WO2021217526A1 - 有机发光显示基板及其制作方法、有机发光显示装置 - Google Patents

有机发光显示基板及其制作方法、有机发光显示装置 Download PDF

Info

Publication number
WO2021217526A1
WO2021217526A1 PCT/CN2020/087912 CN2020087912W WO2021217526A1 WO 2021217526 A1 WO2021217526 A1 WO 2021217526A1 CN 2020087912 W CN2020087912 W CN 2020087912W WO 2021217526 A1 WO2021217526 A1 WO 2021217526A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
emitting display
organic light
light emitting
Prior art date
Application number
PCT/CN2020/087912
Other languages
English (en)
French (fr)
Inventor
贾立
高涛
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2021569944A priority Critical patent/JP2023531839A/ja
Priority to CN202080000642.5A priority patent/CN114127946B/zh
Priority to US17/269,118 priority patent/US20220123099A1/en
Priority to CN202211049424.8A priority patent/CN115411080A/zh
Priority to EP20897652.2A priority patent/EP4145516A4/en
Priority to PCT/CN2020/087912 priority patent/WO2021217526A1/zh
Publication of WO2021217526A1 publication Critical patent/WO2021217526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an organic light-emitting display substrate, a manufacturing method thereof, and an organic light-emitting display device.
  • organic light-emitting devices Due to a series of excellent characteristics such as self-luminescence, high contrast, wide viewing angle, low power consumption, fast response speed, and low manufacturing cost, organic light-emitting devices, as the basis of a new generation of display devices, have received more and more attention.
  • an organic light emitting display substrate including a passive matrix organic light emitting display area, and the organic light emitting display substrate includes:
  • the organic layer is located on one side of the substrate, and includes a plurality of grooves arranged at intervals along the first direction and extending along the second direction in the passive matrix organic light emitting display area;
  • the anode layer is located on the surface of the organic layer away from the substrate, and includes a plurality of first anodes arranged in an array in the passive matrix organic light emitting display area, and the passive matrix organic light emitting display area are arranged at intervals along the first direction and are arranged along the first direction.
  • a plurality of shielding parts extending in two directions, the orthographic projections of the shielding parts on the substrate and the orthographic projections of the grooves on the substrate are distributed along the second of the orthographic projections of the first anodes on the substrate. In the gap extending in the direction, and the orthographic projection of each shielding portion on the substrate partially overlaps the orthographic projection of a groove on the substrate to form a partition groove;
  • the organic functional layer is formed on the side of the anode layer away from the substrate.
  • the cathode layer is formed on the side of the organic functional layer away from the substrate, and includes a plurality of cathode strips and a plurality of cathode material parts which are located in the passive matrix organic light emitting display area and extend along the second direction and are alternately arranged along the first direction, wherein, Each cathode bar is farther away from the substrate than the anode layer, and each cathode material part is located in a partition groove and is not connected with the adjacent cathode bar.
  • the organic functional layer includes a plurality of first portions and a plurality of second portions located in the passive matrix organic light-emitting display area, wherein each first portion is farther away from the substrate than the anode layer, and each second portion is located in a The partition groove is not connected with the adjacent first part.
  • each shielding portion includes two shielding strips located on both banks of the groove and spaced apart, and the orthographic projections of the two shielding strips on the substrate overlap with the orthographic projections of the groove on the substrate, respectively.
  • the organic layer includes a first organic layer and a second organic layer
  • the organic light emitting display substrate further includes a first data metal layer, a first inorganic layer, and a second data metal layer on one side of the substrate.
  • Pixel defining layer and spacer layer where:
  • the first data metal layer, the first inorganic layer, the first organic layer, the second data metal layer, the second organic layer, the anode layer, the pixel defining layer, the spacer layer, the organic functional layer, and the cathode layer are along the distance away from the substrate The direction is set in sequence;
  • the second data metal layer is connected to the first data metal layer through a plurality of first via holes, and is connected to the anode layer through a plurality of second via holes, any two adjacent in the first direction
  • the first anodes are connected through the first data metal layer or the second data metal layer.
  • the groove penetrates the second organic layer and extends into the first organic layer.
  • the width of the orthographic projection of each groove on the substrate along the first direction is 5 ⁇ m-10 ⁇ m.
  • the depth of each groove in the direction perpendicular to the substrate is 2 micrometers to 2.5 micrometers.
  • the angle between the two side walls of each groove and the bottom wall is 120 degrees to 140 degrees, respectively.
  • the width of the overlapping portion of the orthographic projection of each shielding bar on the substrate and the orthographic projection of the corresponding groove on the substrate along the first direction is 0.8 ⁇ m to 1 ⁇ m.
  • the organic light-emitting display substrate further includes an active matrix organic light-emitting display area
  • the organic light-emitting display substrate further includes an organic light-emitting display area located between the substrate and the first data metal layer and arranged in sequence in a direction away from the substrate.
  • the first data metal layer is connected to the semiconductor layer through a plurality of third via holes, and is connected to the second data metal layer through a plurality of fourth via holes, and the anode layer is connected to the semiconductor layer through a plurality of fifth via holes.
  • the second data metal layer is connected.
  • the active matrix organic light emitting display area surrounds a part of the edge of the passive matrix organic light emitting display area; or, the active matrix organic light emitting display area surrounds the passive matrix organic light emitting display area.
  • the substrate includes a first organic flexible layer, a second organic flexible layer, and a first inorganic barrier layer between the first organic flexible layer and the second organic flexible layer.
  • an organic light-emitting display device including the organic light-emitting display substrate of any one of the foregoing embodiments.
  • the organic light emitting display substrate further includes an active matrix organic light emitting display area; the organic light emitting display device further includes: at least one functional device whose orthographic projection on the organic light emitting display substrate is located in the passive matrix organic light emitting display area.
  • the manufacturing method includes:
  • An organic layer is formed on one side of the substrate
  • An anode layer is formed on the surface of the organic layer away from the substrate.
  • the anode layer includes a plurality of first anodes arranged in an array in the passive matrix organic light-emitting display area, and a plurality of first anodes arranged in the passive matrix organic light-emitting display area at intervals along the first direction.
  • a plurality of shielding portions extending in the second direction, the orthographic projections of the plurality of shielding portions on the substrate are distributed in the gaps extending in the second direction of the orthographic projections of the plurality of first anodes on the substrate;
  • the organic layer is etched to form a plurality of grooves extending in the second direction in the passive matrix organic light-emitting display area.
  • the orthographic projections of the grooves on the substrate are distributed on the orthographic projections of the first anodes on the substrate.
  • Each of the gaps extending in the second direction, and the orthographic projection of each groove on the substrate partially overlaps the orthographic projection of a shielding portion on the substrate to form a partition groove;
  • An organic functional layer and a cathode layer are sequentially formed on the side of the spacer layer away from the substrate, wherein the cathode layer includes a plurality of cathode stripes located in the passive matrix organic light emitting display area and extending in the second direction and arranged alternately in the first direction. And a plurality of cathode material parts, wherein each cathode strip is farther away from the substrate than the anode layer, and each cathode material part is located in a partition groove and is not connected with adjacent cathode strips.
  • etching the organic layer includes:
  • a hard mask is formed on the side of the spacer layer away from the substrate, and the area of the hard mask corresponding to the notch of the partition groove is a hollow area;
  • forming the hard mask includes:
  • a hard mask cover layer and a photoresist cover layer are sequentially formed on the side of the spacer layer away from the substrate;
  • the photoresist cover layer is sequentially exposed and developed to obtain a photoresist protection mask, and the area of the photoresist protection mask corresponding to the notch of the partition groove is a hollow area;
  • the hard mask cover layer is wet-etched through the photoresist protective mask to obtain the hard mask.
  • the material of the hard mask includes metal oxide.
  • the material of the hard mask includes indium gallium zinc oxide.
  • forming the organic layer includes sequentially forming a first organic layer and a second organic layer on one side of the substrate, and the manufacturing method further includes:
  • first organic layer Before forming the first organic layer, sequentially forming a first data metal layer and a first inorganic layer on one side of the substrate;
  • the second data metal layer is connected to the first data metal layer through a plurality of first via holes, and is connected to the anode layer through a plurality of second via holes, and is arbitrarily adjacent in the first direction.
  • the two first anodes are connected by the first data metal layer or the second data metal layer.
  • each groove penetrates the second organic layer and extends into the first organic layer.
  • the organic light emitting display substrate further includes an active matrix organic light emitting display area
  • the manufacturing method further includes:
  • the first data metal layer Before forming the first data metal layer, a semiconductor layer, a first insulating layer, a first gate metal layer, a second insulating layer, a second gate metal layer, and a third insulating layer are sequentially formed on one side of the substrate.
  • the first data metal layer is connected to the semiconductor layer through a plurality of third via holes, and is connected to the second data metal layer through a plurality of fourth via holes, and the anode layer is connected to the second data layer through a plurality of fifth via holes.
  • Metal layer connection Metal layer connection.
  • Fig. 1a is a front view of an organic light emitting display substrate according to an embodiment of the present disclosure
  • FIG. 1b is an enlarged schematic diagram of an organic light emitting display substrate of an embodiment of the present disclosure at A in FIG. 1a;
  • FIG. 1c is a schematic cross-sectional view of an organic light-emitting display substrate at B-B in FIG. 1b according to an embodiment of the present disclosure
  • Figure 1d is an enlarged schematic cross-sectional view of a partition groove in an embodiment of the present disclosure
  • FIG. 2 is a front view of an organic light emitting display substrate according to another embodiment of the present disclosure.
  • 3a is a schematic cross-sectional view of an organic light-emitting display substrate in a passive matrix organic light-emitting display area in the related art
  • 3b is a schematic cross-sectional view of the organic light emitting display substrate in the manufacturing process in the related art
  • 4a is a flow chart of a manufacturing method of an organic light emitting display substrate according to an embodiment of the present disclosure
  • 4b is a schematic cross-sectional view of the organic light-emitting display substrate in the manufacturing process of an embodiment of the present disclosure
  • Figure 5a is a flow chart of making a partition groove in an embodiment of the present disclosure
  • FIG. 5b is a schematic cross-sectional view of the organic light emitting display substrate in the manufacturing process of an embodiment of the present disclosure
  • FIG. 6 is a front view of an organic light emitting display device according to an embodiment of the present disclosure.
  • a specific component when it is described that a specific component is located between the first component and the second component, there may or may not be an intermediate component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to another component, the specific component may be directly connected to the other component without an intervening component, or may not be directly connected to the other component but with an intervening component.
  • Organic light-emitting display substrates are widely used in flexible display devices due to their light, thin, and bendable characteristics.
  • embodiments of the present disclosure provide an organic light-emitting display substrate, a manufacturing method thereof, and an organic light-emitting display device.
  • the organic light emitting display substrate 1 provided by an embodiment of the present disclosure includes a passive matrix organic light emitting display area 20.
  • FIG. 1b is an enlarged schematic diagram of an organic light emitting display substrate according to an embodiment of the present disclosure at A in FIG. 1a, and the structure of the light shielding matrix in the figure is omitted and not shown.
  • Fig. 1c is a schematic cross-sectional view of an organic light emitting display substrate of an embodiment of the present disclosure at B-B in Fig. 1b.
  • the organic light emitting display substrate 1 provided by an embodiment of the present disclosure includes:
  • the organic layer 102 is located on one side of the substrate 101, and includes a plurality of grooves 1020 that are located in the passive matrix organic light emitting display area 20, which are arranged at intervals along the first direction and extend along the second direction;
  • the anode layer 104 is located on the surface of the organic layer 102 away from the substrate 101, and includes a plurality of first anodes 1041 arranged in an array in the passive matrix organic light emitting display area 20, and a first anode located along the first side of the passive matrix organic light emitting display area 20.
  • the plurality of shielding portions 1042 arranged at intervals in the direction and extending along the second direction, the orthographic projections of the plurality of shielding portions 1042 on the substrate 101 and the orthographic projections of the plurality of grooves 1020 on the substrate 101 are all distributed on the plurality of first anodes
  • the orthographic projection of 1041 on the substrate 101 is in each gap extending in the second direction, and the orthographic projection of each shielding portion 1042 on the substrate 101 partially overlaps the orthographic projection of a groove 1020 on the substrate 101, To form a partition groove 103;
  • the organic functional layer 105 is formed on the side of the anode layer 104 away from the substrate 101;
  • the cathode layer 106 is formed on the side of the organic functional layer 105 away from the substrate 101, and includes a plurality of cathode stripes 1061 and a plurality of cathodes located in the passive matrix organic light emitting display area 20 extending in the second direction and alternately arranged in the first direction
  • the material portion 1062 wherein each cathode strip 1061 is farther away from the substrate 101 than the anode layer 104, and each cathode material portion 1062 is located in a partition groove 103 and is not connected to an adjacent cathode strip 1061.
  • the organic functional layer 105 is formed on the side of the anode layer 104 away from the substrate 101, and it should be understood that the overall pattern layer of the organic functional layer 105 is located on the side of the overall pattern layer of the anode layer 104 away from the substrate 101 , And should not be understood as the absolute positional relationship of the local structure. The positional relationship between other pattern layers is similar to this, and will not be repeated here.
  • the organic functional layer 105 includes a plurality of first portions 1051 and a plurality of second portions 1052 located in the passive matrix organic light-emitting display area 20, wherein each first portion 1051 is larger than The anode layer 104 is farther away from the substrate 101, and each second portion 1052 is located in a partition groove 103 and is not connected to the adjacent first portion 1051.
  • the first direction and the second direction are not specifically limited.
  • the first direction is a row direction
  • the second direction is a column direction
  • the first direction is the column direction
  • the second direction is the row direction.
  • the passive matrix organic light-emitting display area 20 of the organic light-emitting display substrate 1 includes a plurality of passive matrix organic light-emitting diodes 5a (Passive matrix organic light-emitting diode, PMOLED) arranged in an array, and these organic light-emitting devices 5a are scanned in a scanning manner. Light up, and each organic light emitting device 5a emits light instantaneously under a short pulse.
  • the organic light emitting display substrate 1 further includes an active matrix organic light emitting display area 50. As shown in FIG.
  • the active matrix organic light-emitting display area 50 includes a plurality of active-matrix organic light-emitting diodes 5b (Active-matrix organic light-emitting diode, AMOLED) arranged in an array, wherein each organic light-emitting device 5b It is controlled by the thin film transistor device 3, so that independent and continuous light emission can be realized.
  • active-matrix organic light-emitting diodes 5b Active-matrix organic light-emitting diode, AMOLED
  • the shape of the passive matrix organic light emitting display area 20 is not limited, such as circular, elliptical, rectangular, or polygonal, and so on. Since the passive matrix organic light emitting display area 20 does not need to be provided with thin film transistor devices, the transmittance is relatively high.
  • functional devices such as a camera and a distance sensor can be arranged on the back side of the organic light emitting display substrate 1 and opposite to the passive matrix organic light emitting display area 20, so that light can pass through the passive matrix organic light emitting display area 20 So as to inject the functional device.
  • Such a design is beneficial to increase the screen-to-body ratio of the organic light-emitting display device, and is more suitable for the design of narrow bezels and ultra-narrow bezels.
  • the active matrix organic light emitting display area 50 is arranged around a part of the edge of the passive matrix organic light emitting display area 20. In the embodiment shown in FIG. 2, the active matrix organic light emitting display area 50 may also surround the passive matrix organic light emitting display area 20.
  • the organic light emitting display substrate may also be a passive matrix organic light emitting display substrate, and the display area thereof only includes the passive matrix organic light emitting display area.
  • the organic layer 102 includes a first organic layer 1021 and a second organic layer 1022 respectively serving as flat layers, and the groove 1020 penetrates the second organic layer 1022 and extends to the first organic layer 1021 Inside.
  • the structure of the organic light-emitting display substrate 1 further includes: a second inorganic barrier layer 131, a buffer layer 132, a semiconductor layer 109, a first insulating layer 110, and a first insulating layer 110 are sequentially arranged on one side of the substrate 101 and in a direction away from the substrate 101.
  • the first organic layer 1021 is located between the first inorganic layer 116 and the second data metal layer 117
  • the second organic layer 1022 is located between the second data metal layer 117 and the anode layer 104.
  • the organic functional layer 105 is located on the side of the spacer layer 108 away from the substrate 101.
  • the second data metal layer 117 is connected to the first data metal layer 115 through a plurality of first via holes 6a, and is connected to the anode layer 104 through a plurality of second via holes 6b.
  • any two first anodes 1041 adjacent to each other in the first direction are connected by the first data metal layer 115, that is, a plurality of first anodes 1041 arranged in the first direction pass through the first data metal layer 115.
  • a data metal layer 115 is electrically conductive, so that the organic light emitting devices 5a arranged in a matrix can be illuminated by scanning.
  • any two first anodes adjacent to each other in the first direction may also be connected by a second data metal layer.
  • the first data metal layer 115 is connected to the semiconductor layer 109 through a plurality of third via holes 6c, and is connected to the second data metal layer 117 through a plurality of fourth via holes 6d.
  • the organic light-emitting display substrate 1 further includes a thin-film encapsulation layer 7.
  • the semiconductor layer 109 includes the active layer of the thin film transistor device 3, the first gate metal layer 111 includes the gate of the thin film transistor device 3 and the first plate of the capacitor device 4, and the second gate metal layer 113 includes the second electrode of the capacitor device 4.
  • the first data metal layer 115 includes a first layer of wiring and the source and drain of the thin film transistor device 3 and the second data metal layer 117 includes a second layer of wiring.
  • the double-layer wiring design is equivalent to connecting resistors in parallel, which can reduce the wiring resistance and thereby reduce the power consumption of the substrate.
  • the anode layer 104 includes a plurality of second anodes 1043 arranged in an array, and the second anodes 1043 are connected to the second data metal layer 117 through a plurality of fifth via holes 6e.
  • the first anode 1041, the portion of the organic light emitting layer 105 and the first anode 1041, and the cathode bar 1061 and the first anode 1041 constitute an organic light emitting device 5a.
  • the second anode 1043, the portion of the organic light emitting layer 105 and the second anode 1043 directly opposite, and the portion of the cathode layer 106 and the second anode 1043 directly opposite constitute an organic light emitting device 5b.
  • the organic functional layer 105 and the cathode layer 106 of the organic light emitting display substrate 1 are usually formed into a film by an evaporation process.
  • the vapor deposition material gas basically forms a film along the normal direction of the substrate 101. Therefore, the undercut structure of the partition groove 103 can prevent the vapor deposition material gas from forming a film on the sidewall of the groove 1020, so that the film is formed.
  • the part of the layer located in the partition groove 103 and the part outside the partition groove 103 are not connected, that is, the film layer cannot be continuous on both sides of the partition groove 103.
  • the plurality of cathode strips 1061 of the cathode layer 106 extend in the second direction and are arranged at intervals along the first direction.
  • the cathode layer 106 may extend continuously.
  • the organic functional layer 105 may be vapor-deposited on a large area, or patterned and vapor-deposited using a mask.
  • the shielding portion 1042 includes two shielding strips 1042a, 1042b located on both banks of the groove 1020 and spaced apart, and the two shielding strips 1042a, 1042b are on the substrate 101.
  • the orthographic projections on the upper part overlap with the orthographic projections of the groove 1020 on the substrate 101 respectively.
  • the two shielding strips 1042a and 1042b can both prevent the cathode material from forming a film on the two sidewalls of the groove 1020, thereby further ensuring that the adjacent cathode strips 1061 are separated by the partition groove 103.
  • the anode layer 104 includes a first indium tin oxide layer, a second indium tin oxide layer, and a silver layer sandwiched between the first indium tin oxide layer and the second indium tin oxide layer, wherein the first The thickness of the indium tin oxide layer and the second indium tin oxide layer is 60-80 angstroms, such as 70 angstroms, and the thickness of the silver layer is 800-1200 angstroms, such as 1000 angstroms.
  • a sputtering process is first used to form a film, and then a mask patterning process is used to form a pattern by wet etching.
  • the pattern of the organic layer 102 is generally formed by dry etching using a mask patterning process. Since the anode layer 104 is an inorganic material and is quite different from the material of the organic layer 102, by selecting a suitable selection ratio to dry-etch the organic layer 102, one of the two shielding strips 1042a, 1042b close to the substrate 101 can be used. An undercut-like structure is formed on the side, that is, the orthographic projections of the two shielding strips 1042a and 1042b on the substrate 101 overlap with the orthographic projections of the groove 1020 on the substrate 101 respectively. As shown in FIG.
  • the orthographic projection of the two shielding bars 1042a, 1042b on the substrate 101 and the orthographic projection of the pixel defining layer 107 on the substrate 101 may also be spaced apart or partially overlapped.
  • the width c of the orthographic projection of the groove 1020 on the substrate 101 along the first direction is 5 ⁇ m-10 ⁇ m.
  • the depth d of the groove 1020 in the direction perpendicular to the substrate 101 is 2 ⁇ m-2.5 ⁇ m.
  • the angle ⁇ between the two side walls 1020a of the groove 1020 and the bottom wall 1020b is 120°-140°, respectively.
  • the width s along the first direction of the overlapping part of the orthographic projection of the shielding bars 1042a, 1042b on the substrate 101 and the orthographic projection of the corresponding groove 1020 on the substrate 101 is 0.8 micrometers to 1 micrometer, because the overlap width With the presence of S, the partition groove 103 has an undercut-like structure.
  • the structure of the organic light-emitting display substrate in the passive matrix organic light-emitting display area includes: a data metal layer 001, an organic layer 002, an inorganic layer 003, and an anode which are sequentially arranged along a direction away from the substrate.
  • the partition groove 009 is formed first, and then the anode layer 004 is formed, and then the pixel defining layer 005, the spacer layer 006, the organic functional layer 007 and the cathode layer 008 are formed in sequence.
  • the related technology has the following technical defects:
  • the organic layer 002 releases gas in a high-temperature process environment, and the inorganic layer 003 covers a large area of the organic layer 002, which may cause bubbles to be generated between the organic layer 002 and the inorganic layer 003.
  • the inorganic layer 003 is formed on the surface of the organic layer 002. When the inorganic layer 003 is etched, the organic layer 002 is easily damaged.
  • the organic layer 002 is usually used as a flat layer, and the inorganic layer 003 is fabricated on the surface of the organic layer 002 and used as the base for fabricating the anode layer 004, and its surface flatness is not good.
  • the manufacturing process of the pixel defining layer 005 and the spacer layer 006 is carried out after the manufacturing process of the partition groove 009 is completed, which is likely to cause the pixel defining layer and/or the spacer layer to remain in the partition groove 009
  • the material 010 is made, and the partition effect of the partition groove 009 becomes invalid, so that the cathode bar cannot be effectively partitioned.
  • the production process of the anode layer 004 is carried out after the production process of the partition groove 009.
  • air bubbles may be generated between the photoresist layer and the inner wall of the partition groove 009. The burst meeting leads to defects in the follow-up process.
  • the structure of the partition groove 103 is formed by the anode layer 104 and the organic layer 102 together. No inorganic layer is provided between the layer 104 and the organic layer 102. Therefore, in contrast to the aforementioned related art, the embodiments of the present disclosure can overcome a series of undesirable problems caused by the inorganic layer in the related art.
  • the structure of the partition groove 103 can be formed after the anode layer 104, the pixel defining layer 107, and the spacer layer 108 are formed.
  • the structural design of the organic light-emitting display substrate of the embodiment of the present disclosure is beneficial to improve the yield of manufacturing products.
  • the substrate 101 is a flexible substrate, which includes a first organic flexible layer 101a, a second organic flexible layer 101c, and is located between the first organic flexible layer 101a and the second organic flexible layer 101c.
  • the material of the first organic flexible layer 101a and the second organic flexible layer 101c includes polyimide
  • the material of the first inorganic barrier layer 101b includes silicon nitride.
  • the substrate may also be a rigid substrate.
  • the embodiment of the present disclosure also provides a manufacturing method of an organic light emitting display substrate, which can be used to manufacture the aforementioned organic light emitting display substrate 1 including the passive matrix organic light emitting display area 20. As shown in FIGS. 4a and 4b, the manufacturing method includes the following steps S101 to S105.
  • step S1 an organic layer 102 is formed on one side of the substrate 101.
  • an anode layer 104 is formed on the surface of the organic layer 102 away from the substrate 101.
  • the anode layer 104 includes a plurality of first anodes 1041 arranged in an array in the passive matrix organic light emitting display area 20, and a plurality of first anodes 1041 located in the passive matrix organic light emitting display area.
  • the plurality of shielding portions 1042 of the display area 20 are arranged at intervals along the first direction and extending along the second direction.
  • the orthographic projections of the plurality of shielding portions 1042 on the substrate 101 are distributed on the substrate 101 of the plurality of first anodes 1041. Each of the orthographic projections is in a gap extending in the second direction.
  • step S3 a pixel defining layer 107 and a spacer layer 108 are sequentially formed on the side of the anode layer 104 away from the substrate 101.
  • step S4 the organic layer 102 is etched to form a plurality of grooves 1020 extending in the second direction in the passive matrix organic light emitting display area 20.
  • the orthographic projections of the plurality of grooves 1020 on the substrate 101 are distributed on the plurality of first
  • the orthographic projection of an anode 1041 on the substrate 101 is in each gap extending in the second direction, and the orthographic projection of each groove 1020 on the substrate 101 intersects the orthographic projection of a shielding portion 1042 on the substrate 101. Stacked to form a partition groove 103.
  • step S5 an organic functional layer 105 and a cathode layer 106 are sequentially formed on the side of the spacer layer 108 away from the substrate 101, wherein the cathode layer 106 includes the passive matrix organic light-emitting display area 20 and extends along the second direction.
  • a plurality of cathode strips 1061 and a plurality of cathode material portions 1062 are alternately arranged in the first direction, wherein each cathode strip 1061 is farther away from the substrate 101 than the anode layer 104, and each cathode material portion 1062 is located in a partition groove 103 and is connected to Adjacent cathode strips 1061 are not connected.
  • the organic functional layer 105 is also interrupted and discontinuous by the isolation groove.
  • the organic functional layer 105 includes a plurality of first portions 1051 and a plurality of second portions 1052 located in the passive matrix organic light emitting display area 20, wherein each first portion 1051 is farther away from the substrate 101 than the anode layer 104, Each second part 1052 is located in a partition groove 103 and is not connected with the adjacent first part 1051.
  • the substrate 101 is a flexible substrate and is pre-formed on a glass substrate (not shown in the figure).
  • a first organic flexible layer, a first inorganic barrier layer, and a second organic flexible layer are sequentially formed on one side of the glass substrate.
  • the first organic flexible layer, the first inorganic barrier layer, and the second organic flexible layer are integrated as an organic light emitting display.
  • the glass substrate plays a supporting role in the manufacturing process of the organic light-emitting display substrate. After the structure of the organic light-emitting display substrate is completed, the glass substrate and the substrate need to be peeled off to support the flexible characteristics of the organic light-emitting display substrate.
  • the above-mentioned forming the organic layer 102 includes sequentially forming a first organic layer 1021 and a second organic layer 1022 on one side of the substrate 101.
  • the groove 1020 penetrates the second organic layer 1022 and extends into the first organic layer 1021.
  • the groove 1020 may not penetrate the second organic layer 1022, that is, it ends in the second organic layer 1022.
  • the manufacturing method of the organic light emitting display substrate further includes:
  • a first data metal layer 115 and a first inorganic layer 116 are sequentially formed on one side of the substrate 101;
  • a second data metal layer 117 is formed on the side of the first organic layer 1021 away from the substrate 101, in the passive matrix organic light emitting display area 20, the second The data metal layer 117 is connected to the first data metal layer 115 through a plurality of first via holes 6a, and is connected to the anode layer 104 through a plurality of second via holes 6b, any of two first anodes 1041 adjacent in the first direction They are connected through the first data metal layer 115 or the second data metal layer 117.
  • the manufactured organic light emitting display substrate also includes an active matrix organic light emitting display area 50.
  • the manufacturing method of the organic light emitting display substrate further includes:
  • a semiconductor layer 109, a first insulating layer 110, a first gate metal layer 111, a second insulating layer 112, a second gate metal layer 113, and a second gate metal layer 113 are sequentially formed on one side of the substrate 101.
  • the first data metal layer 115 is connected to the semiconductor layer 109 through a plurality of third via holes 6c, and the second data metal layer 117 is connected to the first data metal layer 117 through a plurality of fourth via holes 6d.
  • a data metal layer 115 is connected, and the anode layer 104 is connected to the second data metal layer 117 through a plurality of fifth via holes 6e.
  • etching the organic layer includes the following steps S41 to S43.
  • a hard mask is formed on the side of the spacer layer away from the substrate, and the area of the hard mask corresponding to the notch of the partition groove is a hollow area.
  • the material type of the hard mask is not limited.
  • the material of the hard mask includes metal oxides such as indium gallium zinc oxide.
  • this step S41 specifically includes:
  • Sub-step one forming a hard mask cover layer 3010 and a photoresist cover layer 302 in sequence on the side of the spacer layer 108 away from the substrate 101;
  • Sub-step two sequentially exposing and developing the photoresist cover layer 302 to obtain a photoresist protection mask, and the area of the photoresist protection mask corresponding to the notch of the partition groove is a hollow area;
  • the hard mask cover layer 3010 is wet-etched through the photoresist protective mask to obtain a hard mask.
  • step S42 dry etching is performed on the organic layer 102 through the hard mask to form a groove 1020;
  • step S43 the hard mask is peeled off.
  • the structure of the partition groove is formed by the anode layer and the organic layer together, and there is no longer an inorganic layer between the anode layer and the organic layer. Therefore, compared with the aforementioned related art
  • the etching process for forming the partition groove is performed after the anode layer, the pixel defining layer, and the spacer layer are formed. Compared with the aforementioned related technology, it can avoid the residual pixel defining layer and/or the spacer layer in the partition groove.
  • the failure of the partition groove caused by the manufacturing material, and the occurrence of subsequent process failures due to residual air bubbles. Therefore, the method for manufacturing the organic light emitting display substrate according to the embodiment of the present disclosure is beneficial to improve the yield of manufacturing products.
  • an embodiment of the present disclosure also provides an organic light-emitting display device 100, which includes the organic light-emitting display substrate 1 of any one of the foregoing embodiments.
  • the organic light-emitting display substrate 1 includes a passive matrix organic light-emitting display area 20 and an active matrix organic light-emitting display area 50.
  • the organic light-emitting display device 100 further includes at least one functional device 30.
  • the orthographic projection on the display substrate 1 is located in the passive matrix organic light emitting display area 20.
  • the specific type of the functional device 30 is not limited, such as a camera or a distance sensor.
  • the specific product types of the above-mentioned organic light-emitting display devices include, but are not limited to, mobile phones, tablet computers, notebook computers, wearable devices, electronic paper or display screens, and so on.
  • the organic light-emitting display substrate has the above-mentioned beneficial effects
  • the organic light-emitting display device also has the above-mentioned beneficial effects, and its manufacturing yield is relatively high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机发光显示基板(1)及其制作方法、有机发光显示装置(100)。有机发光显示基板(1)包括衬底(101)和位于衬底(101)一侧且依次设置的有机层(102)、阳极层(104)、有机功能层(105)和阴极层(106),在被动矩阵有机发光显示区(20),有机层(102)包括沿第一方向间隔排列且沿第二方向延伸的多个槽(1020),阳极层(104)包括阵列排布的多个第一阳极(1041)和沿第一方向间隔排列且沿第二方向延伸的多个遮挡部(1042),多个遮挡部(1042)和多个槽(1020)在衬底(101)上的正投影分布于多个第一阳极(1041)在衬底(101)上的正投影的各个沿第二方向延伸的间隙中,且每个遮挡部(1042)与一个槽(1020)在衬底(101)上的正投影部分交叠以形成隔断槽(103),阴极层(106)包括沿第二方向延伸且沿第一方向交替排列的多个阴极条(1061)和多个阴极材料部(1062),每个阴极材料部(1062)位于一个隔断槽(103)内且与相邻阴极条(1061)不连接。

Description

有机发光显示基板及其制作方法、有机发光显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种有机发光显示基板及其制作方法、有机发光显示装置。
背景技术
由于具有自发光、对比度高、视角宽、功耗低、响应速度快以及制造成本低等一系列优异特性,有机发光器件作为新一代显示装置的基础,受到越来越多的关注。
有机发光显示基板的制作良品率,是制约有机发光显示装置走向大规模应用的一个关键问题。
发明内容
根据本公开实施例的一方面,提供一种有机发光显示基板,包括被动矩阵有机发光显示区,有机发光显示基板包括:
衬底;
有机层,位于衬底的一侧,包括位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个槽;
阳极层,位于有机层远离衬底的表面,包括位于被动矩阵有机发光显示区的呈阵列排布的多个第一阳极,以及位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部,多个遮挡部在衬底上的正投影以及多个槽在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中,并且每个遮挡部在衬底上的正投影与一个槽在衬底上的正投影部分交叠,以形成隔断槽;
有机功能层,形成于阳极层远离衬底的一侧;以及
阴极层,形成于有机功能层远离衬底的一侧,包括位于被动矩阵有机发光显示区的沿第二方向延伸且沿第一方向交替排列的多个阴极条和多个阴极材料部,其中,每个阴极条比阳极层更加远离衬底,每个阴极材料部位于一个隔断槽内且与相邻的阴极条不相连接。
在一些实施例中,有机功能层包括位于被动矩阵有机发光显示区的多个第一部分和多个第二部分,其中,每个第一部分比阳极层更加远离衬底,每个第二部分位于一 个隔断槽内且与相邻的第一部分不相连接。
在一些实施例中,每个遮挡部包括位于槽的两岸且间隔设置的两个遮挡条,两个遮挡条在衬底上的正投影分别与槽在衬底上的正投影部分交叠。
在一些实施例中,有机层包括第一有机层和第二有机层,有机发光显示基板在所述衬底的一侧还包括第一数据金属层、第一无机层、第二数据金属层、像素界定层和隔垫物层,其中:
第一数据金属层、第一无机层、第一有机层、第二数据金属层、第二有机层、阳极层、像素界定层、隔垫物层、有机功能层和阴极层沿远离衬底的方向依次设置;
在被动矩阵有机发光显示区,第二数据金属层通过多个第一过孔与第一数据金属层连接,通过多个第二过孔与阳极层连接,任意沿第一方向相邻的两个第一阳极之间通过第一数据金属层或第二数据金属层连接。
在一些实施例中,槽贯穿第二有机层并且延伸至第一有机层内。
在一些实施例中,每个槽在衬底上的正投影的沿第一方向的宽度为5微米-10微米。
在一些实施例中,每个槽在垂直于衬底方向上的深度为2微米-2.5微米。
在一些实施例中,每个槽的两个侧壁与底壁的夹角分别为120度-140度。
在一些实施例中,每个遮挡条在衬底上的正投影与对应的槽在衬底上的正投影的交叠部分的沿第一方向的宽度为0.8微米-1微米。
在一些实施例中,所述的有机发光显示基板,还包括主动矩阵有机发光显示区,有机发光显示基板还包括位于衬底与第一数据金属层之间、且沿远离衬底的方向依次设置的半导体层、第一绝缘层、第一栅金属层、第二绝缘层、第二栅金属层和第三绝缘层,其中:
在主动矩阵有机发光显示区,第一数据金属层通过多个第三过孔与半导体层连接,通过多个第四过孔与第二数据金属层连接,阳极层通过多个第五过孔与第二数据金属层连接。
在一些实施例中,主动矩阵有机发光显示区围绕被动矩阵有机发光显示区的部分边缘;或者,主动矩阵有机发光显示区包绕被动矩阵有机发光显示区。
在一些实施例中,衬底包括第一有机柔性层、第二有机柔性层,以及位于第一有机柔性层和第二有机柔性层之间的第一无机阻挡层。
根据本公开实施例的另一方面,提供一种有机发光显示装置,包括前述任一实施 例的有机发光显示基板。
在一些实施例中,有机发光显示基板还包括主动矩阵有机发光显示区;有机发光显示装置还包括:在有机发光显示基板上的正投影位于被动矩阵有机发光显示区的至少一个功能器件。
根据本公开实施例的又一方面,提供一种有机发光显示基板的制作方法,有机发光显示基板包括被动矩阵有机发光显示区,制作方法包括:
在衬底的一侧形成有机层;
在有机层远离衬底的表面形成阳极层,阳极层包括位于被动矩阵有机发光显示区的呈阵列排布的多个第一阳极,以及位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部,多个遮挡部在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中;
在阳极层远离衬底的一侧依次形成像素界定层和隔垫物层;
对有机层进行刻蚀,形成位于被动矩阵有机发光显示区的沿第二方向延伸的多个槽,多个槽在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中,并且每个槽在衬底上的正投影与一个遮挡部在衬底上的正投影部分交叠,以形成隔断槽;
在隔垫物层远离衬底的一侧依次形成有机功能层和阴极层,其中,阴极层包括位于被动矩阵有机发光显示区的沿第二方向延伸且沿第一方向交替排列的多个阴极条和多个阴极材料部,其中,每个阴极条比阳极层更加远离衬底,每个阴极材料部位于一个隔断槽内且与相邻的阴极条不相连接。
在一些实施例中,对有机层进行刻蚀包括:
在隔垫物层远离衬底的一侧形成硬掩模,硬掩模对应隔断槽的槽口的区域为镂空区域;
透过硬掩模对有机层进行干刻,形成槽;
剥离掉硬掩模。
在一些实施例中,形成硬掩模包括:
在隔垫物层远离衬底的一侧依次形成硬掩模覆盖层和光致刻蚀剂覆盖层;
对光致刻蚀剂覆盖层依次进行曝光和显影,得到光致刻蚀剂保护掩模,光致刻蚀剂保护掩模对应隔断槽的槽口的区域为镂空区域;
透过光致刻蚀剂保护掩模对硬掩模覆盖层进行湿刻,得到硬掩模。
在一些实施例中,硬掩模的材料包括金属氧化物。
在一些实施例中,硬掩模的材料包括铟镓锌氧化物。
在一些实施例中,形成有机层包括在衬底的一侧依次形成第一有机层和第二有机层,制作方法还包括:
在形成第一有机层之前,在衬底的一侧依次形成第一数据金属层和第一无机层;及
在形成第一有机层之后,在形成第二有机层之前,在第一有机层远离衬底的一侧形成第二数据金属层;
其中,在被动矩阵有机发光显示区,第二数据金属层通过多个第一过孔与第一数据金属层连接,通过多个第二过孔与阳极层连接,任意沿第一方向相邻的两个第一阳极之间通过第一数据金属层或第二数据金属层连接。
在一些实施例中,每个槽贯穿第二有机层并且延伸至第一有机层内。
在一些实施例中,有机发光显示基板还包括主动矩阵有机发光显示区,制作方法还包括:
在形成第一数据金属层之前,在衬底的一侧依次形成半导体层、第一绝缘层、第一栅金属层、第二绝缘层、第二栅金属层和第三绝缘层,在主动矩阵有机发光显示区,第一数据金属层通过多个第三过孔与半导体层连接,通过多个第四过孔与第二数据金属层连接,阳极层通过多个第五过孔与第二数据金属层连接。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1a是本公开一实施例的有机发光显示基板的主视图;
图1b是本公开一实施例的有机发光显示基板在图1a的A处放大示意图;
图1c是本公开一实施例的有机发光显示基板在图1b的B-B处的截面示意图;
图1d本公开一实施例中隔断槽的截面放大示意图;
图2是本公开另一实施例的有机发光显示基板的主视图;
图3a是相关技术中有机发光显示基板在被动矩阵有机发光显示区的截面示意图;
图3b是相关技术中有机发光显示基板在制作过程中的一些截面示意图;
图4a是本公开一实施例的有机发光显示基板的制作方法流程图;
图4b是本公开一实施例的有机发光显示基板在制作过程中的一些截面示意图;
图5a是本公开一实施例中制作隔断槽的流程图;
图5b是本公开一实施例的有机发光显示基板在制作过程中的一些截面示意图;
图6是本公开一实施例有机发光显示装置的主视图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
有机发光显示基板由于具有轻薄、可弯曲的特点,被广泛用于柔性显示装置中。为提高有机发光显示基板的制作良品率,本公开实施例提供了一种有机发光显示基板及其制作方法、有机发光显示装置。
如图1a所示,本公开一实施例提供的有机发光显示基板1,包括被动矩阵有机发光显示区20。图1b是本公开一实施例的有机发光显示基板在图1a的A处放大示意图,图中关于遮光矩阵的结构被省略未示出。图1c是本公开一实施例的有机发光显示基板在图1b的B-B处的截面示意图。
如图1b和图1c所示,本公开实施例提供的有机发光显示基板1,包括:
衬底101;
有机层102,位于衬底101的一侧,包括位于被动矩阵有机发光显示区20的沿第一方向间隔排列且沿第二方向延伸的多个槽1020;
阳极层104,位于有机层102远离衬底101的表面,包括位于被动矩阵有机发光显示区20的呈阵列排布的多个第一阳极1041,以及位于被动矩阵有机发光显示区20的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部1042,多个遮挡部1042在衬底101上的正投影以及多个槽1020在衬底101上的正投影均分布于多个第一阳极1041在衬底101上的正投影的各个沿第二方向延伸的间隙中,并且每个遮挡部1042在衬底101上的正投影与一个槽1020在衬底101上的正投影部分交叠,以形成隔断槽103;
有机功能层105,形成于阳极层104远离衬底101的一侧;以及
阴极层106,形成于有机功能层105远离衬底101的一侧,包括位于被动矩阵有机发光显示区20的沿第二方向延伸且沿第一方向交替排列的多个阴极条1061和多个阴极材料部1062,其中,每个阴极条1061比阳极层104更加远离衬底101,每个阴极材料部1062位于一个隔断槽103内且与相邻的阴极条1061不相连接。
在本公开实施例中,有机功能层105形成于阳极层104远离衬底101的一侧,应理解为有机功能层105的整体图案层位于阳极层104的整体图案层远离衬底101的一侧,而不应理解为局部结构的绝对位置关系。其它图案层之间的位置关系与此类似,这里不再重复赘述。
如图1c所示,在本公开的一些实施例中,有机功能层105包括位于被动矩阵有机发光显示区20的多个第一部分1051和多个第二部分1052,其中,每个第一部分1051比阳极层104更加远离衬底101,每个第二部分1052位于一个隔断槽103内且与相邻 的第一部分1051不相连接。
在本公开实施例中,对第一方向和第二方向不做具体限定。例如,在一些实施例中,第一方向为行向,第二方向为列向。在另一些实施例中,第一方向为列向,第二方向为行向。
有机发光显示基板1的被动矩阵有机发光显示区20包括呈阵列排布的多个被动矩阵型的有机发光器件5a(Passive matrix organic light-emitting diode,PMOLED),这些有机发光器件5a通过扫描方式被点亮,每个有机发光器件5a在短脉冲下瞬间发光。在图1a所示的实施例中,有机发光显示基板1还包括主动矩阵有机发光显示区50。如图1c所示,主动矩阵有机发光显示区50包括呈阵列排布的多个主动矩阵型的有机发光器件5b(Active-matrix organic light-emitting diode,AMOLED),其中,每个有机发光器件5b被薄膜晶体管器件3控制,从而可以实现独立且连续的发光。
被动矩阵有机发光显示区20的形状不限,例如呈圆形、椭圆形、矩形或多边形,等等。由于被动矩阵有机发光显示区20不需要设置薄膜晶体管器件,因此透过率较高。有机发光显示装置中,例如摄像头、距离传感器等功能器件可以设置在有机发光显示基板1的背侧,并与被动矩阵有机发光显示区20相对,这样,光线可以穿过被动矩阵有机发光显示区20从而射入功能器件。这样的设计,有利于提高有机发光显示装置的屏占比,更加适用于窄边框、超窄边框的设计。在图1a所示的实施例中,主动矩阵有机发光显示区50围绕被动矩阵有机发光显示区20的其中一部分边缘设置。在图2所示的实施例中,主动矩阵有机发光显示区50也可以包绕被动矩阵有机发光显示区20。
在本公开的一些实施例中,有机发光显示基板也可以为被动矩阵有机发光显示基板,其显示区域只包括被动矩阵有机发光显示区。
如图1c所示,在该实施例中,有机层102包括分别用作平坦层的第一有机层1021和第二有机层1022,槽1020贯穿第二有机层1022并且延伸至第一有机层1021内。有机发光显示基板1的结构还包括:在衬底101的一侧且沿远离衬底101的方向依次设置第二无机阻挡层131、缓冲层132、半导体层109、第一绝缘层110、第一栅金属层111、第二绝缘层112、第二栅金属层113和第三绝缘层114、第一数据金属层115、第一无机层116、第二数据金属层117、像素界定层107和隔垫物层108。第一有机层1021位于第一无机层116和第二数据金属层117之间,第二有机层1022位于第二数据金属层117和阳极层104之间。有机功能层105位于隔垫物层108远离衬底101的 一侧。在被动矩阵有机发光显示区20,第二数据金属层117通过多个第一过孔6a与第一数据金属层115连接,通过多个第二过孔6b与阳极层104连接。
在被动矩阵有机发光显示区20,任意沿第一方向相邻的两个第一阳极1041之间通过第一数据金属层115连接,即,沿第一方向排列的多个第一阳极1041通过第一数据金属层115电性导通,从而使得,呈矩阵排布的有机发光器件5a能够通过扫描方式被点亮。在本公开的另一实施例中,任意沿第一方向相邻的两个第一阳极之间也可以通过第二数据金属层连接。
在主动矩阵有机发光显示区50,第一数据金属层115通过多个第三过孔6c与半导体层109连接,通过多个第四过孔6d与第二数据金属层117连接。此外,为实现对基板内部结构的封装保护,有机发光显示基板1还包括了薄膜封装层7。
半导体层109包括薄膜晶体管器件3的有源层,第一栅金属层111包括薄膜晶体管器件3的栅极和电容器件4的第一极板,第二栅金属层113包括电容器件4的第二极板,第一数据金属层115包括第一层走线以及薄膜晶体管器件3的源极和漏极,第二数据金属层117包括第二层走线。双层走线设计相当于将电阻并联,可以起到降低走线电阻,进而降低基板功耗的效果。
在主动矩阵有机发光显示区50,阳极层104包括呈阵列排布的多个第二阳极1043,第二阳极1043通过多个第五过孔6e与第二数据金属层117连接。在被动矩阵有机发光显示区20,第一阳极1041、有机发光层105与第一阳极1041正对的部分、阴极条1061与第一阳极1041正对的部分构成一个有机发光器件5a。在主动矩阵有机发光显示区50,第二阳极1043、有机发光层105与第二阳极1043正对的部分、阴极层106与第二阳极1043正对的部分构成一个有机发光器件5b。
有机发光显示基板1的有机功能层105和阴极层106通常采用蒸镀工艺成膜。在蒸镀过程中,蒸镀材料气体基本是沿衬底101的法线方向成膜,故而,隔断槽103的底切状结构可以阻挡蒸镀材料气体在槽1020的侧壁成膜,使膜层位于隔断槽103内的部分和位于隔断槽103外的部分不相连接,也就是使膜层在隔断槽103的两侧无法连续。在本公开实施例中,在被动矩阵有机发光显示区20,由于隔断槽103的隔断作用,阴极层106的多个阴极条1061沿第二方向延伸且沿第一方向间隔排列,在主动矩阵有机发光显示区50,阴极层106可以连续延伸。有机功能层105可以大面积蒸镀,也可以使用掩模板进行图案化蒸镀。
在本公开的一些实施例中,如图1b和图1c所示,遮挡部1042包括位于槽1020 的两岸且间隔设置的两个遮挡条1042a、1042b,两个遮挡条1042a、1042b在衬底101上的正投影分别与槽1020在衬底101上的正投影部分交叠。这样,两个遮挡条1042a、1042b均可以阻挡阴极材料在槽1020的两个侧壁成膜,从而进一步保障相邻阴极条1061之间被隔断槽103隔断。
阳极层104的具体材料不限。在一些实施例中,阳极层104包括第一氧化铟锡层、第二氧化铟锡层,以及夹在第一氧化铟锡层和第二氧化铟锡层之间的银层,其中,第一氧化铟锡层和第二氧化铟锡层的厚度为60-80埃,例如为70埃,银层的厚度为800-1200埃,例如为1000埃。阳极层104在制作时,首先采用溅射工艺成膜,然后采用掩模构图工艺,通过湿法刻蚀形成图案。
有机层102的图案一般采用掩模构图工艺,通过干法刻蚀形成。由于阳极层104属于无机材料,与有机层102的材料差异较大,因此,通过选择合适的选择比对有机层102进行干刻,可以在两个遮挡条1042a、1042b的靠近衬底101的一侧形成底切状结构,即,两个遮挡条1042a、1042b在衬底101上的正投影分别与槽1020在衬底101上的正投影部分交叠。如图1c所示,两个遮挡条1042a、1042b在衬底101上的正投影与像素界定层107在衬底101上的正投影之间无间隔。在本公开的其它实施例中,两个遮挡条在衬底上的正投影与像素界定层在衬底上的正投影之间也可以间隔一定距离或部分交叠。
如图1d所示,在本公开的一些实施例中,槽1020在衬底101上的正投影的沿第一方向的宽度c为5微米-10微米。槽1020在垂直于衬底101方向上的深度d为2微米-2.5微米。槽1020的两个侧壁1020a与底壁1020b的夹角α分别为120度-140度。遮挡条1042a、1042b在衬底101上的正投影与对应的槽1020在衬底101上的正投影的交叠部分的沿第一方向的宽度s为0.8微米-1微米,由于该交叠宽度S的存在,隔断槽103具有底切状结构。
一种相关技术中,如图3a所示,有机发光显示基板在被动矩阵有机发光显示区的结构包括:沿远离衬底的方向依次设置的数据金属层001、有机层002、无机层003、阳极层004、像素界定层005、隔垫物层006、有机功能层007和阴极层008,其中,阳极层004通过过孔与数据金属层001连接,多个隔断槽009的结构由有机层002和无机层003共同形成,多个隔断槽009用于将阴极层008隔断,从而得到沿行向间隔排列且沿列向延伸的多个阴极条。该有机发光显示基板在制作时,先形成隔断槽009,再形成阳极层004,之后再依次形成像素界定层005、隔垫物层006、有机功能层007 和阴极层008。该相关技术存在以下技术缺陷:
一、有机层002在高温工艺环境中会释放出气体,无机层003大面积覆盖有机层002,可能导致有机层002与无机层003之间产生气泡。
二、无机层003形成在有机层002的表面,在刻蚀无机层003时,容易损伤到有机层002。
三、有机层002通常用作平坦层,无机层003制作在有机层002的表面并作为制作阳极层004的制作基面,其表面平坦性欠佳。
四、如图3b所示,像素界定层005和隔垫物层006的制作工序在隔断槽009的制作工序完成之后进行,容易导致隔断槽009内残留像素界定层和/或隔垫物层的制作材料010,进而导致隔断槽009的隔断作用失效,从而无法有效将阴极条之间隔断。
五、阳极层004的制作工序在隔断槽009的制作工序之后进行,在采用掩模构图工艺形成阳极层004的过程中,光致刻蚀剂层与隔断槽009内壁之间可能产生气泡,气泡爆开会导致后续工艺产生不良。
上述技术缺陷严重影响了有机发光显示基板的制作良品率。
在本公开实施例中,如图1c所示,一方面,由于阳极层104形成在有机层102的远离衬底101的表面,隔断槽103的结构由阳极层104和有机层102共同形成,阳极层104与有机层102之间不再设置无机层,因此,对比前述相关技术,采用本公开实施例,可以克服相关技术中由于无机层导致的一系列不良问题。另一方面,采用本公开实施例,可以在形成阳极层104、像素界定层107和隔垫物层108之后再形成隔断槽103的结构,这样,可以避免因隔断槽内残留像素界定层和/或隔垫物层的制作材料导致的隔断槽失效,以及因气泡残留导致的后续工艺不良的发生。因此,本公开实施例有机发光显示基板的结构设计,有利于提高制作良品率。
如图1c所示,在该实施例中,衬底101为柔性衬底,包括第一有机柔性层101a、第二有机柔性层101c,以及位于第一有机柔性层101a和第二有机柔性层101c之间的第一无机阻挡层101b,其中,第一有机柔性层101a和第二有机柔性层101c的材料包括聚酰亚胺,第一无机阻挡层101b的材料包括氮化硅。这样设计,不但可以提高衬底的韧性,而且有利于提高有机发光显示基板的封装性能。在本公开的另一些实施例中,衬底也可以为硬质衬底。
本公开实施例还提供了一种有机发光显示基板的制作方法,该制作方法可用于制 作前述包括被动矩阵有机发光显示区20的有机发光显示基板1。如图4a和图4b所示,制作方法包括以下步骤S101至步骤S105。
在步骤S1,在衬底101的一侧形成有机层102。
在步骤S2,在有机层102远离衬底101的表面形成阳极层104,阳极层104包括位于被动矩阵有机发光显示区20的呈阵列排布的多个第一阳极1041,以及位于被动矩阵有机发光显示区20的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部1042,多个遮挡部1042在衬底101上的正投影分布于多个第一阳极1041在衬底101上的正投影的各个沿第二方向延伸的间隙中。
在步骤S3,在阳极层104远离衬底101的一侧依次形成像素界定层107和隔垫物层108。
在步骤S4,对有机层102进行刻蚀,形成位于被动矩阵有机发光显示区20的沿第二方向延伸的多个槽1020,多个槽1020在衬底101上的正投影分布于多个第一阳极1041在衬底101上的正投影的各个沿第二方向延伸的间隙中,并且每个槽1020在衬底101上的正投影与一个遮挡部1042在衬底101上的正投影部分交叠,以形成隔断槽103。
在步骤S5,在隔垫物层108远离衬底101的一侧依次形成有机功能层105和阴极层106,其中,阴极层106包括位于被动矩阵有机发光显示区20的沿第二方向延伸且沿第一方向交替排列的多个阴极条1061和多个阴极材料部1062,其中,每个阴极条1061比阳极层104更加远离衬底101,每个阴极材料部1062位于一个隔断槽103内且与相邻的阴极条1061不相连接。
在本公开的一些实施例中,在步骤S5中形成有机功能层105后,有机功能层105也被隔断槽隔断而不连续。如图4b所示,有机功能层105包括位于被动矩阵有机发光显示区20的多个第一部分1051和多个第二部分1052,其中,每个第一部分1051比阳极层104更加远离衬底101,每个第二部分1052位于一个隔断槽103内且与相邻的第一部分1051不相连接。
在本公开的一个实施例中,衬底101为柔性衬底,并预先形成在一玻璃基板(图中未示出)上。例如,在玻璃基板的一侧依次形成第一有机柔性层、第一无机阻挡层和第二有机柔性层,第一有机柔性层、第一无机阻挡层和第二有机柔性层整体作为有机发光显示基板的衬底。玻璃基板在有机发光显示基板的制作过程中起支撑作用,待有机发光显示基板的结构制作完毕,还需要将玻璃基板与衬底剥离,以支持有机发光 显示基板的柔性特性。
如图4b所示,上述形成有机层102包括在衬底101的一侧依次形成第一有机层1021和第二有机层1022。在一些实施例中,槽1020贯穿第二有机层1022,并且延伸至第一有机层1021内。在另一些实施例中,槽1020也可以不贯穿第二有机层1022,也就是终止在第二有机层1022内。在此基础上,有机发光显示基板的制作方法还进一步包括:
在形成第一有机层1021之前,在衬底101的一侧依次形成第一数据金属层115和第一无机层116;
在形成第一有机层1021之后,在形成第二有机层1022之前,在第一有机层1021远离衬底101的一侧形成第二数据金属层117,在被动矩阵有机发光显示区20,第二数据金属层117通过多个第一过孔6a与第一数据金属层115连接,通过多个第二过孔6b与阳极层104连接,任意沿第一方向相邻的两个第一阳极1041之间通过第一数据金属层115或第二数据金属层117连接。
如图4b所示,所制作的有机发光显示基板除被动矩阵有机发光显示区20外,还包括主动矩阵有机发光显示区50,该有机发光显示基板的制作方法进一步还包括:
在形成第一数据金属层115之前,在衬底101的一侧依次形成半导体层109、第一绝缘层110、第一栅金属层111、第二绝缘层112、第二栅金属层113和第三绝缘层114,在主动矩阵有机发光显示区50,第一数据金属层115通过多个第三过孔6c与半导体层109连接,第二数据金属层117通过多个第四过孔6d与第一数据金属层115连接,阳极层104通过多个第五过孔6e与第二数据金属层117连接。
如图5a和图5b所示,在本公开的一些实施例中,对有机层进行刻蚀包括以下步骤S41至步骤S43。
在步骤S41,在隔垫物层远离衬底的一侧形成硬掩模,硬掩模对应隔断槽的槽口的区域为镂空区域。硬掩模的材料类型不限,在一些实施例中,硬掩模的材料包括例如铟镓锌氧化物等金属氧化物。
如图5b所示,在一个实施例中,该步骤S41具体包括:
子步骤一,在隔垫物层108远离衬底101的一侧依次形成硬掩模覆盖层3010和光致刻蚀剂覆盖层302;
子步骤二,对光致刻蚀剂覆盖层302依次进行曝光和显影,得到光致刻蚀剂保护掩模,光致刻蚀剂保护掩模对应隔断槽的槽口的区域为镂空区域;
子步骤三,透过光致刻蚀剂保护掩模对硬掩模覆盖层3010进行湿刻,得到硬掩模。
在步骤S42,透过硬掩模对有机层102进行干刻,形成槽1020;
在步骤S43,剥离掉硬掩模。
如前所述,由于阳极层形成在有机层远离衬底的表面,隔断槽的结构由阳极层和有机层共同形成,阳极层与有机层之间不再设置无机层,因此,对比前述相关技术,采用本公开实施例的有机发光显示基板的制造方法,可以克服相关技术中由于无机层导致的一系列制作不良问题。此外,用于形成隔断槽的刻蚀工序在形成阳极层、像素界定层和隔垫物层之后进行,对比前述相关技术,可以避免因隔断槽内残留像素界定层和/或隔垫物层的制作材料导致的隔断槽失效,以及因气泡残留导致的后续工艺不良的发生。因此,采用本公开实施例的有机发光显示基板的制造方法,有利于提高制作良品率。
如图6所示,本公开实施例还提供了一种有机发光显示装置100,包括前述任一实施例的有机发光显示基板1。
在一些实施例中,有机发光显示基板1包括被动矩阵有机发光显示区20和主动矩阵有机发光显示区50,有机发光显示装置100还包括至少一个功能器件30,该至少一个功能器件30在有机发光显示基板1上的正投影位于被动矩阵有机发光显示区20。功能器件30的具体类型不限,例如为摄像头或者距离传感器等。
上述有机发光显示装置的具体产品类型包括但不限于手机、平板电脑、笔记本电脑、可穿戴设备、电子纸或者展示屏等等。
由于有机发光显示基板具有上述有益效果,因此,有机发光显示装置也具有上述有益效果,其制作良品率较高。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (22)

  1. 一种有机发光显示基板,包括被动矩阵有机发光显示区,有机发光显示基板包括:
    衬底;
    有机层,位于衬底的一侧,包括位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个槽;
    阳极层,位于有机层远离衬底的表面,包括位于被动矩阵有机发光显示区的呈阵列排布的多个第一阳极,以及位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部,多个遮挡部在衬底上的正投影以及多个槽在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中,并且每个遮挡部在衬底上的正投影与一个槽在衬底上的正投影部分交叠,以形成隔断槽;
    有机功能层,形成于阳极层远离衬底的一侧;以及
    阴极层,形成于有机功能层远离衬底的一侧,包括位于被动矩阵有机发光显示区的沿第二方向延伸且沿第一方向交替排列的多个阴极条和多个阴极材料部,其中,每个阴极条比阳极层更加远离衬底,每个阴极材料部位于一个隔断槽内且与相邻的阴极条不相连接。
  2. 根据权利要求1所述的有机发光显示基板,其中,有机功能层包括位于被动矩阵有机发光显示区的多个第一部分和多个第二部分,其中,每个第一部分比阳极层更加远离衬底,每个第二部分位于一个隔断槽内且与相邻的第一部分不相连接。
  3. 根据权利要求1所述的有机发光显示基板,其中,每个遮挡部包括位于槽的两岸且间隔设置的两个遮挡条,两个遮挡条在衬底上的正投影分别与槽在衬底上的正投影部分交叠。
  4. 根据权利要求3所述的有机发光显示基板,其中,有机层包括第一有机层和第二有机层,有机发光显示基板在所述衬底的一侧还包括第一数据金属层、第一无机层、第二数据金属层、像素界定层和隔垫物层,其中:
    第一数据金属层、第一无机层、第一有机层、第二数据金属层、第二有机层、阳 极层、像素界定层、隔垫物层、有机功能层和阴极层沿远离衬底的方向依次设置;
    在被动矩阵有机发光显示区,第二数据金属层通过多个第一过孔与第一数据金属层连接,通过多个第二过孔与阳极层连接,任意沿第一方向相邻的两个第一阳极之间通过第一数据金属层或第二数据金属层连接。
  5. 根据权利要求4所述的有机发光显示基板,其中,每个槽贯穿第二有机层并且延伸至第一有机层内。
  6. 根据权利要求4所述的有机发光显示基板,其中,每个槽在衬底上的正投影的沿第一方向的宽度为5微米-10微米。
  7. 根据权利要求4所述的有机发光显示基板,其中,每个槽在垂直于衬底方向上的深度为2微米-2.5微米。
  8. 根据权利要求4所述的有机发光显示基板,其中,每个槽的两个侧壁与底壁的夹角分别为120度-140度。
  9. 根据权利要求4所述的有机发光显示基板,其中,每个遮挡条在衬底上的正投影与对应的槽在衬底上的正投影的交叠部分的沿第一方向的宽度为0.8微米-1微米。
  10. 根据权利要求4所述的有机发光显示基板,还包括主动矩阵有机发光显示区,有机发光显示基板还包括位于衬底与第一数据金属层之间、且沿远离衬底的方向依次设置的半导体层、第一绝缘层、第一栅金属层、第二绝缘层、第二栅金属层和第三绝缘层,其中:
    在主动矩阵有机发光显示区,第一数据金属层通过多个第三过孔与半导体层连接,通过多个第四过孔与第二数据金属层连接,阳极层通过多个第五过孔与第二数据金属层连接。
  11. 根据权利要求10所述的有机发光显示基板,其中,主动矩阵有机发光显示区围绕被动矩阵有机发光显示区的部分边缘;或者,主动矩阵有机发光显示区包绕被 动矩阵有机发光显示区。
  12. 根据权利要求1-11任一项所述的有机发光显示基板,其中,衬底包括第一有机柔性层、第二有机柔性层,以及位于第一有机柔性层和第二有机柔性层之间的第一无机阻挡层。
  13. 一种有机发光显示装置,包括根据权利要求1-12任一项所述的有机发光显示基板。
  14. 根据权利要求13所述的有机发光显示装置,其中,有机发光显示基板还包括主动矩阵有机发光显示区;
    有机发光显示装置还包括:在有机发光显示基板上的正投影位于被动矩阵有机发光显示区的至少一个功能器件。
  15. 一种有机发光显示基板的制作方法,有机发光显示基板包括被动矩阵有机发光显示区,制作方法包括:
    在衬底的一侧形成有机层;
    在有机层远离衬底的表面形成阳极层,阳极层包括位于被动矩阵有机发光显示区的呈阵列排布的多个第一阳极,以及位于被动矩阵有机发光显示区的沿第一方向间隔排列且沿第二方向延伸的多个遮挡部,多个遮挡部在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中;
    在阳极层远离衬底的一侧依次形成像素界定层和隔垫物层;
    对有机层进行刻蚀,形成位于被动矩阵有机发光显示区的沿第二方向延伸的多个槽,多个槽在衬底上的正投影分布于多个第一阳极在衬底上的正投影的各个沿第二方向延伸的间隙中,并且每个槽在衬底上的正投影与一个遮挡部在衬底上的正投影部分交叠,以形成隔断槽;
    在隔垫物层远离衬底的一侧依次形成有机功能层和阴极层,其中,阴极层包括位于被动矩阵有机发光显示区的沿第二方向延伸且沿第一方向交替排列的多个阴极条和多个阴极材料部,其中,每个阴极条比阳极层更加远离衬底,每个阴极材料部位于一个隔断槽内且与相邻的阴极条不相连接。
  16. 根据权利要求15所述的制作方法,其中,对有机层进行刻蚀包括:
    在隔垫物层远离衬底的一侧形成硬掩模,硬掩模对应隔断槽的槽口的区域为镂空区域;
    透过硬掩模对有机层进行干刻,形成槽;
    剥离掉硬掩模。
  17. 根据权利要求16所述的制作方法,其中,形成硬掩模包括:
    在隔垫物层远离衬底的一侧依次形成硬掩模覆盖层和光致刻蚀剂覆盖层;
    对光致刻蚀剂覆盖层依次进行曝光和显影,得到光致刻蚀剂保护掩模,光致刻蚀剂保护掩模对应隔断槽的槽口的区域为镂空区域;
    透过光致刻蚀剂保护掩模对硬掩模覆盖层进行湿刻,得到硬掩模。
  18. 根据权利要求16所述的制作方法,其中,硬掩模的材料包括金属氧化物。
  19. 根据权利要求16所述的制作方法,其中,硬掩模的材料包括铟镓锌氧化物。
  20. 根据权利要求15-19任一项所述的制作方法,其中,形成有机层包括在衬底的一侧依次形成第一有机层和第二有机层,制作方法还包括:
    在形成第一有机层之前,在衬底的一侧依次形成第一数据金属层和第一无机层;
    在形成第一有机层之后,在形成第二有机层之前,在第一有机层远离衬底的一侧形成第二数据金属层;
    其中,在被动矩阵有机发光显示区,第二数据金属层通过多个第一过孔与第一数据金属层连接,通过多个第二过孔与阳极层连接,任意沿第一方向相邻的两个第一阳极之间通过第一数据金属层或第二数据金属层连接。
  21. 根据权利要求20所述的制作方法,其中,每个槽贯穿第二有机层并且延伸至第一有机层内。
  22. 根据权利要求20所述的制作方法,其中,有机发光显示基板还包括主动矩阵有机发光显示区,制作方法还包括:
    在形成第一数据金属层之前,在衬底的一侧依次形成半导体层、第一绝缘层、第一栅金属层、第二绝缘层、第二栅金属层和第三绝缘层,在主动矩阵有机发光显示区,第一数据金属层通过多个第三过孔与半导体层连接,通过多个第四过孔与第二数据金属层连接,阳极层通过多个第五过孔与第二数据金属层连接。
PCT/CN2020/087912 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置 WO2021217526A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021569944A JP2023531839A (ja) 2020-04-29 2020-04-29 有機発光表示基板およびその製造方法、有機発光表示装置
CN202080000642.5A CN114127946B (zh) 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置
US17/269,118 US20220123099A1 (en) 2020-04-29 2020-04-29 Organic light-emitting display substrate and manufacturing method thereof, and organic light-emitting display device
CN202211049424.8A CN115411080A (zh) 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置
EP20897652.2A EP4145516A4 (en) 2020-04-29 2020-04-29 ORGANIC ELECTROLUMINESCENT DISPLAY SUBSTRATE AND MANUFACTURING METHOD THEREFOR, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE
PCT/CN2020/087912 WO2021217526A1 (zh) 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087912 WO2021217526A1 (zh) 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置

Publications (1)

Publication Number Publication Date
WO2021217526A1 true WO2021217526A1 (zh) 2021-11-04

Family

ID=78331596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087912 WO2021217526A1 (zh) 2020-04-29 2020-04-29 有机发光显示基板及其制作方法、有机发光显示装置

Country Status (5)

Country Link
US (1) US20220123099A1 (zh)
EP (1) EP4145516A4 (zh)
JP (1) JP2023531839A (zh)
CN (2) CN114127946B (zh)
WO (1) WO2021217526A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098292A1 (zh) * 2021-11-30 2023-06-08 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220118580A (ko) * 2021-02-18 2022-08-26 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN114784060A (zh) * 2022-04-01 2022-07-22 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN117202733B (zh) * 2023-11-07 2024-04-05 惠科股份有限公司 柔性阵列基板和柔性显示面板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003133A (ko) * 2005-06-30 2007-01-05 엘지.필립스 엘시디 주식회사 패시브 매트릭스형 유기전계발광소자와 그 제조방법
CN104538423A (zh) * 2014-12-22 2015-04-22 深圳市华星光电技术有限公司 Oled显示器件及其制造方法
CN107732019A (zh) * 2016-08-11 2018-02-23 昆山维信诺科技有限公司 有机电致发光器件及其制备方法
CN108269835A (zh) * 2018-01-19 2018-07-10 云谷(固安)科技有限公司 显示基板及其制作方法、显示装置
CN108717942A (zh) * 2018-05-31 2018-10-30 京东方科技集团股份有限公司 Oled基板及其制作方法、显示装置
CN109801950A (zh) * 2019-01-31 2019-05-24 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制作方法
CN110047886A (zh) * 2019-04-11 2019-07-23 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器及其制作方法
CN110060578A (zh) * 2018-01-19 2019-07-26 华为技术有限公司 终端设备和显示方法
CN111048551A (zh) * 2018-10-11 2020-04-21 三星显示有限公司 显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078257B2 (ja) * 1998-04-15 2000-08-21 ティーディーケイ株式会社 有機el表示装置及びその製造方法
JP5362176B2 (ja) * 2006-06-12 2013-12-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR102248875B1 (ko) * 2017-06-30 2021-05-06 엘지디스플레이 주식회사 전계발광표시장치
DE102018114209A1 (de) * 2017-07-31 2019-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Source -und-drain-struktur mit einem reduzierten kontaktwiderstand und einer verbesserten beweglichkeit
CN110634928A (zh) * 2019-09-26 2019-12-31 武汉天马微电子有限公司 一种显示面板及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003133A (ko) * 2005-06-30 2007-01-05 엘지.필립스 엘시디 주식회사 패시브 매트릭스형 유기전계발광소자와 그 제조방법
CN104538423A (zh) * 2014-12-22 2015-04-22 深圳市华星光电技术有限公司 Oled显示器件及其制造方法
CN107732019A (zh) * 2016-08-11 2018-02-23 昆山维信诺科技有限公司 有机电致发光器件及其制备方法
CN108269835A (zh) * 2018-01-19 2018-07-10 云谷(固安)科技有限公司 显示基板及其制作方法、显示装置
CN110060578A (zh) * 2018-01-19 2019-07-26 华为技术有限公司 终端设备和显示方法
CN108717942A (zh) * 2018-05-31 2018-10-30 京东方科技集团股份有限公司 Oled基板及其制作方法、显示装置
CN111048551A (zh) * 2018-10-11 2020-04-21 三星显示有限公司 显示面板
CN109801950A (zh) * 2019-01-31 2019-05-24 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制作方法
CN110047886A (zh) * 2019-04-11 2019-07-23 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145516A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098292A1 (zh) * 2021-11-30 2023-06-08 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置

Also Published As

Publication number Publication date
EP4145516A1 (en) 2023-03-08
CN114127946B (zh) 2022-10-11
JP2023531839A (ja) 2023-07-26
US20220123099A1 (en) 2022-04-21
EP4145516A4 (en) 2023-09-13
CN115411080A (zh) 2022-11-29
CN114127946A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2021217526A1 (zh) 有机发光显示基板及其制作方法、有机发光显示装置
CN108807549B (zh) 薄膜晶体管及其制造方法、阵列基板及其制造方法
TWI540487B (zh) A touch display device and its preparation method
JP7486523B2 (ja) 表示基板及びその製造方法、表示装置
CN103022080B (zh) 阵列基板及其制作方法、有机发光二极管显示装置
WO2020087852A1 (zh) 显示面板、复合屏和复合屏的制备方法
WO2020113794A1 (zh) 显示面板及其制造方法
US11340745B2 (en) Touch structure and method for manufacturing the same, touch substrate and touch display device
JP2021502579A (ja) 表示パネル及びその製造方法、並びに表示モジュール
WO2021093681A1 (zh) 显示背板及其制作方法和显示装置
KR101456402B1 (ko) 유기 발광 다이오드 디스플레이 패널 및 그 제조방법
US11385732B2 (en) Array substrate, manufacturing method thereof, touch display panel and touch display device
WO2021164501A9 (zh) 显示面板及显示装置
US11043545B2 (en) Display substrate, fabricating method thereof, and display device
US20190056829A1 (en) Display screen manufacturing method thereof
US9978876B2 (en) Thin film transistor comprising light shielding layers, array substrate and manufacturing processes of them
CN111192912B (zh) 一种显示基板及其制备方法、显示装置
WO2022100342A1 (zh) 触控显示面板及其制备方法、触控显示装置
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2020143024A1 (zh) 阵列基板及其制作方法、显示面板
WO2021083226A1 (zh) 一种显示基板及其制作方法、显示装置
WO2016173012A1 (zh) 薄膜晶体管阵列基板及其制作方法
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
US20220052134A1 (en) Display substrate and manufacturing method thereof, and display device
WO2020258465A1 (zh) 一种阵列基板及其制作方法、显示面板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021569944

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897652

Country of ref document: EP

Effective date: 20221129