WO2021217663A1 - 光学***、镜头模组和电子设备 - Google Patents

光学***、镜头模组和电子设备 Download PDF

Info

Publication number
WO2021217663A1
WO2021217663A1 PCT/CN2020/088513 CN2020088513W WO2021217663A1 WO 2021217663 A1 WO2021217663 A1 WO 2021217663A1 CN 2020088513 W CN2020088513 W CN 2020088513W WO 2021217663 A1 WO2021217663 A1 WO 2021217663A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
object side
concave
Prior art date
Application number
PCT/CN2020/088513
Other languages
English (en)
French (fr)
Inventor
杨健
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to EP20924979.6A priority Critical patent/EP3933475A4/en
Priority to PCT/CN2020/088513 priority patent/WO2021217663A1/zh
Priority to US17/462,798 priority patent/US20210396960A1/en
Publication of WO2021217663A1 publication Critical patent/WO2021217663A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/12Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device a hand-actuated member moved from one position to another providing the energy to move the setting member, e.g. depression of shutter release button causes a stepped feeler to co-operate with the pointer of the light-sensitive device to set the diaphragm and thereafter release the shutter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the invention belongs to the technical field of optical imaging, and in particular relates to an optical system, a lens module and an electronic device.
  • the purpose of this application is to provide an optical system, a lens module and an electronic device to solve the above technical problems.
  • the present invention provides an optical system, which includes in order from the object side to the image side along the optical axis direction:
  • the first lens has positive refractive power, the object side of the first lens is convex near the optical axis, and the image side of the first lens is concave near the optical axis;
  • the second lens has negative refractive power, the second The object side of the lens has a convex surface near the optical axis, and the second lens has a concave surface near the optical axis;
  • the third lens has a tortuous power;
  • the fourth lens has a positive tortuous power;
  • the fifth lens has a tortuous power;
  • Six lenses have a tortuous power, the object side of the sixth lens is concave near the optical axis;
  • the seventh lens has a negative tortuous power, the seventh lens has a convex surface near the optical axis, and the seventh lens is like
  • the side surface is concave near the optical axis;
  • the object side and the image side of any one of the first lens to the seventh lens are both aspherical;
  • the optical system satisfies
  • the optical system can meet the requirements of high pixels, large aperture and good image quality while maintaining a compact structure and miniaturization.
  • the optical system satisfies the above conditional formula, and the total length of the optical system is small when the image plane is fixed, the miniaturization requirement can be achieved.
  • the optical system satisfies the conditional formula: 2 ⁇ f/R14 ⁇ 3.5; where f is the effective focal length of the optical system, and R14 is the radius of curvature of the image side surface of the seventh lens at the optical axis.
  • f the effective focal length of the optical system
  • R14 the radius of curvature of the image side surface of the seventh lens at the optical axis.
  • the optical system satisfies the conditional formula: FNO ⁇ 2; where FNO is the number of apertures of the optical system.
  • FNO the conditional formula: FNO ⁇ 2; where FNO is the number of apertures of the optical system.
  • the optical system satisfies the conditional formula: TTL/f ⁇ 1.35; where TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f is the effective focal length of the optical system .
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • f is the effective focal length of the optical system .
  • the optical system satisfies the conditional formula: f1/f2>-0.15; where f1 is the effective focal length of the first lens, and f2 is the effective focal length of the second lens.
  • f1 is the effective focal length of the first lens
  • f2 is the effective focal length of the second lens.
  • the optical system satisfies the conditional formula: sag1/sag2 ⁇ 15; where sag1 is the sagittal height at the effective aperture on the object side of the first lens, and sag2 is the sagittal height at the effective aperture on the image side of the first lens.
  • conditional formula sag1/sag2 ⁇ 15; where sag1 is the sagittal height at the effective aperture on the object side of the first lens, and sag2 is the sagittal height at the effective aperture on the image side of the first lens.
  • the optical system satisfies the conditional formula: (R2+R1)/(R2-R1) ⁇ 5; where R1 is the radius of curvature of the object side surface of the first lens, and R2 is the curvature of the image side surface of the first lens radius.
  • R1 is the radius of curvature of the object side surface of the first lens
  • R2 is the curvature of the image side surface of the first lens radius.
  • the optical system satisfies the conditional formula: f1234/f567>-0.5; where f1234 is the combined focal length of the first lens to the fourth lens, and f567 is the focal length of the fifth lens to the seventh lens. Combined focal length.
  • the optical system of this application can be regarded as two groups, the first lens to the fourth lens are the front group, the focal length is positive, the fifth lens to the seventh lens are the rear group, the focal length is negative, and the combination of positive and negative can correct the entire optical system Chromatic aberration improves performance; when the optical system satisfies the above conditional formula, the absolute value of the focal length of the front group is smaller than that of the rear group, which can reduce the sensitivity of the rear group and improve the yield rate in the actual production process.
  • the present invention provides a lens module, including a lens barrel, an electronic photosensitive element, and the above-mentioned optical system.
  • the first lens to the seventh lens of the optical system are installed in the lens barrel, and the electronic photosensitive element
  • the element is arranged on the image side of the optical system, and is used to convert light passing through the first lens to the seventh lens and incident on the electronic photosensitive element into an electrical signal of an image.
  • the first lens to the seventh lens of the optical system are installed in the lens module, and the surface shape and refractive power of each lens of the first lens to the seventh lens are reasonably configured, so that the lens module can meet the requirements of high pixel, While large aperture and good image quality are required, the structure is kept compact and the lens module is miniaturized.
  • the present invention provides an electronic device including a housing and the above-mentioned lens module, the lens module being arranged in the housing.
  • the above-mentioned lens module is provided in the electronic device, so that the electronic device can meet the requirements of high pixels, large aperture, and good image quality while maintaining a compact structure and miniaturization of the electronic device.
  • Fig. 1a is a schematic diagram of the structure of the optical system of the first embodiment
  • Figure 1b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the first embodiment
  • 2a is a schematic diagram of the structure of the optical system of the second embodiment
  • Fig. 2b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the second embodiment
  • 3a is a schematic diagram of the structure of the optical system of the third embodiment
  • Fig. 3b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the third embodiment
  • 4a is a schematic diagram of the structure of the optical system of the fourth embodiment
  • 4b is a longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fourth embodiment
  • 5a is a schematic diagram of the structure of the optical system of the fifth embodiment
  • Fig. 5b is the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the fifth embodiment
  • Fig. 6a is a schematic diagram of the structure of the optical system of the sixth embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the sixth embodiment.
  • Fig. 7a is a schematic structural diagram of an optical system of a seventh embodiment
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the seventh embodiment.
  • the embodiment of the present application provides a lens module, which includes a lens barrel, an electronic photosensitive element, and the optical system provided by the embodiment of the present invention.
  • the first lens to the seventh lens of the optical system are installed in the lens barrel, so
  • the electronic photosensitive element is arranged on the image side of the optical system, and is used for converting light passing through the first lens to the seventh lens and incident on the electronic photosensitive element into an electrical signal of an image.
  • the electronic photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the lens module can be an independent lens of a digital camera, or it can be an imaging module integrated on an electronic device such as a smart phone.
  • the first lens to the seventh lens of the optical system are installed in the lens module, and the surface shape and refractive power of each lens of the first lens to the seventh lens are reasonably configured, so that the lens module can meet the requirements of high pixel, While large aperture and good image quality are required, the structure is kept compact and the lens module is miniaturized.
  • An embodiment of the present application provides an electronic device, which includes a housing and the lens module provided in the embodiment of the present application.
  • the lens module and the electronic photosensitive element are arranged in the housing.
  • the electronic device can be a smart phone, a personal digital assistant (PDA), a tablet computer, a smart watch, a drone, an e-book reader, a driving recorder, a wearable device, etc.
  • the lens module is provided in the electronic device, so that the electronic device can meet the requirements of high pixels, large aperture, and good image quality, while maintaining a compact structure and miniaturization of the electronic device.
  • the embodiments of the present application provide an optical system that includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a seventh lens in order from the object side to the image side along the optical axis direction.
  • a first lens In the first lens to the seventh lens, there may be an air gap between any two adjacent lenses.
  • the specific shape and structure of the seven lenses are as follows:
  • the first lens has positive refractive power, the object side of the first lens is convex near the optical axis, and the image side of the first lens is concave near the optical axis; the second lens has negative refractive power, and the second lens has a negative refractive power.
  • the object side of the lens has a convex surface near the optical axis, and the second lens has a concave surface near the optical axis; the third lens has a tortuous power; the fourth lens has a positive tortuous power; the fifth lens has a tortuous power; Six lenses have a tortuous force, the object side of the sixth lens is a concave surface near the optical axis; the seventh lens has a negative refractive power, the object side of the seventh lens is a surface near the optical axis, and the seventh lens image
  • the side surface is concave near the optical axis; the object side and the image side of any one of the first lens to the seventh lens are both aspherical; the optical system satisfies the conditional formula: TTL/Imgh ⁇ 1.32; where, TTL Is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and Imgh is half of the diagonal length of the effective pixel area of the imaging surface.
  • the optical system can meet the requirements of high pixels, large aperture and good image quality while maintaining a compact structure and miniaturization.
  • the optical system satisfies the above conditional formula, and the total length of the optical system is small when the image plane is fixed, the miniaturization requirement can be achieved.
  • the optical system satisfies the conditional formula: 2 ⁇ f/R14 ⁇ 3.5; where f is the effective focal length of the optical system, and R14 is the image side of the seventh lens at the optical axis The radius of curvature.
  • the optical system satisfies the conditional formula: FNO ⁇ 2; where FNO is the number of apertures of the optical system.
  • FNO the conditional formula: FNO ⁇ 2; where FNO is the number of apertures of the optical system.
  • the optical system satisfies the conditional formula: TTL/f ⁇ 1.35; wherein, TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis, and f is the The effective focal length of the optical system is described.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • f is the The effective focal length of the optical system.
  • the optical system satisfies the conditional formula: f1/f2>-0.15; where f1 is the effective focal length of the first lens, and f2 is the effective focal length of the second lens.
  • f1 is the effective focal length of the first lens
  • f2 is the effective focal length of the second lens.
  • the optical system satisfies the conditional formula: sag1/sag2 ⁇ 15; where sag1 is the vector height at the effective aperture on the object side of the first lens, and sag2 is the effective aperture on the image side of the first lens. Yataka.
  • the optical system satisfies the above-mentioned conditional formula, by reasonably selecting the ratio of sag1/sag2, the manufacturability of the first lens can be ensured, which is beneficial to manufacturing, and at the same time, the sensitivity of the entire optical system can be reduced.
  • the optical system satisfies the conditional formula: (R2+R1)/(R2-R1) ⁇ 5; wherein, R1 is the radius of curvature of the object side of the first lens, and R2 is the first lens.
  • R1 is the radius of curvature of the object side of the first lens
  • R2 is the first lens.
  • the optical system satisfies the conditional formula: f1234/f567>-0.5; where f1234 is the combined focal length of the first lens to the fourth lens, and f567 is the fifth lens to The combined focal length of the seventh lens.
  • the optical system of the present application can be regarded as two groups, the first lens to the fourth lens are the front group, the focal length is positive, and the fifth lens to the seventh lens are the rear group, the focal length is negative, and the positive and negative combination corrects the entire optics.
  • the chromatic aberration of the system can improve performance; when the optical system satisfies the above conditional formula, the absolute value of the focal length of the front group is smaller than that of the rear group, which can reduce the sensitivity of the rear group and improve the yield rate in the actual production process.
  • the first embodiment is a first embodiment.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference, like The side surface S2 is concave at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has a negative refractive power.
  • the object side S1 of the third lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side S7 of the fourth lens is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is a concave surface at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 of the fifth lens is convex at the circumference, like The side surface S10 is convex at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the materials of the first lens L1 to the seventh lens L7 are all plastic.
  • the optical system also includes a stop STO, an infrared filter L8 and an image plane S17.
  • the stop STO is arranged on the side of the first lens L1 away from the second lens L2 for controlling the amount of light entering. In other embodiments, the stop STO can also be arranged between two adjacent lenses, or on other lenses.
  • the infrared filter L8 is arranged on the image side of the seventh lens L7, which includes the object side S15 and the image side S16.
  • the infrared filter L8 is used to filter out infrared light so that the light entering the image surface S17 is visible light.
  • the wavelength is 380nm-780nm.
  • the material of the infrared filter L8 is glass, and it can be coated on the glass.
  • the image plane S17 is the plane where the image formed after the light of the subject passes through the optical system.
  • Table 1a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis.
  • the object side surface and the image side surface of any one of the first lens L1 to the seventh lens L7 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical surface formula:
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 1b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S16 in the first embodiment.
  • FIG. 1b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the first embodiment.
  • the longitudinal spherical aberration curve represents the deviation of the focus point of light of different wavelengths after passing through the lenses of the optical system
  • the astigmatism curve represents the meridional curvature of the field and the sagittal curvature of the field
  • the distortion curve represents the magnitude of distortion corresponding to different field angles .
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference, like The side surface S2 is convex at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has positive refractive power.
  • the object side S1 of the third lens is concave at the near optical axis, and the image side S2 is convex at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 of the fourth lens is convex at the near optical axis, and the image side surface S8 is convex at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 of the fifth lens is convex at the circumference, like The side surface S10 is concave at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the second embodiment is the same as that of the first embodiment, so refer to.
  • Table 2a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • each parameter in Table 2a is the same as the meaning of each parameter in the first embodiment.
  • Table 2b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the second embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 2b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the second embodiment. According to Fig. 2b, it can be seen that the optical system provided in the second embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference, like The side surface S2 is convex at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has a negative refractive power.
  • the object side S1 of the third lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side S7 of the fourth lens is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side S9 of the fifth lens is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 of the fifth lens is convex at the circumference, like The side surface S10 is convex at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the third embodiment is the same as that of the first embodiment, so refer to.
  • Table 3a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • each parameter in Table 3a is the same as the meaning of each parameter in the first embodiment.
  • Table 3b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the third embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 3b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the third embodiment. According to FIG. 3b, it can be seen that the optical system provided in the third embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference, The image side surface S2 is convex at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has a negative refractive power.
  • the object side S1 of the third lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side S7 of the fourth lens is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side S9 of the fifth lens is convex at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 of the fifth lens is concave at the circumference, like The side surface S10 is convex at the circumference.
  • the sixth lens L6 has negative refractive power.
  • the object side S11 of the sixth lens is concave at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the fourth embodiment is the same as that of the first embodiment, so refer to.
  • Table 4a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • Table 4b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the fourth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 4b shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical system of the fourth embodiment. According to FIG. 4b, it can be seen that the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference, The image side surface S2 is convex at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has a negative refractive power.
  • the object side S1 of the third lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 of the fourth lens is convex at the near optical axis, and the image side surface S8 is convex at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 of the fifth lens is convex at the circumference, like The side surface S10 is concave at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is convex at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the fifth embodiment is the same as that of the first embodiment, so refer to.
  • Table 5a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • Table 5b shows the coefficients of higher-order terms applicable to each aspheric mirror surface in the fifth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 5b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the fifth embodiment. According to FIG. 5b, it can be seen that the optical system provided in the fifth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 of the first lens is convex at the near optical axis, and the image side surface S2 is concave at the near optical axis; the object side S1 of the first lens is concave at the circumference , The image side surface S2 is concave at the circumference.
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens is convex at the near optical axis, and the image side S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, like The side surface S4 is convex at the circumference.
  • the third lens L3 has positive refractive power.
  • the object side S1 of the third lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side S7 of the fourth lens is concave at the near optical axis, and the image side S8 is convex at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 is convex at the near optical axis; the object side S9 of the fifth lens is convex at the circumference, like The side surface S10 is convex at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the sixth embodiment is the same as that of the first embodiment, so refer to.
  • Table 6a shows a table of the characteristics of the optical system of this embodiment, where the data is obtained using light with a wavelength of 587 nm, and the units of the Y radius, thickness, and focal length are all millimeters (mm).
  • Table 6b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the sixth embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 6b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the sixth embodiment. According to FIG. 6b, it can be seen that the optical system provided in the sixth embodiment can achieve good imaging quality.
  • the optical system of this embodiment from the object side to the image side along the optical axis direction, includes:
  • the first lens L1 has a positive refractive power.
  • the object side S1 of the first lens is convex at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S1 of the first lens is convex, and the image side S2 It is concave.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 of the second lens is convex at the near optical axis, and the image side surface S4 is concave at the near optical axis; the object side S3 of the second lens is convex at the circumference, The image side surface S4 is convex at the circumference.
  • the third lens L3 has negative refractive power.
  • the object side S1 of the third lens is concave at the near optical axis, and the image side S2 is concave at the near optical axis; the object side S5 of the third lens is concave at the circumference, like The side surface S6 is concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side S7 of the fourth lens is convex at the near optical axis, and the image side S8 is concave at the near optical axis; the object side S7 of the fourth lens is convex at the circumference, like The side surface S8 is concave at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 is concave at the near optical axis; the object side S9 of the fifth lens is concave at the circumference, like The side surface S10 is convex at the circumference.
  • the sixth lens L6 has a positive refractive power.
  • the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 is concave at the near optical axis; the object side S11 of the sixth lens is convex at the circumference, like The side surface S12 is concave at the circumference.
  • the seventh lens L7 has a negative refractive power.
  • the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 is concave at the near optical axis; the object side S13 of the seventh lens is concave at the circumference, like The side surface S14 is convex at the circumference.
  • the other structure of the seventh embodiment is the same as that of the first embodiment, so refer to.
  • Table 7a shows a table of the characteristics of the optical system of this embodiment, in which the data is obtained using light with a wavelength of 587 nm, and the units of Y radius, thickness, and focal length are all millimeters (mm).
  • Table 7b shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in the seventh embodiment, where each aspheric surface type can be defined by the formula given in the first embodiment.
  • Fig. 7b shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical system of the seventh embodiment. According to FIG. 7b, it can be seen that the optical system provided in the seventh embodiment can achieve good imaging quality.
  • Table 8 shows the TTL/Imgh, f/R14, FNO, TTL/f, f1/f2, sag1/sag2, (R2+R1)/(R2-R1), f/R14, FNO, TTL/f, f1/f2, (R2+R1)/(R2-R1), The value of f1234/f567.
  • each embodiment satisfies the following conditional expressions: TTL/Imgh ⁇ 1.32, 2 ⁇ f/R14 ⁇ 3.5, FNO ⁇ 2, TTL/f ⁇ 1.35, f1/f2>-0.15, sag1/sag2 ⁇ 15 , (R2+R1)/(R2-R1) ⁇ 5, f1234/f567>-0.5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学***、镜头模组和电子设备,光学***包含:第一透镜(L1),具有正曲折力,第一透镜(L1)物侧面(S1)近光轴处为凸面,第一透镜(L1)像侧面(S2)近光轴处为凹面;第二透镜(L2),具有负曲折力,第二透镜(L2)物侧面(S3)近光轴处为凸面,第二透镜(L2)像侧面(S4)为凹面;第三透镜(L3),具有曲折力;第四透镜(L4),具有正曲折力;第五透镜(L5),具有曲折力;第六透镜(L6),具有曲折力,第六透镜(L6)物侧面(S11)近光轴处为凹面;第七透镜(L7),具有负曲折力,第七透镜(L7)物侧面(S13)近光轴处为凸面,第七透镜(L7)像侧面(S14)近光轴处为凹面;光学***满足条件式:TTL/Imgh<1.32;TTL为第一透镜(L1)物侧面(S1)至光学***成像面(S17)于光轴上的距离,Imgh为成像面(S17)有效像素区域对角线长的一半。光学***满足高像素、大光圈及良好像质的要求的同时,保持结构小型化。

Description

光学***、镜头模组和电子设备 技术领域
本发明属于光学成像技术领域,尤其涉及一种光学***、镜头模组和电子设备。
背景技术
近年来,随着智能手机、平板等电子设备制造技术的发展和用户需求多样化发展趋势的出现,市场对小型化摄像镜头的需求逐渐升高。目前一台电子设备同时搭载多个不同特点和应用环境的摄像头,在电子产品的大小和厚度保持甚至有所减小的趋势下,电子设备对镜头的小型化提出了更加严格的需求。另外随着半导体工艺技术的精进,感光元件的像素尺寸也得以缩小,具有良好成像品质的小型化镜头成为市场主流。
为了给用户带来更好的成像体验,如今的取像装置搭配大感光元件,同时为达到高成像品质和大光圈效果,取像装置中的镜片数也需要增加,镜片数增加的同时也引起了镜头小型化的实现困难。从而,现有的镜头无法同时满足大光圈,高像素以及小型化。
发明内容
本申请的目的在于提供一种光学***、镜头模组和电子设备,用于解决上述技术问题。
本发明提供一种光学***,沿光轴方向的物侧至像侧依次包含:
第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;第二透镜,具有负曲折力,所述第二透镜物侧 面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;第三透镜,具有曲折力;第四透镜,具有正曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为凸面,所述第七透镜像侧面近光轴处为凹面;所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;所述光学***满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学***成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。本申请通过合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得光学***能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,小型化。当光学***满足上述条件式,且在像面固定的情况下能保证光学***总长小,实现小型化要求。
其中,所述光学***满足条件式:2<f/R14<3.5;其中,f为所述光学***的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。当光学***满足上述条件式时,通过合理分布R14的取值,可以较好的匹配芯片的内视场主光线角度。
其中,所述光学***满足条件式:FNO≤2;其中,FNO为所述光学***的光圈数。当光学***满足上述条件式,在光学***的有效焦距一定的情况下,FNO≤2能保证大口径,让光学***有足够的进光量,使拍摄图像更加清晰,并实现拍摄高质量夜景、星空等光亮度不大的物空间场景。
其中,所述光学***满足条件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学***成像面于光轴上的距离,f为所述光学***的有效焦距。当光学***满足上述条件式,光学***有效焦距固定的情况下可以满足光 学***的小型化要求。
其中,所述光学***满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。当光学***满足上述条件式,第一透镜与第二透镜正负搭配,可以有效平衡***色差,且合理选择上述焦距的比值,能一定程度降低光学***的敏感性。
其中,所述光学***满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。当光学***满足上述条件式,通过合理选择sag1/sag2的比值,能保证第一透镜的工艺性,利于制造,同时也能降低整个光学***的敏感性。其中,所述光学***满足条件式:(R2+R1)/(R2-R1)<5;其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。当光学***满足上述条件式,通过合理选择(R2+R1)/(R2-R1)的比值,可以增强第一透镜的光焦度,在大孔径下也能很好的矫正色球差,提升整体性能。
其中,所述光学***满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。本申请的光学***可看做两组,第一透镜至第四透镜为前组,焦距为正,第五透镜至第七透镜为后组,焦距为负,正负搭配可以矫正整个光学***的色球差,提升性能;当光学***满足上述条件式,前组焦距绝对值小于后组,可降低后组的敏感性,提升实际生产过程中的良率。
本发明提供一种镜头模组,包括镜筒、电子感光元件和上述的光学***,所述光学***的所述第一透镜至所述第七透镜安装在所述镜筒内,所述电子感光元件设置在所述光学***的像侧,用于将穿过所述第一透镜至所述第七透镜 入射到所述电子感光元件上的物的光线转换成图像的电信号。本申请通过在镜头模组内安装该光学***的第一透镜至第七透镜,合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得镜头模组能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,镜头模组小型化。
本发明提供一种电子设备,包括壳体和上述的镜头模组,所述镜头模组设于所述壳体内。本申请通过在电子设备中设置上述镜头模组,使得电子设备能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,电子设备小型化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学***的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学***的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学***的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学***的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学***的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线;
图6a是第六实施例的光学***的结构示意图;
图6b是第六实施例的纵向球差曲线、像散曲线和畸变曲线。
图7a是第七实施例的光学***的结构示意图;
图7b是第七实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种镜头模组,该镜头模组包括镜筒、电子感光元件和本发明实施例提供的光学***,光学***的第一透镜至第七透镜安装在镜筒内,所述电子感光元件设置在所述光学***的像侧,用于将穿过所述第一透镜至所述第七透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。电子感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如智能手机等电子设备上的成像模块。本申请通过在镜头模组内安装该光学***的第一透镜至第七透镜,合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得镜头模组能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,镜头模组小型化。
本申请实施例提供了一种电子设备,该电子设备包括壳体和本申请实施例 提供的镜头模组。镜头模组和电子感光元件设置在壳体内。该电子设备可以为智能手机、个人数字助理(PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪、可穿戴装置等。本申请通过在电子设备中设置镜头模组,使得电子设备能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,电子设备小型化。
本申请实施例提供了一种光学***,该光学***沿光轴方向的物侧至像侧依次包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第七透镜。在第一透镜至第七透镜中,任意相邻两片透镜之间均可具有空气间隔。
具体的,七片透镜的具体形状和结构如下:
第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;第二透镜,具有负曲折力,所述第二透镜物侧面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;第三透镜,具有曲折力;第四透镜,具有正曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为面,所述第七透镜像侧面近光轴处为凹面;所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;所述光学***满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学***成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。本申请通过合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得光学***能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,小型化。当光学***满足上述条件式,且在像面固定的情况下能保证光学***总长小,实现小型化要求。
在一个具体的实施例中,所述光学***满足条件式:2<f/R14<3.5;其中,f为所述光学***的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。当光学***满足上述条件式时,通过合理分布R14的取值,可以较好的匹配芯片的内视场主光线角度。
在一个具体的实施例中,所述光学***满足条件式:FNO≤2;其中,FNO为所述光学***的光圈数。当光学***满足上述条件式,在光学***的有效焦距一定的情况下,FNO≤2能保证大口径,让光学***有足够的进光量,使拍摄图像更加清晰,并实现拍摄高质量夜景、星空等光亮度不大的物空间场景。
在一个具体的实施例中,所述光学***满足条件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学***成像面于光轴上的距离,f为所述光学***的有效焦距。当光学***满足上述条件式,光学***有效焦距固定的情况下可以满足光学***的小型化要求。本实施例中,TTL可以设置一个上限值,如上限值可以设为7mm。
在一个具体的实施例中,所述光学***满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。当光学***满足上述条件式,第一透镜与第二透镜正负搭配,可以有效平衡***色差,且合理选择上述焦距的比值,能一定程度降低光学***的敏感性。
在一个具体的实施例中,所述光学***满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。当光学***满足上述条件式,通过合理选择sag1/sag2的比值,能保证第一透镜的工艺性,利于制造,同时也能降低整个光学***的敏感性。
在一个具体的实施例中,所述光学***满足条件式:(R2+R1)/(R2-R1)<5; 其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。当光学***满足上述条件式,通过合理选择(R2+R1)/(R2-R1)的比值,可以增强第一透镜的光焦度,在大孔径下也能很好的矫正色球差,提升整体性能。
在一个具体的实施例中,所述光学***满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。具体的,本申请的光学***可看做两组,第一透镜至第四透镜为前组,焦距为正,第五透镜至第七透镜为后组,焦距为负,正负搭配矫正整个光学***的色球差,可以提升性能;当光学***满足上述条件式,前组焦距绝对值小于后组,可降低后组的敏感性,提升实际生产过程中的良率。
第一实施例,
请参考图1a和图1b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面 S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8为于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
上述第一透镜L1至第七透镜L7的材质均为塑料。
此外,光学***还包括光阑STO、红外滤光片L8和像面S17。光阑STO设置在第一透镜L1远离第二透镜L2的一侧,用于控制进光量。其他实施例中,光阑STO还可以设置在相邻两透镜之间,或者是其他透镜上。红外滤光片L8设置在第七透镜L7的像方侧,其包括物侧面S15和像侧面S16,红外滤光片L8用于过滤掉红外光线,使得射入像面S17的光线为可见光,可见光的波长为380nm-780nm。红外滤光片L8的材质为玻璃,并可在玻璃上镀膜。像面S17为被摄物体的光通过所述光学***后形成的像所在的面。
表1a示出了本实施例的光学***的特性的表格,其中的数据采用波长为 587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure PCTCN2020088513-appb-000001
其中,f为光学***的有效焦距,FNO为光学***的光圈数,FOV为光学***的视场角,TTL为第一透镜的物侧面至光学***的成像面于光轴上的距离。
在本实施例中,第一透镜L1至第七透镜L7的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020088513-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S1-S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1b
Figure PCTCN2020088513-appb-000003
Figure PCTCN2020088513-appb-000004
图1b示出了第一实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学***的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学***能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有正曲折力,第三透镜的物侧面S1于近光轴处为凹面,像侧面S2于近光轴处为凸面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面 S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure PCTCN2020088513-appb-000005
Figure PCTCN2020088513-appb-000006
其中,表2a的各参数含义均与第一实施例各参数含义相同。
表2b给出了可用于第二实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
Figure PCTCN2020088513-appb-000007
Figure PCTCN2020088513-appb-000008
图2b示出了第二实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。根据图2b可知,第二实施例所给出的光学***能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有正曲折力,第五透镜的物侧面S9于近光轴处为凸面, 像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure PCTCN2020088513-appb-000009
Figure PCTCN2020088513-appb-000010
其中,表3a的各参数含义均与第一实施例各参数含义相同。
表3b给出了可用于第三实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
Figure PCTCN2020088513-appb-000011
Figure PCTCN2020088513-appb-000012
图3b示出了第三实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。根据图3b可知,第三实施例所给出的光学***能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有正曲折力,第五透镜的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凸面。
第六透镜L6,具有负曲折力,第六透镜的物侧面S11于近光轴处为凹面, 像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure PCTCN2020088513-appb-000013
其中,表4a的各参数含义均与第一实施例各参数含义相同。
表4b给出了可用于第四实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表4b
面序号 K A4 A6 A8 A10
S1 -0.4893 0.0019 0.0150 -0.0281 0.0346
S2 -8.0854 -0.0170 0.0046 -0.0089 0.0206
S3 5.8805 -0.0323 0.0194 -0.0209 0.0426
S4 3.7165 -0.0151 0.0186 -0.0305 0.0811
S5 0.0000 -0.0325 0.0380 -0.0801 0.0972
S6 -12.5796 -0.0533 0.0488 -0.0351 -0.0167
S7 -5.6570 -0.0631 0.0453 -0.0398 0.0257
S8 -10.2850 -0.0332 0.0137 -0.0236 0.0241
S9 2.0000 -0.0362 0.0495 -0.0793 0.0774
S10 -18.0000 -0.0222 0.0064 -0.0110 0.0070
S11 -12.8810 0.0317 -0.0470 0.0282 -0.0163
S12 1.6104 0.0154 -0.0090 -0.0004 0.0008
S13 -2.3616 -0.0953 0.0320 -0.0080 0.0014
S14 -1.4139 -0.0918 0.0298 -0.0075 0.0013
面序号 A12 A14 A16 A18 A20
S1 -0.0262 0.0124 -0.0036 0.0006 0.0000
S2 -0.0246 0.0169 -0.0069 0.0015 -0.0001
S3 -0.0508 0.0351 -0.0142 0.0031 -0.0003
S4 -0.1243 0.1105 -0.0577 0.0164 -0.0020
S5 -0.0838 0.0514 -0.0223 0.0062 -0.0008
S6 0.0563 -0.0509 0.0234 -0.0055 0.0005
S7 -0.0164 0.0108 -0.0055 0.0016 -0.0002
S8 -0.0164 0.0067 -0.0015 0.0001 0.0000
S9 -0.0494 0.0202 -0.0051 0.0007 0.0000
S10 -0.0022 0.0005 -0.0001 0.0000 0.0000
S11 0.0068 -0.0018 0.0003 0.0000 0.0000
S12 -0.0002 0.0000 0.0000 0.0000 0.0000
S13 -0.0002 0.0000 0.0000 0.0000 0.0000
S14 -0.0001 0.0000 0.0000 0.0000 0.0000
图4b示出了第四实施例的光学***的纵向球差曲线、像散曲线和畸变曲 线。根据图4b可知,第四实施例所给出的光学***能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure PCTCN2020088513-appb-000014
其中,表5a的各参数含义均与第一实施例各参数含义相同。
表5b给出了可用于第五实施例中各非球面镜面的高次项系数,其中,各 非球面面型可由第一实施例中给出的公式限定。
表5b
面序号 K A4 A6 A8 A10
S1 -0.4870 0.0036 0.0090 -0.0148 0.0168
S2 -6.9169 -0.0168 0.0060 -0.0091 0.0188
S3 8.6198 -0.0334 0.0193 -0.0130 0.0264
S4 1.0318 -0.0175 0.0200 -0.0292 0.0746
S5 0.0000 -0.0250 0.0110 -0.0301 0.0458
S6 -18.0035 -0.0624 0.0352 -0.0016 -0.0558
S7 -11.9849 -0.0740 0.0568 -0.0630 0.0556
S8 -10.2850 -0.0179 -0.0088 0.0170 -0.0335
S9 2.0000 -0.0175 -0.0455 0.0590 -0.0423
S10 2.0000 0.0045 -0.0941 0.0975 -0.0614
S11 0.4460 0.0487 -0.0770 0.0516 -0.0256
S12 -17.7960 0.0448 -0.0203 0.0033 -0.0002
S13 -0.8143 -0.0851 0.0245 -0.0058 0.0011
S14 -1.4699 -0.0965 0.0323 -0.0083 0.0014
面序号 A12 A14 A16 A18 A20
S1 -0.0116 0.0050 -0.0013 0.0002 0.0000
S2 -0.0215 0.0143 -0.0056 0.0012 -0.0001
S3 -0.0328 0.0227 -0.0091 0.0020 -0.0002
S4 -0.1132 0.1005 -0.0527 0.0152 -0.0018
S5 -0.0548 0.0473 -0.0270 0.0088 -0.0012
S6 0.0934 -0.0750 0.0328 -0.0075 0.0007
S7 -0.0321 0.0123 -0.0035 0.0007 -0.0001
S8 0.0373 -0.0246 0.0096 -0.0021 0.0002
S9 0.0154 -0.0016 -0.0006 0.0002 0.0000
S10 0.0247 -0.0062 0.0009 -0.0001 0.0000
S11 0.0086 -0.0019 0.0002 0.0000 0.0000
S12 0.0000 0.0000 0.0000 0.0000 0.0000
S13 -0.0001 0.0000 0.0000 0.0000 0.0000
S14 -0.0002 0.0000 0.0000 0.0000 0.0000
图5b示出了第五实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。根据图5b可知,第五实施例所给出的光学***能够实现良好的成像品质。
第六实施例
请参考图6a和图6b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有正曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧 面S14于圆周处为凸面。
第六实施例的其他结构与第一实施例相同,参照即可。
表6a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表6a
Figure PCTCN2020088513-appb-000015
其中,表6a的各参数含义均与第一实施例各参数含义相同。
表6b给出了可用于第六实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表6b
面序号 K A4 A6 A8 A10
S1 -0.4930 0.0033 0.0084 -0.0130 0.0139
S2 -8.1952 -0.0241 0.0048 0.0073 -0.0063
S3 10.0000 -0.0365 0.0224 -0.0033 0.0062
S4 2.9573 -0.0164 0.0274 -0.0465 0.1119
S5 0.0000 -0.0354 0.0151 -0.0474 0.0842
S6 -2.8665 -0.0267 -0.0143 0.0453 -0.0889
S7 3.8640 -0.0210 -0.0067 0.0005 0.0079
S8 -7.0454 -0.0245 0.0101 -0.0209 0.0157
S9 -18.0000 -0.0111 0.0156 -0.0304 0.0300
S10 2.0000 -0.0115 -0.0138 0.0161 -0.0106
S11 -2.8207 -0.0054 -0.0265 0.0208 -0.0118
S12 -7.3236 -0.0066 0.0024 -0.0032 0.0011
S13 -2.4607 -0.0966 0.0291 -0.0068 0.0012
S14 -1.4448 -0.0842 0.0255 -0.0060 0.0009
面序号 A12 A14 A16 A18 A20
S1 -0.0090 0.0035 -0.0008 0.0001 0.0000
S2 0.0007 0.0019 -0.0014 0.0004 -0.0001
S3 -0.0142 0.0128 -0.0059 0.0014 -0.0001
S4 -0.1701 0.1520 -0.0798 0.0228 -0.0028
S5 -0.1054 0.0877 -0.0461 0.0138 -0.0018
S6 0.1021 -0.0692 0.0275 -0.0058 0.0005
S7 -0.0179 0.0190 -0.0105 0.0030 -0.0003
S8 -0.0052 -0.0007 0.0013 -0.0004 0.0001
S9 -0.0200 0.0083 -0.0021 0.0003 0.0000
S10 0.0037 -0.0007 0.0001 0.0000 0.0000
S11 0.0041 -0.0009 0.0001 0.0000 0.0000
S12 -0.0002 0.0000 0.0000 0.0000 0.0000
S13 -0.0001 0.0000 0.0000 0.0000 0.0000
S14 -0.0001 0.0000 0.0000 0.0000 0.0000
图6b示出了第六实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。根据图6b可知,第六实施例所给出的光学***能够实现良好的成像品质。
第七实施例
请参考图7a和图7b,本实施例的光学***,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;,第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凹面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第七实施例的其他结构与第一实施例相同,参照即可。
表7a示出了本实施例的光学***的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表7a
Figure PCTCN2020088513-appb-000016
其中,表7a的各参数含义均与第一实施例各参数含义相同。
表7b给出了可用于第七实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表7b
Figure PCTCN2020088513-appb-000017
Figure PCTCN2020088513-appb-000018
图7b示出了第七实施例的光学***的纵向球差曲线、像散曲线和畸变曲线。根据图7b可知,第七实施例所给出的光学***能够实现良好的成像品质。
表8为第一实施例至第七实施例的光学***的TTL/Imgh、f/R14、FNO、TTL/f、f1/f2、sag1/sag2、(R2+R1)/(R2-R1)、f1234/f567的值。
表8
Figure PCTCN2020088513-appb-000019
Figure PCTCN2020088513-appb-000020
由表8可见,各实施例均满足以下条件式:TTL/Imgh<1.32、2<f/R14<3.5、FNO≤2、TTL/f<1.35、f1/f2>-0.15、sag1/sag2<15、(R2+R1)/(R2-R1)<5、f1234/f567>-0.5。
以上实施例的各技术特征可以进行任意的组合,为使描述简介,未对上述实施例中的各个技术特征所以可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,可应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学***,其特征在于,沿光轴方向的物侧至像侧依次包含:
    第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;
    第二透镜,具有负曲折力,所述第二透镜物侧面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;
    第三透镜,具有曲折力;
    第四透镜,具有正曲折力;
    第五透镜,具有曲折力;
    第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;
    第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为凸面,所述第七透镜像侧面近光轴处为凹面;
    所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;
    所述光学***满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学***成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。
  2. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:2<f/R14<3.5;其中,f为所述光学***的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。
  3. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:FNO≤2;其中,FNO为所述光学***的光圈数。
  4. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条 件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学***成像面于光轴上的距离,f为所述光学***的有效焦距。
  5. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。
  6. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。
  7. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:(R2+R1)/(R2-R1)<5;其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。
  8. 根据权利要求1所述的光学***,其特征在于,所述光学***满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。
  9. 一种镜头模组,其特征在于,包括镜筒、电子感光元件和如权利要求1至8任一项所述的光学***,所述光学***的所述第一透镜至所述第七透镜安装在所述镜筒内,所述电子感光元件设置在所述光学***的像侧,用于将穿过所述第一透镜至所述第七透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。
  10. 一种电子设备,其特征在于,包括壳体和如权利要求9所述的镜头模组,所述镜头模组设于所述壳体内。
PCT/CN2020/088513 2020-04-30 2020-04-30 光学***、镜头模组和电子设备 WO2021217663A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20924979.6A EP3933475A4 (en) 2020-04-30 2020-04-30 OPTICAL SYSTEM, LENS MODULE AND ELECTRONIC DEVICE
PCT/CN2020/088513 WO2021217663A1 (zh) 2020-04-30 2020-04-30 光学***、镜头模组和电子设备
US17/462,798 US20210396960A1 (en) 2020-04-30 2021-08-31 Optical system, lens module, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088513 WO2021217663A1 (zh) 2020-04-30 2020-04-30 光学***、镜头模组和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/462,798 Continuation US20210396960A1 (en) 2020-04-30 2021-08-31 Optical system, lens module, and electronic device

Publications (1)

Publication Number Publication Date
WO2021217663A1 true WO2021217663A1 (zh) 2021-11-04

Family

ID=78373166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088513 WO2021217663A1 (zh) 2020-04-30 2020-04-30 光学***、镜头模组和电子设备

Country Status (3)

Country Link
US (1) US20210396960A1 (zh)
EP (1) EP3933475A4 (zh)
WO (1) WO2021217663A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471468B1 (ko) * 2020-06-04 2022-11-28 삼성전기주식회사 촬상 광학계

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN106154513A (zh) * 2015-04-16 2016-11-23 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像***
US20200041770A1 (en) * 2015-04-16 2020-02-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN110764229A (zh) * 2019-11-14 2020-02-07 玉晶光电(厦门)有限公司 光学成像镜头
CN110908079A (zh) * 2019-12-20 2020-03-24 玉晶光电(厦门)有限公司 光学成像镜头
CN210323543U (zh) * 2019-08-08 2020-04-14 南昌欧菲精密光学制品有限公司 光学***、镜头模组和电子设备
CN210376832U (zh) * 2018-05-29 2020-04-21 三星电机株式会社 光学成像***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180076742A (ko) * 2016-12-28 2018-07-06 삼성전기주식회사 촬상 광학계
US20200004125A1 (en) * 2017-03-22 2020-01-02 Sony Corporation Projection lens and projection apparatus
CN110542985B (zh) * 2018-05-29 2022-06-28 三星电机株式会社 光学成像***
CN108873256B (zh) * 2018-07-09 2020-04-07 浙江舜宇光学有限公司 光学成像***
CN113433668B (zh) * 2019-08-28 2022-06-10 浙江舜宇光学有限公司 光学成像***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN106154513A (zh) * 2015-04-16 2016-11-23 大立光电股份有限公司 光学镜头组、取像装置及电子装置
US20200041770A1 (en) * 2015-04-16 2020-02-06 Largan Precision Co., Ltd. Optical lens assembly, image capturing apparatus and electronic device
CN210376832U (zh) * 2018-05-29 2020-04-21 三星电机株式会社 光学成像***
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像***
CN210323543U (zh) * 2019-08-08 2020-04-14 南昌欧菲精密光学制品有限公司 光学***、镜头模组和电子设备
CN110764229A (zh) * 2019-11-14 2020-02-07 玉晶光电(厦门)有限公司 光学成像镜头
CN110908079A (zh) * 2019-12-20 2020-03-24 玉晶光电(厦门)有限公司 光学成像镜头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933475A4 *

Also Published As

Publication number Publication date
EP3933475A1 (en) 2022-01-05
US20210396960A1 (en) 2021-12-23
EP3933475A4 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
CN111443461A (zh) 光学***、镜头模组和电子设备
WO2021189431A1 (zh) 光学***、镜头模组及电子设备
CN111208629A (zh) 光学***、镜头模组和电子设备
WO2022033326A1 (zh) 光学***、镜头模组和电子设备
CN112034595A (zh) 光学***、摄像模组和电子设备
CN111338063A (zh) 光学***、镜头模组和电子设备
WO2021196030A1 (zh) 光学***、镜头模组和电子设备
CN112433340A (zh) 光学***、镜头模组和电子设备
CN111239988A (zh) 光学***、镜头模组和电子设备
CN113391430A (zh) 光学***、镜头模组和电子设备
CN111897093A (zh) 光学***、摄像模组和电子设备
WO2021035758A1 (zh) 光学***、镜头模组和电子设备
US20220043240A1 (en) Optical imaging lens assembly
CN113281879B (zh) 光学***、镜头模组和电子设备
CN212111955U (zh) 光学***、镜头模组和电子设备
CN213149353U (zh) 光学***、镜头模组和电子设备
CN210775999U (zh) 光学***、镜头模组和电子设备
WO2021217663A1 (zh) 光学***、镜头模组和电子设备
WO2022227016A1 (zh) 光学***、镜头模组和电子设备
CN213091989U (zh) 光学***、摄像头模组和电子设备
CN213122416U (zh) 光学***、镜头模组和电子设备
WO2022032426A1 (zh) 光学***、摄像模组和电子设备
WO2022041054A1 (zh) 光学***、摄像模组和电子设备
CN211786337U (zh) 光学***、镜头模组及终端设备
CN114740604A (zh) 光学***、摄像模组和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020924979

Country of ref document: EP

Effective date: 20210922

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE