WO2021228039A1 - 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 - Google Patents

一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 Download PDF

Info

Publication number
WO2021228039A1
WO2021228039A1 PCT/CN2021/092786 CN2021092786W WO2021228039A1 WO 2021228039 A1 WO2021228039 A1 WO 2021228039A1 CN 2021092786 W CN2021092786 W CN 2021092786W WO 2021228039 A1 WO2021228039 A1 WO 2021228039A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
doped diamond
surface area
specific surface
high specific
Prior art date
Application number
PCT/CN2021/092786
Other languages
English (en)
French (fr)
Inventor
魏秋平
马莉
周科朝
王立峰
王宝峰
施海平
Original Assignee
南京岱蒙特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京岱蒙特科技有限公司 filed Critical 南京岱蒙特科技有限公司
Priority to US17/924,682 priority Critical patent/US20230183102A1/en
Publication of WO2021228039A1 publication Critical patent/WO2021228039A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/059Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/083Diamond
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the invention discloses an ultra-high specific surface area boron-doped diamond electrode and a preparation method and application thereof, belonging to the technical field of surface etching modification and vapor deposition.
  • BDD Boron-doped diamond film electrode
  • the diamond film has high-quality properties in terms of hardness and strength, can withstand the strong wave impact of the ultrasonic cavitation effect on the electrode surface, and shows a long service life in a high-strength environment.
  • CVD synthetic polycrystalline diamond film coating technology With the continuous development of chemical vapor deposition CVD synthetic polycrystalline diamond film coating technology and the continuous development of boron-doped P-type semiconductor research, the resistivity of CVD diamond film is reduced to 0.01-100 cm, which is a good conductive electrode material. Research shows that the electrode will show broad application prospects in electro-oxidation to reduce organic pollutants and in the analysis and detection of high-sensitivity organic matter.
  • the existing BDD substrates are mostly monocrystalline silicon, which is difficult to manufacture in large volume. As the volume of monocrystalline silicon increases , The manufacturing cost has risen sharply, making the existing BDD electrodes high in cost and low cost performance, and it is difficult to fully meet the market’s requirements for economy and efficiency; (2) The existing BDD planar electrodes have small area, low surface roughness, and low specific surface area.
  • the electrode have the shortcomings of small active area, low space-time yield of the strong oxidizing group-hydroxyl radical, and slow mass transfer rate, which restricts the electrocatalytic performance of the BDD electrode; (3) Compared with single crystal silicon, metal Ti lining The thermal expansion match between the bottom and the BDD electrode is poor, and it is easy to fall off, which makes it difficult to prepare a large-area electrode.
  • polycrystalline silicon substrates are cheaper and easier to achieve large-scale industrial scale manufacturing.
  • polycrystalline silicon substrates have poor conductivity, resulting in low current efficiency of BDD electrodes and high degradation energy consumption. Therefore, the application of polysilicon to BDD electrodes has many shortcomings.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and provide a boron-doped diamond electrode with an ultra-high specific surface area, which is simple in process, low in cost, and suitable for large-area preparation, as well as a preparation method and application.
  • the present invention adopts the following technical solutions.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the boron-doped diamond electrode includes a substrate and an electrode working layer; the electrode working layer is wrapped on the surface of the substrate, and the substrate is high-specific surface area polysilicon Or single crystal silicon; the electrode working layer is a boron-doped diamond layer; the high specific surface area polysilicon is obtained by anisotropic etching or/and isotropic etching on the surface of the polysilicon; the high specific surface area single crystal Silicon is obtained by anisotropic etching on the surface of single crystal silicon.
  • an electrode with a high specific surface area is obtained, and the surface roughness of the electrode is greatly improved.
  • the macroscopic morphology of the polycrystalline silicon surface is one of stepped, ravine, dotted, and columnar.
  • anisotropic etching is performed on the surface of single crystal silicon, the surface of single crystal silicon The surface is one of steps, ravines, and dots.
  • the surface of polysilicon contains pits and/or microporous etch marks; after anisotropic etching and isotropic etching on the surface of polysilicon, anisotropic etching is formed on the surface of polysilicon
  • the macroscopic morphology of the surface of the polysilicon formed by etching contains a double-level high specific surface structure with a large number of micropores at the same time.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the substrate is high specific surface area polysilicon. Compared with monocrystalline silicon, polycrystalline silicon has a huge cost advantage, and the specific surface area of polycrystalline silicon processed by the etching process of the present invention is greatly increased.
  • the boron-doped diamond electrode with ultra-high specific surface area of the present invention preferably, the high specific surface area polysilicon is obtained by isotropic etching on the surface of the polysilicon.
  • the boron-doped diamond electrode with an ultra-high specific surface area of the present invention preferably, the high specific surface area polysilicon is obtained by performing anisotropic etching and isotropic etching on the surface of the polysilicon.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the shape of the substrate includes a cylindrical shape, a cylindrical shape and a plate shape; the substrate structure includes a three-dimensional continuous network structure, a two-dimensional continuous network structure and a two-dimensional continuous network structure. Closed flat structure.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the boron-doped diamond layer includes a boron-doped diamond high-conductivity layer with different boron content, a boron-doped diamond corrosion-resistant layer, and a boron-doped diamond strong electrocatalysis
  • the active layer, the boron-doped diamond high-conductivity layer, the boron-doped diamond corrosion-resistant layer, and the boron-doped diamond strong electrocatalytic active layer are sequentially deposited on the surface of the substrate. Preferably, it is uniformly deposited on the surface of the substrate sequentially by a chemical chemical vapor deposition method.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the boron-doped diamond high-conductivity layer has a B/C of 20000-33333 ppm in terms of atomic ratio.
  • a boron-doped diamond conductive layer with high boron content is deposited on the surface of the substrate, and the high-conductivity properties similar to the metal state are obtained through the high boron doping amount.
  • the present invention is a boron-doped diamond electrode with an ultra-high specific surface area.
  • the boron-doped diamond corrosion-resistant layer has a B/C of 0-10000 ppm in terms of atomic ratio. Preferably it is 3333-10000 ppm.
  • the boron-doped diamond corrosion resistant layer retains the high purity of diamond by doping with a small amount of boron. Due to the high purity of diamond, the diamond grains are dense and uniform, with few defects, and the corrosive substances cannot pass through the process of electrochemical degradation. The corrosion layer corrodes the silicon substrate, which can greatly improve the corrosion resistance of the BDD and increase the lifespan.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the B/C is 10,000-20,000 ppm in terms of atomic ratio.
  • Deposited on the surface of the anti-corrosion layer of boron-doped diamond is a boron-doped diamond strong electrocatalytic active layer as the top layer, which increases the doping amount of boron.
  • the increase in the doping amount of boron makes the boron-doped diamond strong electrocatalysis
  • the defects of the active layer increase, and the utilization rate of hydroxyl radicals increases.
  • the boron-doped diamond strong electrocatalytic active layer has the characteristics of wide potential window, high oxygen evolution potential, and low background current. Its oxygen evolution potential is greater than or equal to 2.3. V, the potential window is greater than or equal to 3.0 V.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode.
  • the thickness of the boron-doped diamond layer is 5 ⁇ m -2mm, the boron-doped diamond strong electrocatalytic active layer accounts for 40-60% of the thickness of the boron-doped diamond layer.
  • the thickness of the boron-doped diamond strong electrocatalytic active layer is ensured, so that the electrode material can have excellent electrocatalytic activation and improve the efficiency of degrading wastewater.
  • the present invention is an ultra-high specific surface area boron-doped diamond electrode. Micropores and/or sharp cones are distributed on the surface of the boron-doped diamond layer.
  • the method for preparing a boron-doped diamond electrode with a high specific surface area of the present invention includes the following steps.
  • Step one is the pretreatment of the substrate.
  • the surface of the polycrystalline silicon substrate material is anisotropically etched or/and isotropically etched to obtain high specific surface area polycrystalline silicon; the surface of the single crystal silicon substrate material is isotropically etched to obtain high specific surface area single crystal silicon.
  • Step 2 Planting seed crystals on the surface of the substrate.
  • step one Put the high specific surface area polycrystalline silicon or high specific surface area single crystal silicon obtained in step one; put it in a suspension containing nanocrystalline and/or microcrystalline diamond mixed particles; ultrasonic treatment, drying; obtain surface adsorption nanocrystalline and/or micrometer High specific surface area polycrystalline silicon or high specific surface area single crystal silicon of crystalline diamond.
  • Step three is the deposition of the boron-doped diamond layer.
  • the boron-containing gas accounts for 0.03%-0.05% of the total gas mass flow rate in the furnace; control the second stage deposition process, the boron-containing gas accounts for 0%-0.015% of the total gas mass flow rate in the furnace; control In the third stage of the deposition process, the boron-containing gas accounts for 0.015%-0.03% of the mass flow rate of the total gas in the furnace.
  • Step four high temperature treatment.
  • the high specific surface area polycrystalline silicon or high specific surface area single crystal silicon deposited with a boron-doped diamond layer is heat-treated, the heat treatment temperature is 400-1200°C, the treatment time is 5-110 min; the furnace pressure is 10 Pa-10 5 Pa, The heat treatment environment is an etching atmosphere environment.
  • the invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the specific process of anisotropic etching on the surface of a polysilicon substrate material is: placing the polysilicon substrate material in an anisotropic etching solution In the middle, soak at 20-90°C for 10-180 min; wash and dry.
  • the anisotropic etching solution is: sodium hydroxide solution, potassium hydroxide solution, a mixed solution of sodium hydroxide and sodium hypochlorite, tetramethylammonium hydroxide solution (TMAH), tetramethylammonium hydroxide and Mixed solution of isopropanol (TMAH+IPA), mixed solution of tetramethylammonium hydroxide and polyethylene glycol octylphenyl ether (TMAH+Tritonx-100), tetramethylammonium hydroxide and ammonium persulfate Mixed solution (TMAH+APS), mixed solution of tetramethylammonium hydroxide, polyethylene glycol octylphenyl ether and isopropanol (TMAH+Tritonx-100+IPA), ethylenediamine and catechol, and One of the mixed solution of water (EPW) and ethylenediamine phosphoquinol (EDP).
  • TMAH tetramethylammonium hydroxide solution
  • the invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the specific process of isotropic etching on the surface of a polycrystalline silicon substrate material is: placing the polycrystalline silicon substrate material in an isotropic etching solution Medium, soak for 10s-130min at 0-90°C; wash and dry.
  • the isotropic etching solution is one of a mixed solution of hydrofluoric acid and nitric acid, a mixed solution of hydrofluoric acid, nitric acid and acetic acid, and a mixed solution of hydrofluoric acid and acetic acid.
  • the present invention is a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • step 2 in the suspension containing nanocrystalline and/or microcrystalline diamond mixed particles, the mass fraction of the diamond mixed particles is 0.01% to 0.05% .
  • the invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the ultrasonic treatment time is 5-30 minutes.
  • the substrate is taken out, rinsed with deionized water and/or absolute ethanol, and then dried.
  • the present invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the carbon-containing gas accounts for 0.5-10.0% of the total gas mass flow rate in the furnace during the three-stage deposition process, preferably 1-5%.
  • one of solid, gas, and liquid boron sources can be selected for the boron source.
  • the gasification treatment is performed first.
  • the present invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the carbon-containing gas is CH 4 ; and the boron-containing gas is B 2 H 6 .
  • the present invention is a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • step three the temperature of the first stage of deposition is 600-1000°C, the air pressure is 10 3 -10 4 Pa, and the time is ⁇ 18h; the second stage of deposition The temperature is 600-1000°C, the pressure is 10 3 -10 4 Pa, and the time is ⁇ 18h; the temperature of the third stage of deposition is 600-1000°C, the pressure is 10 3 -10 4 Pa; the time is ⁇ 18h.
  • the invention provides a method for preparing a boron-doped diamond electrode with a high specific surface area.
  • the heat treatment temperature is 600-800°C, and the treatment time is 10-30 min.
  • the present invention is an application of a boron-doped diamond electrode with a high specific surface area.
  • the boron-doped diamond electrode is used for electrochemical oxidation treatment of wastewater and various daily water sterilization and disinfection and removal of organic pollutants, or an ozone generator, Or electrochemical biosensor.
  • the present invention is an application of a boron-doped diamond electrode with a high specific surface area.
  • the boron-doped diamond electrode is used for electrochemical synthesis or electrochemical detection.
  • the invention selects low-cost polysilicon as the substrate, utilizes the anisotropy of the crystal grains of the polysilicon substrate, and selects an orientation-sensitive reagent to etch a double extremely high specific surface area structure with "large pits + tiny pits"; Polysilicon with excellent performance is used as the substrate, and orientation-sensitive reagents are selected to etch a "textured" high specific surface area structure. Then, by adjusting the concentration of boron doping, a BDD film with a multilayer structure is prepared to make it have the characteristics of corrosion resistance, high conductivity, and high activity. Finally, thermal catalytic etching technology is used on the surface of the undulating boron doped diamond film.
  • the invention uses boron doping to increase the hole concentration in the BDD film to form an R-type diamond film.
  • the sp2 graphite phase content is suppressed, and the diamond grains are complete, larger in size, and higher in current efficiency. High, low energy consumption, good corrosion resistance, good degradation effect of diamond film.
  • an electrode with a high specific surface area is obtained, which greatly improves the surface roughness of the electrode, which not only increases the contact area of the sewage and the electrode, but also increases the active reaction sites on the electrode surface during the electrocatalysis process, resulting in more Many strong oxidizing hydroxyl free radicals attack the molecules of organic compounds, causing them to destroy and degrade, greatly improving the efficiency of the BDD electrode in degrading wastewater, reducing energy consumption and operating costs.
  • the present invention improves the active area of BDD from multiple angles, and at the same time reduces the manufacture of BDD electrodes. And operating costs are as follows.
  • the present invention uses polysilicon as the electrode substrate. Compared with a single crystal silicon substrate, the production process is simple, the cost is low, and the available substrate area is large, which is suitable for large-area preparation and can meet the requirements of industrial-scale manufacturing.
  • the rough polysilicon substrate after etching not only increases the specific surface area of the diamond film, but also improves the bonding force between the substrate and the diamond film due to the mechanical occlusion between the film and the substrate.
  • thermal catalytic etching technology is used to etch evenly distributed pores and cones on the surface of the boron-doped diamond film on the undulating hills to further increase the specific surface area of the boron-doped diamond film, thereby obtaining a The ultra-high specific surface area boron-doped diamond electrode with "large pit + tiny pit + hole/pointed cone" three-pole porous structure.
  • This ultra-high specific surface area not only greatly increases the space-time yield of strongly oxidizing hydroxyl radicals on the surface of the electrode, and greatly accelerates mass transfer, but also enables the electrode to have a high apparent current density, which can be greatly improved The space utilization and degradation efficiency of BDD electrodes.
  • a layer of high-doped BDD film with high boron content is deposited on the surface of the polysilicon substrate to obtain a heavily doped boron-doped diamond layer similar to the metal state, which greatly improves the BDD of the silicon substrate.
  • the conductivity and current efficiency of the electrode greatly reduce degradation and high energy consumption; then, by adjusting the boron-doped process parameters, a long-life, corrosion-resistant, high-quality diamond layer is deposited on the surface of the high-conductivity boron-doped diamond layer.
  • a boron-doped diamond layer with strong electrocatalytic activity with high oxygen potential and low background current can greatly improve the electrocatalytic activity and degradation efficiency of the electrode.
  • the BDD electrode of the present invention has low manufacturing cost and high cost performance, and not only has good conductivity, high current efficiency, low degradation energy consumption, large electrocatalytic activity area, and high space-time yield of strong oxidizing groups (hydroxyl radicals). , Fast mass transfer rate and other advantages, and the thermal expansion of boron-doped diamond is well matched with polysilicon, long service life in harsh environments such as strong acid and alkali, large area preparation cost is low, and the cost-effectiveness of BDD is effectively improved.
  • the invention is economical and environmentally friendly, simple to operate, low energy consumption, high degradation efficiency, and small footprint, can be popularized and used in large-scale projects, can meet the market's requirements for economy and efficiency, and has good application prospects.
  • Figure 1 The morphology of the polycrystalline silicon substrate in embodiment 1 after anisotropic etching.
  • Figure 2 The morphology of the polysilicon substrate in Embodiment 2 after isotropic etching.
  • Fig. 3 shows the morphology of the polysilicon substrate in embodiment 3 after being etched anisotropically and then etched isotropically.
  • Figure 4 The structure of the ozone generator in the third embodiment.
  • the etched polycrystalline silicon is placed in a suspension of nanocrystalline and microcrystalline diamond mixed particles, and ultrasonically vibrated for 30 minutes to obtain a polycrystalline silicon substrate with diamond grains attached to the surface.
  • the deposition temperature is 850°C
  • the deposition pressure is kPa
  • the deposition atmosphere is a mixed atmosphere of B 2 H 4 , CH 4 , and H 2.
  • the obtained electrode material into a tube furnace, heat treatment in air, set the temperature to 750°C, and keep the temperature for 20 minutes. After high-temperature oxidation, the surface of the electrode appears partially tapered.
  • the electrode assembly was completed, and its performance was tested using a three-electrode system.
  • Embodiment 2 The other conditions in Embodiment 2 are the same as those in Embodiment 1, except that the polysilicon substrate is etched by an isotropic etching method.
  • the polycrystalline silicon substrate material is immersed in an isotropic etching solution for 2 minutes at room temperature to complete the etching, then cleaned and dried to obtain a polycrystalline silicon with pits and microporous composite high specific surface area, the shape of which is shown in Figure 2.
  • the subsequent preparation process is the same as in Example 1, and the electrode performance tested is: oxygen evolution potential: 2.37 V, hydrogen evolution potential: -0.55 V, potential window 2.92 V, and background current 39.71 ⁇ A/cm 2 .
  • the isotropic etching method is used to etch the polysilicon substrate, which has excellent electrochemical performance and good electrode reversibility. After using the electrode to degrade the reactive blue 19 dye for 3 hours, the chromaticity removal rate reached 100%, the TOC removal rate was 55%, and the energy consumption was 36kW ⁇ h.
  • the effect of the mixed solution obtained by mixing HF and HNO 3 in different ratios (1:1, 2:1, 6:1) on the same-homogeneous etching of polysilicon substrate materials is also investigated.
  • the time is 2min, and the microstructure characterization is found.
  • the surface of the film prepared by all the mixed ratio etching solutions is completely covered with diamond, and there is little graphite phase, and the diamond growth is good.
  • the thin film diamond grain size with the etching solution mixing ratio of 1:1 is uneven and there are fewer pits.
  • the film with the etching solution mixing ratio of 6:1 has fewer pits and many deep holes with smaller diameters.
  • the mixing ratio is 3:
  • the specific surface area of the BDD film prepared by the etching solution 1 is the largest.
  • the electrode assembly is completed, and the three-electrode system is used to test its performance: when the etching solution mixing ratio HF:HNO 3 is 1:1, the oxygen evolution potential is 2.20 V, the hydrogen evolution potential is -0.51 V, the potential window is 2.71 V, and the background current is 124.50 ⁇ A /cm 2 ;
  • the oxygen evolution potential is 2.31 V
  • the hydrogen evolution potential is -0.53 V
  • the potential window is 2.84 V
  • the background current is 33.43 ⁇ A/cm 2
  • the etching solution is mixed
  • the ratio of HF: HNO 3 is 3:1
  • the oxygen evolution potential is 2.37V
  • the hydrogen evolution potential is -0.55 V
  • the potential window is 2.92 V
  • the background current is 39.71 ⁇ A/cm 2
  • the etching solution mixing ratio HF:HNO 3 is 6:1
  • the hydrogen evolution potential is -0.54 V
  • the potential is -0.54 V
  • the BDD electrodes prepared by the four mixed ratio etching solutions have excellent electrochemical performance.
  • the electrode with the etching solution mixing ratio of 3:1 has the highest oxygen evolution potential and the widest potential window. In general, it has The best electrochemical performance.
  • Embodiment 3 first uses an anisotropic etching method to etch a stepped polysilicon substrate, and then uses an isotropic etching method, and the etching parameters of the etching solution are the same as those in the first and second embodiments. Its morphology is shown in Figure 3.
  • Example 2 a BDD electrode was prepared, and the preparation method was the same as in Example 1.
  • the electrode performance of the test formula oxygen evolution potential: 2.52 V, hydrogen evolution potential: -0.63 V, potential window: 3.15 V, background current 12.62 ⁇ A/cm 2 .
  • the BDD electrode prepared in Example 3 is applied to an ozone generator.
  • the structure of the ozone generator is shown in FIG.
  • the BDD electrode prepared in Example 3 was used as the anode; the titanium mesh was used as the cathode; and the perfluorinated ion membrane constituted the electrode assembly, installed in the ozone generator ( Figure 4), applied to the constant current power supply for trial operation, and tested this
  • the gas production performance of this ozone generator shows that the average ozone production rate is 967mg /h.
  • Comparative Example 1 The other conditions in Comparative Example 1 were the same as those in Example 1, except that the first stage of deposition was not performed.
  • the electrode performance was tested as follows: oxygen evolution potential: 1.79 V, hydrogen evolution potential: -0.58 V, potential window: 2.37 V, background current: 292.71 ⁇ A/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种超高比表面积硼掺杂金刚石电极及其制备方法与应用,所述的硼掺杂金刚石电极包括衬底、电极工作层;所述电极工作层包裹在衬底表面,所述衬底为高比表面积多晶硅或单晶硅;所述电极工作层为硼掺杂金刚石层;所述高比表面积多晶硅是对多晶硅表面进行各向异性刻蚀或/和各向同性刻蚀得到;所述高比表面积单晶硅是对单晶硅表面进行各向异性刻蚀得到。所述硼掺杂金刚石层包括不同含硼量的硼掺杂金刚石高导电层、硼掺杂金刚石耐腐蚀层、硼掺杂金刚石强电催化活性层,相对于传统的平板电极来说,本发明的硅基硼掺杂金刚石电极具有成本低、具有极高的比表面积,用较低的电流密度提供较大的电流强度,具有广阔的应用前景

Description

一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 技术领域
本发明公开了一种超高比表面积硼掺杂金刚石电极及其制备方法和应用,属于表面刻蚀改性与气相沉积技术领域。
背景技术
硼掺杂金刚石薄膜电极(BDD)具有很高的机械强度,化学惰性和优异的电化学性能,如在水溶液中具有很宽的电位窗口、较高的析氧过电位和较低的背景电流,在相同的电流密度下能高效率地产生羟基自由基,从而使有机物能快速被去除,表面具有抗中毒抗污染能力,可以在强腐蚀介质中长期稳定的工作。即使在高电化学负荷,经过电流密度在2 ~10A cm 2上千小时的电化学反应,也没有明显被侵蚀的迹象。金刚石薄膜具有硬度和强度方面的高优质性能,可以耐受超声空化效应对电极表面的强波冲击,在高强度环境中显示了较长的使用寿命。随着化学气相沉积 CVD 人工合成多晶金刚石薄膜涂层技术以及硼掺杂 P 型半导体研究的不断发展,使得 CVD 金刚石薄膜的电阻率降为 0.01~ 100 cm ,是一种导电良好的电极材料。研究表明该电极在电氧化削减有机污染物方面和高灵敏度有机物的分析和探测方面将显示广阔的应用前景。
然而,BDD电极降解有机废水技术仍未被市场广泛接受,其根本原因在于(一)现有BDD的衬底多为单晶硅,单晶硅难以大体积制造,随着单晶硅体积增大,制造成本急剧升高,使得现有BDD电极成本高,性价比低,难以完全满足市场对经济高效的要求;(二)现有的BDD平面电极面积小、表面粗糙度低,比表面积不高,使得电极具有活性面积小、强氧化性基团-羟基自由基的时空产率低、传质速率慢等缺点,制约了BDD电极的电催化性能;(三)相比单晶硅,金属Ti衬底与BDD电极的热膨胀匹配较差,易脱落,使得大面积电极制备困难。
相比单晶硅,多晶硅衬底价格低廉,较易实现大面积工业化规模制造,但多晶硅衬底导电性较差,使得BDD电极电流效率低、降解能耗偏高。因此,多晶硅应用于BDD电极,存在诸多不足。
技术问题
本发明的目的在于克服现有技术之不足,提供一种工艺简单,成本低廉,适合大面积制备的超高比表面积硼掺杂金刚石电极及制备方法和应用。
技术解决方案
为了实现上述目的,本发明采用如下技术方案。
本发明一种超高比表面积硼掺杂金刚石电极,所述的硼掺杂金刚石电极包括衬底、电极工作层;所述电极工作层包裹在衬底表面,所述衬底为高比表面积多晶硅或单晶硅;所述电极工作层为硼掺杂金刚石层;所述高比表面积多晶硅是对多晶硅表面进行各向异性刻蚀或/和各向同性刻蚀得到;所述高比表面积单晶硅是对单晶硅表面进行各向异性刻蚀得到。
在本发明中,通过对多晶硅衬底进行表面刻蚀,获得高比表面积的电极,大幅度提高电极表面粗糙度。
其中,对多晶硅表面进行各向异性刻蚀后,多晶硅表面宏观形貌为阶梯状、沟壑状、点状、柱状中的一种;对单晶硅表面进行各向异性刻蚀后,单晶硅表面为阶梯状、沟壑状、点状中的一种。对多晶硅表面进行各向同性刻蚀后,多晶硅表面含有凹坑和/或微孔刻蚀痕;对多晶硅表面进行各向异性刻蚀和各向同性刻蚀后,在多晶硅表面形成由各向异性刻蚀构成的多晶硅表面宏观形貌上同时含有大量微孔的双级高比表面结构。
本发明一种超高比表面积硼掺杂金刚石电极,优选的,所述衬底为高比表面积多晶硅。多晶硅相对于单晶硅来说具有巨大的成本优势,通过本发明刻蚀处理的多晶硅比表面积大幅提高。
本发明一种超高比表面积硼掺杂金刚石电极,优选的,所述高比表面积多晶硅是对多晶硅表面进行各向同性刻蚀得到。
发明人发现,对多晶硅表面进行各向同性刻蚀获得的高比表面积多晶硅作为衬底所制备的BDD电极电化学性能最佳,电极可逆性良好。
本发明一种超高比表面积硼掺杂金刚石电极,优选的,所述高比表面积多晶硅是对多晶硅表面进行各向异性刻蚀和各向同性刻蚀得到。
本发明一种超高比表面积硼掺杂金刚石电极,所述衬底形状包括圆柱状、圆筒状和平板状;所述衬底结构包括三维连续网络结构、二维连续网状结构和二维封闭平板结构。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石层包括不同含硼量的硼掺杂金刚石高导电层、硼掺杂金刚石耐腐蚀层、硼掺杂金刚石强电催化活性层,所述硼掺杂金刚石高导电层、硼掺杂金刚石耐腐蚀层、硼掺杂金刚石强电催化活性层依次沉积在衬底表面。优选为依次通过化学化学气相沉积方法均匀沉积在衬底表面。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石高导电层中,按原子比计,B/C为20000-33333 ppm。
在衬底表面首先沉积高硼含量的硼掺杂金刚石导电层,通过高的硼掺杂量,获得近似金属态的高导电特性。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石耐腐蚀层中,按原子比计,B/C为0-10000 ppm。优选为3333-10000 ppm。作为中间层的硼掺杂金刚石耐腐蚀层,通过少量硼的掺杂,保留金刚石的高纯度,而由于金刚石纯度高,金刚石晶粒致密均匀,缺陷少,电化学降解过程腐蚀性物质无法通过耐腐蚀层腐蚀硅衬底,可大幅提高BDD的耐腐蚀,增加寿命。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石强电催化活性层中,按原子比计,B/C为10000-20000 ppm。在硼掺杂金刚石耐腐蚀层表面沉积的为作为顶层的硼掺杂金刚石强电催化活性层,增大硼的掺杂量,由于硼的掺杂量增大,使得硼掺杂金刚石强电催化活性层的缺陷增多,对羟基自由基的利用率增加等原因,因此硼掺杂金刚石强电催化活性层具有电势窗口宽、析氧电位高、背景电流低的性质,其析氧电位大于等于2.3 V,电势窗口大于等于3.0 V。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石层的厚度为5μm -2mm,所述硼掺杂金刚石强电催化活性层占硼掺杂金刚石层厚度的40-60%。本发明中,保证硼掺杂金刚石强电催化活性层的厚度,可以使得电极材料具有优异的电催化活化,提高降解废水的效率。
本发明一种超高比表面积硼掺杂金刚石电极,所述硼掺杂金刚石层表面分布有微孔和/或尖锥。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,包括如下步骤。
步骤一,衬底的预处理。
对多晶硅衬底材料表面进行各向异性刻蚀或/和各向同性刻蚀,得到高比表面积多晶硅;对单晶硅衬底材料表面进行各向同性刻蚀,得到高比表面积单晶硅。
步骤二、衬底表面种植籽晶处理。
将步骤一所得高比表面积多晶硅或高比表面积单晶硅;置于含纳米晶和/或微米晶金刚石混合颗粒的悬浊液中;超声处理,烘干;获得表面吸附纳米晶和/或微米晶金刚石的高比表面积多晶硅或高比表面积单晶硅。
步骤三,硼掺杂金刚石层的沉积。
将步骤二中所得高比表面积多晶硅或高比表面积单晶硅置于化学气相沉积炉中,通入含碳气体,含硼气体;依次进行三段沉积,获得硼掺杂金刚石层,控制第一段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0.03%-0.05%;控制第二段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0%-0.015%;控制第三段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0.015%-0.03%。
步骤四、高温处理。
将己沉积硼掺杂金刚石层的高比表面积多晶硅或高比表面积单晶硅进行热处理,所述热处理温度为400-1200℃,处理时间为5-110min;炉内压强为10Pa-10 5Pa,热处理环境为含刻蚀性气氛环境。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤一中,对多晶硅衬底材料表面进行各向异性刻蚀的具体过程为:将多晶硅衬底材料置于各向异性刻蚀液中,于20-90℃,浸泡10-180 min;清洗、烘干。
作为优选,所述各向异性刻蚀液为:氢氧化钠溶液、氢氧化钾溶液、氢氧化纳和次氯酸钠的混合溶液、四甲基氢氧化铵溶液(TMAH)、四甲基氢氧化铵与异丙醇的混合溶液(TMAH+IPA)、四甲基氢氧化铵与聚乙二醇辛基苯基醚的混合溶液(TMAH+Tritonx-100)、四甲基氢氧化铵与过硫酸铵的混合溶液(TMAH+APS)、四甲基氢氧化铵与聚乙二醇辛基苯基醚及异丙醇的混合溶液(TMAH+Tritonx-100+IPA)、乙二胺与邻苯二酚及水的混合溶液(EPW)、乙二胺磷苯二酚(EDP)中的一种。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤一中,对多晶硅衬底材料表面进行各向同性刻蚀的具体过程为:将多晶硅衬底材料置于各向同性刻蚀液中,于0-90℃,浸泡10s-130min;清洗、烘干。
作为优选,所述各向同性刻蚀液为氢氟酸与硝酸的混合溶液、氢氟酸与硝酸及醋酸的混合溶液、氢氟酸与醋酸的混合溶液中的一种。
作为进一步优选,所述各向同性刻蚀液为氢氟酸与硝酸的混合溶液,所述混合溶液中,按体积比计;氢氟酸:硝酸=1-6:1;优选为2-4:1。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤二中,所述含纳米晶和/或微米晶金刚石混合颗粒的悬浊液中,金刚石混合颗粒质量分数为0.01%~0.05%。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤二中,所述超声处理时间为5~30min。超声完成后,将衬底取出,使用去离子水和/或无水乙醇冲洗干净后,再烘干。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,所述含碳气体在三段沉积过程中均占炉内全部气体质量流量百分比为0.5-10.0%,优选为1-5%。
在本发明中,对于硼源可选用固体、气体、液体硼源中的一种,当选用固体、液体硼源时先进行气化处理。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,所述含碳气体为CH 4;所述含硼气体为B 2H 6
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤三中;第一段沉积的温度为600-1000℃,气压为10 3-10 4Pa,时间为≤18h;第二段沉积的温度为600-1000℃,气压为10 3-10 4Pa,时间为≤18h;第三段沉积的温度为600-1000℃,气压为10 3-10 4Pa;时间为≤18h。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤三中;第一段沉积时,通入气体流速比为氢气:含碳气体:含硼气体=97sccm:3sccm:0.6-1.0sccm;  第二段沉积时,通入气体流速比为氢气:含碳气体:含硼气体=97sccm:3sccm:0.2-0. 5sccm;  第三段沉积时,通入气体流速比为氢气:含碳气体:含硼气体=97sccm:3sccm:0.3-0.6ccm。
本发明一种高比表面积硼掺杂金刚石电极的制备方法,步骤四中,热处理温度为600-800℃,处理时间为10-30min。
本发明一种高比表面积硼掺杂金刚石电极的应用,将所述硼掺杂金刚石电极用于电化学氧化处理废水及各类日常用水的灭菌消毒和去除有机污染物,或臭氧发生器,或电化学生物传感器。
本发明一种高比表面积硼掺杂金刚石电极的应用,将所述硼掺杂金刚石电极用于电化学合成或电化学检测。
有益效果
本发明选用成本低廉的多晶硅为衬底,利用多晶硅衬底晶粒的各向异性的特点,选用取向敏感的试剂刻蚀出具有“大凹坑+微小凹坑”双极高比表面积结构;选用性能优良的多晶硅为衬底,选用取向敏感的试剂刻蚀出具有“绒面”的高比表面积结构。然后通过调控掺硼浓度,来制备具有多层结构的BDD薄膜,使其兼具耐腐蚀、高导电、高活性的特点;最后,再采用热催化刻蚀技术在山峦起伏的掺硼金刚石膜表面催化刻蚀出均匀分布的孔洞和尖锥,进一步增大掺硼金刚石膜的比表面积,从而获得具有“大凹坑+微小凹坑+孔洞/尖锥”三极多孔结构的超高比表面积硼掺杂金刚石电极。
本发明利用硼掺杂提高BDD薄膜中的空穴浓度,形成 R型金刚石薄膜,通过调控掺杂工艺参数及硼浓度,抑制sp2石墨相含量,获得金刚石晶粒完整,尺寸较大,电流效率较高,能耗较低,耐腐蚀性好,降解效果好的金刚石薄膜。
同时,通过表面刻蚀,获得高比表面积的电极,大幅度提高电极表面粗糙度,不仅增大了污水与电极的接触面积,也增加了电催化过程中电极表面的活性反应位点,产生更多的强氧化性的羟基自由基,攻击有机化合物的分子,使其破坏、降解,大幅度提高BDD电极降解废水的效率,降低能耗以及运行成本。
本发明相比其他技术的优势。
针对传统平板二维电极活性面积小、单位槽体处理量小、电流效率低、能耗高、性价比低等问题,本发明从多角度来提高BDD的活性面积,与此同时降低BDD电极的制造与运行成本,具体如下。
(1)本发明选用多晶硅作电极衬底。相比单晶硅衬底,生产工艺简单、成本低廉、可提供的衬底面积大,适合大面积制备,能满足工业规模制造要求。
(2)由于多晶硅由取向不同晶粒组成,可以有效利用晶体的各向异性,选用取向敏感的碱性腐蚀试剂刻蚀其表面,构造高低起伏较大的山峦起伏表面粗糙形貌,再通过取向不敏感的酸性腐蚀试剂在山峦起伏表面制造出微小凹坑,形成具有“大凹坑+微小凹坑”双极高比表面结构。然后利用CVD技术的衬底表面复制效应,在已有多晶硅衬底表面沉积具有“大凹坑+微小凹坑”复合表面形貌的金刚石膜,进而获得高比表面积的硼掺杂电极。
(3)刻蚀后粗糙的多晶硅衬底不仅增大了金刚石膜的比表面积,而且膜与衬底之间由于机械咬合作用更有利于改善衬底/金刚石膜间的结合力。
(4)在此基础上,再采用热催化刻蚀技术在山峦起伏的掺硼金刚石膜表面催化刻蚀出均匀分布的孔洞和尖锥,进一步增大掺硼金刚石膜的比表面积,从而获得具有“大凹坑+微小凹坑+孔洞/尖锥”三极多孔结构的超高比表面积硼掺杂金刚石电极。
(5)这种超高的比表面积不仅使电极表面强氧化性的羟基自由基的时空产率大幅增加,大大加快了传质,而且使电极具有很高的表观电流密度,可较大幅提高BDD电极的空间利用率和降解效率。
(6)此外,通过调控掺硼工艺参数,在多晶硅衬底表面先沉积一层高掺硼量的BDD膜,获得近似于金属态的重掺杂掺硼金刚石层,极大地提高硅衬底BDD电极的导电性和电流效率,大幅降低降解能耗高;接着,再通过调控掺硼工艺参数,在高导电掺硼金刚石层表面沉积长寿命、耐腐蚀的高品质金刚石层,该金刚石层可以大幅提升该电极的适用环境和使用寿命,可在任意强酸、强碱、高盐环境下长时间运行;最后,再通过调控掺硼工艺参数,在耐腐蚀掺硼金刚石层表面沉积电势窗口宽、析氧电位高、背景电流低的强电催化活性掺硼金刚石层,该金刚石层可以大幅提升该电极的电催化活性和降解效率。
因此,本发明的BDD电极制造成本低、性价比高,不仅具有导电性好、电流效率高、降解能耗低、电催化活性面积大、强氧化性基团(羟基自由基)的时空产率高、传质速率快等优点,而且掺硼金刚石与多晶硅热膨胀匹配好,在强酸强碱等苛刻环境下使用寿命长,大面积制备成本低,有效提升了BDD的性价比。本发明经济环保、操作简单,能耗低、降解效率高、占地面积小,能在大规模工程中推广使用,可以满足市场对经济高效的要求,具有良好的应用前景。
附图说明
图1 实施例1中的多晶硅衬底经各向异性刻蚀后的形貌。
图2 实施例2中的多晶硅衬底经各向同性刻蚀后的形貌。
图3实施例3中的多晶硅衬底经先经异性刻蚀再经各向同性刻蚀后的形貌。
图4 实施例3中的臭氧发生器的结构。图中,1、外壳,2、压盖,3、电极座,4、电极组件。
本发明的实施方式
实施例1。
先对多晶硅衬底材料表面进行各向异性刻蚀,以10 M的KOH溶液作为各向异性刻蚀液,将多晶硅衬底材料置于各向异性刻蚀液中于80℃浸泡60min完成刻蚀,然后清洗、烘干,获得阶梯型高比表面积的多晶硅,其形状如图1。
将刻蚀后的多晶硅置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,超声震荡30min,得到表面附有金刚石晶粒的多晶硅衬底。
将衬底置入化学气相沉积炉中,保持热丝与基体表面距离为9mm,升温过程中调节氢气气体流量保持97sccm,往炉内通入甲烷和硼烷,开始沉积。沉积温度为850℃,沉积压强为kPa,沉积气氛为B 2H 4、CH 4、H 2混合气氛。沉积高导电层时,气体比例为B 2H 6:CH 4:H 2=1.0sccm:3.0sccm:97sccm,沉积时间3 h;沉积耐腐蚀层时,气体比例为B 2H 6:CH 4:H 2=0.2sccm:3.0sccm:97sccm,沉积时间3 h;沉积强电催化活性层时,气体比例为B 2H 6:CH 4:H 2=0.6sccm:3.0sccm:97sccm,沉积时间6 h。
将得到的电极材料放入管式炉中,在空气中进行热处理,设置温度为750°C,保温20min。高温氧化后电极表面出现部分尖锥状。
将电极组装完成,使用三电极***测试其性能,结果:析氧电位:1.82 V;析氢电位:-0.60 V,电势窗口:2.42 V,背景电流83.42μA/cm 2
由以上数据可知,采用各向异性刻蚀法刻蚀多晶硅衬底,具有优良的电化学性能,电极可逆性良好。
实施例2。
实施例2与实施例1中其他条件均相同,仅是采用各向同性刻蚀法刻蚀多晶硅衬底。先对多晶硅衬底材料表面进行各向同性刻蚀,以分析纯的HF和HNO 3混合溶液作为各向同性刻蚀液,混合体积比为HF:HNO 3=3:1。将多晶硅衬底材料置于各向同性刻蚀液中于常温浸泡2min完成刻蚀,然后清洗、烘干,获得凹坑微孔复合型高比表面积的多晶硅,其形状如图2。
后续制备流程与实施例1相同,测试其电极性能为:析氧电位:2.37 V,析氢电位:-0.55 V,电势窗口2.92 V,背景电流39.71μA/cm 2
由以上数据可知,采用各向同性刻蚀法刻蚀多晶硅衬底,具有优良的电化学性能,电极可逆性良好。使用该电极降解活性蓝19染料3h后,色度移除率达到100%,TOC移除率为55%,能耗为36kW·h。
另外,在该实施例中,还考察了HF和HNO 3按不同比例(1:1、2:1、6:1)进行混合所得混合溶液对多晶硅衬底材料进行同性刻蚀的影响,刻蚀时间均为2min,进行微观结构表征发现。
所有混合比例刻蚀液制备的薄膜表面都完全覆盖金刚石,且石墨相很少,金刚石生长情况良好。刻蚀液混合比例1:1的薄膜金刚石晶粒尺寸不均匀、凹坑较少,刻蚀液混合比例6:1的薄膜凹坑减少、有许多直径较小的深孔,混合比例为3:1的刻蚀液制备的BDD薄膜比表面积最大。
将电极组装完成,使用三电极***测试其性能:当刻蚀液混合比例HF:HNO 3为1:1时,析氧电位 2.20 V,析氢电位 -0.51 V,电势窗口 2.71 V,背景电流124.50 μA/cm 2;当刻蚀液混合比例HF:HNO 3为2:1时,析氧电位 2.31 V,析氢电位 -0.53 V,电势窗口 2.84 V,背景电流33.43 μA/cm 2;当刻蚀液混合比例HF:HNO 3为3:1时,析氧电位 2.37V,析氢电位 -0.55 V,电势窗口 2.92 V,背景电流39.71 μA/cm 2,当刻蚀液混合比例HF:HNO 3为6:1时,析氧电位 2.22V,析氢电位 -0.54 V,电势窗口 2.76 V,背景电流133.26 μA/cm 2。从上面数据可知,四种混合比例刻蚀液制备的BDD电极都具有优良的电化学性能,其中刻蚀液混合比例为3:1的电极析氧电位最高、电势窗口最宽,综合来说具有最优良的电化学性能。
实施例3。
实施例3先采用各向异性刻蚀法刻蚀出阶梯型多晶硅衬底,随后使用各向同性刻蚀法,其刻蚀液刻蚀参数与实施例1,2相同。其形貌如图3。
随后制备BDD电极,制备方法与实施例1相同。测式其电极性能:析氧电位:2.52 V,析氢电位: -0.63 V,电势窗口:3.15 V,背景电流12.62μA/cm 2
由以上数据可知,采用各向异性刻蚀法结合各向同性刻蚀法刻蚀多晶硅衬底,具有优良的电化学性能,电极可逆性良好。
将实施例3中所制备的BDD电极应用于臭氧发生器中,臭氧发生器的结构如图4所示,包括外壳1,压盖2,电极座3,电极组件4。
以该实施例3中所制备的BDD电极作为阳极;钛网作为阴极;与全氟离子膜构成电极组件,安装到臭氧发生器(图4)中,施加于恒流电源试运行,并测试这种该臭氧发生器产气性能,结果显示臭氧产率平均为967mg /h。
对比例1。
对比例1与实施例1中其他条件均相同,仅是未进行第一段沉积。测试其电极性能如下:析氧电位: 1.79 V ,析氢电位: -0.58 V,电势窗口:2.37 V,背景电流:292.71 μA/cm 2
可以看出电极性能明显不如实施例1。该电极电阻大,在实际降解废水过程中,能耗会大幅增加。

Claims (10)

  1. 一种超高比表面积硼掺杂金刚石电极,其特征在于:所述硼掺杂金刚石电极包括衬底、电极工作层;所述电极工作层包裹在衬底表面,所述衬底为高比表面积多晶硅或单晶硅;所述电极工作层为硼掺杂金刚石层;所述高比表面积多晶硅是对多晶硅表面进行各向异性刻蚀或/和各向同性刻蚀得到;所述高比表面积单晶硅是对单晶硅表面进行各向异性刻蚀得到。
  2. 根据权利要求1所述的一种超高比表面积硼掺杂金刚石电极,其特征在于:所述衬底为高比表面积多晶硅;所述高比表面积多晶硅是对多晶硅表面进行各向同性刻蚀得到;
    所述衬底形状包括圆柱状、圆筒状和平板状;
    所述衬底结构包括三维连续网络结构、二维连续网状结构和二维封闭平板结构。
  3. 根据权利要求1或2所述的一种超高比表面积硼掺杂金刚石电极,其特征在于:所述硼掺杂金刚石层包括不同含硼量的硼掺杂金刚石高导电层、硼掺杂金刚石耐腐蚀层、硼掺杂金刚石强电催化活性层,所述硼掺杂金刚石高导电层、硼掺杂金刚石耐腐蚀层、硼掺杂金刚石强电催化活性层依次沉积在衬底表面。
  4. 根据权利要求3所述的一种超高比表面积硼掺杂金刚石电极,其特征在于:所述硼掺杂金刚石高导电层中,按原子比计,B/C为20000-33333 ppm;所述硼掺杂金刚石耐腐蚀层中,按原子比计,B/C为0-10000 ppm;所述硼掺杂金刚石强电催化活性层中,按原子比计,B/C为10000-20000 ppm。
  5. 根据权利要求3或4所述的一种超高比表面积硼掺杂金刚石电极,其特征在于:所述硼掺杂金刚石层的厚度为5μm-2mm,所述硼掺杂金刚石强电催化活性层占硼掺杂金刚石层厚度的40-60%;所述硼掺杂金刚石层表面分布有微孔和/或尖锥。
  6. 制备如权利要求1-5所述的一种超高比表面积硼掺杂金刚石电极的方法,其特征在于,包括如下步骤:
    步骤一,衬底的预处理
    对多晶硅衬底材料表面进行各向异性刻蚀或/和各向同性刻蚀,得到高比表面积多晶硅;对单晶硅衬底材料表面进行各向同性刻蚀,得到高比表面积单晶硅;
    步骤二、衬底表面种植籽晶处理
    将步骤一所得高比表面积多晶硅或高比表面积单晶硅;置于含纳米晶和/或微米晶金刚石混合颗粒的悬浊液中;超声处理,烘干;获得表面吸附纳米晶和/或微米晶金刚石的高比表面积多晶硅或高比表面积单晶硅;
    步骤三,硼掺杂金刚石层的沉积
    将步骤二中所得高比表面积多晶硅或高比表面积单晶硅置于化学气相沉积炉中,通入含碳气体,含硼气体;依次进行三段沉积,获得硼掺杂金刚石层,控制第一段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0.03%-0.05%;控制第二段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0%-0.015%;控制第三段沉积过程中,含硼气体占炉内全部气体质量流量百分比为0.015%-0.03%;
    步骤四、高温处理
    将己沉积硼掺杂金刚石层的高比表面积多晶硅或高比表面积单晶硅进行热处理,所述热处理温度为400-1200℃,处理时间为5-110min;炉内压强为10Pa-10 5Pa,热处理环境为含刻蚀性气氛环境。
  7. 根据权利要求6所述的一种超高比表面积硼掺杂金刚石电极的制备方法,其特征在于:步骤一中,对多晶硅衬底材料表面进行各向异性刻蚀的具体过程为:将多晶硅衬底材料置于各向异性刻蚀液中,于20-90℃,浸泡10-180 min;清洗、烘干;所述各向异性刻蚀液为:氢氧化钠溶液、氢氧化钾溶液、氢氧化纳和次氯酸钠的混合溶液、四甲基氢氧化铵溶液、四甲基氢氧化铵与异丙醇的混合溶液、四甲基氢氧化铵与聚乙二醇辛基苯基醚的混合溶液、四甲基氢氧化铵与过硫酸铵的混合溶液、四甲基氢氧化铵与聚乙二醇辛基苯基醚及异丙醇的混合溶液、乙二胺与邻苯二酚及水的混合溶液、乙二胺磷苯二酚中的一种。
  8. 根据权利要求6所述的一种超高比表面积硼掺杂金刚石电极的制备方法,其特征在于:步骤一中,对多晶硅衬底材料表面进行各向同性刻蚀的具体过程为:将多晶硅衬底材料置于各向同性刻蚀液中,于0-90℃,浸泡10s-130min;清洗、烘干;所述各向同性刻蚀液为氢氟酸与硝酸的混合溶液、氢氟酸与硝酸及醋酸的混合溶液、氢氟酸与醋酸的混合溶液中的一种。
  9. 根据权利要求6所述的一种超高比表面积硼掺杂金刚石电极的制备方法,其特征在于:步骤二中,所述含纳米晶和/或微米晶金刚石混合颗粒的悬浊液中,金刚石混合颗粒质量分数为0.01%~0.05%;步骤二中,所述超声处理时间为5~30min;
    步骤三中,所述含碳气体在三段沉积过程中均占炉内全部气体质量流量百分比为0.5-10.0%,步骤三中;第一段沉积的温度为600-1000℃,气压为10 3-10 4Pa,时间≤18h;第二段沉积的温度为600-1000℃,气压为10 3-10 4Pa,时间为≤18h;第三段沉积的温度为600-1000℃,气压为10 3-10 4Pa;时间为≤18h。
  10. 根据权利要求1-5任意一项所述的一种高比表面积硼掺杂金刚石电极的应用,其特征在于:将所述硼掺杂金刚石电极用于电化学氧化处理废水及各类日常用水的灭菌消毒和去除有机污染物,或臭氧发生器,或电化学生物传感器。
PCT/CN2021/092786 2020-05-11 2021-05-10 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 WO2021228039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/924,682 US20230183102A1 (en) 2020-05-11 2021-05-10 Boron-doped Diamond Electrode with Ultra-high Specific Surface Area, and Preparation Method Therefor and Application Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010390578.8A CN111485223B (zh) 2020-05-11 2020-05-11 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用
CN202010390578.8 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021228039A1 true WO2021228039A1 (zh) 2021-11-18

Family

ID=71796047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092786 WO2021228039A1 (zh) 2020-05-11 2021-05-10 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230183102A1 (zh)
CN (1) CN111485223B (zh)
WO (1) WO2021228039A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712107A4 (en) * 2017-11-16 2021-08-18 Daicel Corporation ELECTRODE MATERIAL FOR CAPACITOR
CN112795945B (zh) * 2020-12-10 2022-03-08 深圳先进技术研究院 高臭氧催化活性金刚石电极及其制备方法和应用
CN114796577A (zh) * 2021-01-29 2022-07-29 冯秋林 臭氧水雾化杀菌机
DE102021115887A1 (de) 2021-06-18 2022-12-22 Oerlikon Surface Solutions Ag, Pfäffikon Verfahren zur Verbesserung der Haftung von Diamantbeschichtungen
CN113845183B (zh) * 2021-09-22 2022-12-30 湖南新锋科技有限公司 一种基于掺杂金刚石颗粒的水处理三维电极及其制备方法
CN114717533B (zh) * 2022-02-25 2023-03-10 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用
CN115266850B (zh) * 2022-07-26 2024-04-12 长春工业大学 一种用于检测头孢喹诺的适配体传感器的制备方法
CN116791104B (zh) * 2023-07-19 2024-06-25 北京大学 一种电化学合成过硫酸钠的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598443A2 (en) * 2004-05-21 2005-11-23 National Institute for Materials Science Superconductivity in boron-doped diamond thin film
CN1772947A (zh) * 2004-11-12 2006-05-17 中国科学院物理研究所 一种金刚石锥尖及其制作方法
CN103370765A (zh) * 2010-12-23 2013-10-23 六号元素有限公司 控制合成金刚石材料的掺杂
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106637111A (zh) * 2016-10-21 2017-05-10 中南大学 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用
CN110072658A (zh) * 2017-01-16 2019-07-30 Osg株式会社 工具
CN111593316A (zh) * 2020-05-11 2020-08-28 南京岱蒙特科技有限公司 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140463C (zh) * 2001-09-20 2004-03-03 上海交通大学 金刚石涂层电极处理难降解废水的工艺
JP4743473B2 (ja) * 2004-08-06 2011-08-10 住友電気工業株式会社 導電性ダイヤモンド被覆基板
CN1775696A (zh) * 2004-11-16 2006-05-24 住友电气工业株式会社 金刚石涂敷的多孔基底、液体处理设备以及液体处理方法
EP2064368B1 (en) * 2006-09-05 2017-05-31 Element Six Technologies Limited Solid diamond electrode
CN101481792B (zh) * 2008-01-08 2010-12-08 中国科学院物理研究所 一种硼掺杂金刚石超导材料的制备方法
GB201015270D0 (en) * 2010-09-14 2010-10-27 Element Six Ltd Diamond electrodes for electrochemical devices
CN101956178A (zh) * 2010-09-28 2011-01-26 浙江工业大学 一种硼掺杂纳米金刚石薄膜及制备方法
CN102127751B (zh) * 2011-01-11 2012-12-26 大连理工大学 一种柱状阵列结构硼掺杂金刚石微纳米材料及其制备方法
CN103643219A (zh) * 2013-11-29 2014-03-19 吉林大学 一种以多孔钛为基体的掺硼金刚石薄膜电极的制备方法
CN105316648B (zh) * 2015-11-13 2018-02-13 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
JP6831215B2 (ja) * 2016-11-11 2021-02-17 学校法人東京理科大学 導電性ダイヤモンド粒子、導電性ダイヤモンド電極、及び検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598443A2 (en) * 2004-05-21 2005-11-23 National Institute for Materials Science Superconductivity in boron-doped diamond thin film
CN1772947A (zh) * 2004-11-12 2006-05-17 中国科学院物理研究所 一种金刚石锥尖及其制作方法
CN103370765A (zh) * 2010-12-23 2013-10-23 六号元素有限公司 控制合成金刚石材料的掺杂
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106637111A (zh) * 2016-10-21 2017-05-10 中南大学 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用
CN110072658A (zh) * 2017-01-16 2019-07-30 Osg株式会社 工具
CN111593316A (zh) * 2020-05-11 2020-08-28 南京岱蒙特科技有限公司 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用

Also Published As

Publication number Publication date
CN111485223B (zh) 2022-05-24
CN111485223A (zh) 2020-08-04
US20230183102A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2021228039A1 (zh) 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用
Zhong et al. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode
Mohamed et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell
CN102127751B (zh) 一种柱状阵列结构硼掺杂金刚石微纳米材料及其制备方法
CN106450196B (zh) 一种用于锂离子电池负极的硅基材料及其制备方法
US20230192514A1 (en) High-specific surface area and super-hydrophilic gradient boron-doped diamond electrode, method for preparing same and application thereof
CN106058276B (zh) 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用
CN112768709A (zh) 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池
CN105780364A (zh) 一种制备超微孔柔性碳布的方法及其产品和应用
CN113764688A (zh) 一种三维碳结构负载GaN催化剂及其制备方法
CN106971864A (zh) 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN104759272A (zh) 一种膜电极低压电解式臭氧发生器的膜电极及其阳极和阳极的制作方法
WO2022111736A1 (zh) Fe/Fe3C嵌入N掺杂碳复合材料及其制备方法与其在微生物燃料电池中的应用
CN103682369A (zh) 一种锂电池极板
CN112582658A (zh) 一种Fe-MOF-GO薄膜阳极构建的微生物燃料电池
CN109811328B (zh) 一种掺硼金刚石薄膜的制备方法
CN103972514A (zh) 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途
CN111593347A (zh) 一种柔性复合薄膜材料及其制备方法
CN102651279B (zh) 高储能聚合物纳米管电容器阵列的制备方法
CN108767301B (zh) 尺寸可控的碳质管式氧还原阴极微生物燃料电池及制备方法
CN111519163B (zh) 一种高导电长寿命高比表面积的硼掺杂金刚石电极及其制备方法和应用
CN110230044A (zh) 以纳米金刚石粉为赝模板制备多孔掺硼金刚石电极的方法
CN110890224A (zh) 一种二硒化钼/碳纳米管阵列复合电极、制备方法及应用
CN110165230A (zh) 一种利用碳纳米管和碳纤维制备生物电化学***阳极的方法
CN111689496A (zh) 一种柿子皮基掺氮活性炭及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804367

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21804367

Country of ref document: EP

Kind code of ref document: A1