚みが薄すぎるとウィック4がマイクロチャネル5の開口部分に沈み込む。ウィック4の開口率が高過ぎると、熱源から熱が伝わり難くなる。一方で、ウィック4の開口率が低過ぎると、作動液20の蒸発量が低下し、最大熱輸送量が低下する。ただし、D2が35μmである場合には熱源から熱が最もウィック4に伝わり難くなるため、開口率は最も低い5%程度にし、熱伝導を確保する。 If the thickness of the wick 4 is too thick, it will be difficult for heat to be transferred from the heat source. On the other hand, if the thickness of the wick 4 is too thin, the wick 4 sinks into the opening portion of the microchannel 5. If the aperture ratio of the wick 4 is too high, it becomes difficult for heat to be transferred from the heat source. On the other hand, if the aperture ratio of the wick 4 is too low, the evaporation amount of the hydraulic fluid 20 decreases, and the maximum heat transport amount decreases. However, when D2 is 35 μm, heat is most difficult to be transferred from the heat source to the wick 4, so the aperture ratio is set to about 5%, which is the lowest, to ensure heat conduction.
 また、マイクロチャネル5の凸状部の断面積が小さ過ぎ、かつピッチが大き過ぎると、ウィック4がマイクロチャネル5の開口部分に沈み込む。マイクロチャネル5の凸状部の断面積が大き過ぎ、かつピッチが小さ過ぎると作動液20の透過断面積が小さくなり、最大熱輸送量が低下する。 Further, if the cross-sectional area of the convex portion of the microchannel 5 is too small and the pitch is too large, the wick 4 sinks into the opening portion of the microchannel 5. If the cross-sectional area of the convex portion of the microchannel 5 is too large and the pitch is too small, the permeation cross-sectional area of the hydraulic fluid 20 becomes small, and the maximum heat transport amount decreases.
 したがって、ベイパーチャンバー1は、熱伝導および作動液の透過断面積を確保しつつ、ウィック4の沈み込みを防止するため、ウィックの孔の開口率(ウィック4の全体の面積に対する孔41の面積)が5~50%であり、ウィックの厚みD2が5~35μmであり、マイクロチャネル5の凸状部の断面積(D1×W2)=150~25000μm2であり、マイクロチャネル5の凸状部のピッチP1(W1+W2)=100~1000μmとした。 Therefore, the vapor chamber 1 secures the heat conduction and the permeation cross-sectional area of the hydraulic fluid, and prevents the wick 4 from sinking. Therefore, the opening ratio of the holes of the wick (the area of the holes 41 with respect to the total area of the wick 4). Is 5 to 50%, the thickness D2 of the wick is 5 to 35 μm, the cross-sectional area (D1 × W2) of the convex portion of the microchannel 5 is 150 to 25000 μm2, and the pitch of the convex portion of the microchannel 5 is P1 (W1 + W2) = 100 to 1000 μm.
 (7)ウィック4の孔41の第1面(上面)側開口幅L1と第2面(下面)側開口幅L2の比が1:3~1:1である。 (7) The ratio of the opening width L1 on the first surface (upper surface) side and the opening width L2 on the second surface (lower surface) side of the hole 41 of the wick 4 is 1: 3 to 1: 1.
 図7は、ウィック4の断面拡大図である。ウィック4の孔41は、エッチングにより形成される。エッチングが理想的な状態の場合、ウィック4の孔41の上面側開口幅L1と下面側開口幅L2の比が1:1になる。 FIG. 7 is an enlarged cross-sectional view of the wick 4. The holes 41 of the wick 4 are formed by etching. When the etching is in an ideal state, the ratio of the upper surface side opening width L1 and the lower surface side opening width L2 of the hole 41 of the wick 4 is 1: 1.
 孔41の形成時にテーパーが形成される場合、あるいは意図的にテーパーを生じさせる場合、上面側開口幅L1と下面側開口幅L2の比が大きすぎると、毛細管力が低下する。そのため、ベイパーチャンバー1は、上面側開口幅L1と下面側開口幅L2の比が1:3以下であることが好ましい。 When a taper is formed when the hole 41 is formed, or when the taper is intentionally generated, if the ratio of the upper surface side opening width L1 and the lower surface side opening width L2 is too large, the capillary force decreases. Therefore, in the vapor chamber 1, the ratio of the upper surface side opening width L1 to the lower surface side opening width L2 is preferably 1: 3 or less.
 図7では、一例として、L1=40μm、L2=55μmである。他にも、L1=30μm、L2=100μmであってもよい。また、L1=40μm、L2=40μmであってもよい。 In FIG. 7, as an example, L1 = 40 μm and L2 = 55 μm. Alternatively, L1 = 30 μm and L2 = 100 μm may be used. Further, L1 = 40 μm and L2 = 40 μm may be used.
 図7の例では、孔の径の小さい側が上面側である気液界面側に配置され、孔の径の大きい方が下面側であるマイクロチャネル側に配置されている。しかし、孔の径の小さい側が下面側に配置され、孔の径の大きい方が上面側に配置されていてもよい。 In the example of FIG. 7, the side having a small hole diameter is arranged on the gas-liquid interface side which is the upper surface side, and the side having a large hole diameter is arranged on the micro channel side which is the lower surface side. However, the side with the smaller diameter of the hole may be arranged on the lower surface side, and the side with the larger diameter of the hole may be arranged on the upper surface side.
 なお、全ての孔41において、上面側開口幅L1と下面側開口幅L2の比が1:3~1:1である必要はない。当該比を満たす孔41が全体の90%以上であればよい。なお、図8に示す様に、エッチングの量が大きくなると、ウィック4の下面側も削られて、マイクロチャネル5に接触しない部分が生じる可能性もある。この場合、接触しない部分については熱伝導量が低下するが、隙間を作動液20が透過するため、作動液20の透過量が向上する。 It should be noted that the ratio of the upper surface side opening width L1 to the lower surface side opening width L2 does not have to be 1: 3 to 1: 1 in all the holes 41. The holes 41 satisfying the ratio may be 90% or more of the total. As shown in FIG. 8, when the amount of etching is large, the lower surface side of the wick 4 may also be scraped off, and a portion that does not come into contact with the microchannel 5 may occur. In this case, the heat conduction amount decreases in the non-contact portion, but the hydraulic fluid 20 permeates through the gap, so that the permeation amount of the hydraulic fluid 20 improves.
 (8)接合部材8の厚みとウィック4の厚みの差が20μm以下である。 (8) The difference between the thickness of the joining member 8 and the thickness of the wick 4 is 20 μm or less.
 より好ましくは、接合部材8の厚みとウィック4の厚みの差が10μm以下である。例えば本実施形態の接合部材8の厚みは25μmであり、ウィック4の厚みは15μmである。これにより、筐体10の平滑性が向上する。したがって、接合部材8による封止性能が向上する。なお、接合部材8は、作動液20を注入するための注入口(不図示)を有する。当該注入口の上下方向の位置がウィック4と同じ程度の位置である場合、ベイパーチャンバー1は、当該注入口からウィック4に対して直接、作動液20を注入することができ、容易に作動液20を注入できる。 More preferably, the difference between the thickness of the joining member 8 and the thickness of the wick 4 is 10 μm or less. For example, the thickness of the joining member 8 of the present embodiment is 25 μm, and the thickness of the wick 4 is 15 μm. This improves the smoothness of the housing 10. Therefore, the sealing performance by the joining member 8 is improved. The joining member 8 has an injection port (not shown) for injecting the hydraulic fluid 20. When the vertical position of the injection port is about the same as that of the wick 4, the vapor chamber 1 can directly inject the hydraulic fluid 20 into the wick 4 from the injection port, and the hydraulic fluid can be easily injected. 20 can be injected.
 (9)マイクロチャネル5の凸状部のピッチP1およびウィック4の孔41のピッチP2は、整数倍にならない。 (9) The pitch P1 of the convex portion of the microchannel 5 and the pitch P2 of the hole 41 of the wick 4 do not become an integral multiple.
 例えば、ピッチP1=350μm、ピッチP2=60μmである。この場合、孔41の端部と、凸状部の端部が平面視して重なり難い。したがって、ウィック4がマイクロチャネル5の開口部に沈み込み難くなる。 For example, pitch P1 = 350 μm, pitch P2 = 60 μm. In this case, the end portion of the hole 41 and the end portion of the convex portion are unlikely to overlap in a plan view. Therefore, the wick 4 is less likely to sink into the opening of the microchannel 5.
 (10)ウィック4は、平面視して孔41の形成されていない領域を有し、当該領域を構成する部分の幅W3は0.1~10mmであり、かつ平面視して当該領域の面積がウィック4の面積の90%以下である。 (10) The wick 4 has a region in which the hole 41 is not formed in a plan view, the width W3 of the portion constituting the region is 0.1 to 10 mm, and the area of the region in a plan view. Is 90% or less of the area of the wick 4.
 なお、当該領域を構成する部分が規則的に配列されている場合、ピッチP3は0.1~10mmである。 When the portions constituting the region are regularly arranged, the pitch P3 is 0.1 to 10 mm.
 図9は、ウィック4の平面図である。図9においては、説明のために図3よりも孔41の数を多く表示し、かつ小さく表示している。この例では、孔41の形成されていない領域は、格子状に配列された直線状の部分からなる。当該格子を構成する各直線部分の幅W3は、0.1mmである。また、ピッチP3は、0.26mmである。 FIG. 9 is a plan view of the wick 4. In FIG. 9, for the sake of explanation, the number of holes 41 is displayed larger and smaller than that in FIG. In this example, the non-formed region of the holes 41 consists of linear portions arranged in a grid pattern. The width W3 of each straight line portion constituting the grid is 0.1 mm. The pitch P3 is 0.26 mm.
 この様に、ウィック4は、孔41の形成されていない領域を有し、該領域を構成する部分のうち最も幅の狭い部分の幅W3は0.1~10mmであり、かつ平面視して当該領域の面積がウィック4の面積の90%以下であることで、マイクロチャネル5との接着性が向上し、かつ当該接着が均一になされる。したがって、仮にベイパーチャンバー1に落下等の衝撃が加わったり、曲げ時に応力が生じたとしても、ウィック4はマイクロチャネル5から浮き上がり難い。そのため、ベイパーチャンバー1は、最大熱輸送量の変化を抑えることができる。 As described above, the wick 4 has a region in which the hole 41 is not formed, and the width W3 of the narrowest portion of the portions constituting the region is 0.1 to 10 mm, and is viewed in a plan view. When the area of the region is 90% or less of the area of the wick 4, the adhesiveness with the microchannel 5 is improved and the adhesion is made uniform. Therefore, even if an impact such as a drop is applied to the vapor chamber 1 or stress is generated at the time of bending, the wick 4 is unlikely to rise from the microchannel 5. Therefore, the vapor chamber 1 can suppress the change in the maximum heat transport amount.
 なお、上記領域を構成する部分は、図9の例に限らない。例えば、図10に示す様に、上記領域を構成する部分は、斜めに配列されていてもよい。また、領域を構成する部分は、規則的に配列されている必要もない。領域を構成する部分は、ランダムな形状で、ランダムに配列されていてもよい。 Note that the portion constituting the above area is not limited to the example of FIG. For example, as shown in FIG. 10, the portions constituting the region may be arranged diagonally. Further, the parts constituting the region do not need to be regularly arranged. The portions constituting the region may have a random shape and may be randomly arranged.
 本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば上述した(1)~(10)の特徴は全てを組み合わせた構成とすることもできるし、一部を組み合わせた構成とすることもできる。 The description of this embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the invention is indicated by the claims, not by the embodiments described above. Furthermore, the scope of the invention is intended to include all modifications within the meaning and scope of the claims. For example, the above-mentioned features (1) to (10) may be configured by combining all of them, or may be configured by combining some of them.
1…ベイパーチャンバー
3…支柱
4…ウィック
5…マイクロチャネル
6…上部筐体シート
7…下部筐体シート
8…接合部材
10…筐体
20…作動液
41…孔
1 ... Vapor chamber 3 ... Support 4 ... Wick 5 ... Microchannel 6 ... Upper housing sheet 7 ... Lower housing sheet 8 ... Joining member 10 ... Housing 20 ... Hydraulic fluid 41 ... Hole

Claims (19)

  1.  外縁部で接合された対向する上部筐体シートと下部筐体シートとを含み、内部空間を有する筐体と、
     前記内部空間に封入された作動液と、
     前記下部筐体シートのうち前記内部空間に配置され、前記作動液の流路を構成するマイクロチャネルと、
     前記筐体の前記内部空間に配置され、前記マイクロチャネルに接触して配置されたシート状のウィックと、
     を備え、
     前記ウィックと前記マイクロチャネルの接触面積は、前記内部空間を平面視した面積に対して5%~40%である、
     ベイパーチャンバー。
    A housing having an internal space, including the facing upper housing sheet and the lower housing sheet joined at the outer edge portion, and
    The hydraulic fluid enclosed in the internal space and
    The microchannels arranged in the internal space of the lower housing sheet and constituting the flow path of the hydraulic fluid, and
    A sheet-shaped wick arranged in the internal space of the housing and placed in contact with the microchannel,
    Equipped with
    The contact area between the wick and the microchannel is 5% to 40% with respect to the area in which the internal space is viewed in a plan view.
    Vapor chamber.
  2.  前記ウィックと前記マイクロチャネルの接触面積は、前記内部空間を平面視した面積に対して10%~20%である、
     請求項1に記載のベイパーチャンバー。
    The contact area between the wick and the microchannel is 10% to 20% with respect to the area in which the internal space is viewed in a plan view.
    The vapor chamber according to claim 1.
  3.  前記ウィックは、複数の孔が形成され、
     前記孔のうち前記ウィックの第1面側の開口幅と第2面側の開口幅の比が、1:3~1:1である、
     請求項1または請求項2に記載のベイパーチャンバー。
    The wick has a plurality of holes formed in it.
    Of the holes, the ratio of the opening width on the first surface side of the wick to the opening width on the second surface side is 1: 3 to 1: 1.
    The vapor chamber according to claim 1 or 2.
  4.  前記ウィックの前記第1面側が前記作動液の気液界面側であり、前記ウィックの前記第2面側が前記マイクロチャネルに接触する側である、
     請求項3に記載のベイパーチャンバー。
    The first surface side of the wick is the gas-liquid interface side of the hydraulic fluid, and the second surface side of the wick is the side that contacts the microchannel.
    The vapor chamber according to claim 3.
  5.  前記ウィックの前記第2面側は、前記マイクロチャネルに接触しない箇所を有する、
     請求項4に記載のベイパーチャンバー。
    The second surface side of the wick has a portion that does not come into contact with the microchannel.
    The vapor chamber according to claim 4.
  6.  前記比が1:3~1:1の条件を満たす孔は、前記複数の孔の全てに対して90%以上である、
     請求項3乃至請求項5のいずれか1項に記載のベイパーチャンバー。
    The number of holes satisfying the condition of the ratio of 1: 3 to 1: 1 is 90% or more with respect to all of the plurality of holes.
    The vapor chamber according to any one of claims 3 to 5.
  7.  前記ウィックと前記マイクロチャネルの接触面積は、前記内部空間を平面視した面積に対して5%~40%である、
     請求項1乃至請求項6のいずれか1項に記載のベイパーチャンバー。
    The contact area between the wick and the microchannel is 5% to 40% with respect to the area in which the internal space is viewed in a plan view.
    The vapor chamber according to any one of claims 1 to 6.
  8.  前記ウィックが前記下部筐体シートに接触する面積も含めた面積が、前記内部空間を平面視した面積に対して5%~40%である、
     請求項7に記載のベイパーチャンバー。
    The area including the area where the wick contacts the lower housing sheet is 5% to 40% with respect to the area in which the internal space is viewed in a plan view.
    The vapor chamber according to claim 7.
  9.  前記ウィックと前記マイクロチャネルの接触面積は、前記内部空間を平面視した面積に対して10%~20%である、
     請求項7または請求項8に記載のベイパーチャンバー。
    The contact area between the wick and the microchannel is 10% to 20% with respect to the area in which the internal space is viewed in a plan view.
    The vapor chamber according to claim 7 or 8.
  10.  前記ウィックが前記下部筐体シートに接触する面積も含めた面積が、前記内部空間を平面視した面積に対して10%~20%である、
     請求項8に記載のベイパーチャンバー。
    The area including the area where the wick contacts the lower housing sheet is 10% to 20% with respect to the area in which the internal space is viewed in a plan view.
    The vapor chamber according to claim 8.
  11.  前記マイクロチャネルは、前記流路を構成するための凸状部を有し、平面視して前記マイクロチャネルの全体に対する前記凸状部の面積率が5%~40%であり、かつ前記凸状部の高さが5~50μmである、
     請求項1乃至請求項10のいずれか1項に記載のベイパーチャンバー。
    The microchannel has a convex portion for forming the flow path, and the area ratio of the convex portion with respect to the entire microchannel in a plan view is 5% to 40%, and the convex portion is formed. The height of the part is 5 to 50 μm,
    The vapor chamber according to any one of claims 1 to 10.
  12.  前記凸状部の高さ50μmである場合には前記面積率は40%である、
     請求項11に記載のベイパーチャンバー。
    When the height of the convex portion is 50 μm, the area ratio is 40%.
    The vapor chamber according to claim 11.
  13.  前記マイクロチャネルは、前記流路を構成するための凸状部を有し、
     前記ウィックは、複数の孔が形成され、
     平面視して前記ウィックの全体の面積に対する前記孔の面積が5~50%であり、
     前記ウィックの厚みが5~35μmであり、
     前記凸状部の断面積が150~25000μm2であり、
     前記凸状部のピッチP1が100~1000μmである、
     請求項1乃至請求項12のいずれか1項に記載のベイパーチャンバー。
    The microchannel has a convex portion for forming the flow path, and the microchannel has a convex portion.
    The wick has a plurality of holes formed in it.
    The area of the hole is 5 to 50% of the total area of the wick in a plan view.
    The wick has a thickness of 5 to 35 μm and has a thickness of 5 to 35 μm.
    The cross-sectional area of the convex portion is 150 to 25,000 μm2, and the convex portion has a cross-sectional area of 150 to 25,000 μm 2.
    The pitch P1 of the convex portion is 100 to 1000 μm.
    The vapor chamber according to any one of claims 1 to 12.
  14.  前記ウィックの厚みが35μmである場合、平面視して前記ウィックの全体の面積に対する前記孔の面積が5%である、
     請求項12に記載のベイパーチャンバー。
    When the thickness of the wick is 35 μm, the area of the hole is 5% of the total area of the wick in a plan view.
    The vapor chamber according to claim 12.
  15.  前記上部筐体シートおよび下部筐体シートを外縁部で対向させて接合する接合部材を備え、
     前記接合部材の厚みと前記ウィックの厚みの差が20μm以下である、
     請求項1乃至請求項14のいずれか1項に記載のベイパーチャンバー。
    A joining member for joining the upper housing sheet and the lower housing sheet so as to face each other at the outer edge portion is provided.
    The difference between the thickness of the joining member and the thickness of the wick is 20 μm or less.
    The vapor chamber according to any one of claims 1 to 14.
  16.  前記接合部材の厚みと前記ウィックの厚みの差が10μm以下である、
     請求項15に記載のベイパーチャンバー。
    The difference between the thickness of the joining member and the thickness of the wick is 10 μm or less.
    The vapor chamber according to claim 15.
  17.  前記接合部材の厚みが25μmであり、前記ウィックの厚みが15μmである、
     請求項16に記載のベイパーチャンバー。
    The thickness of the joining member is 25 μm, and the thickness of the wick is 15 μm.
    The vapor chamber according to claim 16.
  18.  平面視して前記ウィックの面積は、前記マイクロチャネルの配置されている領域の面積よりも広い、
     請求項1乃至請求項17のいずれか1項に記載のベイパーチャンバー。
    In a plan view, the area of the wick is larger than the area of the area where the microchannels are arranged.
    The vapor chamber according to any one of claims 1 to 17.
  19.  前記ウィックの辺縁部にはバリが形成され、
     前記マイクロチャネルの辺縁部から前記ウィックの辺縁部までの長さは、前記バリの高さ以上である、
     請求項18に記載のベイパーチャンバー。
    Burrs are formed on the edges of the wick,
    The length from the edge of the microchannel to the edge of the wick is equal to or greater than the height of the burr.
    The vapor chamber according to claim 18.
PCT/JP2021/014797 2020-05-15 2021-04-07 Vapor chamber WO2021229961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202190000458.0U CN219037720U (en) 2020-05-15 2021-04-07 Vapor chamber
JP2022504714A JP7088435B2 (en) 2020-05-15 2021-04-07 Vapor chamber

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US202016874749A 2020-05-15 2020-05-15
US16/874,853 2020-05-15
US16/874,782 2020-05-15
US16/874,937 2020-05-15
US16/874,898 US20210356211A1 (en) 2020-05-15 2020-05-15 Vapor chamber
US16/874,801 US11473850B2 (en) 2020-05-15 2020-05-15 Vapor chamber
US16/874,801 2020-05-15
US16/874,782 US11473849B2 (en) 2020-05-15 2020-05-15 Vapor chamber
US16/874,898 2020-05-15
US16/874,749 2020-05-15
US16/874,937 US11585606B2 (en) 2020-05-15 2020-05-15 Vapor chamber
US16/874,878 2020-05-15
US16/874,853 US11013145B1 (en) 2020-05-15 2020-05-15 Vapor chamber
US16/874,878 US20210356214A1 (en) 2020-05-15 2020-05-15 Vapor chamber

Publications (1)

Publication Number Publication Date
WO2021229961A1 true WO2021229961A1 (en) 2021-11-18

Family

ID=78525759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014797 WO2021229961A1 (en) 2020-05-15 2021-04-07 Vapor chamber

Country Status (3)

Country Link
JP (1) JP7088435B2 (en)
CN (1) CN219037720U (en)
WO (1) WO2021229961A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189773A1 (en) * 2022-03-31 2023-10-05 住友精密工業株式会社 Method for manufacturing boiling-type cooler, and boiling-type cooler
WO2024075631A1 (en) * 2022-10-06 2024-04-11 株式会社村田製作所 Thermal diffusion device and electronic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243035A (en) * 2009-04-03 2010-10-28 Sony Corp Heat transport device, electronic apparatus and method of manufacturing the heat transport device
US20150226493A1 (en) * 2009-03-06 2015-08-13 Kelvin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
US9835383B1 (en) * 2013-03-15 2017-12-05 Hrl Laboratories, Llc Planar heat pipe with architected core and vapor tolerant arterial wick
WO2018003957A1 (en) * 2016-07-01 2018-01-04 古河電気工業株式会社 Vapor chamber
JP2018503058A (en) * 2015-01-22 2018-02-01 ピメムズ インコーポレイテッドPiMEMS, Inc. High performance two-phase cooling system
WO2018199216A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
JP2019020001A (en) * 2017-07-12 2019-02-07 株式会社村田製作所 Vapor chamber
US20200103176A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988170B2 (en) 2017-04-28 2022-01-05 株式会社村田製作所 Vapor chamber
CN114111410A (en) 2018-07-31 2022-03-01 株式会社村田制作所 Vapor chamber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150226493A1 (en) * 2009-03-06 2015-08-13 Kelvin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
JP2010243035A (en) * 2009-04-03 2010-10-28 Sony Corp Heat transport device, electronic apparatus and method of manufacturing the heat transport device
US9835383B1 (en) * 2013-03-15 2017-12-05 Hrl Laboratories, Llc Planar heat pipe with architected core and vapor tolerant arterial wick
JP2018503058A (en) * 2015-01-22 2018-02-01 ピメムズ インコーポレイテッドPiMEMS, Inc. High performance two-phase cooling system
WO2018003957A1 (en) * 2016-07-01 2018-01-04 古河電気工業株式会社 Vapor chamber
WO2018199216A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
JP2019020001A (en) * 2017-07-12 2019-02-07 株式会社村田製作所 Vapor chamber
US20200103176A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189773A1 (en) * 2022-03-31 2023-10-05 住友精密工業株式会社 Method for manufacturing boiling-type cooler, and boiling-type cooler
WO2024075631A1 (en) * 2022-10-06 2024-04-11 株式会社村田製作所 Thermal diffusion device and electronic apparatus

Also Published As

Publication number Publication date
JPWO2021229961A1 (en) 2021-11-18
CN219037720U (en) 2023-05-16
JP7088435B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2021229961A1 (en) Vapor chamber
US11013145B1 (en) Vapor chamber
US11473849B2 (en) Vapor chamber
KR102561617B1 (en) Vapor chamber, electronic device, metal sheet for vapor chamber, and method for manufacturing vapor chamber
US11903167B2 (en) Vapor chamber with condensate flow paths disposed on wall parts
JP4112602B2 (en) heat pipe
WO2018198353A1 (en) Vapor chamber
WO2018199218A1 (en) Vapor chamber
US10816274B2 (en) Vapor chamber
JP7269555B2 (en) Vapor chamber and electronics
JPWO2007026833A1 (en) Heat pipe and manufacturing method thereof
KR20240028552A (en) Vapor chamber, electronic apparatus, and vapor chamber sheet
US11421943B2 (en) Vapor chamber
WO2019088301A1 (en) Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber
US11859913B2 (en) Wick sheet for vapor chamber, vapor chamber, and electronic apparatus
JP2019086280A (en) Vapor chamber, sheet for vapor chamber and method for manufacturing vapor chamber
US11585606B2 (en) Vapor chamber
JP7041445B2 (en) A heat pipe that uses a refrigerant liquid conduction column and a refrigerant liquid conduction column
US11473850B2 (en) Vapor chamber
JPWO2021229961A5 (en)
US20210356214A1 (en) Vapor chamber
US20210356211A1 (en) Vapor chamber
JP7459897B2 (en) Vapor chamber and electronic equipment
WO2021070544A1 (en) Vapor chamber wick sheet, vapor chamber, and electronic equipment
US20230026517A1 (en) Wick sheet for vapor chamber, vapor chamber, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803308

Country of ref document: EP

Kind code of ref document: A1