WO2021217312A1 - 目标定位方法、可移动平台、存储介质 - Google Patents

目标定位方法、可移动平台、存储介质 Download PDF

Info

Publication number
WO2021217312A1
WO2021217312A1 PCT/CN2020/087084 CN2020087084W WO2021217312A1 WO 2021217312 A1 WO2021217312 A1 WO 2021217312A1 CN 2020087084 W CN2020087084 W CN 2020087084W WO 2021217312 A1 WO2021217312 A1 WO 2021217312A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
positioning target
position information
acquired
movable platform
Prior art date
Application number
PCT/CN2020/087084
Other languages
English (en)
French (fr)
Inventor
许中研
吴博
钱杰
郭晓东
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/087084 priority Critical patent/WO2021217312A1/zh
Priority to CN202080005071.4A priority patent/CN112753213A/zh
Publication of WO2021217312A1 publication Critical patent/WO2021217312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the embodiments of the present application relate to the field of positioning technology, and in particular, to a target positioning method, a movable platform, and a storage medium.
  • the position of the target needs to be measured.
  • the position of the target can be determined by a detection device such as a monocular camera, a binocular camera, and a lidar.
  • a detection device such as a monocular camera, a binocular camera, and a lidar.
  • the accuracy and effective range of different detection devices are not the same.
  • the determined target position is prone to sudden changes, which affects the execution of the task.
  • the movable platform follows the target movement, when the target position changes suddenly, the movable platform will improperly approach or move away from the target, which not only affects the user experience, but also presents safety issues.
  • the embodiments of the present application provide a target positioning method, a movable platform, and a storage medium, which are designed to solve the failure of a certain detection device and switch to the determined target location when another detection device determines the location of the target.
  • Technical problems such as mutations are prone to occur.
  • an embodiment of the present application provides a target positioning method for a movable platform equipped with a first detection device and a second detection device, and the method includes:
  • the target position of the positioning target is determined according to the position information of the positioning target acquired by the corrected second detection device.
  • an embodiment of the present application provides a movable platform, which can mount a first detection device and a second detection device;
  • the movable platform includes one or more processors, which work individually or together, and are used to perform the following steps:
  • the target position of the positioning target is determined according to the position information of the positioning target acquired by the corrected second detection device.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned method.
  • the embodiments of the present application provide a target positioning method, a movable platform, and a storage medium.
  • the reference plane is determined according to the position information of the positioning target obtained by the first detection device, and the position information obtained by the second detection device is corrected according to the reference plane.
  • the target position of the positioning target is determined according to the position information of the positioning target acquired by the corrected second detection device.
  • switch to another detection device to determine the target When positioning, the determined target position is not prone to sudden changes and is smoother.
  • FIG. 1 is a schematic flowchart of a target positioning method provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of determining a reference plane according to a position obtained by a first detection device according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of determining a reference plane according to a first position change provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of correcting a position acquired by a second detection device according to a reference plane provided by an embodiment of the present application;
  • Fig. 6a is a schematic diagram of updating the reference plane according to the second position change provided by an embodiment of the present application.
  • FIG. 6b is a schematic diagram of updating the reference surface according to the modified second position change provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a target positioning method provided by an embodiment of the present application.
  • the target positioning method can be applied to a mobile platform, of course, it can also be applied to a terminal device capable of communicating with the mobile platform, or the target positioning method can be jointly completed by the mobile platform and the terminal device.
  • the target positioning method is used for processes such as determining the position of the positioning target.
  • the movable platform may include at least one of the following: a cloud platform, an unmanned aerial vehicle, an unmanned vehicle, or an unmanned boat.
  • the unmanned aerial vehicle can be a rotary-wing drone, such as a four-rotor drone, a hexa-rotor drone, an eight-rotor drone, or a fixed-wing drone.
  • the terminal device may include at least one of a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, a remote control, etc.;
  • This application mainly uses a target positioning method applied in a movable platform as an example for description.
  • the movable platform 100 is equipped with a photographing device 200, and the photographing device 200 can acquire images of objects within the shooting field of view, such as images of people, animals, vehicles, ships, and the like.
  • the movable platform 100 can determine the location of the positioning target 101 to realize tasks such as automatic shooting, autonomous search, monitoring and tracking, and automatic inspection of the positioning target 101.
  • one or more positioning targets 101 may be determined in the images captured by the photographing device 200. It is understandable that the positioning targets 101 may be, for example, people, animals, vehicles, ships, and the like.
  • the movable platform 100 can determine the positioning target 101 in the image, for example, when a human body is detected in the image, the human body is determined as the positioning target 101; or when multiple human bodies are detected in the image, it may be One or more human bodies are determined as the positioning target 101.
  • the movable platform 100 can send an image to a terminal device 300 that is communicatively connected with the movable platform 100, and the terminal device 300 can display the image sent by the movable platform 100 and determine the selection operation according to the user's selection operation of objects in the image.
  • the corresponding object is the positioning target 101, and the terminal device 300 may send the information of the positioning target 101 to the movable platform 100.
  • the terminal device 300 is carried by the user, and the movable platform 100 can determine the user in the position as the positioning target 101 by detecting the position of the terminal device 300.
  • the movable platform is equipped with a first detection device and a second detection device.
  • the first detection device and the second detection device include at least two of the following: a monocular camera, a binocular camera, a radar, and a GPS device.
  • the first detection device and the second detection device may also include other sensors capable of directly or indirectly measuring the position of the positioning target.
  • the monocular camera can calculate the target distance by using the prior target scale information and the target scale of the positioning target in the camera image through the principle of small hole imaging, thereby obtaining the position of the positioning target.
  • Binocular cameras include two cameras, left-eye camera and right-eye camera. It can estimate the depth of each pixel by synchronously collecting the images of the left and right cameras, calculating the parallax between the images, and extracting the depth of the area where the positioning target is located, thereby obtaining the positioning target s position.
  • the mobile platform can determine the relative distance and direction between the positioning target and the mobile platform according to the GPS device carried and the GPS device carried by the positioning target, thereby obtaining the location of the positioning target.
  • the radar can be, for example, a laser radar. It emits a beam or a sequence of short pulsed laser beams to the positioning target during operation. The photoelectric element receives the laser beam reflected by the target. The distance from the radar to the positioning target to obtain the position of the positioning target.
  • the movable platform is equipped with a monocular camera and a radar, where the radar is used as the first detection device and the monocular camera is used as the second detection device.
  • the movable platform is equipped with a monocular camera and a binocular camera, where the binocular camera is used as the first detection device and the monocular camera is used as the second detection device.
  • the radar will be the first detection device
  • the monocular camera or the GPS device will be the second detection device.
  • the priority of the first detection device is greater than the priority of the second detection device. It is understandable that the detection result of the first detection device can be preferentially used, and the detection result of the second detection device can be switched to when the first detection device fails.
  • the priorities of different detection devices may be preset, and the first detection device and the second detection device can be determined according to the respective priorities of multiple detection devices mounted on the movable platform.
  • the detection accuracy of the first detection device is greater than the detection accuracy of the second detection device.
  • the detection accuracy of the radar is greater than the detection accuracy of the binocular camera
  • the detection accuracy of the binocular camera is greater than the detection accuracy of the monocular camera
  • the radar is determined to be the first detection device
  • the binocular camera or the monocular camera is the second detection device .
  • the target positioning method in the embodiment of the present application includes step S110 to step S130.
  • S110 Determine a reference plane where the positioning target is located according to the position information of the positioning target acquired by the first detection device.
  • the position of the positioning target acquired by the first detection device is XA1
  • the reference plane 1 where the positioning target is located can be determined according to the position XA1.
  • the coordinates of the position of the positioning target in the preset direction are determined, and the position of the reference surface can be determined according to the coordinates.
  • the preset direction is the direction of gravity.
  • the reference surface may be the ground where the positioning target is located, and the height of the reference surface may be determined according to the coordinates of the position of the positioning target in the preset direction.
  • the reference plane may also be determined according to the movement direction of the positioning target.
  • the reference plane may be a reference plane perpendicular to the movement direction of the positioning target, or a reference plane perpendicular to the horizontal plane and parallel to the movement direction of the positioning target.
  • step S110 determines the reference plane where the positioning target is located according to the position information of the positioning target acquired by the first detection device, including: acquiring the initial reference plane where the positioning target is located; The reference surface and the position information of the positioning target acquired by the first detection device determine the reference surface where the positioning target is located.
  • the reference surface includes a flat surface and/or a curved surface.
  • the initial reference plane and the current reference plane on which the positioning target is currently located are both planes.
  • the change trend of the position of the reference surface can be determined according to the position information of the positioning target acquired by the first detection device.
  • the reference surface may be updated according to the change trend to determine the current reference surface where the positioning target is located at the current moment, and the reference surface where the positioning target is located at the next moment may also be predicted.
  • the determining the reference surface where the positioning target is located according to the initial reference surface and the position information of the positioning target acquired by the first detection device includes: according to the information acquired by the first detection device The position information of the positioning target determines a first position change amount of the positioning target in a preset direction; according to the initial reference surface and the first position change amount, a reference plane where the positioning target is located is determined.
  • the initial reference plane where the positioning target is located can be determined according to the position XA1 of the positioning target at the historical moment; the position X2 of the positioning target is acquired at the current moment, and the position X2 of the positioning target at the current moment and The position XA1 of the positioning target at the historical moment can determine the first position change A12 of the positioning target in the preset direction. According to the first position change A12, the initial reference plane is moved in the preset direction to obtain the current position of the positioning target. The current reference surface.
  • the position information of the positioning target acquired by the first detection device includes a first position change of the positioning target in a preset direction, and the first position change and the initial reference plane may be used to determine the The reference surface where the positioning target is located.
  • S120 Correct the position information of the positioning target acquired by the second detection device according to the reference plane.
  • the position of the positioning target acquired by the second detection device at a certain moment is the position XB1.
  • the position XB1 acquired by the second detection device corresponds to the positioning target on the plane B1
  • the position XA1 acquired by the first detection device corresponds to the positioning target on the reference plane 1.
  • the position XB1 of the positioning target acquired by the second detection device can be corrected according to the reference plane 1, so that the corrected position XB1' of the positioning target corresponds to the positioning target also on the reference plane 1.
  • the corrected position XB1' of the positioning target is basically the same as the position XA1 acquired by the first detection device, and the difference between the two is significantly smaller than the position XB1 acquired by the second detection device and the first detection The difference between the location XA1 acquired by the device.
  • the position information of the positioning target acquired by the second detection device is corrected according to the reference surface, so that the corrected second detection device The acquired position information of the positioning target is more accurate.
  • the correcting the position information of the positioning target acquired by the second detection device according to the reference plane includes: acquiring the detection direction of the second detection device;
  • the reference plane corrects the position information of the positioning target acquired by the second detection device.
  • the detection direction of the second detection device is generally accurate, and the uncertainty is low. Therefore, the position information of the positioning target acquired by the second detection device can be corrected according to the detection direction to improve accuracy.
  • the detection direction of the second detection device is C1
  • the position information of the positioning target acquired by the second detection device after correction can be determined according to the detection direction C1 and the reference plane 1 as the position XB1'.
  • the correcting the position information of the positioning target acquired by the second detection device according to the detection direction and the reference plane includes: acquiring a position point of the movable platform as an end point and extending The ray extending in the detection direction; according to the intersection of the ray and the reference surface, the position information of the positioning target acquired by the second detection device after correction is determined.
  • the intersection XB1' of the ray C1 extending in the detection direction and the reference plane 1 is determined as the position of the positioning target acquired by the second detection device after correction.
  • the first detection device and the second detection device are mounted on a pan/tilt, and the pan/tilt is mounted on a movable platform, and the detection direction can be determined according to the attitude of the pan/tilt.
  • the failure of the first detection device includes: the radar fails to emit a pulsed laser beam to the positioning target, or fails to receive the laser beam reflected by the positioning target.
  • the failure of the first detection device includes: the movable platform and/or the positioning target is blocked, and the GPS device cannot accurately locate.
  • the failure of the first detection device includes: the distance between the movable platform and the positioning target is far, which exceeds the detection distance of the binocular camera.
  • the position information of the positioning target obtained by the corrected second detection device is roughly the same as the position information obtained by the first detection device, the difference between the two is small, so according to the position information of the positioning target obtained by the corrected second detection device
  • the position information determines that the target position of the positioning target is substantially the same as the target position of the positioning target determined according to the position information of the positioning target acquired by the first detection device, and the difference between the two is small.
  • the detection accuracy of the first detection device is higher than the detection accuracy of the second detection device, the target position determined according to the position information of the positioning target acquired by the corrected second detection device is more accurate.
  • the target position of the positioning target may be determined according to the position information of the positioning target acquired by the first detection device.
  • the target position of the positioning target determined according to the position information of the positioning target acquired by the first detection device is XA1
  • the target position of the positioning target determined by the position information of the positioning target acquired by the second detection device is XB1. Since the priority of the first detection device is higher, the target position XA1 detected by the first detection device is adopted; The device fails.
  • the target position determined according to the position information of the positioning target acquired by the corrected second detection device is XB1', and the difference between the target position XB1' and the target position XA1 is small or 0 Therefore, when the first detection device fails and switches to the second detection device to determine the position of the target, the determined target position is not prone to sudden changes.
  • the position information of the positioning target acquired by the second detection device is corrected by the reference plane determined according to the position information of the positioning target acquired by the first detection device, and the position information of the positioning target acquired by the second detection device can be corrected.
  • the position information of the positioning target obtained by the second detection device may be corrected according to the reference plane when the first detection device fails and when it has not failed.
  • the target position of the positioning target can be determined more quickly according to the position information of the positioning target acquired by the corrected second detection device.
  • step S120 correcting the position information of the positioning target acquired by the second detection device according to the reference surface includes: when the first detection device fails, correcting the location information according to the reference surface. The position information of the positioning target acquired by the second detection device. Can reduce the amount of calculation and energy consumption.
  • the method further includes: updating the reference surface according to the position information of the positioning target acquired by the second detection device; and according to the updated reference
  • the position information of the positioning target acquired by the second detection device is surface-corrected.
  • the updated reference surface may be a reference surface determined when the first detection device fails, or a reference surface updated according to the position information of the positioning target acquired by the second detection device at a previous moment.
  • the change trend of the position of the reference surface can be determined according to the position information of the positioning target acquired by the second detection device.
  • the reference surface may be updated according to the change trend to determine the current reference surface where the positioning target is located at the current moment, and it may also be used to predict the reference surface where the positioning target is located at the next moment.
  • the updating the reference surface according to the position information of the positioning target acquired by the second detection device includes: determining the positioning according to the position information of the positioning target acquired by the second detection device The second position change of the target in the preset direction; the reference plane is updated according to the second position change.
  • the positioning target is walking on the ground indicated by the solid line, and is at the position X3 at the first moment and at the position X4 at the second moment.
  • the reference plane determined at the first moment is reference plane 3, and the position of the positioning target acquired by the second detection device is XB3; at the second moment, the position of the positioning target acquired by the second detection device is XB4.
  • the second position change amount B34 of the positioning target in the direction of gravity is determined according to the positions XB3 and XB4 acquired by the second detection device at the first time and the second time. Moving the reference surface 3 upward in the direction of gravity by B34 according to the second position change amount B34 can obtain the reference surface 4 at the second moment, that is, the updated reference surface.
  • the reference surface is updated according to the second position change, so that the reference surface can follow the movement of the positioning target in the preset direction Update incrementally. Correcting the position information of the positioning target acquired by the second detection device according to the updated reference plane can obtain a more accurate target position.
  • Using the incremental state update method to update the reference surface can reduce the state mutation caused by the information source switching caused by the difference between the accuracy of the second detection device and the first detection device.
  • the correcting the position information of the positioning target acquired by the second detection device according to the updated reference plane includes: acquiring the detection direction of the second detection device; according to the detection direction and The updated reference surface corrects the position information of the positioning target acquired by the second detection device.
  • the detection direction of the second detection device is generally accurate, and the uncertainty is low. Therefore, the position information of the positioning target acquired by the second detection device can be corrected according to the detection direction to improve accuracy.
  • the detection direction of the second detection device is C4, and the corrected second detection device can be determined according to the detection direction C4 and the reference plane 4 obtained by updating the reference plane 3.
  • the position information of the positioning target is position XB4'.
  • correcting the position information of the positioning target acquired by the second detection device according to the detection direction and the updated reference surface includes: acquiring a position point of the movable platform as an end point, A ray extending in the detection direction; according to the intersection of the ray and the updated reference surface, the position information of the positioning target acquired by the second detection device after correction is determined.
  • the intersection XB4' of the ray C4 extending in the detection direction and the reference plane 4 is determined as the position of the positioning target acquired by the second detection device after correction. It can be seen from Fig. 6a that the deviation between the position information XB4' of the positioning target acquired by the second detection device and the real position X4 of the positioning target at the second time is small according to the updated reference plane.
  • the reference surface can be updated according to the position information of the positioning target obtained by the second detection device, and the position information of the positioning target obtained by the second detection device can be corrected according to the updated reference surface.
  • the reference plane is determined according to the position information of the positioning target obtained by the first detection device, so after the first detection device fails, the reference plane is determined according to the location information obtained by the second detection device.
  • the updated reference plane of the position information of the target is obtained by superimposing the movement increment of the positioning target in the preset direction on the basis of the reference plane determined by the first detection device. It is understandable that correcting the position information of the positioning target obtained by the second detection device according to the reference surface updated by the second position change is more accurate than the position information of the positioning target obtained by the second detection device directly, and can prevent The sudden change of the position makes the target position maintain a more accurate measurement for a period of time after the switch.
  • the first detection device can accurately acquire the position of the positioning target, for example, the position of the positioning target is determined to be X3 at the first moment, and the position of the positioning target is determined to be X4 at the second moment. Then the position XB4' determined according to the updated reference plane at the second moment is closer to the position X4 determined by the first detection device. Therefore, the sudden change of the target position when switching to the second detection device as the information source can be avoided, and the corrected position can be improved. The accuracy of the position information of the positioning target acquired by the second detection device.
  • the updating the reference surface according to the second position change amount includes: updating the reference surface according to the correction amount and the second position change amount.
  • correcting the second position change amount according to the correction amount can improve the accuracy of the second position change amount, thereby improving the accuracy of the updated reference surface and the accuracy of the position information of the positioning target corrected according to the updated reference surface. Accuracy.
  • the second position change amount B34 is added to the correction amount or multiplied by the correction amount to obtain the corrected second position change amount B34', and then the corrected second position change amount B34'
  • the reference surface 3 is updated to obtain the updated reference surface 5, for example, the reference surface 3 is moved upward in the direction of gravity by B34' to obtain the reference surface 5 at the second moment, that is, the updated reference surface.
  • the position information of the positioning target acquired by the second detection device after correction is position XB4".
  • the position information XB4" of the positioning target acquired by the second detection device and the real position X4 of the positioning target at the second time may overlap.
  • the correction amount may be stored in advance, or may be determined by the movable platform according to the detection results of the first detection device and the second detection device.
  • the method further includes: determining the first position of the positioning target in the preset direction according to the position information of the positioning target acquired by the first detection device.
  • the position change amount; the second position change amount of the positioning target in the preset direction is determined according to the position information of the positioning target acquired by the second detection device; according to the first position change amount and the second position change amount
  • the amount of position change determines the amount of correction.
  • the correction amount may be determined according to the same time period, such as the difference or the ratio between the first position change and the second position change between two sampling periods.
  • the detection accuracy of the first detection device is higher than the detection accuracy of the second detection device, the accuracy of the second position change can be improved according to the correction amount, so that the reference surface can be updated according to the corrected second position change.
  • the accuracy is approximately the same as that of updating the reference surface according to the first position change amount.
  • the method further includes: correcting the reference surface or the updated reference surface according to a preset constraint condition.
  • the reference surface determined in step S110 according to the position information of the first detection device and the reference surface updated according to the position information of the second detection device are corrected according to a preset constraint condition.
  • the preset constraint condition includes: the position of the reference surface in the preset direction cannot change suddenly.
  • the reference surface or the updated reference surface is corrected according to the preset constraint conditions, so that the reference surface moves smoothly in the preset direction, which is more in line with the position of the positioning target in the preset direction. The actual situation will change suddenly.
  • the preset constraint condition includes: the reference surface is stationary, moving at a constant speed, or moving at a constant acceleration in a preset direction.
  • the motion state of the positioning target in the preset direction may be determined according to the target position
  • the set constraint condition may be determined according to the motion state of the positioning target. For example, when the motion state of the positioning target in the preset direction is uniform motion, it is determined that the set constraint condition is that the reference surface is uniformly moving in the preset direction; for example, when the motion state of the positioning target in the preset direction is stationary When it is determined that the set constraint condition is that the reference surface is stationary in the preset direction.
  • the motion state of the positioning target in the direction of gravity can be determined to be stationary according to the target position, and the positions of the determined reference surface and the updated reference surface in the direction of gravity remain unchanged.
  • the position information of the positioning target acquired by the first detection device or the position information of the positioning target acquired by the second detection device is expressed in a polar coordinate system
  • the predicted position information of the positioning target is expressed in a polar coordinate system.
  • Cartesian coordinate system representation
  • the position information in the traditional Cartesian coordinate system couples the uncertainty to Three mutually perpendicular directions, such as the xyz direction; by expressing the position information of the detection device in a polar coordinate system, the uncertainty can be decoupled, while taking into account the target position, the smoothness of the speed observation and the accuracy of the detection direction observation.
  • the Cartesian coordinate system is suitable for intuitively describing the movement mode of the positioning target.
  • the movement of the positioning target is decomposed into horizontal movement and vertical movement.
  • the predicted position information has higher universality and applicability.
  • the movement of the positioning target in the horizontal direction may be modeled as a uniform motion
  • the movement in the vertical direction may be modeled as a uniformly accelerating motion on the ground plane, and the position information of the positioning target may be predicted based on this.
  • the motion in the vertical direction can be modeled as a priori motion such as static and uniform velocity.
  • the target state of the target position of the positioning target can be estimated according to the measurement equation represented by the polar coordinate system and the state equation represented by the Cartesian coordinate system.
  • the determining the target position of the positioning target according to the position information of the positioning target obtained by the corrected second detection device or the position information of the positioning target obtained by the first detection device includes:
  • the direction estimation is more accurate, and the uncertainty of the distance estimation is larger.
  • the measurement model of the positioning target is described using the polar coordinate system, and the uncertainty of the position observation is decoupled into the uncertainty of the detection direction observation.
  • the uncertainty of distance observation can take into account the smoothness and accuracy of target state estimation.
  • the target position is used to control the movable platform to move relative to the positioning target.
  • the controlling the movement of the movable platform relative to the positioning target includes: planning the movement route of the movable platform, the shooting direction of the shooting device, and the first detection according to the target position. At least one of the detection direction of the device and the detection direction of the second detection device.
  • the movable platform may be controlled to detour or follow the positioning target according to the target position. For example, if the current distance to the positioning target is less than or equal to the preset distance threshold, the movable platform is controlled to move left, right or upwards to make a detour to prevent the movable platform from colliding with the positioning target; at the same time, the shooting direction and shooting direction of the camera can be adjusted. / Or the detection direction of the detection device, so that the shooting device maintains the shooting of the positioning target and/or the detection device detects the positioning target. For example, if the current distance from the positioning target is greater than a specific distance, the movable platform is controlled to move toward the positioning target or accelerate to move to the positioning target to follow the positioning target.
  • the motion state of the positioning target may be determined according to the target position, and the movable platform can be controlled to move relative to the positioning target according to the motion state of the positioning target, for example, if the current distance to the positioning target becomes larger, It can be determined that the positioning target is far away from the movable platform, and the movable platform can be controlled to move toward the positioning target or accelerate to move toward the positioning target; if the current distance from the positioning target increases, and the magnitude of the increase becomes larger and larger, you can If it is determined that the positioning target is accelerating away from the movable platform, the movable platform can be controlled to accelerate to move toward the positioning target.
  • the reference plane is determined according to the position information of the positioning target obtained by the first detection device, and the position information obtained by the second detection device is corrected according to the reference plane, and when the first detection device fails, according to The position information of the positioning target obtained by the corrected second detection device determines the target position of the positioning target.
  • the determined target position is not easy to produce Mutation and smoother.
  • the position information of the detection device with the highest accuracy is preferentially used among the multiple effective detection devices, and the reference plane where the positioning target is located is determined according to the position information; when the detection device with the highest accuracy fails, switch to The position of the positioning target is determined according to the position information of the reference surface correction accuracy and the corrected position information.
  • the position of the positioning target is not easy to change suddenly when switching, and the accuracy of the position can be improved when switching to the next highest detection device.
  • FIG. 7 is a schematic block diagram of a movable platform 700 according to an embodiment of the present application.
  • the movable platform 700 may include at least one of a pan/tilt, an unmanned aerial vehicle, an unmanned vehicle, or an unmanned boat, for example.
  • the unmanned aerial vehicle can be, for example, a rotary-wing drone, such as a quadrotor drone, a hexarotor drone, an eight-rotor drone, or a fixed-wing drone;
  • the pan/tilt includes a handheld pan/tilt, for example, Or include a gimbal that can be mounted on unmanned aerial vehicles, unmanned vehicles or unmanned boats.
  • the movable platform 700 can carry a camera.
  • the camera is mounted on a pan/tilt, and the pan/tilt is mounted on a movable platform 700 such as an unmanned aerial vehicle.
  • the pan/tilt includes at least one rotating shaft structure, wherein the rotating shaft structure may include a rotating shaft structure corresponding to a yaw axis, a rotating shaft structure corresponding to a roll axis, and a rotating shaft structure corresponding to a pitch axis. at least one.
  • the rotating shaft structure may include a rotating shaft structure corresponding to a yaw axis, a rotating shaft structure corresponding to a roll axis, and a rotating shaft structure corresponding to a pitch axis. at least one.
  • the movable platform is equipped with a first detection device 11 and a second detection device 12.
  • the first detection device 11 and the second detection device 12 include at least two of the following: a monocular camera, a binocular camera, a radar, and a GPS device.
  • the first detection device 11 and the second detection device 12 may also include other sensors capable of directly or indirectly measuring the position of the positioning target.
  • the priority of the first detection device 11 is greater than the priority of the second detection device 12.
  • the detection accuracy of the first detection device 11 is greater than the detection accuracy of the second detection device 12.
  • the movable platform 700 includes one or more processors 701.
  • the movable platform 700 further includes a memory 702.
  • the processor 701 and the memory 702 are connected by a bus 703, and the bus 703 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (MCU), a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • one or more processors 701 work individually or collectively to execute the steps of the aforementioned target positioning method for a movable platform.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the aforementioned target positioning method when the computer program is executed.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the following steps when the computer program is executed:
  • the target position of the positioning target is determined according to the position information of the positioning target acquired by the corrected second detection device.
  • FIG. 8 is a schematic block diagram of an unmanned aerial vehicle 800 according to an embodiment of the present application.
  • UAV 800 can be equipped with a camera.
  • the camera is mounted on the gimbal, and the gimbal is mounted on the unmanned aerial vehicle 800.
  • unmanned aerial vehicle 800 includes one or more processors 801.
  • UAV 800 further includes memory 802.
  • the processor 801 and the memory 802 are connected by a bus 803, and the bus 803 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 801 may be a micro-controller unit (MCU), a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 802 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the unmanned aerial vehicle 800 also includes a flight component 804, which is used for flight.
  • the movable platform is equipped with a first detection device 21 and a second detection device 22.
  • the first detection device 21 and the second detection device 22 include at least two of the following: a monocular camera, a binocular camera, a radar, and a GPS device.
  • the first detection device 21 and the second detection device 22 may also include other sensors capable of directly or indirectly measuring the position of the positioning target.
  • the priority of the first detection device 21 is greater than the priority of the second detection device 22.
  • the detection accuracy of the first detection device 21 is greater than the detection accuracy of the second detection device 22.
  • one or more processors 801 work individually or collectively to execute the steps of the aforementioned target positioning method.
  • the processor 801 is configured to run a computer program stored in the memory 802, and implement the aforementioned target positioning method when the computer program is executed.
  • the processor 801 is configured to run a computer program stored in the memory 802, and implement the following steps when the computer program is executed:
  • the target position of the positioning target is determined according to the position information of the positioning target acquired by the corrected second detection device.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, the computer program is executed by a processor to cause the processing
  • the device implements the steps of the target positioning method provided in the foregoing embodiment.
  • the computer-readable storage medium may be the movable platform described in any of the foregoing embodiments, such as an internal storage unit of an unmanned aerial vehicle, for example, the hard disk or memory of the movable platform.
  • the computer-readable storage medium may also be an external storage device of the removable platform, such as a plug-in hard disk equipped on the removable platform, a smart memory card (Smart Media Card, SMC), and Secure Digital (Secure Digital). , SD) card, flash card (Flash Card), etc.
  • the mobile platform, unmanned aerial vehicle, and computer-readable storage medium provided by the above-mentioned embodiments of the present application determine the reference plane according to the position information of the positioning target obtained by the first detection device, and correct the position obtained by the second detection device according to the reference plane Information, and when the first detection device fails, determine the target position of the positioning target according to the position information of the positioning target acquired by the second detection device after correction.
  • a certain detection device fails, switch to another detection device to determine When the target position is determined, the determined target position is not prone to sudden changes and is smoother.
  • the position information of the detection device with the highest accuracy is preferentially used among the multiple effective detection devices, and the reference plane where the positioning target is located is determined according to the position information; when the detection device with the highest accuracy fails, switch to The position of the positioning target is determined according to the position information of the reference surface correction accuracy and the corrected position information.
  • the position of the positioning target is not easy to change suddenly when switching, and the accuracy of the position can be improved when switching to the next highest detection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种目标定位方法,可移动平台和存储介质,该方法包括:根据第一探测装置的定位目标的位置信息,确定定位目标所在的参考面(S110);根据参考面校正第二探测装置的定位目标的位置信息(S120);在第一探测装置失效时,根据校正后的第二探测装置的位置信息确定目标位置(S130)。该方法能够防止切换探测装置来确定目标位置时的位置突变。

Description

目标定位方法、可移动平台、存储介质 技术领域
本申请实施例涉及定位技术领域,尤其涉及一种目标定位方法、可移动平台、存储介质。
背景技术
在一些场景中需要对目标的位置进行测量,例如可以通过单目相机、双目相机、激光雷达等探测装置确定目标的位置。不同探测装置的精度、有效范围不尽相同。当某种探测装置失效,切换至由另一种探测装置来确定目标的位置时,确定的目标位置容易产生突变,影响任务的执行。例如,在可移动平台跟随目标运动的场景下,当目标位置产生突变时,可移动平台会不恰当地靠近或远离目标,不仅影响用户体验,还存在安全问题。
发明内容
基于此,本申请实施例提供了一种目标定位方法、可移动平台、存储介质,旨在解决某种探测装置失效,切换至由另一种探测装置来确定目标的位置时,确定的目标位置容易产生突变等技术问题。
第一方面,本申请实施例提供了一种目标定位方法,用于可移动平台,所述可移动平台搭载有第一探测装置和第二探测装置,所述方法包括:
根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
第二方面,本申请实施例提供了一种可移动平台,所述可移动平台能够搭 载第一探测装置和第二探测装置;
所述可移动平台包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法。
本申请实施例提供了一种目标定位方法、可移动平台、存储介质,通过根据第一探测装置获取的定位目标的位置信息确定参考面,并根据参考面校正第二探测装置获取的位置信息,以及在第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定定位目标的目标位置,在某种探测装置失效,切换至由另一种探测装置来确定目标的位置时,确定的目标位置不容易产生突变,更平滑。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种目标定位方法的流程示意图;
图2是本申请实施例提供的场景示意图;
图3是本申请实施例提供的根据第一探测装置获取的位置确定参考面的示意图;
图4是本申请实施例提供的根据第一位置变化量确定参考面的示意图;
图5是本申请实施例提供的根据参考面校正第二探测装置获取的位置的示意图;
图6a是本申请实施例提供的根据第二位置变化量更新参考面的示意图;
图6b是本申请实施例提供的根据修正的第二位置变化量更新参考面的示意图;
图7是本申请实施例提供的一种可移动平台的示意性框图;
图8是本申请实施例提供的一种无人飞行器的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种目标定位方法的流程示意图。
所述目标定位方法可以应用在可移动平台中,当然也可以应用在能够与可移动平台通信连接终端设备中,或者所述目标定位方法可以由可移动平台和终端设备共同完成。所述目标定位方法用于确定定位目标的位置等过程。
其中可移动平台可以包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。进一步而言,无人飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。终端设备可以包括手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等中的至少一项;
本申请主要以应用在可移动平台中的目标定位方法为例进行说明。
在一些实施方式中,如图2所示,可移动平台100搭载拍摄装置200,拍摄装置200可以获取拍摄视野内的物体的图像,例如人、动物、车辆、船舶等的图像。
示例性的,可移动平台100能够确定定位目标101的位置,以实现对定位目标101进行自动拍摄、自主搜索、监控追踪、自动巡检等任务。
具体的,可以在拍摄装置200拍摄的图像中确定一个或多个定位目标101,可以理解的,定位目标101例如可以为人、动物、车辆、船舶等。
示例性的,可移动平台100能够确定图像中的定位目标101,例如当在图像中检测到一个人体时,将该人体确定为定位目标101;或者当在图像中检测到多个人体时,可以确定其中一个或多个人体为定位目标101。
示例性的,可移动平台100能够将图像发送给与可移动平台100通信连接的终端设备300,终端设备300可以显示可移动平台100发送的图像以及根据用户对图像中物体的选取操作确定选取操作对应的物体为定位目标101,终端设备300可以将定位目标101的信息发送给可移动平台100。
示例性的,终端设备300由用户携带,可移动平台100能够通过检测终端设备300的方位确定该方位的用户为定位目标101。
具体的,可移动平台搭载有第一探测装置和第二探测装置。
需要说明的是,在本申请实施例中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在一些实施方式中,所述第一探测装置和第二探测装置包括以下至少两种:单目相机、双目相机、雷达、GPS装置。当然,第一探测装置和第二探测装置也可以包括其他能够直接或间接测量定位目标的位置的传感器。
具体的,单目相机能够通过小孔成像原理,利用先验目标尺度信息和定位目标在相机图像中的目标尺度,计算目标距离,从而获取定位目标的位置。双目相机包括左目相机和右目相机两个相机,能够通过同步采集左右相机的图像,计算图像之间的视差,来估计每一个像素的深度,从中提取定位目标所在区域的深度,从而获取定位目标的位置。可移动平台能够根据搭载的GPS装置和定位目标携带的GPS装置确定定位目标与可移动平台的相对距离和方向,从而获 取定位目标的位置。雷达例如可以为激光雷达,在工作时向定位目标射出一束或一序列短暂的脉冲激光束,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从雷达到定位目标的距离,从而获取定位目标的位置。
例如,可移动平台搭载单目相机和雷达,其中雷达作为第一探测装置,单目相机作为第二探测装置。例如,可移动平台搭载单目相机和双目相机,其中双目相机作为第一探测装置,单目相机作为第二探测装置。例如,可移动平台搭载单目相机、雷达、GPS装置,则雷达作为第一探测装置,单目相机或GPS装置作为第二探测装置。
示例性的,所述第一探测装置的优先级大于所述第二探测装置的优先级。可以理解的,可以优先使用第一探测装置的探测结果,当第一探测装置失效时可以切换至使用第二探测装置的探测结果。
具体的,可以预先设定不同探测装置的优先级,根据可移动平台搭载的多个探测装置各自的优先级,确定所述第一探测装置和所述第二探测装置。
示例性的,所述第一探测装置的探测精度大于所述第二探测装置的探测精度。
示例性的,雷达的探测精度大于双目相机的探测精度,双目相机的探测精度大于单目相机的探测精度,确定雷达为第一探测装置,双目相机或单目相机为第二探测装置。
如图1所示,本申请实施例的目标定位方法包括步骤S110至步骤S130。
S110、根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面。
示例性的,如图3所示,第一探测装置获取的定位目标的位置为XA1,则可以根据该位置XA1确定定位目标所在的参考面1。
示例性的,确定定位目标的位置在预设方向上的坐标,根据该坐标可以确定参考面的位置。
在一些实施方式中,所述预设方向为重力方向。如图3所示,参考面可以为定位目标所在的地面,根据定位目标的位置在预设方向上的坐标可以确定参考面的高度。
在其他一些实施方式中,参考面也可以根据定位目标的运动方向确定。例 如参考面可以为垂直于定位目标的运动方向的参考面,或者为与水平面垂直且与定位目标的运动方向平行的参考面。
在一些实施方式中,步骤S110根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面,包括:获取所述定位目标所在的初始参考面;根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面。
示例性的,参考面包括平面和/或曲面。作为举例说明,如图4所示,初始参考面、当前所述定位目标所在的当前参考面均为平面。
具体的,根据第一探测装置获取的所述定位目标的位置信息可以确定参考面位置的变化趋势。在一些实施方式中可以根据该变化趋势对参考面进行更新,以确定当前时刻定位目标所在的当前参考面,还可以预测下一时刻定位目标所在的参考面。
示例性的,所述根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面,包括:根据所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标在预设方向上的第一位置变化量;根据所述初始参考面和所述第一位置变化量,确定所述定位目标所在的参考面。
示例性的,如图4所示,可以根据历史时刻定位目标的位置XA1确定所述定位目标所在的初始参考面;在当前时刻获取到定位目标的位置X2,根据当前时刻定位目标的位置X2和历史时刻定位目标的位置XA1可以确定定位目标在预设方向上的第一位置变化量A12,根据该第一位置变化量A12将初始参考面沿预设方向移动可以得到当前时刻所述定位目标所在的当前参考面。
在一些实施方式中,根据所述第一探测装置获取的定位目标的位置信息包括定位目标在预设方向上的第一位置变化量,可以根据该第一位置变化量和初始参考面确定所述定位目标所在的参考面。
S120、根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。
示例性的,如图3和图5所示,在某一时刻第二探测装置获取到所述定位目标的位置为位置XB1。请参见图3,由于第一探测装置和第二探测装置的探测精度不同,第一探测装置获取的定位目标的位置XA1和第二探测装置获取的定 位目标的位置XB1之间通常是有差别的。第二探测装置获取的位置XB1对应的是定位目标处于平面B1上,而第一探测装置获取的位置XA1对应的是定位目标处于参考面1上。
如图5所示,可以根据参考面1校正第二探测装置获取的定位目标的位置XB1,使得校正后的定位目标的位置XB1’对应的是定位目标也处于参考面1上。比较图3和图5可以确定,校正后的定位目标的位置XB1’与第一探测装置获取的位置XA1基本相同,两者之间的差别明显小于第二探测装置获取的位置XB1和第一探测装置获取的位置XA1之间的差别。
当第一探测装置的探测精度高于第二探测装置的探测精度时,根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,可以使得校正后的第二探测装置获取的定位目标的位置信息更准确。
在一些实施方式中,所述根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:获取所述第二探测装置的探测方向;根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
第二探测装置的探测方向通常是准确的,不确定性较低,因此可以根据探测方向校正所述第二探测装置获取的所述定位目标的位置信息,以提高准确性。
示例性的,如图5所示,第二探测装置的探测方向为C1,可以根据探测方向C1和参考面1确定校正后的第二探测装置获取的定位目标的位置信息为位置XB1’。
示例性的,所述根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;根据所述射线与所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
如图5所示,将探测方向延伸的射线C1和参考面1的交点XB1’确定为校正后的所述第二探测装置获取的所述定位目标的位置。
在一些实施方式中,第一探测装置、第二探测装置搭载于云台,云台搭载于可移动平台,可以根据云台的姿态确定探测方向。
S130、在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
示例性的,第一探测装置包括雷达时,所述第一探测装置失效包括:雷达未能向定位目标射出脉冲激光束,或者接收不到定位目标反射的激光束。
示例性的,第一探测装置包括GPS装置时,所述第一探测装置失效包括:可移动平台和/或定位目标受到遮挡,GPS装置不能准确定位。
示例性的,第一探测装置包括双目相机时,所述第一探测装置失效包括:可移动平台和定位目标之间的距离较远,超过了双目相机的探测距离。
由于校正后的第二探测装置获取的定位目标的位置信息与第一探测装置获取的位置信息大致相同,两者之间的差别较小,因此根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置与根据第一探测装置获取的定位目标的位置信息确定所述定位目标的目标位置大致相同,两者之间的差别较小。当第一探测装置的探测精度高于第二探测装置的探测精度时,根据校正后的第二探测装置获取的定位目标的位置信息确定的目标位置更精确。
在一些实施方式中,在所述第一探测装置未失效时,可以根据所述第一探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。示例性的,若在某时刻之前,第一探测装置未失效,如图3所示,根据所述第一探测装置获取的定位目标的位置信息确定的定位目标的目标位置为XA1,根据所述第二探测装置获取的定位目标的位置信息确定的定位目标的目标位置为XB1,由于第一探测装置的优先级较高,采用第一探测装置探测的目标位置XA1;在某时刻时第一探测装置失效,如图5所示,根据校正后的第二探测装置获取的定位目标的位置信息确定的目标位置为XB1’,目标位置XB1’和目标位置XA1之间的差值较小或是0,因此,当第一探测装置失效,切换至由第二探测装置来确定目标的位置时,确定的目标位置不易产生突变。
通过根据第一探测装置获取的定位目标的位置信息确定的参考面,对第二探测装置获取的所述定位目标的位置信息进行校正,可以将第二探测装置获取的所述定位目标的位置信息校正到参考面上,防止确定的目标位置产生突变,尤其是在垂直于参考面的预设方向上的突变。例如当预设方向为重力方向,在第一探测装置失效时,第一探测装置确定的目标位置和校正后的第二探测装置确定的目标位置的高度相同,更符合定位目标在重力方向上的位置不会突变的实际情况。
在一些实施方式中,可以在第一探测装置失效和未失效时,均根据所述参 考面校正所述第二探测装置获取的所述定位目标的位置信息。当第一探测装置失效时,可以更快速的根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
在另一些实施方式中,步骤S120根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:在所述第一探测装置失效时,根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。可以降低计算量和能耗。
在一些实施方式中,所述第一探测装置失效后,所述方法还包括:根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面;根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。其中,进行更新的参考面可以为第一探测装置失效时确定的参考面,或者为前一时刻根据第二探测装置获取的所述定位目标的位置信息更新后的参考面。
具体的,根据第二探测装置获取的所述定位目标的位置信息可以确定参考面位置的变化趋势。在一些实施方式中可以根据该变化趋势对参考面进行更新,以确定当前时刻定位目标所在的当前参考面,还可以以预测下一时刻定位目标所在的参考面。
示例性的,所述根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面,包括:根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;根据所述第二位置变化量更新所述参考面。
示例性的,如图6a所示,定位目标在实线表示的地面行走,在第一时刻时处于位置X3,在第二时刻时处于位置X4。在第一时刻确定的参考面为参考面3,第二探测装置获取的所述定位目标的位置为XB3;在第二时刻第二探测装置获取的所述定位目标的位置为XB4。根据第一时刻和第二时刻第二探测装置获取的位置XB3和XB4确定所述定位目标在重力方向上的第二位置变化量B34。根据该第二位置变化量B34将参考面3沿重力方向向上移动B34可以得到第二时刻的参考面4,即更新后的参考面。
通过根据第二探测装置的位置信息确定定位目标在预设方向上的第二位置变化量,根据第二位置变化量对参考面进行更新,使得参考面可以跟随定位目标在预设方向上的运动增量进行更新。根据更新后的所述参考面校正所述第二 探测装置获取的所述定位目标的位置信息,可以得到更准确的目标位置。使用增量式状态更新方式更新参考面,可以降低第二探测装置和第一探测装置精度不同引起的信息源切换产生的状态突变。
示例性的,所述根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:获取所述第二探测装置的探测方向;根据所述探测方向和更新后的所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
第二探测装置的探测方向通常是准确的,不确定性较低,因此可以根据探测方向校正所述第二探测装置获取的所述定位目标的位置信息,以提高准确性。
示例性的,如图6a所示,在第二时刻,第二探测装置的探测方向为C4,可以根据探测方向C4和更新参考面3得到的参考面4确定校正后的第二探测装置获取的定位目标的位置信息为位置XB4’。
示例性的,根据所述探测方向和所述更新后的参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;根据所述射线与更新后的所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
如图6a所示,将探测方向延伸的射线C4和参考面4的交点XB4’确定为校正后的所述第二探测装置获取的所述定位目标的位置。由图6a可以看出,根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息XB4’和第二时刻定位目标的真实位置X4的偏差很小。
从而,在第一探测装置失效后,可以根据第二探测装置获取的所述定位目标的位置信息更新参考面,以及根据更新后的参考面校正第二探测装置获取的所述定位目标的位置信息。
由于在第一探测装置失效前和失效时,参考面是根据所述第一探测装置获取的定位目标的位置信息确定的,因此在第一探测装置失效后根据第二探测装置获取的所述定位目标的位置信息更新的参考面是在根据第一探测装置确定的参考面的基础上叠加定位目标在预设方向上的运动增量得到的。可以理解的,根据第二位置变化量更新的参考面来校正第二探测装置获取的定位目标的位置信息,比直接采用第二探测装置获取的定位目标的位置信息更准确,而且可以防止切换之后的位置突变,使得切换之后的一段时间目标位置保持比较准确的 测量。
示例性的,如果第一探测装置可以准确的获取定位目标的位置,例如在第一时刻确定定位目标的位置为X3,在第二时刻时确定定位目标的位置为X4。则在第二时刻根据更新的参考面确定的位置XB4’更接近第一探测装置确定的位置X4,因此可以避免切换至第二探测装置为信息源时目标位置的突变,而且可以提高校正后的第二探测装置获取的所述定位目标的位置信息的精度。
在一些实施方式中,所述根据所述第二位置变化量更新所述参考面,包括:根据修正量和所述第二位置变化量更新所述参考面。
示例性的,根据修正量对所述第二位置变化量进行修正,可以提高第二位置变化量的精度,从而提高更新的参考面的精度以及根据更新的参考面校正的定位目标的位置信息的精度。
示例性的,如图6b所示,将第二位置变化量B34加上修正量或者乘上修正量得到修正后的第二位置变化量B34’,然后根据修正后的第二位置变化量B34’更新参考面3以得到更新后的参考面5,例如将参考面3沿重力方向向上移动B34’可以得到第二时刻的参考面5,即更新后的参考面。根据参考面5和探测方向C4确定校正后的第二探测装置获取的定位目标的位置信息为位置XB4”。由图6b可以看出,根据修正的第二位置变化量更新的参考面校正后的所述第二探测装置获取的所述定位目标的位置信息XB4”和第二时刻定位目标的真实位置X4可以重合。
示例性的,修正量可以是预先存储的,或者可以由可移动平台根据第一探测装置、第二探测装置的探测结果确定。
示例性的,在所述第一探测装置未失效时,所述方法还包括:根据所述第一探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第一位置变化量;根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;根据所述第一位置变化量和所述第二位置变化量确定修正量。
例如,可以根据同一时间段,如两个采样周期之间的第一位置变化量和第二位置变化量的差值或比值确定所述修正量。当第一探测装置的探测精度高于第二探测装置的探测精度时,可以根据该修正量将第二位置变化量的精度提高,从而根据修正后的第二位置变化量对参考面进行更新可以达到与根据第一位置 变化量对参考面进行更新大致相同的精度。
在一些实施方式中,所述方法还包括:根据预设约束条件,对所述参考面或更新后的所述参考面进行校正。
示例性的,根据预设约束条件对步骤S110根据所述第一探测装置的位置信息确定的参考面、对根据所述第二探测装置的位置信息更新的参考面进行校正。
示例性的,所述预设约束条件包括:所述参考面在预设方向上的位置不能突变。
示例性的,根据预设约束条件,对所述参考面或更新后的所述参考面进行校正,以使参考面在预设方向上平滑移动,更符合定位目标在预设方向上的位置不会突变的实际情况。
示例性的,所述预设约束条件包括:参考面在预设方向上静止、匀速运动或者匀加速运动。
示例性的,可以根据目标位置确定定位目标在预设方向上的运动状态,并根据定位目标的运动状态确定所述设约束条件。例如,当定位目标在预设方向上的运动状态为匀速运动时,确定所述设约束条件为参考面在预设方向上匀速运动;例如,当定位目标在预设方向上的运动状态为静止时,确定所述设约束条件为参考面在预设方向上静止。
例如,当定位目标在平地上行走时,可以根据目标位置确定定位目标在重力方向上的运动状态为静止,则确定的参考面和更新的参考面在重力方向上的位置保持不变。
在一些实施方式中,所述第一探测装置获取的定位目标的位置信息或所述第二探测装置获取的所述定位目标的位置信息用极坐标系表示,所述定位目标的预测位置信息用笛卡尔坐标系表示。
由于探测装置的探测方向通常是准确的,不确定性较低,而观测的与定位目标之间的距离的不确定性较高,传统的笛卡尔坐标系下的位置信息将不确定性耦合到相互垂直的三个方向,如x-y-z方向;通过将探测装置的位置信息用极坐标系表示,可以将不确定性去耦合,同时兼顾目标位置、速度观测的平滑性和探测方向观测的准确性。
笛卡尔坐标系适合直观的描述定位目标的运动方式,针对定位目标运动的特性,将定位目标的运动分解为水平面方向运动和垂直方向运动,预测的位置 信息具有更高的普遍性与适用性。示例性的,可以将定位目标在水平方向上的运动建模为匀速运动,将垂直方向上的运动建模为在地平面上匀加速运动,基于此预测定位目标的位置信息。当然,也不限定于此,例如可以将垂直方向上的运动建模为静止、匀速等先验运动。
在一些实施方式中,可以根据极坐标系表示的测量方程和笛卡尔坐标系表示的状态方程可以对定位目标的目标位置进行目标状态估计。
具体的,所述根据校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,确定所述定位目标的目标位置,包括:
根据极坐标表示的校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,以及笛卡尔坐标系表示的所述定位目标的预测位置信息,确定所述定位目标的目标位置。
由于目标状态估计问题中,方向估计较为准确,而距离估计的不确定性较大,使用极坐标系描述定位目标的测量模型,将位置观测的不确定解耦为探测方向观测的不确定性和距离观测的不确定性,能够兼顾目标状态估计的平滑性和准确性。
在一些实施方式中,所述目标位置用于控制所述可移动平台相对于所述定位目标移动。
示例性的,所述控制所述可移动平台相对于所述定位目标移动,包括:根据所述目标位置规划所述可移动平台的移动路线、所述拍摄装置的拍摄方向、所述第一探测装置的探测方向、所述第二探测装置的探测方向中的至少一种。
示例性的,可以根据所述目标位置控制所述可移动平台对所述定位目标进行绕行或跟随。例如,若当前与定位目标的距离小于等于预设的距离阈值,控制可移动平台向左、向右或向上运动进行绕行,防止可移动平台冲撞定位目标;同时可以调整拍摄装置的拍摄方向和/或探测装置的探测方向,以使拍摄装置保持对定位目标的拍摄和/或探测装置对定位目标的探测。例如若当前与定位目标的距离大于特定的距离,控制可移动平台朝向定位目标移动或加速向定位目标移动,以对定位目标进行跟随。
示例性的,可以根据所述目标位置确定定位目标的运动状态,并根据定位目标的运动状态控制所述可移动平台相对于所述定位目标移动,例如若当前与 定位目标的距离变大时,可以确定定位目标在远离可移动平台,则可以控制可移动平台朝向定位目标移动或加速向定位目标移动;若当前与定位目标的距离变大时,且变大的幅度越来越大时,可以确定定位目标在加速远离可移动平台,则可以控制可移动平台加速向定位目标移动。
本实施例提供的目标定位方法,通过根据第一探测装置获取的定位目标的位置信息确定参考面,并根据参考面校正第二探测装置获取的位置信息,以及在第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定定位目标的目标位置,在某种探测装置失效,切换至由另一种探测装置来确定目标的位置时,确定的目标位置不容易产生突变,更平滑。
在一些实施方式中,在多个有效的探测装置中优先采用精度最高的探测装置的位置信息,并根据该位置信息确定定位目标所在的参考面;在该精度最高的探测装置失效时,切换至根据参考面校正精度的位置信息并根据校正后的位置信息确定定位目标的位置,切换时定位目标的位置不易突变,且切换至次高的探测装置时可以提高位置的精度。
请参阅图7,图7是本申请一实施例提供的可移动平台700的示意性框图。
示例性的,可移动平台700例如可以包括云台、无人飞行器、无人驾驶车辆或无人驾驶船艇中的至少一种。其中,无人飞行器例如可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机;云台例如包括手持云台,或包括能够搭载于无人飞行器、无人驾驶车辆或无人驾驶船艇上的云台。
在一些实施方式中,可移动平台700能够搭载拍摄装置。示例性的,拍摄装置搭载于云台,云台搭载于无人飞行器等可移动平台700。示例性的,云台包括至少一个转轴结构,其中转轴结构可以包括对应偏航(yaw)轴的转轴结构、对应横滚(roll)轴的转轴结构和对应俯仰(pitch)轴的转轴结构中的至少一个。通过转轴结构的动作,可以稳定拍摄装置的姿态,例如维持拍摄装置的拍摄方向保持不变。
具体的,可移动平台搭载有第一探测装置11和第二探测装置12。
在一些实施方式中,第一探测装置11和第二探测装置12包括以下至少两种:单目相机、双目相机、雷达、GPS装置。当然,第一探测装置11和第二探测装置12也可以包括其他能够直接或间接测量定位目标的位置的传感器。
示例性的,第一探测装置11的优先级大于第二探测装置12的优先级。
示例性的,第一探测装置11的探测精度大于第二探测装置12的探测精度。
具体的,可移动平台700包括一个或多个处理器701。
在一些实施方式中,可移动平台700还包括存储器702。
示例性的,处理器701和存储器702通过总线703连接,该总线703比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
具体的,一个或多个处理器701单独地或共同地工作,用于执行前述的用于可移动平台的目标定位方法的步骤。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现前述的目标定位方法。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现如下步骤:
根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
本申请实施例提供的可移动平台的具体原理和实现方式均与前述实施例的目标定位方法类似,此处不再赘述。
请参阅图8,图8是本申请一实施例提供的一种无人飞行器800的示意性框图。
在一些实施方式中,无人飞行器800能够搭载拍摄装置。示例性的,拍摄装置搭载于云台,云台搭载于无人飞行器800。
具体的,无人飞行器800包括一个或多个处理器801。
在一些实施方式中,无人飞行器800还包括存储器802。
示例性的,处理器801和存储器802通过总线803连接,该总线803比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器801可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器802可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
该无人飞行器800还包括飞行组件804,飞行组件804用于飞行。
具体的,可移动平台搭载有第一探测装置21和第二探测装置22。
在一些实施方式中,第一探测装置21和第二探测装置22包括以下至少两种:单目相机、双目相机、雷达、GPS装置。当然,第一探测装置21和第二探测装置22也可以包括其他能够直接或间接测量定位目标的位置的传感器。
示例性的,第一探测装置21的优先级大于第二探测装置22的优先级。
示例性的,第一探测装置21的探测精度大于第二探测装置22的探测精度。
具体的,一个或多个处理器801单独地或共同地工作,用于执行前述的用目标定位方法的步骤。
示例性的,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现前述的目标定位方法。
示例性的,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现如下步骤:
根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
本申请实施例提供的无人飞行器的具体原理和实现方式均与前述实施例的目标定位方法类似,此处不再赘述。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的目标定位方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台,如无人飞行器的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本申请上述实施例提供的可移动平台、无人飞行器、计算机可读存储介质,通过根据第一探测装置获取的定位目标的位置信息确定参考面,并根据参考面校正第二探测装置获取的位置信息,以及在第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定定位目标的目标位置,在某种探测装置失效,切换至由另一种探测装置来确定目标的位置时,确定的目标位置不容易产生突变,更平滑。
在一些实施方式中,在多个有效的探测装置中优先采用精度最高的探测装置的位置信息,并根据该位置信息确定定位目标所在的参考面;在该精度最高的探测装置失效时,切换至根据参考面校正精度的位置信息并根据校正后的位置信息确定定位目标的位置,切换时定位目标的位置不易突变,且切换至次高的探测装置时可以提高位置的精度。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种目标定位方法,其特征在于,用于可移动平台,所述可移动平台搭载有第一探测装置和第二探测装置,所述方法包括:
    根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
    根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
    在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一探测装置未失效时,根据所述第一探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    在所述第一探测装置失效时,根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面,包括:
    获取所述定位目标所在的初始参考面;
    根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面,包括:
    根据所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标在预设方向上的第一位置变化量;
    根据所述初始参考面和所述第一位置变化量,确定所述定位目标所在的参考面。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取所述第二探测装置的探测方向;
    根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;
    根据所述射线与所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
  8. 根据权利要求1所述的方法,其特征在于,所述第一探测装置失效后,所述方法还包括:
    根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面;
    根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面,包括:
    根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;
    根据所述第二位置变化量更新所述参考面。
  10. 根据权利要求9所述的方法,其特征在于,在所述第一探测装置未失效时,所述方法还包括:
    根据所述第一探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第一位置变化量;
    根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;
    根据所述第一位置变化量和所述第二位置变化量确定修正量;
    所述根据所述第二位置变化量更新所述参考面,包括:
    根据所述修正量和所述第二位置变化量更新所述参考面。
  11. 根据权利要求8所述的方法,其特征在于,所述根据更新后的所述参考 面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取所述第二探测装置的探测方向;
    根据所述探测方向和更新后的所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
  12. 根据权利要求11所述的方法,其特征在于,根据所述探测方向和所述更新后的参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;
    根据所述射线与更新后的所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
  13. 根据权利要求1、2或8所述的方法,其特征在于,所述第一探测装置获取的定位目标的位置信息或所述第二探测装置获取的所述定位目标的位置信息用极坐标系表示,所述定位目标的预测位置信息用笛卡尔坐标系表示,所述根据校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,确定所述定位目标的目标位置,包括:
    根据极坐标表示的校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,以及笛卡尔坐标系表示的所述定位目标的预测位置信息,确定所述定位目标的目标位置。
  14. 根据权利要求1或8所述的方法,其特征在于,所述方法还包括:
    根据预设约束条件,对所述参考面或更新后的所述参考面进行校正;
    所述预设约束条件包括:所述参考面在预设方向上的位置不能突变。
  15. 根据权利要求5或9所述的方法,其特征在于,所述预设方向为重力方向。
  16. 根据权利要求1所述的方法,其特征在于,所述第一探测装置的优先级大于所述第二探测装置的优先级。
  17. 根据权利要求1所述的方法,其特征在于,所述第一探测装置的探测精度大于所述第二探测装置的探测精度。
  18. 根据权利要求1所述的方法,其特征在于,所述第一探测装置和第二探测装置包括以下至少两种:单目相机、双目相机、雷达、GPS装置。
  19. 根据权利要求1所述的方法,其特征在于,所述目标位置用于控制所述 可移动平台相对于所述定位目标移动。
  20. 根据权利要求19所述的方法,其特征在于,所述目标位置用于控制所述可移动平台对所述定位目标进行绕行或跟随。
  21. 一种可移动平台,其特征在于,所述可移动平台能够搭载第一探测装置和第二探测装置;
    所述可移动平台包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面;
    根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息;
    在所述第一探测装置失效时,根据校正后的第二探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
  22. 根据权利要求21所述的可移动平台,其特征在于,所述处理器还用于:
    在所述第一探测装置未失效时,根据所述第一探测装置获取的定位目标的位置信息确定所述定位目标的目标位置。
  23. 根据权利要求21所述的可移动平台,其特征在于,所述根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    在所述第一探测装置失效时,根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。
  24. 根据权利要求21-23中任一项所述的可移动平台,其特征在于,所述根据所述第一探测装置获取的定位目标的位置信息,确定所述定位目标所在的参考面,包括:
    获取所述定位目标所在的初始参考面;
    根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面。
  25. 根据权利要求24所述的可移动平台,其特征在于,所述根据所述初始参考面和所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标所在的参考面,包括:
    根据所述第一探测装置获取的所述定位目标的位置信息,确定所述定位目标在预设方向上的第一位置变化量;
    根据所述初始参考面和所述第一位置变化量,确定所述定位目标所在的参考面。
  26. 根据权利要求21所述的可移动平台,其特征在于,所述根据所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取所述第二探测装置的探测方向;
    根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述根据所述探测方向和所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;
    根据所述射线与所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
  28. 根据权利要求21所述的可移动平台,其特征在于,所述第一探测装置失效后,所述处理器还用于:
    根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面;
    根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息。
  29. 根据权利要求28所述的可移动平台,其特征在于,所述根据所述第二探测装置获取的所述定位目标的位置信息更新所述参考面,包括:
    根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;
    根据所述第二位置变化量更新所述参考面。
  30. 根据权利要求29所述的可移动平台,其特征在于,在所述第一探测装置未失效时,所述处理器还用于:
    根据所述第一探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第一位置变化量;
    根据所述第二探测装置获取的所述定位目标的位置信息确定所述定位目标在预设方向上的第二位置变化量;
    根据所述第一位置变化量和所述第二位置变化量确定修正量;
    所述根据所述第二位置变化量更新所述参考面,包括:
    根据所述修正量和所述第二位置变化量更新所述参考面。
  31. 根据权利要求28所述的可移动平台,其特征在于,所述根据更新后的所述参考面校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取所述第二探测装置的探测方向;
    根据所述探测方向和更新后的所述参考面,校正所述第二探测装置获取的所述定位目标的位置信息。
  32. 根据权利要求31所述的可移动平台,其特征在于,根据所述探测方向和所述更新后的参考面,校正所述第二探测装置获取的所述定位目标的位置信息,包括:
    获取以所述可移动平台的位置点为端点,延所述探测方向延伸的射线;
    根据所述射线与更新后的所述参考面的交点,确定校正后的所述第二探测装置获取的所述定位目标的位置信息。
  33. 根据权利要求21、22或28所述的可移动平台,其特征在于,所述第一探测装置获取的定位目标的位置信息或所述第二探测装置获取的所述定位目标的位置信息用极坐标系表示,所述定位目标的预测位置信息用笛卡尔坐标系表示,所述根据校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,确定所述定位目标的目标位置,包括:
    根据极坐标表示的校正后的第二探测装置获取的定位目标的位置信息或所述第一探测装置获取的定位目标的位置信息,以及笛卡尔坐标系表示的所述定位目标的预测位置信息,确定所述定位目标的目标位置。
  34. 根据权利要求21或28所述的可移动平台,其特征在于,所述处理器还用于:
    根据预设约束条件,对所述参考面或更新后的所述参考面进行校正;
    所述预设约束条件包括:所述参考面在预设方向上的位置不能突变。
  35. 根据权利要求25或29所述的可移动平台,其特征在于,所述预设方向为重力方向。
  36. 根据权利要求21所述的可移动平台,其特征在于,所述第一探测装置的优先级大于所述第二探测装置的优先级。
  37. 根据权利要求21所述的可移动平台,其特征在于,所述第一探测装置 的探测精度大于所述第二探测装置的探测精度。
  38. 根据权利要求21所述的可移动平台,其特征在于,所述第一探测装置和第二探测装置包括以下至少两种:单目相机、双目相机、雷达、GPS装置。
  39. 根据权利要求21所述的可移动平台,其特征在于,所述目标位置用于控制所述可移动平台相对于所述定位目标移动。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述目标位置用于控制所述可移动平台对所述定位目标进行绕行或跟随。
  41. 根据权利要求21-40中任一项所述的可移动平台,其特征在于,所述可移动平台包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-20中任一项所述的方法。
PCT/CN2020/087084 2020-04-26 2020-04-26 目标定位方法、可移动平台、存储介质 WO2021217312A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/087084 WO2021217312A1 (zh) 2020-04-26 2020-04-26 目标定位方法、可移动平台、存储介质
CN202080005071.4A CN112753213A (zh) 2020-04-26 2020-04-26 目标定位方法、可移动平台、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087084 WO2021217312A1 (zh) 2020-04-26 2020-04-26 目标定位方法、可移动平台、存储介质

Publications (1)

Publication Number Publication Date
WO2021217312A1 true WO2021217312A1 (zh) 2021-11-04

Family

ID=75651268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087084 WO2021217312A1 (zh) 2020-04-26 2020-04-26 目标定位方法、可移动平台、存储介质

Country Status (2)

Country Link
CN (1) CN112753213A (zh)
WO (1) WO2021217312A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160040982A1 (en) * 2014-08-06 2016-02-11 Hand Held Products, Inc. Dimensioning system with guided alignment
CN105593659A (zh) * 2013-08-19 2016-05-18 实耐宝公司 用于自标定多相机定位***的改进的电机控制***
CN107121123A (zh) * 2017-05-18 2017-09-01 上海卫星工程研究所 卫星精度单机测量方法
CN107192377A (zh) * 2017-06-16 2017-09-22 深圳市可飞科技有限公司 远程测量物体坐标的方法、装置及飞行器
CN109219785A (zh) * 2016-06-03 2019-01-15 深圳市大疆创新科技有限公司 简单的多传感器校准
CN109856642A (zh) * 2018-12-20 2019-06-07 上海海事大学 一种旋转三维激光测量***及其平面标定方法
CN110757504A (zh) * 2019-09-30 2020-02-07 宜宾职业技术学院 高精度可移动机器人的定位误差补偿方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713739B2 (ja) * 2011-03-17 2015-05-07 三菱電機株式会社 センサ誤差較正システム
JP6630515B2 (ja) * 2015-08-25 2020-01-15 株式会社トプコン 位置誘導装置、位置誘導方法、プログラム
WO2018086122A1 (zh) * 2016-11-14 2018-05-17 深圳市大疆创新科技有限公司 多路传感数据融合的方法和***
WO2019180899A1 (ja) * 2018-03-23 2019-09-26 株式会社日立ハイテクノロジーズ 外観検査装置
CN108613746B (zh) * 2018-06-29 2023-08-01 北京航天神舟智能装备科技股份有限公司 一种基于铁路车辆红外探测的光子探测器校准装置及校准方法
CN110132305A (zh) * 2019-04-28 2019-08-16 浙江吉利控股集团有限公司 一种实时校准方法及装置
CN110471072B (zh) * 2019-08-19 2021-04-02 华晟(青岛)智能装备科技有限公司 一种反光柱位置辨识方法及***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593659A (zh) * 2013-08-19 2016-05-18 实耐宝公司 用于自标定多相机定位***的改进的电机控制***
US20160040982A1 (en) * 2014-08-06 2016-02-11 Hand Held Products, Inc. Dimensioning system with guided alignment
CN109219785A (zh) * 2016-06-03 2019-01-15 深圳市大疆创新科技有限公司 简单的多传感器校准
CN107121123A (zh) * 2017-05-18 2017-09-01 上海卫星工程研究所 卫星精度单机测量方法
CN107192377A (zh) * 2017-06-16 2017-09-22 深圳市可飞科技有限公司 远程测量物体坐标的方法、装置及飞行器
CN109856642A (zh) * 2018-12-20 2019-06-07 上海海事大学 一种旋转三维激光测量***及其平面标定方法
CN110757504A (zh) * 2019-09-30 2020-02-07 宜宾职业技术学院 高精度可移动机器人的定位误差补偿方法

Also Published As

Publication number Publication date
CN112753213A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US11151741B2 (en) System and method for obstacle avoidance
WO2017045315A1 (zh) 确定跟踪目标的位置信息的方法及装置、跟踪装置及***
US10860039B2 (en) Obstacle avoidance method and apparatus and unmanned aerial vehicle
US11073389B2 (en) Hover control
US20180313940A1 (en) Calibration of laser and vision sensors
JP2020030204A (ja) 距離測定方法、プログラム、距離測定システム、および可動物体
JP7022559B2 (ja) 無人航空機の制御方法および無人航空機の制御用プログラム
US20200191556A1 (en) Distance mesurement method by an unmanned aerial vehicle (uav) and uav
JP7340440B2 (ja) コンピュータビジョンに基づく、航空機の自律着陸または監視自律着陸
US11906983B2 (en) System and method for tracking targets
CN118259692A (zh) 一种无人机路径规划方法、装置及无人机
US20220086362A1 (en) Focusing method and apparatus, aerial camera and unmanned aerial vehicle
WO2021016854A1 (zh) 一种标定方法、设备、可移动平台及存储介质
JP2015037937A (ja) 飛行体の飛行制御システム
US20210325912A1 (en) Method and device for estimating distance to target, and unmanned aerial vehicle
US20230384803A1 (en) Autonomous orbiting method and device and uav
KR20160112080A (ko) 무인 비행체의 비상 착륙 지점 검출 시스템 및 그 방법
US20210229810A1 (en) Information processing device, flight control method, and flight control system
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
WO2020062356A1 (zh) 控制方法、控制装置、无人飞行器的控制终端
JP2018009918A (ja) 自己位置検出装置、移動体装置及び自己位置検出方法
WO2021217312A1 (zh) 目标定位方法、可移动平台、存储介质
WO2020024150A1 (zh) 地图处理方法、设备、计算机可读存储介质
JP6978566B2 (ja) 制御装置、プログラム、及び制御方法
US20220018950A1 (en) Indoor device localization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933005

Country of ref document: EP

Kind code of ref document: A1