WO2021223598A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2021223598A1
WO2021223598A1 PCT/CN2021/088769 CN2021088769W WO2021223598A1 WO 2021223598 A1 WO2021223598 A1 WO 2021223598A1 CN 2021088769 W CN2021088769 W CN 2021088769W WO 2021223598 A1 WO2021223598 A1 WO 2021223598A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
image side
Prior art date
Application number
PCT/CN2021/088769
Other languages
English (en)
French (fr)
Inventor
于笑枝
曾昊杰
刘绪明
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Priority to US17/367,294 priority Critical patent/US11960144B2/en
Publication of WO2021223598A1 publication Critical patent/WO2021223598A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of lens imaging, in particular to an optical lens and imaging equipment.
  • ToF Time of Flight
  • ToF lenses three-dimensional depth-sensing lenses with three-dimensional space perception capabilities
  • ToF technology refers to a technology to locate the target object by detecting the flight (round trip) time of light pulses. Due to its strong anti-interference and high FPS (Frames Per Second) refresh rate, it has become a smart phone Standard.
  • ToF lenses have unique advantages in face recognition, stereo imaging, and somatosensory interaction.
  • ToF lenses configured on electronic products are required to have the characteristics of high resolution and small size; on the other hand, because the most iconic function of ToF technology is to measure depth of field, etc. Data information, so the ToF lens is required to have characteristics such as wide viewing angle and large aperture to meet the precise measurement of distance information.
  • the existing optical lenses used in smartphones cannot meet these requirements at the same time. Therefore, how to achieve a small size, wide viewing angle, large aperture, and an imaging system suitable for ToF technology under the premise of ensuring the imaging quality of the lens is Problems that lens manufacturers need to solve urgently.
  • the purpose of the present invention is to provide an optical lens and imaging device, which at least has the characteristics of small size, high resolution, wide viewing angle and large aperture, which can better meet the imaging requirements of imaging devices using ToF technology. .
  • an embodiment of the present invention provides an optical lens, which includes a first lens with negative refractive power from the object side to the image side along the optical axis, the object side of the first lens is convex, and the image of the first lens
  • the side surface is concave; the diaphragm; the second lens with positive refractive power, the object side of the second lens is convex, the image side of the second lens is concave; the third lens with positive refractive power, the object side of the third lens is Convex surface, the image side of the third lens is concave; the fourth lens with positive refractive power, the object side of the fourth lens and the image side of the fourth lens are both convex; the fifth lens with negative refractive power, the fifth lens
  • the object side surface of the fifth lens is convex at the near optical axis and has at least one inflection point, and the image side surface of the fifth lens is concave at the near optical axis and has at least one inflection point; and the filter, the
  • an embodiment of the present invention also provides an imaging device, including the optical lens and imaging element provided in the first aspect, and the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens provided by the present invention through the rational setting of the diaphragm and each lens, not only meets the high-quality resolution capability, but also has a small outer diameter of the head, a total length, a relatively high contrast, and a wide range.
  • Features such as viewing angle and large aperture are more suitable for the design requirements of ToF technology.
  • FIG. 1 is a schematic diagram of the structure of the optical lens in the first embodiment of the present invention
  • FIG. 2 is a graph of astigmatism of the optical lens in the first embodiment of the present invention, in which the horizontal axis in the figure represents the offset (unit: millimeter), and the vertical axis represents the angle of view (unit: degree);
  • FIG 3 is a graph of the vertical axis chromatic aberration curve of the optical lens in the first embodiment of the present invention.
  • the solid line represents the difference of the chromatic aberration of the light with the shortest wavelength minus the chromatic aberration of the light with the longest wavelength (unit: micron), and the vertical axis represents the field of view.
  • Angle unit: degree
  • FIG. 4 is a graph of relative illuminance of the optical lens in the first embodiment of the present invention, in which the horizontal axis in the figure represents the field of view (unit: degree), and the vertical axis represents the relative illuminance value;
  • FIG. 5 is a schematic diagram of the structure of the optical lens in the second embodiment of the present invention.
  • Fig. 6 is an astigmatism curve diagram of the optical lens in the second embodiment of the present invention:
  • FIG. 7 is a graph of vertical axis chromatic aberration of the optical lens in the second embodiment of the present invention.
  • FIG. 8 is a graph of relative illuminance of the optical lens in the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the optical lens in the third embodiment of the present invention.
  • Fig. 10 is an astigmatism curve diagram of the optical lens in the third embodiment of the present invention:
  • FIG. 11 is a graph of vertical axis chromatic aberration of the optical lens in the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the imaging device in the fourth embodiment of the present invention.
  • the embodiment of the present invention provides an optical lens, which includes a first lens with negative refractive power from the object side to the image side along the optical axis, the object side surface of the first lens is convex, and the image side surface of the first lens is concave.
  • a second lens with positive refractive power, the object side of the second lens is convex, the image side of the second lens is concave;
  • the third lens with positive refractive power, the object side of the third lens is convex, the first The image side of the three lenses is concave;
  • the fourth lens with positive refractive power, the object side of the fourth lens and the image side of the fourth lens are both convex;
  • the optical lens satisfies the following conditional formula:
  • TTL represents the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis
  • IH represents the actual image height of the optical lens on the imaging surface
  • f represents the effective focal length of the optical lens. Satisfying the conditional formula (1), the effective focal length and total length of the optical lens can be effectively controlled, which is beneficial to the miniaturization of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • HFOV represents the maximum half-field angle of the optical lens
  • DM1 represents the effective diameter of the first lens. Satisfying conditional formula (2) is conducive to ensuring that the angle of view on the side of the object is increased, while the lens has a larger aperture, and a smaller head size, reducing the window area of the screen, which is beneficial to the optical lens miniaturization.
  • the optical lens satisfies the following conditional formula:
  • R21 represents the radius of curvature of the object side surface of the second lens
  • R22 represents the radius of curvature of the image side surface of the second lens.
  • the optical lens satisfies the following conditional formula:
  • f2 represents the effective focal length of the second lens
  • f3 represents the effective focal length of the third lens.
  • the optical lens satisfies the following conditional formula:
  • TC23 represents the separation distance between the image side surface of the second lens and the object side surface of the third lens on the optical axis
  • R22 represents the radius of curvature of the image side surface of the second lens. Satisfying the conditional formula (5) can reasonably control the interval between the second lens and the third lens, reduce the difficulty of correcting aberrations, reduce the sensitivity of the interval between the second lens and the third lens, and improve the production yield.
  • the optical lens satisfies the following conditional formula:
  • TC12 represents the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis
  • T2 represents the center thickness of the second lens
  • TC23 represents the image side surface of the second lens and the object side of the third lens.
  • the distance between the sides on the optical axis. Satisfying conditional formula (6) is conducive to rationally distributing the center thickness of the second lens and the separation distance from the front and rear lenses, adjusting the distribution of light, correcting the spherical aberration of the optical lens, and reducing the impact of temperature changes on the performance of the optical lens, and It is beneficial to realize the compactness of the optical lens structure.
  • the optical lens satisfies the following conditional formula:
  • R11 represents the curvature radius of the object side surface of the first lens
  • R12 represents the curvature radius of the image side surface of the first lens
  • T1 represents the central thickness of the first lens
  • DM1 represents the effective diameter of the first lens.
  • the optical lens satisfies the following conditional formula:
  • f3 represents the effective focal length of the third lens
  • f represents the effective focal length of the optical lens. Satisfying the conditional formula (9) enables the third lens to have a larger positive refractive power, which is beneficial to eliminate the influence of temperature changes on the imaging performance, so that the optical lens has good temperature tolerance.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the radius of curvature of the object side surface of the third lens
  • R32 represents the radius of curvature of the image side surface of the third lens.
  • the optical lens satisfies the following conditional formula:
  • f4 represents the effective focal length of the fourth lens
  • f5 represents the effective focal length of the fifth lens
  • f represents the effective focal length of the optical lens. Satisfying the conditional formulas (11) and (12) can realize the reasonable distribution of the power of the fourth lens and the fifth lens, slow down the trend of light turning, reduce the sensitivity of the fourth lens and the fifth lens, and reduce high-level aberrations The correction reduces the difficulty of the overall lens aberration correction.
  • the optical lens satisfies the following conditional formula:
  • R51 represents the radius of curvature of the object side of the fifth lens
  • R52 represents the radius of curvature of the image side of the fifth lens
  • SAG51 i represents the vector height at any point on the object side of the fifth lens
  • SAG52 i represents the image of the fifth lens.
  • the height of the vector at any point on the side, i represents any point.
  • the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are all plastic aspheric lenses.
  • z is the vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction
  • c is the paraxial curvature radius of the surface
  • k is the quadric coefficient
  • a 2i is the 2i-th order aspheric surface Surface coefficient.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • FIG. 1 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 includes a first lens L1, a stop ST, and a second lens along the optical axis from the object side to the imaging surface.
  • the first lens L1 has negative refractive power, the object side S1 of the first lens is convex, and the image side S2 of the first lens is concave;
  • the second lens L2 has a positive refractive power, the object side surface S3 of the second lens is a convex surface, and the image side surface S4 of the second lens is a concave surface;
  • the third lens L3 has positive refractive power, the object side surface S5 of the third lens is convex, and the image side surface S6 of the third lens is concave;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens is a convex surface, and the image side surface S8 of the fourth lens is a convex surface;
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 of the fifth lens is convex at the near optical axis and has at least one inflection point.
  • the image side surface S10 of the fifth lens is concave at the near optical axis and has at least A recurve point.
  • each lens in the optical lens 100 provided in this embodiment is shown in Table 1, where R represents the radius of curvature, d represents the distance between the optical surfaces, Nd represents the d-line refractive index of the material, and Vd represents the Abbe number of the material.
  • Figure 2 shows the astigmatism curve of the optical lens 100 in this embodiment, which represents the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from the figure that the astigmatism control of the image plane in the meridian and sagittal directions is Within ⁇ 0.2mm, it indicates that the astigmatism correction of the optical lens 100 is good.
  • 0.830um-Tan represents the T (meridian) line with a wavelength of 830 nanometers
  • 0.830um-Sag represents the S (sagittal) line with a wavelength of 830 nanometers
  • Figure 6, Figure 10 and Figure 2 are similar).
  • Figure 3 shows the vertical axis chromatic aberration curve of the optical lens 100.
  • the solid line in the figure represents the chromatic aberration of the light with the shortest wavelength minus the chromatic aberration of the light with the longest wavelength and the corresponding relationship between the angle of view ( Figures 7, 11 and 3 is similar). It can be seen from the figure that the vertical axis chromatic aberration is controlled within 1.6um, indicating that the vertical axis chromatic aberration of the optical lens 100 is well corrected.
  • the dotted line corresponding to the abscissa of 0 microns in the figure indicates that the chromatic aberration of the center wavelength is 0 as the reference.
  • Fig. 4 shows the relative illuminance curve of the optical lens 100, which represents the relative illuminance at different angles of view. It can be seen from the figure that the relative illuminance value at the maximum angle of view reaches 42% or more, indicating that the relative illuminance at the peripheral field of view The relative illuminance of is also relatively high, indicating that the relative illuminance of the optical lens 100 has been improved well.
  • the structure of the optical lens 200 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the maximum field angle of the lens 200 is 92.2°
  • the maximum field angle of the optical lens 100 in the first embodiment is 94.2°
  • the radius of curvature and material selection of each lens are different.
  • Fig. 6 shows the astigmatism curve of the optical lens 200 in this embodiment. It can be seen from the figure that the astigmatism of the image plane in the meridian and sagittal directions is controlled within ⁇ 0.25 mm, indicating that the optical lens 200 has an astigmatism correction good.
  • FIG. 7 shows the vertical axis chromatic aberration curve of the optical lens 200 in this embodiment. It can be seen from the figure that the vertical axis chromatic aberration is controlled within 1.5 um, indicating that the vertical axis chromatic aberration of the optical lens 200 is well corrected.
  • FIG. 8 shows the relative illuminance curve of the optical lens 200 in this embodiment. It can be seen from the figure that the relative illuminance value at the maximum angle of view reaches more than 42%, indicating that the relative illuminance of the optical lens 200 has been improved well.
  • FIG. 9 a schematic diagram of the structure of the optical lens 300 provided in this embodiment.
  • the structure of the optical lens 300 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the difference lies in the following:
  • the maximum angle of view of the lens 300 is 92.2°, and the radius of curvature and material selection of each lens are different.
  • Fig. 10 shows the astigmatism curve of the optical lens 300 in this embodiment. It can be seen from the figure that the astigmatism of the image plane in the meridian and sagittal directions is controlled within ⁇ 0.15mm, which shows that the optical lens 300 corrects for astigmatism. good.
  • FIG. 11 shows the vertical axis chromatic aberration curve of the optical lens 300 in this embodiment. It can be seen from the figure that the vertical axis chromatic aberration is controlled within 1.2um, indicating that the vertical axis chromatic aberration of the optical lens 300 is well corrected.
  • FIG. 12 shows the relative illuminance curve of the optical lens 300 in this embodiment. It can be seen from the figure that the relative illuminance value at the maximum angle of view reaches 42% or more, indicating that the relative illuminance of the optical lens 300 has been improved well.
  • Table 7 shows the corresponding optical characteristics of the above three embodiments, mainly including the effective focal length f of the optical lens, the number of apertures F#, the entrance pupil diameter EPD, the total optical length TTL, the field of view 2 ⁇ , and the numerical values corresponding to each of the above-mentioned conditional expressions. .
  • Example Example 1 Example 2 Example 3 f(mm) 1.702 1.624 1.730 F# 1.3 1.3 1.3 TTL(mm) 4.23 4.22 4.23 2 ⁇ (°) 94.2 92.2 92.2 EPD(mm) 1.309 1.249 1.337 (TTL/IH)*f(mm) 2.119 2.015 2.152 tan 2 (HFOV)/DM1 0.535 0.484 0.502 (R21-R22)/(R21+R22) -0.1 0.005 -0.001 f2+f3(mm) 41.678 64.278 57.816 TC23/R22 0.138 0.104 0.122 TC12+TC2+TC23(mm) 0.972 0.974 0.928 (R11-R12)/(R11+R12) 0.878 0.455 0.438 T1/DM1 0.091 0.1395 0.127 f/f3 0.051 0.121 0.1
  • optical lens provided by the embodiments of the present invention has at least the following advantages:
  • optical lens provided by the embodiments of the present invention satisfies high-quality resolution capabilities, it has the advantages of small head diameter, overall length, high relative contrast, wide viewing angle, and large aperture. It not only can better meet ToF The requirements of the lens can also meet the needs of thinner, thinner and smaller imaging equipment and high screen-to-body ratio.
  • FIG. 13 a schematic structural diagram of an imaging device 400 provided in this embodiment, which includes the optical lens (such as the optical lens 100) and the imaging element 410 in any of the above embodiments.
  • the imaging element 410 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 400 may be a camera, a mobile terminal, or any other electronic device loaded with an optical lens.
  • the mobile terminal may be a terminal device such as a smart phone, a smart tablet, or a smart reader.
  • the imaging device 400 provided in this embodiment includes an optical lens. Since the optical lens has the advantages of small size, large field of view, large aperture, and high resolution capability, the imaging device 400 has small size, large field of view, large aperture, and resolution capability. Higher merits.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种光学镜头及成像设备,从物侧到像侧依次包括:具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;光阑;具有正光焦度的第二透镜,第二透镜的物侧面为凸面,第二透镜的像侧面为凹面;具有正光焦度的第三透镜,第三透镜的物侧面为凸面,第三透镜的像侧面为凹面;具有正光焦度的第四透镜,第四透镜的物侧面和第四透镜的像侧面均为凸面;具有负光焦度的第五透镜,第五透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,第五透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;以及滤光片,光学镜头满足以下条件式:2.0mm<(TTL/IH)*f<2.2mm。该光学镜头的头部外径小,具有广视角、大光圈,更适用于ToF技术的设计需求。

Description

光学镜头及成像设备
相关申请的交叉引用
本申请要求于2020年05月07日提交的申请号为202010375115.4的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
背景技术
近年来,三维深度识别技术得到快速发展,与此同时,具备三维空间感知能力的ToF(Time of Flight,飞行测距)立体深感镜头(以下简称ToF镜头),开启了深度信息的新未来,并在智能手机行业受到广泛关注和应用。ToF技术是指通过探测光脉冲的飞行(往返)时间实现目标物体定位的一种技术,由于具备抗干扰性强、FPS(Frames Per Second,每秒传输帧数)刷新率高等特性,成为智能手机的标配。
目前,ToF镜头在人脸识别、立体成像、体感交互等方面具有独特的优势。一方面,随着电子产品的超高清以及轻薄短小化趋势,要求配置在电子产品上的ToF镜头具有高解像力、小体积的特点;另一方面,由于ToF技术最标志性的功能是测量景深等数据信息,因此要求ToF镜头具有广视角和大光圈等特性以满足距离信息的精准测量。然而,现有的应用于智能手机的光学镜头还无法同时满足这些要求,因此,如何在保证镜头成像质量的前提下,实现小体积、广视角、大光圈且可适用于ToF技术的成像***是镜头制造厂商亟需解决的问题。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,该光学镜头至少具有体积小、解像力高、广视角以及大光圈等特点,能够更好的满足采用ToF技术的成像设备的成像需求。
本发明实施例通过以下技术方案实现上述的目的。
第一方面,本发明实施例提供一种光学镜头,沿光轴从物侧到像侧依次包括:具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;光阑;具有正光焦度的第二透镜,第二透镜的物侧面为凸面,第二透镜的像侧面为凹面;具有正光焦度的第三透镜,第三透镜的物侧面为凸面, 第三透镜的像侧面为凹面;具有正光焦度的第四透镜,第四透镜的物侧面和第四透镜的像侧面均为凸面;具有负光焦度的第五透镜,第五透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,第五透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;以及滤光片,光学镜头满足以下条件式:2.0mm<(TTL/IH)*f<2.2mm;其中,TTL表示第一透镜的物侧面至光学镜头的成像面在光轴上的距离,IH表示光学镜头在成像面上的实际像高,f表示光学镜头的有效焦距。
第二方面,本发明实施例还提供一种成像设备,包括第一方面提供的光学镜头及成像元件,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头,通过光阑及各透镜合理设置,在满足高品质解像能力的同时,还具有头部外径小、总长短、相对照度较高、广视角、大光圈等特点,更适用于ToF技术的设计需求。
附图说明
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的象散曲线图,其中,图中横轴表示偏移量(单位:毫米),纵轴表示视场角(单位:度);
图3为本发明第一实施例中的光学镜头的垂轴色差曲线图,实线表示波长最短光线的色差减去波长最长光线的色差的差值(单位:微米),纵轴表示视场角(单位:度);
图4为本发明第一实施例中的光学镜头的相对照度曲线图,其中,图中横轴表示视场角(单位:度),纵轴表示相对照度值;
图5为本发明第二实施例中的光学镜头的结构示意图;
图6为本发明第二实施例中的光学镜头的象散曲线图:
图7为本发明第二实施例中的光学镜头的垂轴色差曲线图;
图8为本发明第二实施例中的光学镜头的相对照度曲线图;
图9为本发明第三实施例中的光学镜头的结构示意图;
图10为本发明第三实施例中的光学镜头的象散曲线图:
图11为本发明第三实施例中的光学镜头的垂轴色差曲线图;
图12为本发明第三实施例中的光学镜头的相对照度曲线图;
图13为本发明第四实施例中的成像设备的结构示意图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本发明实施例提供了一种光学镜头,沿光轴从物侧到像侧依次包括:具有负光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;光阑;具有正光焦度的第二透镜,第二透镜的物侧面为凸面,第二透镜的像侧面为凹面;具有正光焦度的第三透镜,第三透镜的物侧面为凸面,第三透镜的像侧面为凹面;具有正光焦度的第四透镜,第四透镜的物侧面和第四透镜的像侧面均为凸面;具有负光焦度的第五透镜,第五透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,第五透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;以及滤光片;光学镜头满足以下条件式:
2.0mm<(TTL/IH)*f<2.2mm;      (1)
其中,TTL表示第一透镜的物侧面至光学镜头的成像面在光轴上的距离,IH表示光学镜头在成像面上的实际像高,f表示光学镜头的有效焦距。满足条件式(1),可有效控制光学镜头的有效焦距和总长,有利于实现光学镜头的小型化。
在一些实施方式中,光学镜头满足以下条件式:
0.48<tan 2(HFOV)/DM1<0.54;       (2)
其中,HFOV表示光学镜头的最大半视场角,DM1表示第一透镜的有效直径。满足条件式(2),有利于保证增大物侧方的视场角的同时,使镜头具有较大的光圈,以及较小的头部尺寸,减小屏幕的开窗面积,有利于光学镜头的小型化。
在一些实施方式中,光学镜头满足以下条件式:
-0.15<(R21-R22)/(R21+R22)<0.1;       (3)
其中,R21表示第二透镜的物侧面的曲率半径,R22表示第二透镜的像侧面的曲率半径。满足条件式(3),可合理地配置第二透镜的光焦度,有利于场曲和畸变的矫正,且能够合理地控制第二透镜的面型,提升光学镜头的解像力。
在一些实施方式中,光学镜头满足以下条件式:
40mm<f2+f3<70mm;     (4)
其中,f2表示第二透镜的有效焦距,f3表示第三透镜的有效焦距。满足条件式(4),可合理分配第二透镜和第三透镜的光焦度,有利于实现光学镜头的大光圈,同时有利于减小后续透镜的口径和光学镜头的体积。
在一些实施方式中,光学镜头满足以下条件式:
0.1<TC23/R22<0.14;     (5)
其中,TC23表示第二透镜的像侧面和第三透镜的物侧面在光轴上的间隔距离,R22表示第二透镜的像侧面的曲率半径。满足条件式(5),可合理地控制第二透镜和第三透镜之间的间隔,减小矫正像差的难度,降低第二透镜与第三透镜的间隔敏感度,提升生产良率。
在一些实施方式中,光学镜头满足以下条件式:
0.92mm<TC12+TC2+TC23<0.98mm;      (6)
其中,TC12表示第一透镜的像侧面和所述第二透镜的物侧面在光轴上的间隔距离,T2表示第二透镜的中心厚度,TC23表示第二透镜的像侧面和第三透镜的物侧面在光轴上的间隔距离。满足条件式(6),有利于合理分配第二透镜的中心厚度及与前后透镜的间隔距离,调节光线的分布,有利于光学镜头球差的矫正,减少温度变化对光学镜头性能的影响,并且有利于实现光学镜头结构的紧凑性。
在一些实施方式中,光学镜头满足以下条件式:
0.4<(R11-R12)/(R11+R12)<0.9;     (7)
0.09<T1/DM1<0.14;      (8)
其中,R11表示第一透镜的物侧面的曲率半径,R12表示第一透镜的像侧面的曲率半径,T1表示第一透镜的中心厚度,DM1表示第一透镜的有效直径。满足条件式(7)和(8),一方面,能够合理地控制第一透镜的面型,在满足大视场角的同时,收缩光线,减小后续透镜的口径和光学镜头的体积;另一方面,可降低第一透镜的成型难度,从而降低加工敏感度,提高量产率。
在一些实施方式中,光学镜头满足以下条件式:
0.05<f/f3<0.13;        (9)
其中,f3表示第三透镜的有效焦距,f表示光学镜头的有效焦距。满足条件式(9),使得第三透镜具有较大的正光焦度,有利于消除温度变化对成像性能的影响,使得光学镜头具有良好的温差耐受性。
在一些实施方式中,光学镜头满足以下条件式:
0.9<R31/R32<1.1;      (10)
其中,R31表示第三透镜的物侧面的曲率半径,R32表示第三透镜的像侧面的曲率半径。满足条件式(10),可有效地控制光线的屈折力,减缓光线转折的走势,降低像差矫正的难度。
在一些实施方式中,光学镜头满足以下条件式:
0.70<f4/f<0.75;       (11)
-1.7<f5/f<-1.2;       (12)
其中,f4表示第四透镜的有效焦距,f5表示第五透镜的有效焦距,f表示光学镜头的有效焦距。满足条件式(11)和(12),能够实现第四透镜和第五透镜的光焦度的合理分配,减缓光线转折的走势,降低第四透镜和第五透镜的敏感度,降低高级像差的矫正,减小整体镜头像差矫正的难度。
在一些实施方式中,光学镜头满足以下条件式:
1.8<R51/R52<2.2;      (13)
0.2<SAG52 i-SAG51 i<0.5;      (14)
其中,R51表示第五透镜的物侧面的曲率半径,R52表示第五透镜的像侧面的曲率半径,SAG51 i表示第五透镜的物侧面的任意点处的矢高,SAG52 i表示第五透镜的像侧面的任意点处的矢高,i表示任意点。满足条件式(13),使第五透镜具有较小的负光焦度,对光线起汇聚作用,从而有效矫正光学镜头的场曲和像差,同时能够合理的控制光线入射角的分布,确保各个视场的成像清晰度。满足条件式(14),能够合理控制第五透镜的面型,提高光学镜头的成像质量。
在一些实施方式中,第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜均为塑胶非球面镜片。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2021088769-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的矢高,c为表面的近轴曲率半径,k为二次曲面系数,A 2i为第2i阶的非球面面型系数。
在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴 从物侧到成像面依次包括:第一透镜L1、光阑ST、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、以及滤光片G1,其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5均为塑胶非球面透镜。
第一透镜L1具有负光焦度,第一透镜的物侧面S1在为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有正光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凹面;
第四透镜L4具有正光焦度,第四透镜的物侧面S7为凸面,第四透镜的像侧面S8为凸面;
第五透镜L5具有负光焦度,第五透镜的物侧面S9在近光轴处为凸面,且至少有一个反曲点,第五透镜的像侧面S10在近光轴处为凹面且具有至少一个反曲点。
本实施例提供的光学镜头100中各个镜片的相关参数如表1所示,其中R代表曲率半径,d代表光学表面间距,Nd代表材料的d线折射率,Vd代表材料的阿贝数。
表1
Figure PCTCN2021088769-appb-000002
Figure PCTCN2021088769-appb-000003
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
Figure PCTCN2021088769-appb-000004
图2示出了本实施例中光学镜头100的象散曲线,其表示子午像面和弧矢像面的弯曲程度,从图中可看出子午和弧矢两个方向像面的象散控制在±0.2mm内,说明光学镜头100对象散矫正良好。图中0.830um-Tan表示830纳米波长的T(子午)线,0.830um-Sag表示830纳米波长的S(弧矢)线,以此类推(图6、图10和图2相似)。
图3示出了光学镜头100的垂轴色差曲线,图中实线表示波长最短光线的色差减去波长最长光线的色差的差值和视场角的对应关系(图7、图11与图3相似),从图中可以看出垂轴色差控制在1.6um内,说明光学镜头100的垂轴色差得到良好的矫正。图中横坐标0微米对应的虚线表示以中心波长的色差为0为基准。
图4示出了光学镜头100的相对照度曲线,其表示不同视场角处的相对照度,从图中可以看出在最大视场角处的相对照度值达到42%以上,表明在周边视场的相对照度也较高,说明光学镜头100的相对 照度得到良好的提高。
第二实施例
本实施例提供的光学镜头200的结构示意图请参阅图5,本实施例中的光学镜头200与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头200的最大视场角为92.2°,第一实施例中的光学镜头100的最大视场角为94.2°,以及各透镜的曲率半径、材料选择不同。
本实施例提供的光学镜头200中各个镜片的相关参数如表3所示。
表3
Figure PCTCN2021088769-appb-000005
本实施例中的光学镜头200的各非球面的面型系数如表4所示。
表4
表面 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
序号                
S1 16.76172 0.14524 0.06598 -0.24664 0.508079 -0.68926 0.499648 -0.14365
S2 -63.6841 1.009217 -1.88099 2.263504 10.99662 -46.5879 67.51085 -34.0398
S3 -0.38249 -0.18605 0.416833 0.076806 -2.0128 7.145949 -14.4594 11.35179
S4 2.250635 -0.92329 1.962935 -2.7795 -1.06174 8.981353 -10.0494 2.468555
S5 -3.94052 -0.44905 0.494536 -0.30607 0.432581 -0.97863 1.372826 -0.66973
S6 -0.07075 -0.71072 0.21252 0.259484 -0.19854 -0.1774 0.3744 -0.21519
S7 0.599406 -0.10182 -0.35461 0.50515 -0.05511 -0.17067 0.05104 0.004724
S8 -0.62872 0.519615 -0.52871 0.396205 0.020216 -0.10382 -0.02236 0.04578
S9 -18.8665 0.185043 -0.93415 1.01672 -0.35681 -0.32546 0.322185 -0.07545
S10 -4.21204 -0.06985 -0.12879 0.152364 -0.05285 -0.02176 0.018882 -0.00342
图6示出了本实施例中光学镜头200的象散曲线,从图中可看出在子午和弧矢两个方向像面的象散控制在±0.25mm内,说明光学镜头200对象散矫正良好。
图7示出了本实施例中光学镜头200的垂轴色差曲线,从图中可以看出垂轴色差控制在1.5um以内,说明光学镜头200的垂轴色差得到良好的矫正。
图8示出了本实施例中光学镜头200的相对照度曲线,从图中可以看出在最大视场角处的相对照度值达到42%以上,说明光学镜头200的相对照度得到良好的提高。
第三实施例
本实施例提供的光学镜头300的结构示意图请参阅图9,本实施例中的光学镜头300与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头300的最大视场角为92.2°,以及各透镜的曲率半径、材料选择不同。
本实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
Figure PCTCN2021088769-appb-000006
Figure PCTCN2021088769-appb-000007
本实施例中的光学镜头300的各非球面的面型系数如表6所示。
表6
Figure PCTCN2021088769-appb-000008
Figure PCTCN2021088769-appb-000009
图10示出了本实施例中光学镜头300的象散曲线,从图中可看出在子午和弧矢两个方向像面的象散控制在±0.15mm内,说明光学镜头300对象散矫正良好。
图11示出了本实施例中光学镜头300的垂轴色差曲线,从图中可以看出垂轴色差控制在1.2um内,说明光学镜头300的垂轴色差得到良好的矫正。
图12示出了本实施例中光学镜头300的相对照度曲线,从图中可以看出在最大视场角处的相对照度值达到42%以上,说明光学镜头300的相对照度得到良好的提高。
表7是上述三个实施例对应的光学特性,主要包括光学镜头的有效焦距f、光圈数F#、入瞳直径EPD、光学总长TTL、视场角2θ,以及与上述每个条件式对应的数值。
表7
实施例 实施例1 实施例2 实施例3
f(mm) 1.702 1.624 1.730
F# 1.3 1.3 1.3
TTL(mm) 4.23 4.22 4.23
2θ(°) 94.2 92.2 92.2
EPD(mm) 1.309 1.249 1.337
(TTL/IH)*f(mm) 2.119 2.015 2.152
tan 2(HFOV)/DM1 0.535 0.484 0.502
(R21-R22)/(R21+R22) -0.1 0.005 -0.001
f2+f3(mm) 41.678 64.278 57.816
TC23/R22 0.138 0.104 0.122
TC12+TC2+TC23(mm) 0.972 0.974 0.928
(R11-R12)/(R11+R12) 0.878 0.455 0.438
T1/DM1 0.091 0.1395 0.127
f/f3 0.051 0.121 0.1
R31/R32 1.030 0.966 0.989
f4/f 0.7045 0.748 0.708
f5/f -1.22 -1.60 -1.34
R51/R52 2.1763 1.8760 1.96
SAC52 i-SAG51 i (0.25,0.42) (0.21,0.48) (0.23,0.43)
综上,本发明实施例提供的光学镜头至少具有以下优点:
(1)本发明实施例提供的光学镜头满足高品质解像能力的同时,具有头部外径小、总长短、相对照度较高、广视角、大光圈的优点,不但能够更好的满足ToF镜头的要求,还能满足成像设备的轻薄短小化以及高屏占比的需求。
(2)采用具有特定屈折力的五片塑胶非球面镜片,并且采用特定的表面形状及其搭配,在满足大视场的同时结构更紧凑,体积更小型化,较好的实现了广视角和镜头小型化的均衡。
第四实施例
本实施例提供的一种成像设备400的结构示意图请参阅图13,包括上述任一实施例中的光学镜头(例如光学镜头100)及成像元件410。成像元件410可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备400可以是相机、移动终端以及其他任意一种形态的装载了光学镜头的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本实施例提供的成像设备400包括光学镜头,由于光学镜头具有小体积、大视场、大光圈以及解像能力高等优点,因此成像设备400具有小体积、大视场、大光圈以及解像能力高等优点。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到像侧依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    光阑;
    具有正光焦度的第二透镜,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面;
    具有正光焦度的第四透镜,所述第四透镜的物侧面和所述第四透镜的像侧面均为凸面;
    具有负光焦度的第五透镜,所述第五透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,所述第五透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;以及
    滤光片;
    所述光学镜头满足以下条件式:
    2.0mm<(TTL/IH)*f<2.2mm;
    其中,TTL表示所述第一透镜的物侧面至所述光学镜头的成像面在光轴上的距离,IH表示所述光学镜头在所述成像面上的实际像高,f表示所述光学镜头的有效焦距。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.48<tan 2(HFOV)/DM1<0.54;
    其中,HFOV表示所述光学镜头的最大半视场角,DM1表示所述第一透镜的有效直径。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -0.15<(R21-R22)/(R21+R22)<0.1;
    其中,R21表示所述第二透镜的物侧面的曲率半径,R22表示所述第二透镜的像侧面的曲率半径。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    40mm<f2+f3<70mm;
    其中,f2表示所述第二透镜的有效焦距,f3表示所述第三透镜的有效焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.1<TC23/R22<0.14;
    其中,TC23表示所述第二透镜的像侧面和所述第三透镜的物侧面在光轴上的间隔距离,R22表示所述第二透镜的像侧面的曲率半径。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.92mm<TC12+T2+TC23<0.98mm;
    其中,TC12表示所述第一透镜的像侧面和所述第二透镜的物侧面在光轴上的间隔距离,T2表示所述第二透镜的中心厚度,TC23表示所述第二透镜的像侧面和所述第三透镜的物侧面在光轴上的间隔距离。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.4<(R11-R12)/(R11+R12)<0.9;
    0.09<T1/DM1<0.14;
    其中,R11表示所述第一透镜的物侧面的曲率半径,R12表示所述第一透镜的像侧面的曲率半径,T1表示所述第一透镜的中心厚度,DM1表示所述第一透镜的有效直径。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.05<f/f3<0.13;
    其中,f3表示所述第三透镜的有效焦距,f表示所述光学镜头的有效焦距。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.9<R31/R32<1.1;
    其中,R31表示所述第三透镜的物侧面的曲率半径,R32表示所述第三透镜的像侧面的曲率半径。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.70<f4/f<0.75;
    -1.7<f5/f<-1.2;
    其中,f4表示所述第四透镜的有效焦距,f5表示所述第五透镜的有效焦距,f表示所述光学镜头的有效焦距。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.8<R51/R52<2.2;
    0.2<SAG52 i-SAG51 i<0.5;
    其中,R51表示所述第五透镜的物侧面的曲率半径,R52表示所述第五透镜的像侧面的曲率半径,SAG51 i表示所述第五透镜的物侧面的任意点处的矢高,SAG52 i表示所述第五透镜的像侧面的任意点处的矢高,i表示任意点。
  12. 一种成像设备,其特征在于,包括如权利要求1-11任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2021/088769 2020-05-07 2021-04-21 光学镜头及成像设备 WO2021223598A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/367,294 US11960144B2 (en) 2020-05-07 2021-07-02 Optical lens, camera module and terminal camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010375115.4A CN111290106B (zh) 2020-05-07 2020-05-07 光学镜头及成像设备
CN202010375115.4 2020-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/367,294 Continuation-In-Part US11960144B2 (en) 2020-05-07 2021-07-02 Optical lens, camera module and terminal camera

Publications (1)

Publication Number Publication Date
WO2021223598A1 true WO2021223598A1 (zh) 2021-11-11

Family

ID=71029670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088769 WO2021223598A1 (zh) 2020-05-07 2021-04-21 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN111290106B (zh)
WO (1) WO2021223598A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355561A (zh) * 2021-12-31 2022-04-15 福建福光天瞳光学有限公司 一种有限物距成像镜头及其成像方法
CN114815150A (zh) * 2022-04-08 2022-07-29 惠州市星聚宇光学有限公司 光学镜头以及光学镜头模组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290106B (zh) * 2020-05-07 2020-08-14 江西联益光学有限公司 光学镜头及成像设备
CN112684590B (zh) * 2021-01-20 2023-03-21 浙江舜宇光学有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635323A (zh) * 2013-11-08 2015-05-20 大立光电股份有限公司 光学摄影镜组、取像装置以及可携式电子装置
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN110297317A (zh) * 2019-07-03 2019-10-01 江西联益光学有限公司 一种成像镜头
CN110727083A (zh) * 2019-10-28 2020-01-24 浙江舜宇光学有限公司 摄像镜头组
CN111290106A (zh) * 2020-05-07 2020-06-16 江西联益光学有限公司 光学镜头及成像设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416197B (zh) * 2010-06-28 2013-11-21 Largan Precision Co Ltd 廣視角攝像鏡頭
TWI454730B (zh) * 2013-09-30 2014-10-01 玉晶光電股份有限公司 An optical imaging lens and an electronic device to which the optical imaging lens is applied
CN106680966B (zh) * 2015-11-06 2019-06-18 大立光电股份有限公司 取像用光学镜片组、取像装置及电子装置
TWI611204B (zh) * 2015-12-15 2018-01-11 大立光電股份有限公司 攝影用光學透鏡組、取像裝置及電子裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635323A (zh) * 2013-11-08 2015-05-20 大立光电股份有限公司 光学摄影镜组、取像装置以及可携式电子装置
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN110297317A (zh) * 2019-07-03 2019-10-01 江西联益光学有限公司 一种成像镜头
CN110727083A (zh) * 2019-10-28 2020-01-24 浙江舜宇光学有限公司 摄像镜头组
CN111290106A (zh) * 2020-05-07 2020-06-16 江西联益光学有限公司 光学镜头及成像设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355561A (zh) * 2021-12-31 2022-04-15 福建福光天瞳光学有限公司 一种有限物距成像镜头及其成像方法
CN114355561B (zh) * 2021-12-31 2024-01-12 福建福光天瞳光学有限公司 一种有限物距成像镜头及其成像方法
CN114815150A (zh) * 2022-04-08 2022-07-29 惠州市星聚宇光学有限公司 光学镜头以及光学镜头模组
CN114815150B (zh) * 2022-04-08 2024-04-02 惠州市星聚宇光学有限公司 光学镜头以及光学镜头模组

Also Published As

Publication number Publication date
CN111290106A (zh) 2020-06-16
CN111290106B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021223598A1 (zh) 光学镜头及成像设备
WO2021233052A1 (zh) 光学镜头及成像设备
TWI463169B (zh) 影像系統鏡片組及取像裝置
TWI452332B (zh) 光學攝影鏡片系統
TWI510806B (zh) 光學拾像系統組
TWI472826B (zh) 光學影像透鏡系統組
WO2021184165A1 (zh) 光学***、摄像模组及电子装置
WO2022042513A1 (zh) 光学镜头及成像设备
WO2022089327A1 (zh) 光学镜头及成像设备
WO2022143647A1 (zh) 光学镜头及成像设备
WO2020140604A1 (zh) 光学成像镜头及成像设备
WO2022199465A1 (zh) 光学镜头及成像设备
WO2022222926A1 (zh) 光学镜头及成像设备
WO2020140788A1 (zh) 长焦镜头及移动终端
WO2021189431A1 (zh) 光学***、镜头模组及电子设备
WO2020098328A1 (zh) 摄像镜头
WO2022105926A1 (zh) 光学镜头及成像设备
CN211554450U (zh) 光学***、摄像模组及电子装置
US11960144B2 (en) Optical lens, camera module and terminal camera
CN210775999U (zh) 光学***、镜头模组和电子设备
CN211263926U (zh) 光学***、摄像模组及电子装置
WO2021087669A1 (zh) 光学***、取像装置及电子装置
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
CN114675407B (zh) 光学***、镜头模组及电子设备
CN114740604B (zh) 光学***、摄像模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21799656

Country of ref document: EP

Kind code of ref document: A1