WO2021228250A1 - 三维泊车的显示方法、车辆和存储介质 - Google Patents

三维泊车的显示方法、车辆和存储介质 Download PDF

Info

Publication number
WO2021228250A1
WO2021228250A1 PCT/CN2021/093936 CN2021093936W WO2021228250A1 WO 2021228250 A1 WO2021228250 A1 WO 2021228250A1 CN 2021093936 W CN2021093936 W CN 2021093936W WO 2021228250 A1 WO2021228250 A1 WO 2021228250A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
parking
transition
final
initial
Prior art date
Application number
PCT/CN2021/093936
Other languages
English (en)
French (fr)
Inventor
黄叶挺
Original Assignee
广州小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州小鹏汽车科技有限公司 filed Critical 广州小鹏汽车科技有限公司
Priority to EP21761954.3A priority Critical patent/EP3936400B1/en
Publication of WO2021228250A1 publication Critical patent/WO2021228250A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/303Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/307Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing virtually distinguishing relevant parts of a scene from the background of the scene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • B60R2300/607Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective from a bird's eye viewpoint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/806Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for aiding parking

Definitions

  • This application relates to the field of automobile technology, in particular to a three-dimensional parking display method, a vehicle and a storage medium.
  • the vehicle in the related art can display a screen of the parking scene during the parking process.
  • the parking scene can be displayed from several perspectives.
  • multiple viewing angles are usually switched directly, and the switching is blunt and unnatural, and there is a problem of screen flickering. In this way, the visual effect is poor, resulting in a poor user experience.
  • the embodiments of the present application provide a three-dimensional parking display method, a vehicle, and a storage medium.
  • This application provides a three-dimensional parking display method, including:
  • the three-dimensional parking scene includes at least one of a car-finding scene, a car-choosing scene, a car sliding scene, and a parking scene.
  • determining the transition angle of view according to the initial angle of view and the final angle of view includes:
  • the switching reference including an initial reference value corresponding to the initial viewing angle and a final reference value corresponding to the final viewing angle
  • the transition angle of view is determined according to the switching ratio, the initial angle of view, and the final angle of view.
  • the parking phase includes a pre-parking phase
  • determining the switching reference according to the parking phase in which the three-dimensional parking scene is located includes:
  • the shooting angle of the virtual camera is used as the switching reference, and the shooting angle includes the initial angle value corresponding to the initial angle of view and the final angle of view corresponding to The final angle value;
  • the determination of the transition reference value according to the initial reference value and the final reference value includes:
  • Determining the switching ratio from the transition angle of view to the final angle of view according to the transition reference value includes:
  • the parking phase includes a parking phase
  • determining a switching reference according to the parking phase in which the three-dimensional parking scene is located includes:
  • the parking distance between the vehicle and the parking space is used as the switching reference, and the parking distance includes the initial distance value corresponding to the initial viewing angle The final distance value corresponding to the final viewing angle;
  • the determination of the transition reference value according to the initial reference value and the final reference value includes:
  • Determining the switching ratio from the transition angle of view to the final angle of view according to the transition reference value includes:
  • the three-dimensional parking display method includes:
  • the initial distance value is determined according to the position of the vehicle and the position of the parking space corresponding to the initial angle of view.
  • the initial angle of view includes an initial camera position and an initial preview position of the virtual camera
  • the final angle of view includes a final camera position and a final preview position of the virtual camera
  • the transition angle of view includes the The transition camera position and transition preview position of the virtual camera, and determining the transition angle of view according to the switching ratio, the initial angle of view, and the final angle of view include:
  • the transition preview position is determined according to the switching ratio, the initial preview position, and the final preview position.
  • displaying the multiple image frames of the three-dimensional parking scene drawn by the virtual camera according to the initial angle of view, the transition angle of view, and the final angle of view includes:
  • the image frames of the initial parking image, the image frames of the transitional parking image, and the image frames of the final parking image are sequentially displayed.
  • the vehicle includes a memory and a processor, the memory stores a computer program, and the processor is configured to execute the program to implement the three-dimensional parking display method of any one of the above embodiments.
  • the present application provides a non-volatile computer-readable storage medium containing computer-executable instructions.
  • the processor can execute any of the above-mentioned embodiments. 3D parking display method.
  • the initial and final perspectives of the three-dimensional parking scene of the virtual camera determined based on the parking start instruction, and the transition perspectives determined based on the initial and final perspectives .
  • To display multiple image frames of the three-dimensional parking scene drawn by the virtual camera so that the displayed parking image is adapted to the actual parking scene, and the switching between the initial and final viewing angles is more consistent and natural, so that the visual effect is better. Good, it helps to improve the user experience.
  • FIG. 1 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application
  • FIG. 2 is a schematic diagram of modules of a vehicle according to some embodiments of the present application.
  • Fig. 3 is a schematic diagram of the structure of a vehicle according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of a scene of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 5 is a schematic diagram of the display effect of the related art three-dimensional parking display method
  • FIG. 6 is a schematic diagram of another display effect of the related art three-dimensional parking display method
  • FIG. 7 is a schematic diagram of a display effect of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of another display effect of the three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 10 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 11 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 12 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application.
  • FIG. 13 is a schematic flowchart of a three-dimensional parking display method according to some embodiments of the present application.
  • the present application provides a three-dimensional parking display method and a vehicle 1000.
  • the three-dimensional parking display method provided by this application includes:
  • Step S12 Determine the initial angle of view and the final angle of view of the virtual camera to the three-dimensional parking scene according to the obtained parking start instruction
  • Step S14 Determine the transition angle of view according to the initial angle of view and the final angle of view
  • Step S16 According to the initial angle of view, the transition angle of view, and the final angle of view, multiple image frames of the three-dimensional parking scene drawn by the virtual camera are displayed.
  • the vehicle 1000 provided in the present application includes a memory 102 and a processor 101, the memory 102 stores a computer program, and the processor 101 is configured to execute the program to implement the above-mentioned three-dimensional parking display method.
  • the processor 101 is used to determine the initial view angle and the final view angle of the virtual camera to the three-dimensional parking scene according to the obtained parking start instruction; and used to determine the transition view angle according to the initial view angle and the final view angle;
  • the initial angle of view, the transition angle of view, and the final angle of view show multiple image frames of the 3D parking scene drawn by the virtual camera.
  • the virtual camera drawing is displayed according to the initial and final perspectives of the virtual camera to the three-dimensional parking scene determined based on the parking start instruction, and the transition perspective determined based on the initial and final perspectives
  • the multiple image frames of the three-dimensional parking scene make the displayed parking screen adapt to the actual parking scene, and make the switching between the initial and final viewing angles more coherent and natural, so that the visual effect is better and is beneficial to improve user experience.
  • the vehicle 1000 may include a display component, and multiple image frames of the three-dimensional parking scene drawn by the virtual camera may be displayed through the display component.
  • the display component includes at least one of a central control screen, an instrument screen, and a windshield. It can be understood that the windshield can be used for head-up display (HUD).
  • HUD head-up display
  • step S12 the three-dimensional parking scene can be determined according to the parking start instruction, and then the initial and final perspectives of the virtual camera to the three-dimensional parking scene can be determined according to the three-dimensional parking scene. In this way, the initial viewing angle and the final viewing angle are determined according to the parking start instruction.
  • the parking start instruction can be triggered by the user.
  • the parking start instruction can be triggered by at least one of voice information, gesture information, key information, and touch screen information input by the user.
  • the parking start instruction can also be triggered by the vehicle 1000 itself based on the detection data.
  • the parking start instruction can be triggered by the detected image of the target parking space. There is no limitation here.
  • the three-dimensional parking scene includes at least one of a car search scene, a car selection scene, a car sliding scene, and a parking scene.
  • the initial perspective corresponding to the three-dimensional parking scene can be directly used as the initial perspective
  • the final perspective corresponding to the three-dimensional parking scene can be directly used as the final perspective
  • the initial perspective corresponding to the first three-dimensional parking scene can be used as the initial perspective
  • the final perspective corresponding to the last three-dimensional parking scene can be used as the final perspective
  • the three-dimensional parking scene includes a car-finding scene
  • the initial perspective corresponding to the car-finding scene may be used as the initial perspective
  • the final perspective corresponding to the car-finding scene can be used as the final perspective
  • the three-dimensional parking scene includes a car-finding scene and a car-selecting scene.
  • the initial perspective corresponding to the car-finding scene can be used as the initial perspective
  • the final perspective corresponding to the car-selecting scene can be used as the final perspective;
  • the three-dimensional parking scene includes a parking scene, and the initial perspective corresponding to the parking scene can be used as the initial perspective, and the final perspective corresponding to the parking scene can be used as the final perspective.
  • the specific form of the three-dimensional parking scene is not limited here.
  • the perspective corresponding to each three-dimensional parking scene can be preset and stored in the vehicle 1000.
  • the initial perspective and the final perspective can be determined according to the three-dimensional parking scene.
  • step S12 does not refer to a real parking scene, but refers to a virtual three-dimensional scene corresponding to the real parking scene and observed by a virtual camera.
  • the three-dimensional parking scene may include a three-dimensional vehicle model and a three-dimensional environment model.
  • the three-dimensional vehicle model can be established based on pre-stored vehicle data
  • the three-dimensional environment model can be established based on the signal data collected by the vehicle.
  • a virtual camera does not refer to a camera entity capable of shooting a real scene, but a virtual camera used to observe a three-dimensional parking scene.
  • the virtual camera can draw image frames of the 3D parking scene when it is at each angle of view.
  • the user can understand the visual state of the 3D parking scene from multiple angles by observing the displayed multiple image frames, so that the user can view the 3D parking scene from multiple angles. Observe the 3D parking scene, especially the 3D vehicle model in the 3D parking scene.
  • the angle of view may refer to the state of the virtual camera observing the three-dimensional parking model.
  • the angle of view may include a camera position and a preview position.
  • the camera position refers to the position of the virtual camera in the 3D parking scene
  • the preview position is related to the direction in which the camera observes the 3D vehicle model.
  • the connection line from the camera position to the preview position which is the line of sight of the virtual camera, is related to the camera vector and can represent the direction in which the virtual camera observes the three-dimensional vehicle model.
  • the camera position of the virtual camera 1002 is position A
  • the observation position is position B
  • the line L between position A and position B is the line of sight of the virtual camera 1002.
  • the angle between the line L and the horizontal plane S in the three-dimensional parking model 1001 forms a shooting angle ⁇ .
  • the initial angle of view and the final angle of view may respectively refer to the initial angle of view and the final angle of view of the virtual camera to the three-dimensional vehicle model in the three-dimensional parking scene in the three-dimensional parking scene.
  • the transition perspective can be understood as the perspective of the virtual camera in the process of switching from the initial perspective to the final perspective. That is, the position and orientation of the camera when the virtual camera moves from the initial camera position to the final camera position, and adjusts the line of sight from the initial preview position to the final preview position.
  • the viewing angle corresponding to each scene can be preset and stored in the vehicle 1000.
  • the corresponding viewing angle can be determined, so that the shooting angle can be determined.
  • the shooting angle of the car-finding scene is 38°
  • the shooting angle of the car-selecting scene is 58°
  • the initial shooting angle of the parking scene is 58°
  • the final shooting angle of the parking scene is 90°.
  • the camera position coordinates can be represented by the coordinate values of the X axis of the coordinate system, the coordinate values of the Y axis of the coordinate system, and the coordinate values of the Z axis of the coordinate system.
  • the X axis of the coordinate system is used to move the virtual camera left and right
  • the Y axis of the coordinate system is used to control the movement of the virtual camera perpendicular to the display
  • the coordinate system Z axis is used to control the up and down movement of the virtual camera.
  • the number of transition viewing angles may be 1, 2, 3, 4, or other numbers.
  • the number of transition viewing angles is not limited here.
  • step S16 includes: acquiring the image frame of the initial parking screen drawn when the virtual camera is at the initial perspective, the image frame of the transition parking screen drawn when the virtual camera is at the transition perspective, and the final parking image drawn when the virtual camera is at the final perspective.
  • the image frame of the car image; the image frame of the initial parking image, the image frame of the transitional parking image, and the image frame of the final parking image are sequentially displayed.
  • the processor 101 is configured to obtain the image frame of the initial parking screen drawn when the virtual camera is at the initial perspective, the image frame of the transition parking screen drawn when the virtual camera is at the transition perspective, and the final parking image drawn when the virtual camera is at the final perspective. And used to sequentially display the image frame of the initial parking image, the image frame of the transitional parking image, and the image frame of the final parking image.
  • the image frame of the initial parking screen, the image frame of the transitional parking screen, and the image frame of the final parking screen can be accessed through the Open Graphics Library (Open Graphics Library). Graphics Library, openGL) drawing.
  • Open Graphics Library Open Graphics Library
  • OpenGL Open Graphics Library
  • the image frame of the initial parking screen, the image frame of the transitional parking screen, and the image frame of the final parking screen can be drawn by Metal. There is no limitation on the way of drawing the frame of the picture.
  • the display may sequentially display multiple transition picture frames after displaying the initial picture frame, and then display the final picture frame.
  • the virtual camera when switching from the car-finding scene to the car-rolling scene, the virtual camera directly switches from the car-finding perspective to the car-rolling perspective. That is, from displaying the image frame P01 corresponding to the car-finding angle of view, directly switching to displaying the image frame P02 corresponding to the car-rolling angle of view.
  • FIG. 6 in the related art, during the parking process, when the virtual camera is switched from the rolling perspective to the car-finding perspective, it switches from displaying the image frame P02 corresponding to the rolling perspective to the image frame P01 corresponding to the car-finding perspective.
  • the viewing angle switching is relatively rigid, not natural enough, and the visual effect is poor.
  • the user is likely to feel that the vehicle in the parking screen suddenly zooms in or out, resulting in a poor user experience.
  • the display method of the three-dimensional parking of this embodiment is in the parking process, when switching from the car-finding scene to the car-rolling scene, the virtual camera switches from the car-finding perspective to the first transition perspective, and then to the second transition perspective. Second transition perspective, then switch to the third transition perspective, and finally switch to the rolling perspective. That is, from displaying the image frame P11 corresponding to the car-finding perspective, switching to displaying the image frame P12 corresponding to the first transition perspective, then switching to displaying the image frame P13 corresponding to the second transition perspective, and then switching to displaying the image frame P13 corresponding to the third transition perspective. The image frame P14 is finally switched to display the image frame P15 corresponding to the rolling angle of view.
  • the display method of the three-dimensional parking in this embodiment is in the parking process, when switching from the rolling scene to the car looking scene, the virtual camera is switched from the rolling perspective to the third transition perspective, and then to the second Transition perspective, then switch to the first transition perspective, and finally switch to the car-finding perspective. That is, from displaying the image frame P15 corresponding to the vehicle rolling perspective, switching to displaying the image frame P14 corresponding to the third transition perspective, then switching to displaying the image frame P13 corresponding to the second transition perspective, and then switching to displaying the image frame P13 corresponding to the first transition perspective.
  • the image frame P12 is finally switched to display the image frame P11 corresponding to the rolling angle of view.
  • the transition effect is achieved through three transition perspectives, making the parking screen displayed on the monitor smoother and more natural, and the vehicle in the parking screen will not suddenly become larger or larger. If it becomes smaller, it has a visual transition effect, and the user experience is better.
  • step S14 includes:
  • Step S141 Determine a switching reference according to the parking phase of the three-dimensional parking scene, and the switching reference includes an initial reference value corresponding to the initial viewing angle and a final reference value corresponding to the final viewing angle;
  • Step S142 Determine a transition reference value according to the initial reference value and the final reference value, where the transition reference value is the value of the switching reference corresponding to the transition viewing angle;
  • Step S143 Determine a switching ratio from the transition angle of view to the final angle of view according to the transition reference value
  • Step S144 Determine the transition angle of view according to the switching ratio, the initial angle of view, and the final angle of view.
  • the processor 101 is configured to determine a switching reference according to the parking phase of the three-dimensional parking scene, the switching reference includes an initial reference value corresponding to the initial viewing angle and a final reference value corresponding to the final viewing angle; and The initial reference value and the final reference value determine the transition reference value, the transition reference value is the value of the switching reference corresponding to the transition viewing angle; and used to determine the switching ratio from the transition viewing angle to the final viewing angle according to the transition reference value; and used to determine the switching ratio from the transition viewing angle to the final viewing angle according to the switching ratio, The initial perspective and the final perspective, determine the transition perspective.
  • the transition angle of view is determined according to the initial angle of view and the final angle of view.
  • the switching reference is determined according to the parking phase, the switching reference is adapted to different parking phases, which can improve the accuracy of determining the transition view angle, so that the switching is more natural and smooth, which is beneficial to improve the visual effect.
  • the initial reference value is the value of the switching reference corresponding to the initial viewing angle
  • the final reference value is the value of the switching reference corresponding to the final viewing angle
  • the switching reference may include at least one of the shooting angle of the virtual camera, the camera position, the preview position, and the switching time. It can be understood that the initial reference value is the value of the switching reference corresponding to the initial viewing angle, and the final reference value is the value of the switching reference corresponding to the final viewing angle.
  • the switching reference is the shooting angle, the initial reference value is 30, and the final reference value is 60; another example, the switching reference is the X value of the camera position, the initial reference value is: 1, the final reference value is: 2; another example, The switching reference is the Y value of the preview position, the initial reference value is: 2, the final reference value is: 1; for another example, the switching reference is the number of seconds when the parking display interface is displayed on the monitor, the initial reference value is: 1, the final reference value :2.
  • the ValueAnimator tool may be used to determine the transition reference value according to the initial reference value and the final reference value. Specifically, through the following code, a series of numbers between the initial reference value y_start and the final reference value y_end can be generated, that is, multiple transition reference values.
  • ValueAnimator translateAnimator ValueAnimator.ofFloat(y_start,y_end).
  • the predetermined value can also be used to determine the transition reference value based on the initial reference value and the final reference value. For example, if the initial reference value is 1, the final reference value is 10, and the predetermined value is 1, then the transition reference value can be determined: 2, 3, 4, 5, 6, 7, 8, 9.
  • the specific method for determining the transition reference value is not limited here.
  • the number of transition reference values may be multiple, and the difference between two adjacent transition reference values is the same. In this way, the transition effect is more uniform and visually smoother, which is conducive to improving the user experience.
  • the parking phase includes the pre-parking phase
  • step S141 includes:
  • Step S1411 When the three-dimensional parking scene is in the pre-parking stage, the shooting angle of the virtual camera is used as the switching reference, and the shooting angle includes the initial angle value corresponding to the initial angle of view and the final angle value corresponding to the final angle of view;
  • Step S142 includes:
  • Step S1421 Determine a transition angle value according to the initial angle value and the final angle value, where the transition angle value is the value of the shooting angle corresponding to the transition angle of view;
  • Step S143 includes:
  • Step S1431 Determine a switching ratio from the transition angle of view to the final angle of view according to the transition angle value and the final angle value.
  • the parking stage includes the pre-parking stage
  • the processor 101 is configured to use the shooting angle of the virtual camera as the switching reference when the three-dimensional parking scene is in the pre-parking stage, and the shooting angle includes the initial viewing angle.
  • the corresponding initial angle value and the final angle value corresponding to the final angle of view; and used to determine the transition angle value according to the initial angle value and the final angle value, the transition angle value is the value of the shooting angle corresponding to the transition angle of view; and used to determine the transition angle value according to the transition angle value
  • the final angle value determines the switching ratio from the transition angle of view to the final angle of view.
  • the initial angle value and the final angle value are used to determine the transition angle value, so as to determine the switching ratio from the transition perspective to the final perspective.
  • the processing process is simple and the processing speed can be improved.
  • the three-dimensional parking scene is in the pre-parking stage, which means that the vehicle 1000 does not park in the three-dimensional parking scene.
  • the three-dimensional parking scene is at least one of a car-finding scene, a car-selecting scene, and a car-rolling scene.
  • the perspective switching of the three-dimensional parking scene in the pre-parking stage is basically to make the car-finding area from large to small or from small to large, and the virtual camera rotates at a certain angle around the X axis.
  • step S1421 the value of the transition angle can be determined according to the initial angle value and the final angle value through the aforementioned ValueAnimator tool or a predetermined value. To avoid redundancy, I will not repeat them here.
  • step S1431 the ratio of the transition angle value to the final angle value may be used as the switching ratio.
  • the three-dimensional parking scene includes a car-finding scene and a car-selecting scene.
  • the initial angle value corresponding to the car-finding scene is 38°; the final angle value corresponding to the car-selecting scene is 58°.
  • the parking phase includes a parking phase
  • step S141 includes:
  • Step S1412 When the 3D parking scene is in the parking phase, the parking distance between the vehicle 1000 and the parking space is used as the switching reference, and the parking distance includes the initial distance value corresponding to the initial viewing angle and the final viewing angle corresponding to the final value. Distance value
  • Step S142 includes:
  • Step S1422 Determine a transition distance value according to the initial distance value and the final distance value, where the transition distance value is the value of the parking distance corresponding to the transition angle of view;
  • Step S143 includes:
  • Step S1432 Determine a switching ratio from the transition view angle to the final view angle according to the transition distance value and the initial distance value.
  • the parking phase includes a parking phase
  • the processor 101 is configured to use the parking distance between the vehicle 1000 and the parking space as a switching reference when the three-dimensional parking scene is in the parking phase.
  • the parking distance includes the initial distance value corresponding to the initial viewing angle and the final distance value corresponding to the final viewing angle; and is used to determine the transition distance value according to the initial distance value and the final distance value, and the transition distance value is the value of the parking distance corresponding to the transition viewing angle; And it is used to determine the switching ratio from the transition view angle to the final view angle according to the transition distance value and the initial distance value.
  • the initial distance value and the final distance value determine the transition distance value, thereby determining the switching ratio from the transition perspective to the final perspective, so that the switching of perspective is synchronized with the movement of the vehicle.
  • the perspective switching also starts, and when the vehicle is parked, the perspective switching has also been completed, making the visual effect better.
  • step S1412 the three-dimensional parking scene is in the parking phase, which may mean that the vehicle 1000 is in the process of parking in the three-dimensional parking scene.
  • the final perspective of the car selection scene is the initial perspective
  • the final perspective of the parking scene is the final perspective
  • the final perspective of the car-finding scene is the initial perspective
  • the final perspective of the parking scene is the final perspective.
  • step S1412 the value of the transition distance can be determined according to the initial distance value and the final distance value through the aforementioned ValueAnimator tool or a predetermined value. To avoid redundancy, I will not repeat them here.
  • step S1432 the difference between the initial distance value and the current distance value can be determined, and the ratio of the difference and the initial distance value can be used as the switching ratio.
  • the three-dimensional parking scene is a parking scene, that is, in the parking phase, the initial distance value is 100, and the final distance value is 0.
  • Multiple transition distance values between 100-0 can be generated by the following code:
  • ValueAnimator translateAnimator ValueAnimator.ofFloat(38,58).
  • the switching ratio corresponding to the transition distance value is 7/10.
  • the three-dimensional parking display method includes:
  • Step S13 Determine the initial distance value according to the position of the vehicle corresponding to the initial view angle and the position of the parking space.
  • the processor 101 is configured to determine the initial distance value according to the position of the vehicle corresponding to the initial view angle and the position of the parking space.
  • the initial distance value can be quickly determined, which is beneficial to shorten the execution time of the three-dimensional parking display method, thereby improving the response speed.
  • the position of the vehicle corresponding to the initial viewing angle refers to the position of the vehicle at the beginning of parking, and the vehicle 1000 starts to move from this position until it is parked in the parking space.
  • the position of the vehicle may be the position of the center point of the vehicle
  • the position of the parking space may be the position of the center point of the parking space. In this way, the determination of the initial distance value is more accurate.
  • the location of the vehicle may refer to the location of the three-dimensional vehicle model in the three-dimensional environment model
  • the location of the parking space may refer to the location of the parking space in the three-dimensional environment model.
  • the position coordinates can be obtained quickly, thereby reducing the time to determine the initial distance value.
  • the initial distance value can be calculated by the distance formula between two points in space.
  • the position of the vehicle may also be the position of the vehicle in the real scene
  • the parking space may be the position of the parking space in the real scene.
  • the location of the vehicle can be determined based on navigation systems such as the Global Positioning System and Beidou Satellite Navigation System.
  • the location of the parking space may be determined based on the sensor data collected by the vehicle 1000, the data of the parking lot, and the like. There is no limitation here.
  • the initial angle of view includes the initial camera position and the initial preview position of the virtual camera
  • the final angle of view includes the final camera position and the final preview position of the virtual camera
  • the transition angle of view includes the transition camera position of the virtual camera and Transition preview position
  • Step S1441 Determine the transition camera position according to the switching ratio, the initial camera position and the final camera position
  • Step S1442 Determine the transition preview position according to the switching ratio, the initial preview position and the final preview position.
  • the processor 101 is used to determine the transition camera position according to the switching ratio, the initial camera position and the final camera position; and used to determine the transition preview position according to the switching ratio, the initial preview position and the final preview position.
  • the angle of view can include the camera position and the preview position.
  • the camera position refers to the position of the virtual camera in the 3D parking model
  • the preview position is related to the direction in which the virtual camera observes the 3D parking model. Therefore, once the transition camera position and the transition preview position are determined, a corresponding transition angle of view can be determined, avoiding the error of the transition angle.
  • the three-dimensional parking scene is in the pre-parking stage.
  • the Z coordinate value of the transition preview position can be determined according to the Z coordinate value of the final preview position and the switching ratio. which is:
  • translateZ is the Z coordinate value of the transition preview position
  • Z1 is the Z coordinate value of the final preview position
  • percent is the switching ratio.
  • the intermediate value can be determined according to the Y coordinate value of the final preview position, the Y coordinate value of the initial preview position and the switching ratio; and the Y coordinate value and the Z coordinate value of the transition camera position can be determined according to the intermediate value and the transition angle value.
  • the above process can be expressed in code as:
  • float cameraZ (float)Math.sin(a1/180.0f*Math.PI)*lookY;
  • Y0 is the Y coordinate value of the initial preview position
  • Y1 is the Y coordinate value of the final preview position
  • percent is the switching ratio
  • lookY is the intermediate value
  • cameraZ is the Y coordinate value of the transition camera position
  • y is the Y coordinate value of the transition camera position value.
  • transition camera position can be set by code, namely:
  • the above-mentioned process can be performed to determine the corresponding transition preview position and transition camera position, thereby determining the transition angle of view.
  • the car-finding area can be realized from large to small or from small to large, and the virtual camera rotates at a certain angle around the X axis.
  • the 3D parking scene is a parking scene, that is, in the parking phase.
  • the X coordinate value of the transition camera position can be determined according to the X coordinate value of the final camera position, the X coordinate value of the initial camera position, and the switching ratio.
  • the Y coordinate value of the transition camera position can be determined according to the Y coordinate value of the final camera position, the Y coordinate value of the initial camera position and the switching ratio.
  • the Z coordinate value of the transition camera position can be determined according to the Z coordinate value of the final camera position, the Z coordinate value of the initial camera position and the switching ratio. which is:
  • the switching ratio is percent; x0 is the X coordinate value of the initial camera position, x1 is the X coordinate value of the final camera position, x2 is the X coordinate value of the transition camera position; y0 is the Y coordinate value of the initial camera position, and y1 is the final The Y coordinate value of the camera position, y2 is the Y coordinate value of the transition camera position; z0 is the Z coordinate value of the initial camera position, z1 is the Z coordinate value of the final camera position, and z2 is the Z coordinate value of the transition camera position.
  • the initial vector can be determined according to the initial camera position and the initial preview position
  • the final vector can be determined according to the final camera position and the final preview position. Then, the current vector is determined according to the initial vector, the final vector and the switching ratio, and finally, the transition preview position is determined according to the current vector.
  • x4 x3+(x5-x3)*percent
  • the switching ratio is percent; x3 is the X coordinate of the initial vector, x5 is the X coordinate of the final vector, x4 is the X coordinate of the transition vector; y3 is the Y coordinate of the initial vector, and y5 is the Y coordinate of the final vector Value, y4 is the Y coordinate value of the transition vector; z3 is the Z coordinate value of the initial vector, z5 is the Z coordinate value of the final vector, and z4 is the Z coordinate value of the transition vector.
  • the transition preview position can be determined based on the transition vector (x4, y4, z4).
  • the embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions when the computer-executable instructions are executed by one or more processors 101, cause the processor 101 to execute the three-dimensional parking in any of the above embodiments Display method.
  • the storage medium of the embodiment of the present application displays the three-dimensional parking drawn by the virtual camera according to the initial and final perspectives of the virtual camera on the three-dimensional parking scene determined based on the parking start instruction, and the transition perspectives determined based on the initial and final perspectives
  • the multiple image frames of the scene make the displayed parking screen adapt to the actual parking scene, and make the switching between the initial and final viewing angles more coherent and natural, so that the visual effect is better, and the user experience is improved.
  • the program can be stored in a non-volatile computer-readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Traffic Control Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

一种三维泊车的显示方法,该方法包括:根据获取到的泊车启动指令确定虚拟相机(1002)对三维泊车场景的初始视角和最终视角;根据初始视角和最终视角确定过渡视角;根据初始视角、过渡视角和最终视角,显示虚拟相机(1002)绘制的三维泊车场景的多个图像帧。如此,使得泊车画面与泊车实际场景相适应,并使得初始视角与最终视角之间的切换较为连贯自然,从而使得视觉效果较好,有利于提高用户体验。还公开了一种车辆和一种存储介质。

Description

三维泊车的显示方法、车辆和存储介质
本申请要求在2020年05月15日提交中国专利局、申请号202010410618.0、发明名称为“三维泊车的显示方法、车辆和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,特别涉及三维泊车的显示方法、车辆和存储介质。
背景技术
相关技术中的车辆,在泊车的过程中,可显示泊车场景的画面。具体地,可从几个视角来显示泊车场景的画面。然而,相关技术中多个视角通常直接切换,切换较为生硬,不够自然,存在画面闪烁的问题。这样,视觉效果较差,导致用户体验较差。
发明内容
有鉴于此,本申请的实施例提供了一种三维泊车的显示方法、车辆和存储介质。
本申请提供了一种三维泊车的显示方法,包括:
根据获取到的泊车启动指令确定虚拟相机对三维泊车场景的初始视角和最终视角;
根据所述初始视角和所述最终视角确定过渡视角;
根据所述初始视角、所述过渡视角和所述最终视角,显示所述虚拟相机绘制的所述三维泊车场景的多个图像帧。
在某些实施方式中,所述三维泊车场景包括找车场景、选车场景、溜车场景、泊入场景中的至少一个。
在某些实施方式中,根据所述初始视角和所述最终视角确定过渡视角,包括:
根据所述三维泊车场景所处的泊车阶段确定切换基准,所述切换基准包括所述初始视角对应的初始基准值和所述最终视角对应的最终基准值;
根据所述初始基准值和所述最终基准值确定过渡基准值,所述过渡基准值为所述过渡视角对应的所述切换基准的值;
根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例;
根据所述切换比例、所述初始视角和所述最终视角,确定所述过渡视角。
在某些实施方式中,所述泊车阶段包括泊入前阶段,根据所述三维泊车场景所处的泊车阶段确定切换基准,包括:
在所述三维泊车场景处于泊入前阶段的情况下,将所述虚拟相机的拍摄角度作为所述切换基准,所述拍摄角度包括所述初始视角对应的初始角度值和所述最终视角对应的最终角度值;
根据所述初始基准值和所述最终基准值确定过渡基准值,包括:
根据所述初始角度值和所述最终角度值确定过渡角度值,所述过渡角度值为所述过渡视角对应的所述拍摄角度的值;
根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例,包括:
根据所述过渡角度值和所述最终角度值确定从所述过渡视角至所述最终视角的切换比例。
在某些实施方式中,所述泊车阶段包括泊入阶段,根据所述三维泊车场景所处的泊车阶段确定切换基准,包括:
在所述三维泊车场景处于泊入阶段的情况下,将所述车辆与泊入车位之间的泊入距离作为所述切换基准,所述泊入距离包括所述初始视角对应的初始距离值和所述最终视角对应的最终距离值;
根据所述初始基准值和所述最终基准值确定过渡基准值值,包括:
根据所述初始距离值和所述最终距离值确定过渡距离值,所述过渡距离值为所述过渡视角对应的所述泊入距离的值;
根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例,包括:
根据所述过渡距离值和所述初始距离值确定从所述过渡视角至所述最终视角的切换比例。
在某些实施方式中,所述三维泊车的显示方法包括:
根据所述初始视角对应的所述车辆的位置和所述泊入车位的位置确定所述初始距离值。
在某些实施方式中,所述初始视角包括所述虚拟相机的初始相机位置和初始预览位置,所述最终视角包括所述虚拟相机的最终相机位置和最终预览位置,所述过渡视角包括所述虚拟相机的过渡相机位置和过渡预览位置,根据所述切换比例、所述初始视角和所述最终视角确定所述过渡视角,包括:
根据所述切换比例、所述初始相机位置和所述最终相机位置,确定所述过渡相机位置;
根据所述切换比例、所述初始预览位置和所述最终预览位置,确定所述过渡预览位置。
在某些实施方式中,根据所述初始视角、所述过渡视角和所述最终视角显示所述虚拟相机绘制的所述三维泊车场景的多个图像帧,包括:
获取所述虚拟相机处于所述初始视角时绘制的初始泊车画面的图像帧、处于所述过渡视角时绘制的过渡泊车画面的图像帧、和处于所述最终视角时绘制的最终泊车画面的图像帧;
依次显示所述初始泊车画面的图像帧、所述过渡泊车画面的图像帧和所述最终泊车画面的图像帧。
本申请提供了一种车辆。所述车辆包括存储器和处理器,所述存储器存储有计算机程序,所述处理器用于执行所述程序以实现上述任一实施方式的三维泊车的显示方法。
本申请提供了一种包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述任一实施方式的三维泊车的显示方法。
本申请实施方式的控制方法、车辆及计算机可读存储介质中,根据基于泊车启动指令确定的虚拟相机对三维泊车场景的初始视角和最终视角,以及基于初始视角和最终视角确定的过渡视角,显示虚拟相机绘制的三维泊车场景的多个图像帧,使得显示的泊车画面与泊车实际场景相适应,并使得初始视角与最终视角之间的切换较为连贯自然,从而使得视觉效果较好,有利于提高用户体验。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的三维泊车的显示方法的流程示意图;
图2是本申请某些实施方式的车辆的模块示意图;
图3是本申请某些实施方式的车辆的结构示意图;
图4是本申请某些实施方式的三维泊车的显示方法的场景示意图;
图5是相关技术的三维泊车的显示方法的显示效果示意图;
图6是相关技术的三维泊车的显示方法的另一显示效果示意图;
图7是本申请某些实施方式的三维泊车的显示方法的显示效果示意图;
图8是本申请某些实施方式的三维泊车的显示方法的另一显示效果示意图;
图9是本申请某些实施方式的三维泊车的显示方法的流程示意图;
图10是本申请某些实施方式的三维泊车的显示方法的流程示意图;
图11是本申请某些实施方式的三维泊车的显示方法的流程示意图;
图12是本申请某些实施方式的三维泊车的显示方法的流程示意图;
图13是本申请某些实施方式的三维泊车的显示方法的流程示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
请参阅图1、图2和图3,本申请提供一种三维泊车的显示方法和车辆1000。
本申请提供的三维泊车的显示方法包括:
步骤S12:根据获取到的泊车启动指令确定虚拟相机对三维泊车场景的初始视角和最终视角;
步骤S14:根据初始视角和最终视角确定过渡视角;
步骤S16:根据初始视角、过渡视角和最终视角,显示虚拟相机绘制的三维泊车场景的多个图像帧。
本申请提供的车辆1000包括存储器102和处理器101,存储器102存储有计算机程序,处理器101用于执行程序以实现上述的三维泊车的显示方法。
也即是说,处理器101用于根据获取到的泊车启动指令确定虚拟相机对 三维泊车场景的初始视角和最终视角;及用于根据初始视角和最终视角确定过渡视角;以及用于根据初始视角、过渡视角和最终视角,显示虚拟相机绘制的三维泊车场景的多个图像帧。
本申请实施方式的控制方法和车辆1000中,根据基于泊车启动指令确定的虚拟相机对三维泊车场景的初始视角和最终视角,以及基于初始视角和最终视角确定的过渡视角,显示虚拟相机绘制的三维泊车场景的多个图像帧,使得显示的泊车画面与泊车实际场景相适应,并使得初始视角与最终视角之间的切换较为连贯自然,从而使得视觉效果较好,有利于提高用户体验。
具体地,车辆1000可包括显示部件,可通过显示部件显示虚拟相机绘制的三维泊车场景的多个图像帧。显示部件包括中控屏幕、仪表屏幕、挡风玻璃中的至少一种。可以理解,挡风玻璃可用于抬头显示(Head Up Display,HUD)。
在步骤S12中,可根据泊车启动指令确定三维泊车场景,再根据三维泊车场景确定虚拟相机对三维泊车场景的初始视角和最终视角。如此,实现根据泊车启动指令确定初始视角和最终视角。
具体地,泊车启动指令可由用户触发。例如可通过用户输入的语音信息、手势信息、按键信息、触屏信息中的至少一个触发泊车启动指令。
具体地,泊车启动指令也可由车辆1000根据检测数据自行触发。例如可通过检测到的目标车位的图像触发泊车启动指令。在此不进行限定。
具体地,三维泊车场景包括找车场景、选车场景、溜车场景、泊入场景中的至少一个。
在三维泊车场景的数量为一个的情况下,可直接将该三维泊车场景对应的初始的视角作为初始视角,并直接将该三维泊车场景对应的最终的视角作为最终视角,
在三维泊车场景的数量为多个的情况下,可将第一个三维泊车场景对应的初始的视角作为初始视角,并将最后一个三维泊车场景对应的最终的视角作为最终视角。
在一个例子中,三维泊车场景包括找车场景,可将找车场景对应的初始的视角作为初始视角,并将找车场景对应的最终的视角作为最终视角;
在另一个例子中,三维泊车场景包括找车场景和选车场景,可将找车场景对应的初始的视角作为初始视角,并将选车场景对应的最终的视角作为最 终视角;
在又一个例子中,三维泊车场景包括泊入场景,可将泊入场景对应的初始的视角作为初始视角,并将泊入场景对应的最终的视角作为最终视角。
在此不对三维泊车场景的具体形式进行限定。
每种三维泊车场景对应的视角可预先设定并存储在车辆1000中,在确定了三维泊车场景时,即可根据三维泊车场景确定初始视角和最终视角。
请注意,步骤S12中的“三维泊车场景”并非是指真实的泊车场景,而是指与真实的泊车场景对应的、虚拟的、并由虚拟相机进行观测的三维场景。
进一步地,三维泊车场景可包括三维车辆模型和三维环境模型。其中,三维车辆模型可基于预存的车辆数据建立,三维环境模型可基于车辆采集的信号数据建立。
类似地,虚拟相机并非是指能够拍摄真实场景的相机实体,而是用于对三维泊车场景进行观察的虚拟的相机。虚拟相机处于每个视角时可对三维泊车场景绘制图像帧,用户可通过观察显示的多个图像帧,了解到多个视角下三维泊车场景的视觉状态,从而使得用户可以从多个视角观察三维泊车场景,尤其是观察三维泊车场景中的三维车辆模型。
具体地,视角可指虚拟相机观察三维泊车模型的状态。在本实施方式中,视角可包括相机位置和预览位置。相机位置指虚拟相机在三维泊车场景中所处的位置,预览位置与相机观察三维车辆模型的方向相关。相机位置至预览位置的连线,也即是虚拟相机的视线,与相机向量相关,可表示虚拟相机观察三维车辆模型的方向。
在图4的示例中,虚拟相机1002的相机位置为位置A,观察位置为位置B,位置A与位置B的连线L,为虚拟相机1002的视线。连线L与三维泊车模型1001中的水平面S之间的夹角形成拍摄角度α。
基于此,初始视角和最终视角可分别指虚拟相机在三维泊车场景中对三维泊车场景中的三维车辆模型的初始视角和最终视角。而过渡视角可理解为,虚拟相机在从初始视角切换至最终视角的过程中的视角。也即是,虚拟相机在从初始相机位置运动至最终相机位置,并将视线从初始预览位置调整至最终预览位置的过程中,相机的位置和朝向。
如前所述,每种场景对应的视角可预先设定并存储在车辆1000中,在确定了三维泊车场景时,即可确定对应的视角,从而可以确定拍摄角度。例 如,找车场景的拍摄角度为38°,选车场景的拍摄角度为58°,泊入场景初始的拍摄角度为58°,泊入场景最终的拍摄角度为90°。
请注意,在本实施方式中,相机位置坐标可用坐标系X轴的坐标值、坐标系Y轴的坐标值和坐标系Z轴的坐标值表示。坐标系X轴用来虚拟相机左右移动,坐标系Y轴用来控制虚拟相机垂直于显示器移动,坐标系Z轴用来控制虚拟相机上下移动。
可以理解,过渡视角的数量可以为1个、2个、3个、4个或其他数量。过渡视角的数量越多,从初始视角至最终视角的切换就越自然、细腻。在此不对过渡视角的数量进行限定。
在本实施方式中,步骤S16包括:获取虚拟相机处于初始视角时绘制的初始泊车画面的图像帧、处于过渡视角时绘制的过渡泊车画面的图像帧、和处于最终视角时绘制的最终泊车画面的图像帧;依次显示初始泊车画面的图像帧、过渡泊车画面的图像帧和最终泊车画面的图像帧。
对应地,处理器101用于获取虚拟相机处于初始视角时绘制的初始泊车画面的图像帧、处于过渡视角时绘制的过渡泊车画面的图像帧、和处于最终视角时绘制的最终泊车画面的图像帧;以及用于依次显示初始泊车画面的图像帧、过渡泊车画面的图像帧和最终泊车画面的图像帧。
如此,实现根据初始视角、过渡视角和最终视角,显示虚拟相机绘制的三维泊车场景的多个图像帧。而且,由于初始泊车画面的图像帧、过渡泊车画面的图像帧和最终泊车画面的图像帧依次显示,用户可以从初始视角观察三维车辆模型,顺滑地切换到从最终视角观察三维车辆模型,避免了画面帧的混乱显示,有利于提高视觉效果。
具体地,在控制终端100的操作***为安卓***(android)的情况下,初始泊车画面的图像帧、过渡泊车画面的图像帧和最终泊车画面的图像帧可通过开放图形库(Open Graphics Library,openGL)绘制。在控制终端100的操作***为IOS***的情况下,初始泊车画面的图像帧、过渡泊车画面的图像帧和最终泊车画面的图像帧可通过Metal绘制。在此不对绘制画面帧的方式进行限定。
具体地,在过渡画面帧的数量为多个的情况下,显示器可在显示初始画面帧后,依次显示多个过渡画面帧,再显示最终画面帧。
接下来以泊车场景包括找车场景和溜车场景为例,对本申请实施方式的 三维泊车的显示方法的效果,进行进一步解释和说明。
请参阅图5,相关技术在泊车过程中,从找车场景切换至溜车场景时,虚拟相机直接从找车视角切换至溜车视角。即,从显示找车视角对应的图像帧P01,直接切换至显示溜车视角对应的图像帧P02。请参阅图6,相关技术在泊车过程中,虚拟相机从溜车视角切换至找车视角时,从显示溜车视角对应的图像帧P02,直接切换至显示找车视角对应的图像帧P01。
这样,视角切换较为生硬,不够自然,视觉效果较差,用户容易感受到泊车画面中的车辆突然放大或缩小,导致用户体验较差。
请参阅图7,而本实施方式的三维泊车的显示方法在泊车过程中,从找车场景切换至溜车场景时,虚拟相机从找车视角切换至第一过渡视角、再切换至第二过渡视角、再切换至第三过渡视角,最后切换至溜车视角。即,从显示找车视角对应的图像帧P11,切换至显示第一过渡视角对应的图像帧P12、再切换至显示第二过渡视角对应的图像帧P13、再切换至显示第三过渡视角对应的图像帧P14,最后切换至显示溜车视角对应的图像帧P15。
请参阅图8,本实施方式的三维泊车的显示方法在泊车过程中,从溜车场景切换至找车场景时,虚拟相机从溜车视角切换至第三过渡视角、再切换至第二过渡视角、再切换至第一过渡视角,最后切换至找车视角。即,从显示溜车视角对应的图像帧P15,切换至显示第三过渡视角对应的图像帧P14、再切换至显示第二过渡视角对应的图像帧P13、再切换至显示第一过渡视角对应的图像帧P12,最后切换至显示溜车视角对应的图像帧P11。
这样,在找车视角和溜车视角之间,通过三个过渡视角,实现了过渡效果,使得显示器显示的泊车画面更加顺滑、自然,泊车画面中的车辆不会突兀地变大或变小,在视觉上产生了过渡的效果,用户体验较好。
请参阅图9,在某些实施方式中,步骤S14包括:
步骤S141:根据三维泊车场景所处的泊车阶段确定切换基准,切换基准包括初始视角对应的初始基准值和最终视角对应的最终基准值;
步骤S142:根据初始基准值和最终基准值确定过渡基准值,过渡基准值为过渡视角对应的切换基准的值;
步骤S143:根据过渡基准值确定从过渡视角至最终视角的切换比例;
步骤S144:根据切换比例、初始视角和最终视角,确定过渡视角。
在某些实施方式中,处理器101用于根据三维泊车场景所处的泊车阶段 确定切换基准,切换基准包括初始视角对应的初始基准值和最终视角对应的最终基准值;及用于根据初始基准值和最终基准值确定过渡基准值,过渡基准值为过渡视角对应的切换基准的值;及用于根据过渡基准值确定从过渡视角至最终视角的切换比例;以及用于根据切换比例、初始视角和最终视角,确定过渡视角。
如此,实现根据初始视角和最终视角确定过渡视角。而且,由于切换基准根据泊车阶段确定,使得切换基准适应于不同的泊车阶段,可以提高过渡视角确定的准确性,从而使得切换更加自然顺滑,有利于提高视觉效果。
在步骤S141中,初始基准值为初始视角对应的切换基准的值,最终基准值为最终视角对应的切换基准的值。
具体地,切换基准可包括虚拟相机的拍摄角度、相机位置、预览位置、切换时刻中的至少一个。可以理解,初始基准值为初始视角对应的切换基准的值,最终基准值为最终视角对应的切换基准的值。
例如,切换基准为拍摄角度,初始基准值为:30,最终基准值为60;又如,切换基准为相机位置的X值,初始基准值为:1,最终基准值为:2;又如,切换基准为预览位置的Y值,初始基准值为:2,最终基准值为:1;再如,切换基准为显示器显示泊车显示界面的第几秒,初始基准值为:1,最终基准值:2。
以上仅为示例,在此不对切换基准的具体形式,以及初始基准值和最终基准值的具体数值进行限定。
在步骤S142中,可利用ValueAnimator工具根据初始基准值和最终基准值确定过渡基准值。具体地,通过以下代码,可生成从初始基准值y_start和最终基准值y_end之间的一系列数字,也即是多个过渡基准值。
ValueAnimator translateAnimator=ValueAnimator.ofFloat(y_start,y_end)。
可以理解,也可利用预定值根据初始基准值和最终基准值确定过渡基准值。例如,初始基准值为1,最终基准值为10,预定值为1,则可确定过渡基准值为:2,3,4,5,6,7,8,9。
在此不对确定过渡基准值的具体方式进行限定。
另外,过渡基准值的数量可为多个,相邻两个过渡基准值的差值相同。如此,使得过渡效果更加均匀,视觉上更加顺滑,有利于提高用户体验。
请参阅图10,在某些实施方式中,泊车阶段包括泊入前阶段,步骤S141 包括:
步骤S1411:在三维泊车场景处于泊入前阶段的情况下,将虚拟相机的拍摄角度作为切换基准,拍摄角度包括初始视角对应的初始角度值和最终视角对应的最终角度值;
步骤S142包括:
步骤S1421:根据初始角度值和最终角度值确定过渡角度值,过渡角度值为过渡视角对应的拍摄角度的值;
步骤S143包括:
步骤S1431:根据过渡角度值和最终角度值确定从过渡视角至最终视角的切换比例。
在某些实施方式中,泊车阶段包括泊入前阶段,处理器101用于在三维泊车场景处于泊入前阶段的情况下,将虚拟相机的拍摄角度作为切换基准,拍摄角度包括初始视角对应的初始角度值和最终视角对应的最终角度值;及用于根据初始角度值和最终角度值确定过渡角度值,过渡角度值为过渡视角对应的拍摄角度的值;以及用于根据过渡角度值和最终角度值确定从过渡视角至最终视角的切换比例。
如此,在三维泊车场景处于泊入前阶段的情况下,通过初始角度值和最终角度值确定过渡角度值,从而确定从过渡视角至最终视角的切换比例,处理过程简单,可以提高处理速度。
在步骤S1411中,三维泊车场景处于泊入前阶段,是指,在三维泊车场景下车辆1000未进行泊入运动。例如三维泊车场景为找车场景、选车场景、溜车场景中的至少一个。在此不进行限定。可以理解,处于泊入前阶段的三维泊车场景的视角切换基本都是让找车区域从大到小或者从小到大,并且虚拟相机绕X轴进行一定角度旋转。
在步骤S1421中,可通过如前所述的ValueAnimator工具或预定值,根据初始角度值和最终角度值确定过渡角度值。为避免冗余,在此不再赘述。
步骤S1431中,可将过渡角度值与最终角度值的比值,作为切换比例。
在一个例子中,三维泊车场景包括找车场景和选车场景,找车场景对应的初始角度值为38°;选车场景对应的最终角度值为58°。可通过如下代码生成38-58之间的多个过渡角度值:ValueAnimator translateAnimator=ValueAnimator.ofFloat(38,58)。在一个过渡角度值为48的情况下,该过渡角 度值对应的切换比例为48/58。
请参阅图11,在某些实施方式中,泊车阶段包括泊入阶段,步骤S141包括:
步骤S1412:在三维泊车场景处于泊入阶段的情况下,将车辆1000与泊入车位之间的泊入距离作为切换基准,泊入距离包括初始视角对应的初始距离值和最终视角对应的最终距离值;
步骤S142包括:
步骤S1422:根据初始距离值和最终距离值确定过渡距离值,过渡距离值为过渡视角对应的泊入距离的值;
步骤S143包括:
步骤S1432:根据过渡距离值和初始距离值确定从过渡视角至最终视角的切换比例。
在某些实施方式中,泊车阶段包括泊入阶段,处理器101用于在三维泊车场景处于泊入阶段的情况下,将车辆1000与泊入车位之间的泊入距离作为切换基准,泊入距离包括初始视角对应的初始距离值和最终视角对应的最终距离值;及用于根据初始距离值和最终距离值确定过渡距离值,过渡距离值为过渡视角对应的泊入距离的值;以及用于根据过渡距离值和初始距离值确定从过渡视角至最终视角的切换比例。
如此,在三维泊车场景处于泊入阶段的情况下,初始距离值和最终距离值确定过渡距离值,从而确定从过渡视角至最终视角的切换比例,使得视角的切换与车辆的运动同步,在车辆开始泊入时,视角切换也开始进行,在车辆完成泊入时,视角切换也已经完成,使得视觉效果更好。
在步骤S1412中,三维泊车场景处于泊入阶段,可指,在三维泊车场景下车辆1000正在进行泊入运动。
在一个例子中,选车完成后即开始进行泊入,则选车场景的最终的视角为初始视角,泊入场景的最终的视角为最终视角。
在另一个例子中,找车完成后即开始进行泊入,则找车场景的最终的视角为初始视角,泊入场景的最终的视角为最终视角。在此不进行限定。
在步骤S1412中,可通过如前所述的ValueAnimator工具或预定值,根据初始距离值和最终距离值确定过渡距离值。为避免冗余,在此不再赘述。
步骤S1432中,可确定初始距离值与当前距离值的差值,并将差值与初 始距离值的比值,作为切换比例。
在一个例子中,三维泊车场景为泊入场景,即处于泊入阶段,初始距离值为100,最终距离值为0。可通过如下代码生成100-0之间的多个过渡距离值:
ValueAnimator translateAnimator=ValueAnimator.ofFloat(38,58)。
在一个过渡距离值为30的情况下,该过渡距离值对应的切换比例为7/10。
请参阅图12,在某些实施方式中,三维泊车的显示方法包括:
步骤S13:根据初始视角对应的车辆的位置和泊入车位的位置确定初始距离值。
在某些实施方式中,处理器101用于根据初始视角对应的车辆的位置和泊入车位的位置确定初始距离值。
如此,可以快速确定初始距离值,有利于缩短三维泊车的显示方法的执行时间,从而提高响应速度。可以理解,初始视角对应的车辆的位置,是指泊入开始时车辆的位置,车辆1000从该位置开始运动,直至泊入车位。
具体地,车辆的位置可为车辆的中心点的位置,泊入车位的位置可为泊入车位的中心点的位置。如此,使得初始距离值的确定更加准确。
具体地,车辆的位置可指三维环境模型中三维车辆模型的位置,泊入车位的位置可指三维环境模型中泊入车位的位置。如此,可快速地获取位置坐标,从而减少确定初始距离值的时间。进一步地,可通过空间的两点间距离公式计算初始距离值。
可以理解,车辆的位置也可为现实场景中车辆的位置,泊入车位的位置可为现实场景中泊入车位的位置。例如,车辆的位置可基于全球定位***、北斗卫星导航***等导航***确定。泊入车位的位置可基于车辆1000采集的传感数据、停车场的数据等确定。在此不进行限定。
请参阅图13,在某些实施方式中,初始视角包括虚拟相机的初始相机位置和初始预览位置,最终视角包括虚拟相机的最终相机位置和最终预览位置,过渡视角包括虚拟相机的过渡相机位置和过渡预览位置,步骤S144包括:
步骤S1441:根据切换比例、初始相机位置和最终相机位置,确定过渡相机位置;
步骤S1442:根据切换比例、初始预览位置和最终预览位置,确定过渡预览位置。
在某些实施方式中,处理器101用于根据切换比例、初始相机位置和最终相机位置,确定过渡相机位置;以及用于根据切换比例、初始预览位置和最终预览位置,确定过渡预览位置。
如此,在相机位置和预览位置两个维度,实现根据切换比例、初始视角和最终视角,确定过渡视角,使得过渡视角的确定更加准确。如前所述,视角可包括相机位置和预览位置。相机位置指虚拟相机在三维泊车模型中所处的位置,预览位置与虚拟相机观察三维泊车模型的方向相关。所以,确定了过渡相机位置和过渡预览位置,就可以确定对应的一个过渡视角,避免了过渡视角的错误。
在一个例子中,三维泊车场景处于泊入前阶段。可根据最终预览位置的Z坐标值和切换比例,确定过渡预览位置的Z坐标值。即:
float translateZ=Z1*percent;
其中,translateZ为过渡预览位置的Z坐标值,Z1为最终预览位置的Z坐标值,percent为切换比例。然后,可通过如下代码,设置过渡预览位置(0,0,translateZ):mCam.lookAt(0,0,translateZ)。
接着,可根据最终预览位置的Y坐标值、初始预览位置的Y坐标值和切换比例,确定中间值;并根据中间值和过渡角度值,确定过渡相机位置的Y坐标值和Z坐标值。上述过程用代码可表示为:
float lookY=Y0+(Y1-Y0)*percent;
float cameraZ=(float)Math.sin(a1/180.0f*Math.PI)*lookY;
float y=(float)Math.cos(a1/180.0f*Math.PI)*lookY;
其中,Y0为初始预览位置的Y坐标值,Y1为最终预览位置的Y坐标值,percent为切换比例,lookY为中间值,cameraZ为过渡相机位置的Y坐标值,y为过渡相机位置的Y坐标值。
最后,可通过代码设置过渡相机位置,即:
mCam.position.set(mCam.position.x,y,cameraZ)。
可以理解,对于每一个过渡视角对应的切换比例,都可以进行上述的过程,以确定对应的过渡预览位置和过渡相机位置,从而确定该过渡视角。
如此,可实现找车区域从大到小或者从小到大,并且虚拟相机绕X轴进 行一定角度旋转。
在另一个例子中,三维泊车场景为泊入场景,即处于泊入阶段,可根据最终相机位置的X坐标值、初始相机位置的X坐标值和切换比例,确定过渡相机位置的X坐标值。可根据最终相机位置的Y坐标值、初始相机位置的Y坐标值和切换比例,确定过渡相机位置的Y坐标值。可根据最终相机位置的Z坐标值、初始相机位置的Z坐标值和切换比例,确定过渡相机位置的Z坐标值。即:
float x2=x0+(x1-x0)*percent;
float y2=y0+(y1-y0)*percent;
float z2=(z0+(z1-z0)*percent)*(1-percent);
其中,切换比例为percent;x0为初始相机位置的X坐标值,x1为最终相机位置的X坐标值,x2为过渡相机位置的X坐标值;y0为初始相机位置的Y坐标值,y1为最终相机位置的Y坐标值,y2为过渡相机位置的Y坐标值;z0为初始相机位置的Z坐标值,z1为最终相机位置的Z坐标值,z2为过渡相机位置的Z坐标值。
另外,可根据初始相机位置和初始预览位置确定初始向量,可根据最终相机位置和最终预览位置,确定最终向量。然后,根据初始向量、最终向量和切换比例,确定当前向量,最后,根据当前向量确定过渡预览位置。即:
x4=x3+(x5-x3)*percent;
y4=y3+(y5-y3)*percent;
z4=z3+(z5-z3)*percent;
z4=z4*(1-percent);
其中,切换比例为percent;x3为初始向量的X坐标值,x5为最终向量的X坐标值,x4为过渡向量的X坐标值;y3为初始向量的Y坐标值,y5为最终向量的Y坐标值,y4为过渡向量的Y坐标值;z3为初始向量的Z坐标值,z5为最终向量的Z坐标值,z4为过渡向量的Z坐标值。过渡预览位置可基于过渡向量(x4,y4,z4)确定。
可以理解,在泊入过程中,如果维持某个单一角度进行泊入,用户的视觉感受较不只管。而在该示例中,随着泊入的逐渐推进,视角逐渐切换,同时,环境逐渐放大,可以让用户更直观的查看整个泊入过程。
以上仅为示例,并不代表对根据切换比例、初始视角和最终视角确定过 渡视角的限制。
本申请实施方式还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器101执行时,使得处理器101执行上述任一实施方式的三维泊车的显示方法。
本申请实施方式的存储介质,根据基于泊车启动指令确定的虚拟相机对三维泊车场景的初始视角和最终视角,以及基于初始视角和最终视角确定的过渡视角,显示虚拟相机绘制的三维泊车场景的多个图像帧,使得显示的泊车画面与泊车实际场景相适应,并使得初始视角与最终视角之间的切换较为连贯自然,从而使得视觉效果较好,有利于提高用户体验。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,程序可存储于一非易失性计算机可读存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种三维泊车的显示方法,其特征在于,所述三维泊车的显示方法包括:
    根据获取到的泊车启动指令确定虚拟相机对三维泊车场景的初始视角和最终视角;
    根据所述初始视角和所述最终视角确定过渡视角;
    根据所述初始视角、所述过渡视角和所述最终视角,显示所述虚拟相机绘制的所述三维泊车场景的多个图像帧。
  2. 根据权利要求1所述的三维泊车的显示方法,其特征在于,所述三维泊车场景包括找车场景、选车场景、溜车场景、泊入场景中的至少一个。
  3. 根据权利要求1所述的三维泊车的显示方法,其特征在于,根据所述初始视角和所述最终视角确定过渡视角,包括:
    根据所述三维泊车场景所处的泊车阶段确定切换基准,所述切换基准包括所述初始视角对应的初始基准值和所述最终视角对应的最终基准值;
    根据所述初始基准值和所述最终基准值确定过渡基准值,所述过渡基准值为所述过渡视角对应的所述切换基准的值;
    根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例;
    根据所述切换比例、所述初始视角和所述最终视角,确定所述过渡视角。
  4. 根据权利要求3所述的三维泊车的显示方法,其特征在于,所述泊车阶段包括泊入前阶段,根据所述三维泊车场景所处的泊车阶段确定切换基准,包括:
    在所述三维泊车场景处于泊入前阶段的情况下,将所述虚拟相机的拍摄角度作为所述切换基准,所述拍摄角度包括所述初始视角对应的初始角度值和所述最终视角对应的最终角度值;
    根据所述初始基准值和所述最终基准值确定过渡基准值,包括:
    根据所述初始角度值和所述最终角度值确定过渡角度值,所述过渡角度 值为所述过渡视角对应的所述拍摄角度的值;
    根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例,包括:
    根据所述过渡角度值和所述最终角度值确定从所述过渡视角至所述最终视角的切换比例。
  5. 根据权利要求3所述的三维泊车的显示方法,其特征在于,所述泊车阶段包括泊入阶段,根据所述三维泊车场景所处的泊车阶段确定切换基准,包括:
    在所述三维泊车场景处于泊入阶段的情况下,将所述车辆与泊入车位之间的泊入距离作为所述切换基准,所述泊入距离包括所述初始视角对应的初始距离值和所述最终视角对应的最终距离值;
    根据所述初始基准值和所述最终基准值确定过渡基准值值,包括:
    根据所述初始距离值和所述最终距离值确定过渡距离值,所述过渡距离值为所述过渡视角对应的所述泊入距离的值;
    根据所述过渡基准值确定从所述过渡视角至所述最终视角的切换比例,包括:
    根据所述过渡距离值和所述初始距离值确定从所述过渡视角至所述最终视角的切换比例。
  6. 根据权利要求5所述的三维泊车的显示方法,其特征在于,所述三维泊车的显示方法包括:
    根据所述初始视角对应的所述车辆的位置和所述泊入车位的位置确定所述初始距离值。
  7. 根据权利要求2所述的三维泊车的显示方法,其特征在于,所述初始视角包括所述虚拟相机的初始相机位置和初始预览位置,所述最终视角包括所述虚拟相机的最终相机位置和最终预览位置,所述过渡视角包括所述虚拟 相机的过渡相机位置和过渡预览位置,根据所述切换比例、所述初始视角和所述最终视角确定所述过渡视角,包括:
    根据所述切换比例、所述初始相机位置和所述最终相机位置,确定所述过渡相机位置;
    根据所述切换比例、所述初始预览位置和所述最终预览位置,确定所述过渡预览位置。
  8. 根据权利要求1所述的三维泊车的显示方法,其特征在于,根据所述初始视角、所述过渡视角和所述最终视角显示所述虚拟相机绘制的所述三维泊车场景的多个图像帧,包括:
    获取所述虚拟相机处于所述初始视角时绘制的初始泊车画面的图像帧、处于所述过渡视角时绘制的过渡泊车画面的图像帧、和处于所述最终视角时绘制的最终泊车画面的图像帧;
    依次显示所述初始泊车画面的图像帧、所述过渡泊车画面的图像帧和所述最终泊车画面的图像帧。
  9. 一种车辆,其特征在于,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器用于执行所述程序以实现权利要求1-8任一项所述的三维泊车的显示方法。
  10. 一种计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行权利要求1-8中任一项所述的三维泊车的显示方法。
PCT/CN2021/093936 2020-05-15 2021-05-14 三维泊车的显示方法、车辆和存储介质 WO2021228250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21761954.3A EP3936400B1 (en) 2020-05-15 2021-05-14 Three-dimensional parking display method, vehicle, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010410618.0 2020-05-15
CN202010410618.0A CN111559371B (zh) 2020-05-15 2020-05-15 三维泊车的显示方法、车辆和存储介质

Publications (1)

Publication Number Publication Date
WO2021228250A1 true WO2021228250A1 (zh) 2021-11-18

Family

ID=72068242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093936 WO2021228250A1 (zh) 2020-05-15 2021-05-14 三维泊车的显示方法、车辆和存储介质

Country Status (3)

Country Link
EP (1) EP3936400B1 (zh)
CN (1) CN111559371B (zh)
WO (1) WO2021228250A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559371B (zh) * 2020-05-15 2021-12-07 广州智鹏车联网科技有限公司 三维泊车的显示方法、车辆和存储介质
CN112339771B (zh) * 2020-10-09 2022-01-07 长城汽车股份有限公司 一种泊车过程展示方法、装置及车辆
CN112249005B (zh) * 2020-10-23 2021-10-12 广州小鹏汽车科技有限公司 一种车辆自动泊车的交互方法和装置
CN113119956B (zh) * 2021-05-19 2023-10-31 广州小鹏汽车科技有限公司 一种基于自动驾驶的交互方法和装置
CN113232646B (zh) * 2021-06-25 2023-05-12 广州小鹏汽车科技有限公司 停车场自动泊车方法、电子设备、车辆及存储介质
CN113276844B (zh) * 2021-06-25 2023-08-29 广州小鹏汽车科技有限公司 停车场泊车自学习方法、电子设备、车辆及存储介质
CN113282217B (zh) * 2021-06-25 2023-07-04 广州小鹏汽车科技有限公司 调整交互界面的方法及电子设备
CN114900679B (zh) * 2022-05-25 2023-11-21 安天科技集团股份有限公司 一种三维模型展示方法、装置、电子设备及可读存储介质
CN115158344A (zh) * 2022-06-08 2022-10-11 上海集度汽车有限公司 显示方法、装置、车辆及介质
CN115220576A (zh) * 2022-06-21 2022-10-21 北京字跳网络技术有限公司 画面视角控制的方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816175A (zh) * 2007-10-01 2010-08-25 日产自动车株式会社 停车辅助装置以及停车辅助方法
CN107089266A (zh) * 2017-03-30 2017-08-25 维森软件技术(上海)有限公司 基于立体图像显示的辅助停车的实现方法和装置
US20180001821A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Environment perception using a surrounding monitoring system
CN107856608A (zh) * 2017-09-30 2018-03-30 上海欧菲智能车联科技有限公司 3d环视视角切换方法及装置、3d环视***和车辆***
EP3546293A1 (en) * 2018-03-29 2019-10-02 Aisin Seiki Kabushiki Kaisha Surrounding monitoring device
CN111559371A (zh) * 2020-05-15 2020-08-21 广州小鹏车联网科技有限公司 三维泊车的显示方法、车辆和存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161616B1 (en) * 1999-04-16 2007-01-09 Matsushita Electric Industrial Co., Ltd. Image processing device and monitoring system
KR100857330B1 (ko) * 2006-12-12 2008-09-05 현대자동차주식회사 주차 궤적 인식 장치 및 자동 주차 시스템
US8218007B2 (en) * 2007-09-23 2012-07-10 Volkswagen Ag Camera system for a vehicle and method for controlling a camera system
US8874317B2 (en) * 2009-07-27 2014-10-28 Magna Electronics Inc. Parking assist system
JP5472026B2 (ja) * 2010-06-29 2014-04-16 トヨタ自動車株式会社 駐車支援装置
DE102012208288A1 (de) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Verfahren zur Darstellung einer Fahrzeugumgebung auf einer Anzeige und Fahrassistenzsystem
CN104960473B (zh) * 2015-07-03 2017-11-14 上海寅喆计算机科技有限公司 视角切换方法及装置
JP6555056B2 (ja) * 2015-09-30 2019-08-07 アイシン精機株式会社 周辺監視装置
EP3392801A1 (en) * 2017-04-21 2018-10-24 Harman International Industries, Incorporated Systems and methods for driver assistance
CN108583435A (zh) * 2018-04-25 2018-09-28 北京新能源汽车股份有限公司 基于车辆的显示控制方法、装置和车辆
CN110794970B (zh) * 2019-11-07 2023-08-25 广州小鹏汽车科技有限公司 一种自动泊车界面的三维显示方法、***及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816175A (zh) * 2007-10-01 2010-08-25 日产自动车株式会社 停车辅助装置以及停车辅助方法
US20180001821A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Environment perception using a surrounding monitoring system
CN107089266A (zh) * 2017-03-30 2017-08-25 维森软件技术(上海)有限公司 基于立体图像显示的辅助停车的实现方法和装置
CN107856608A (zh) * 2017-09-30 2018-03-30 上海欧菲智能车联科技有限公司 3d环视视角切换方法及装置、3d环视***和车辆***
EP3546293A1 (en) * 2018-03-29 2019-10-02 Aisin Seiki Kabushiki Kaisha Surrounding monitoring device
CN111559371A (zh) * 2020-05-15 2020-08-21 广州小鹏车联网科技有限公司 三维泊车的显示方法、车辆和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936400A4

Also Published As

Publication number Publication date
EP3936400B1 (en) 2023-12-13
CN111559371A (zh) 2020-08-21
EP3936400A1 (en) 2022-01-12
EP3936400C0 (en) 2023-12-13
CN111559371B (zh) 2021-12-07
EP3936400A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021228250A1 (zh) 三维泊车的显示方法、车辆和存储介质
CN106502427B (zh) 虚拟现实***及其场景呈现方法
JP5798392B2 (ja) 駐車支援装置
JP6124517B2 (ja) 情報処理プログラム、情報処理装置、情報処理システム、およびパノラマ動画表示方法
JP4560090B2 (ja) ナビゲーション装置及びナビゲーション方法
JP6006536B2 (ja) 情報処理プログラム、情報処理装置、情報処理システム、およびパノラマ動画表示方法
JP4548850B2 (ja) 立体画像を選択するための方法および装置
JP5449894B2 (ja) 関心地点表示システム、装置及び方法
EP3001289A1 (en) Display controller
JPH0869274A (ja) 画像処理装置およびその方法
US9904982B2 (en) System and methods for displaying panoramic content
JP2013250829A (ja) 情報処理プログラム、情報処理装置、情報処理システム、およびパノラマ動画表示方法
US20140327666A1 (en) Display control system, display control apparatus, storage medium having stored therein display control program, and display control method
JP2008024138A (ja) 画像表示装置およびプログラム
CN110602475B (zh) 提高图像质量的方法及装置、vr显示设备及控制方法
US20190230290A1 (en) Information processing device, information processing method, and program
JP4533191B2 (ja) 三次元地図表示装置および三次元地図表示プログラム
US20190128692A1 (en) Navigation system and navigation program
JP7313811B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US20220284680A1 (en) Method and apparatus for generating guidance among viewpoints in a scene
US20220397413A1 (en) Augmented Reality Based Point of Interest Guide Device and Method
CN114037146A (zh) 一种排队等待时长确定方法及装置
JP2016213841A (ja) 画像生成装置、画像表示システム及び画像生成方法
JP2001229363A (ja) 3次元地図表示装置及び3次元地図上のシンボル表示方法
CN113750529B (zh) 游戏中的方向指示方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021761954

Country of ref document: EP

Effective date: 20210906

NENP Non-entry into the national phase

Ref country code: DE