JP7022559B2 - 無人航空機の制御方法および無人航空機の制御用プログラム - Google Patents

無人航空機の制御方法および無人航空機の制御用プログラム Download PDF

Info

Publication number
JP7022559B2
JP7022559B2 JP2017201004A JP2017201004A JP7022559B2 JP 7022559 B2 JP7022559 B2 JP 7022559B2 JP 2017201004 A JP2017201004 A JP 2017201004A JP 2017201004 A JP2017201004 A JP 2017201004A JP 7022559 B2 JP7022559 B2 JP 7022559B2
Authority
JP
Japan
Prior art keywords
bright spot
unmanned aerial
aerial vehicle
uav
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201004A
Other languages
English (en)
Other versions
JP2019073182A (ja
Inventor
陽 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2017201004A priority Critical patent/JP7022559B2/ja
Priority to CN201811131254.1A priority patent/CN109669468B/zh
Priority to EP18199439.3A priority patent/EP3474109B1/en
Priority to US16/160,187 priority patent/US11048276B2/en
Publication of JP2019073182A publication Critical patent/JP2019073182A/ja
Application granted granted Critical
Publication of JP7022559B2 publication Critical patent/JP7022559B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、無人航空機の制御技術に関する。
橋脚やコンクリートで補強された法面の点検にUAV(Unmanned Aerial Vehicle)(無人航空機)を用いることが考えられている。この技術では、UAVにレーザースキャナやカメラを搭載し、橋脚や法面のレーザースキャンや撮影を行う。特許文献1には、UAVを用いて施設を点検する技術について記載されている。
特開2017-154577号公報
例えばトンネルの内壁や橋脚の点検などでは、ある特定部分の撮影を行いたいといった要望がある場合がある。この場合、UAVの正確な飛行制御が必要となる。UAVの正確な飛行制御を行う方法として、UAVにレーダーやレーザースキャナ、更に高精度のIMU(慣性計測装置)を装備し、周囲の三次元計測を行いながら飛行する形態が考えられる。しかしながら、この方法は、UAVに搭載する機器の重量の増加、消費電力の増加、コストの増加が問題となる。また、撮影対象に対するUAVの位置関係の特定をどのように行うのかが問題となる。
このような背景において、本発明は、対象物の特定の部位に効率よくUAVを誘導できる技術の提供を目的とする。
本発明は、測距光を兼ねるレーザーポイント光を発光するトータルステーションを用いた無人航空機の制御方法であって、既知の位置に設置した前記トータルステーションから対象物に前記測距光を兼ねるレーザーポイント光を照射することで前記対象物上において輝点による描画図形の形成を行い、無人航空機に搭載したカメラにより前記対象物における前記描画図形を撮影し、前記カメラが撮影した画像中に写った前記描画図形が特定の画面位置に写り、且つ、前記描画図形の画面上での大きさが規定のものとなるように前記無人航空機の飛行制御が行われ、予め設定された特定の経路に沿って前記トータルステーションからの前記レーザーポイント光の照射位置を移動させることで、前記無人航空機を前記経路に沿って飛行させ、前記測距光を兼ねるレーザーポイント光により前記トータルステーションから前記輝点までの距離が計測され、前記計測された距離に基づき、前記描画図形が予め定めた大きさとなるように調整される無人航空機の制御方法である。
本発明は、測距光を兼ねるレーザーポイント光を発光するトータルステーションを用いた無人航空機の制御をコンピュータに行なわせるためのプログラムであって、コンピュータに既知の位置に設置した前記トータルステーションから対象物に前記測距光を兼ねるレーザーポイント光を照射することで前記対象物上において輝点による描画図形の形成と、無人航空機に搭載したカメラによる前記対象物における前記描画図形の撮影と、前記カメラが撮影した画像中に写った前記描画図形が特定の画面位置に写り、且つ、前記描画図形の画面上での大きさが規定のものとなるように前記無人航空機の飛行制御と、予め設定された特定の経路に沿って前記トータルステーションからの前記レーザーポイント光の照射位置を移動させることで、前記無人航空機の前記経路に沿っての飛行とを実行させ、前記測距光を兼ねるレーザーポイント光により前記トータルステーションから前記輝点までの距離が計測され、前記計測された距離に基づき、前記描画図形が予め定めた大きさとなるように調整される無人航空機の制御用プログラムである。
本発明によれば、対象物の特定の部位に効率よくUAVを誘導できる技術が提供される。
実施形態の概要を示す図である。 実施形態のブロック図である。 実施形態のブロック図である。 輝点により描かれる図形の一例を示す図である。 実施形態のUAVのブロック図である。 処理の手順の一例を示すフローチャートである。
1.第1の実施形態
(概要)
図1には、壁面300をカメラ201で撮影するUAV200が示されている。壁面300は、例えばコンクリートで補強された崖や法面、トンネルの壁面、橋脚の側面、ビル等の建物の側面等である。図1には、壁面300がコンクリートで構成され、そのひび割れや劣化の程度をカメラ201が撮影する画像から診断する場合の例が示されている。
壁面300には、既知の位置に設置されたTS(トータルステーション)100からポイント指示用レーザー光が照射されている。このポイント指示用レーザー光の壁面300における反射点には、当該レーザー光の反射に起因する輝点301が形成される。このレーザー光は、測距光も兼ねており、TS100から見た輝点301の三次元座標がTS100で計測される。また、TS100は、望遠鏡とカメラを備え、TS100により輝点301を中心とした壁面300の画像が取得される。
UAV200は、カメラ201を備え、壁面300をカメラ201で撮影しながら壁面201に沿って飛行する。この際、カメラ201が撮影した画像中に写った輝点301をUAV200の側で認識し、輝点301を利用してUAV200の飛行制御が行なわれる。
TS100は、既知の位置に設置され、UAV200によって撮影したい壁面上に沿ってポイント指示用のレーザー光の輝点を動かす。例えば、経路302に沿って輝点301を動かすことで、輝点301の動きに合わせってUAV200が移動する。また、この際、カメラ201により壁面300における輝点301を含む領域の撮影が行われる。
(TS(トータルステーション))
以下、TS100について説明する。図2は、TS100のブロック図である。TS100は、レーザー光発光部101、レーザー光受光部102、測距部103、水平・鉛直角検出部104、水平・鉛直角駆動部105、三次元位置算出部106、UAV誘導部(輝点位置制御部)107、輝点描画部108、レーザースキャナ109を備えている。TS(トータルステーション)については、特開2009-229192号公報、特開2012-202821号公報、日本国特許第5124319号公報等に記載されている。
レーザー光発光部101は、測距光を兼ねるポイント指示用レーザー光を発光する。この光は、図示しない光学系を介して、対象物に対して照射される。ここで、ポイント指示用レーザー光は、可視光が採用される。レーザー光受光部102は、対象物に照射され、そこで反射されたポイント指示用レーザー光の反射光を図示しない光学系を介して受光する。
測距部103は、測距光を兼ねるポイント指示用レーザー光の飛翔時間に基づくTS100から輝点301までの距離の算出を行う。具体的には、TS100の内部にリファレンス光の光路が設けられており、このリファレンス光とレーザー光受光部102で受光した測距光(兼ポイント指示用レーザー光)の位相差から輝点301までの距離が計算される。
TS100は、水平回転が可能な本体を備えている。この本体には、鉛直方向の回転(仰角と俯角の回転制御)が可能な可動部が取り付けられている。この可動部にレーザー光発光部101,レーザー光受光部102および測距部103の光学系が固定され、測距光兼ポイント指示用レーザー光の光軸の水平方向および鉛直方向における向きの制御が可能とされている。
水平・鉛直角検出部104は、上記の可動部の水平角(水平方向における角度)と鉛直角(仰角または俯角の角度)を検出する。角度の検出は、ロータリーエンコーダにより行われる。角度計測の基準は、例えば水平角では北の方向を0°として時計回り方向の角度、鉛直角では水平を0°として仰角を+、俯角を-として計測する例が挙げられる。なお、TS100は、地図座標系(絶対座標系)上における既知の位置に設置される。地図図座標系とは、GNSSで用いられるグローバルな座標系のことである。
水平・鉛直角駆動部105は、上記可動部の水平方向の回転駆動、鉛直方向の回転駆動行うためのモータや駆動回路を備える。上記可動部の水平角および鉛直角の制御を行うことで、輝点301の位置制御が行なわれる。
三次元位置算出部106は、測距部103が算出した距離と水平・鉛直角検出部104が検出した輝点301の方向(TS100からの方向)とから輝点301の三次元座標値を算出する。この輝点301の三次元座標値は、TS100を原点としたTS座標系上におけるものとして取得される。このTS座標系としては、東方向をX軸、北方向をY軸、鉛直上方の方向をZ軸としたXYZ座標系が挙げられる。
UAV誘導部(輝点位置制御部)107は、図1の輝点301を経路302に沿って移動させる制御を行う。輝点301の移動は、水平・鉛直角駆動部105によるTS100可動部の水平方向の回転駆動、鉛直方向の回転駆動により行われる。本明細書で開示する技術では、輝点301を追うようにUAV200が飛行する。UAV誘導部107は、UAV200を飛行させたい経路に沿って輝点301により形成される図形を移動させ、それによりUAV200の飛行誘導を行う。輝点301により形成される図形の移動経路302は、予め決められている形態が挙げられるが、操作者により動かされる形態でもよい。
例えば、橋梁の点検をUAV200で行なう場合を考える。ここで、橋梁の三次元モデルデータは予め取得されているものとする。この場合、UAV200に動画カメラを搭載し、橋梁の撮影を行い、その動画像によりコンクリートのひび割れの有無や劣化の状態、ボルト結合部の状態等の点検が行なわれる。この際、撮影予定の対象となる部位に沿って径路302が設定され、輝点301により形成される図形の移動が行なわれる。そして、輝点301の移動に追従するようにUAV200が飛行する。この際の輝点301の誘導がUAV誘導部(輝点位置制御部)107によって行われる。UAV誘導部(輝点位置制御部)107の機能により、輝点301を利用したUAV200の飛行制御が行なわれる。
輝点描画部108は、ポイント指示用レーザー光(測距光)を照射しながら照射方向の水平角および鉛直角の制御を行うことで、輝点301を動かし輝点301の軌跡による描画制御を行う。この輝点を用いた描画により、輝点による特定の形状の図形(輝点描画図形)が対象面(例えば、図1の壁面300)上で形成される。
以下、輝点描画部108によって行われる描画について説明する。図4には、輝点301の描画の一例が示されている。この例では、輝点301をL字型に1~5Hz程度の繰り返し周波数で周期的に往復させ、L字形状の描画を行っている。このL字形状の輝点の軌跡の対象面における向きおよび大きさは、予め定めた特定なものとなるように描画が行なわれる。輝点によって描かれる図形は、認識できるものであれば文字に限定されず、三角形や矢印等でもよい。
上述した描画により形成された図形は、図1の経路302に沿って移動する。この際、図形の位置は、その重心の位置や予め定められた位置(L字であれば、縦線と横線の交点等)で把握される。例えば、図4の場合でいうと、L字形状の輝点の軌跡が、UAV200を飛行させたい方向に向かって移動する。この際、時間軸上で測距値が揺らぐので、特定の間隔(0.5~1秒程度)で平均化した値を測距値として採用する。
輝点による描画図形は、輝点形成位置で予め定めた大きさ、縦横比、および向きとなるように調整される。この調整には、対象物の三次元形状に関するデータとTS100から輝点までの距離の情報が必要となる。対象物の三次元形状に関するデータは、予め三次元レーザースキャナや立体写真画像から得た三次元モデルから把握しておく。TS100から対象物までの距離は、TS100が有する測距機能やレーザースキャナ機能を用いて取得できる。
特に輝点の描画を行う対象面に対して斜めの方向からポイント指示用レーザー光を照射する場合は、正面から描画を行った場合の形状となるように描画を行う。この場合、後述するレーザースキャナ109からのレーザースキャンデータを用いて、対象面の法線ベクトルを算出し、この法線ベクトルとTS100からのポイント指示用レーザー光の光軸とのなす角度から、輝点描画図形が正面から描画を行った場合の形状となるように射影変換を利用した描画を行う。
レーザースキャナ109は、ポイント指示用レーザー光の照射点(輝点301)付近のレーザースキャンを行い、輝点301付近の三次元点群データを取得する。輝点付近のレーザースキャンを行うことで、輝点301付近の対象物の表面のTS100の光軸に対する向きが判る。すなわち、ポイント指示用レーザー光の光軸に対する対象物の表面の法線の向きが判る。
レーザースキャナについては、例えば特開2010-151682号公報、特開2008-268004号公報、米国特許8767190号公報、米国特許7969558号公報に記載されている。また、US2015/0293224号公報には、光学系の回転や往復運動を利用せずに電子式にスキャンを行う形態のレーザースキャナが記載されている。この電子式にスキャンを行う形態のレーザースキャナを用いることもできる。
(UAV)
UAV200は、図3の飛行制御装置210、GSNN位置特定装置、高度計、方位センサ、IMU(慣性計測装置)、傾斜センサ、無線通信装置等を備える。飛行制御装置210以外は、通常のUAVが備える機器および機能であるので説明は省略する。また、カメラ201の姿勢を動かすことができる構造の場合、カメラ201の姿勢制御装置がUAV200に搭載される。
図3にUAV200が備える飛行制御装置210のブロック図が示されている。飛行制御装置210は、コンピュータとして機能するハードウェアであり、CPU,メモリ、各種のインターフェースを備える。飛行制御装置210は、汎用のマイコンを用いて構成もしてもよいし、専用のハードウェアとして開発してもよい。例えば、マイコンボード、ASIC、FPGA等の電子回路を用いて飛行制御装置210を構成することができる。
飛行制御装置210は、画像データ受付部211、輝点検出部212、図形検出部213、飛行制御部214、通信部215、記憶部216を備えている。これらの機能部の一部または全部は、CPUにおけるプログラムの実行により、ソフトウェア的に構成される形態もよいし、専用のハードウェアで構成される形態でもよい。
画像データ受付部211は、カメラ201が撮影した画像を受け付ける。この例において、カメラ201は動画を撮影し、その画像データが画像データ受付部211で受け付けられる。なお、動画程コマ数が多くない高速シャッター画像(例えば、0.1秒毎に撮影)を用いることもできる。
輝点検出部212は、カメラ201が撮影した画像の中からTS100から照射されたポイント指示用レーザー光による輝点を検出する。輝点の検出は、デジタル処理により周囲より高輝度の画素を検出することで行われる。この例では、カメラ201が撮影した動画像データに含まれる複数枚のフレーム画像から、輝点301の軌跡を検出する。例えば、図4のL字形状の輝点の軌跡が輝点検出部212で検出される。この際、輝点301は図形を描くために細かく動いている。そこで、図形が描かれる時間以上の期間において取得された軌跡の変化を平均化し、図形を描く輝点の集合を検出する。例えば、0.5秒間でL字形状の図形が描かれるとする。この場合、輝点の動きを0.5秒~0.7秒程度の期間で平均化した輝点の軌跡を検出する。なお、この軌跡は、図1の軌跡302とは異なり、図4のような図形を描くための短い時間間隔で繰り返される軌跡である。
図形検出部213は、輝点検出部212で検出された輝点の軌跡から図形の検出をする。例えば、図4の場合でいうと、L字形状の図形の検出が図形検出部213で行われる。この処理は、公知の形状認識処理アルゴリズムを用いて行われる。
飛行制御部214は、UAV200の飛行制御を行う。飛行制御部214で行われる飛行制御には、通常のUAVで行われる飛行制御に加えて、図形検出部213で検出したポイント指示用レーザー光による輝点によって描かれる図形(例えば、図4のL字形状の輝点の軌跡)に基づく飛行制御が含まれる。
以下、ポイント指示用レーザー光(測距光)が対象物に照射されることで形成される図形として図4のL字形状を採用した場合における飛行制御の例を説明する。
まず、図形検出部213で検出されたL字形状図形の画面中での位置を検出する。例えば、L字形状図形の画面中における重心の位置を、当該図形の画面中での位置(着目位置)として検出する。そして、この着目位置が画面中の予め定めた位置(左下や中央等)にくるようにUAVの位置の制御を行う。
次に、図形検出部213で検出されたL字形状図形の画面上における向きを検出する。そして、この向きが予め定めた向き(例えば、図4の向き)となるようにUAV200の姿勢を制御する。この処理では、図1のX軸回りの回転制御が行なわれる。
次に、L字形状図形の縦横比が予め定めた値(図4の場合は1:1)に近づくようにUAV200の姿勢制御を行う。このL字形状図形(輝点描画図形)の縦横比を用いた姿勢制御は、図1におけるZ軸回りの回転制御が行なわれる。
縦横比に限定されず、交差する2軸の方向における寸法の比率を採用することもできる。ただし、交差する2軸のなす角度がなるべく90°(直交状態)に近い方が好ましい。また、交差する3軸以上の方向における寸法の比率を判定基準として採用することもできる。この場合、輝点により描かれた図形の3軸以上の方向における寸法の比率が予め定めた値に最も近づくようにUAVの姿勢制御が行なわれる。例えば、60°の角度差で交差する3本の軸を設定し、この3軸の方向における図形の比率が予め定めたものとなるようにUAVの姿勢制御が行なわれる。
上記のL字形状図形の画面上での縦横比を用いたUAV200の姿勢制御を行うと、画面中におけるL字形状図形の位置が変化する。よって、(1)L字形状図形の画面中での位置に基づくUAV200の位置の調整と、(2)L字形状図形の画面中での縦横比に基づくUAV200の姿勢の調整とを交互に繰り返し、L字形状図形の画面中での位置が予め定めた特定の位置で、且つ、画面中におけるL字形状図形の縦横比が規定の値となるようにする。
次に、画面中のL字形状図形の縦横の寸法(Lxおよび/またはLz)が、予め定めた値となるように、UAV200の位置を制御する。ここで、UAV200の位置が対象物から規定値より離れている場合、(Lxおよび/またはLz)は規定値よりも小さくなる。また、UAV200の位置が規定値より対象物に近い場合はその逆となる。
上記の検出された図形の画面上での大きさが規定のものとなるようにUAV200の位置を制御することで、ポイント指示用レーザー光(測距光)が照射される対象物とUAV200との間の距離(図1のX軸上における位置)が予め定めた値となる。
図4のL字形状図形の描画位置は、図1の軌跡302にしたがって移動する。上記の姿勢制御および移動制御が1秒毎といった時間間隔で連続して行われることで、対象物(例えば、図1の壁面300)に対して特定の姿勢および位置関係を維持しつつ、符号302で示されるような指示経路でもってUAV200が移動する。すなわち、輝点301で構成される図形(輝点描画図形)の動きを追うように、UAV200が移動する。
なお、実際のUAV200の飛行では、まず操縦者による遠隔操縦によりUAV200が対象物に近づき、その後にTS100からのポイント指示用レーザー光を用いた上述の飛行制御が行なわれる。
通信部215は、操縦者が扱う操縦用コントローラからの信号を受け付ける。また、通信部215から飛行時の各種のデータ(位置データ等)が操縦用コントローラや外部の機器に向かって送信される。記憶部216は、半導体メモリで構成され、飛行制御装置210の動作に必要な各種のデータ、動作の結果得られたデータ、動作に必要なプログラムが記憶される。また、飛行制御装置210がUAV200に搭載される場合、飛行計画や飛行ログ、UAV200の動作に必要な各種のデータやプログラムが記憶部216に記憶される。
(処理の一例)
以下、飛行制御装置210で行なわれる処理の一例を説明する。図5は、飛行制御装置210で行なわれる処理の手順の一例を示すフローチャートである。図5の処理を実行するためのプログラムは、記憶部216等の適当なメモリ領域に記憶され、そこから読み出されて実行される。このプログラムを適当な記憶媒体に記憶させ、そこから提供される形態も可能である。
対象物(例えば、図1の壁面300)にポイント指示用のレーザー光を照射し、輝点による図形の描画を行っている段階で図5の処理が開始される。図5の処理が開始されると、まず輝点301で構成される図形(輝点描画図形)が検出できたか否か、が判定される(ステップS101)。この処理は、図形検出部212で行なわれる。輝点描画図形が検出できた場合、ステップS102に進み、そうでない場合、UAV200を上下左右に移動させつつステップS101を繰り返す。
なお、当該図形を検出できない時間が一定時間を過ぎた場合、輝点301を見失った状況の判定(ロスト判定)となり、その旨(ロスト報知)がTS100の側、あるいはUAV200の図示しないコントローラに通知される。またこの際、事故を防ぐため、UAV200はその場でホバリング状態となる。
ステップS102では、カメラ201が撮影した画像の画面中における輝点描画図形の位置に基づくUAV200の位置制御が行なわれる。この処理では、画面内における輝点描画図形の位置が予め定めた特定の位置となるように、UAV200の位置を調整する飛行制御が行なわれる。
以下、この処理の詳細な一例を説明する。まず、撮像画面上に直交するX-Y軸が設定されているものとする。ここで、輝点描画図形が規定の画面位置からX+方向にあるする。この場合、画面がX-方向に流れるようにUAV200の移動制御が行なわれる。この結果、画面中における輝点描画図形の位置は、X-方向に移動する。こうして、画面中における輝点描画図形の位置が常に一定の位置となるように飛行制御が行なわれる。この結果、輝点描画図形を追うようにUAVが飛行する。以上の輝点描画図形に追従させる飛行制御に係る処理は、飛行制御部214で行なわれる。なお、以下のステップS102~S106の処理も飛行制御部214で行なわれる。
次に、輝点描画図形の向きと縦横比に基づく、UAV200の姿勢制御が行なわれる(ステップS103)。この処理では、画面中の輝点描画図形が予め定めた向き、および予め定めた縦横比に最も近くなるようにUAV200の姿勢の調整が行なわれる。
ステップS103の処理を行うと、画面中における輝点描画図形の位置が変化する。そこで、ステップS104の判定を行い、画面中における輝点描画図形の位置のずれがあれば、ステップ102以下の処理を再度実行する。画面中における輝点描画図形の位置のずれがなければ、ステップS105に進む。
ステップS105では、輝点描画図形の画面中での大きさに基づく、UAV200の位置の制御が行なわれる。この処理では、画面中の輝点描画図形が予め定めた大きさとなるようにUAV200の位置の調整が行なわれる。この処理により、対象物とUAV200(カメラ201)の間の距離が予め定めた特定のもとなる。
そして、次の処理タイミングであるか否かの判定が行われ(ステップS106)、次の処理タイミングであれば、ステップS101以下の処理を繰り返す。例えば、ステップS101~S104の処理は、0.5秒~2秒間隔で繰り返し行われる。
以上の処理によれば、輝点301が図形を描画すると共に、この図形が経路302に沿って移動するので、輝点301を利用したUAV200の姿勢制御、壁面300から距離を保つ飛行制御、および飛行経路の制御が行なわれる。すなわち、UAV200は、壁面300に対する姿勢および壁面300からの離間距離の制御が行なわれつつ、輝点301の移動経路302に沿って輝点301を追うように(正確には、輝点301で形成される輝点描画図形を追うように)移動する。
(優位性)
本実施形態によれば、ポイント指示を行う誘導用のレーザー光を用いて、TS100により対象物の特定の部位に効率よくUAVを誘導できる。この技術では、UAV200は画像処理により対象物に対する姿勢と位置の調整を行う。この技術では、位置制御のために、レーダーやレーザースキャンのための装置、更に高精度なIMUをUAVの側で持つ必要はない。そのため、対象物に対するUAVの姿勢制御および位置制御に係るUAVの側の負担を軽くできる。
操縦者によるマニュアル操作で壁面300から一定の距離を取ってUAV200を飛行させるのは、高度な技術を要し、また困難な場合がある。これに対して、本実施形態の技術では、高度な操縦テクニックを必要とせずに、壁面300に沿っての飛行制御が可能となる。
2.第2の実施形態
UAV200からカメラ201が撮影した画像のデータが送信され、それをTS100や他のデータ処理装置で受信し、そのデータを地上の側で処理し、その結果を受けた飛行制御信号をUAV200に送信し、UAV200の操縦を行ってもよい。この場合、図3の飛行制御装置がTS100や地上設置型の装置として用意され、飛行制御装置210で行なわれるポイント指示用レーザー光の輝点に係る処理が地上の側で行われる。この場合、UAV200に搭載するハードウェアが簡素化され、またUAV200の側での演算の負担が軽減される。
3.第3の実施形態
例えば、機体の水平制御(図1のY軸およびX軸回りの姿勢制御)は、UAV200が備えたIMUや傾斜センサの出力を用いて行う。そして、図1のZ軸回りの姿勢制御を輝点描画図形の画像中におけるZ軸およびY軸方向における寸法に基づいて行う。すなわち、輝点描画図形の撮影画像の画面中におけるZ軸方向およびY軸方向における寸法の比率が、予め定めた値(あるいは範囲)となるようにUAV200のZ軸回りにおける姿勢制御を行う。
4.第4の実施形態
UAV200の機体に対してカメラ201の向きが可変制御できる形態も可能である。この場合に、ポイント指示用レーザー光の輝点で描かれる図形(輝点描画図形)を用いてカメラ201の指向方向の制御(姿勢制御)を行ってもよい。この場合、UAV200は、カメラ201の姿勢を制御するカメラ姿勢制御装置を備える。図5には、カメラ姿勢制御装置220を備えたUAV200のブロック図の例が示されている。
例えば、対象面が傾斜面である場合、機体を傾けての飛行は難しい場合があるので、機体は水平とし、カメラ201の光軸が対象面に垂直となるようにカメラ201を傾ける。この際の処理に、輝点描画図形を用いてもよい。この場合、輝点描画図形の縦横比が特定の値となるように、カメラ201の向きが調整される。なお、カメラ201の向きの調整が行なわれると、画面中での輝点描画図形の位置が変わるので、輝点描画図形の画面中での位置が特定の位置で、且つ、その縦横比が特定の値となるように、カメラ201の向きの調整とUAV200の位置(および姿勢)の調整が交互に繰り返し行われる。
カメラ201の姿勢制御とUAV200の姿勢制御の両方を、輝点描画画像を用いて行う形態も可能である。
5.第5の実施形態
基本的にUAVをマニュアル操縦で飛行させ、細かい姿勢や位置の調整が輝点描画画像を用いて行われるセミオートの態様も可能である。
6.具体例
以下、コンクリートで補強した法面の検査を行う場合の具体例を説明する。この場合、図1の壁面300がコンクリートで補強された法面となる。以下、図1の符号300を法面と捉えて説明を行う。まず前提として、TS100により壁面300の複数の点の測位(あるいはレーザースキャン)が行われ、壁面300の三次元モデルがTS100の側で得られているとする。あるいは、法面300の三次元データが予め用意されており、それがTS100に入力されていてもよい。
ここで、法面300の撮影位置を経路302として設定する。この設定は、以下のようにして行われる。例えば、TS100にノート型PCを接続し、TS100が記憶する法面300の三次元モデルをノート型PCのディスプレイに表示する。この三次元モデルは、TS100を原点とする三次元座標上または地図座標系(経度・緯度・平均水面からの高度で座標が指定される座標系)上で記述される。そして、このノート型PCを操作して法面300の三次元モデル上に経路302を設定する。
法面300の三次元モデル上に経路302を設定することで、経路302の三次元空間中での位置が特定される。TS100は、上記座標系上の既知の位置に設置される。そして、TS100からポイント指示用レーザー光を法面300の経路302の出発点の位置に照射し、輝点301を法面300の表面に形成する。この際、TS100の描画機能を用いて輝点301により図4の図形を描画する。次に、輝点301により形成される図形をカメラ201の画面が捉える位置までUAV300をマニュアル操縦で飛行させる。
次に、TS100の機能を用いて輝点301により形成される図形を経路302に沿って移動させる。TS100は、本来精密な位置の測量を行う測量装置であり、三次元位置が指定されれば、その点に向けてポイント指示用レーザー光(測距用レーザー光)を照射することができる。この機能を用いて輝点301により形成される図形を経路302に沿って移動させる。
UAV200は、図6に示す処理を行い、輝点301により形成される図形を追い、当該図形の移動に追従して飛行する。この際、当該図形の見え方を用いた位置制御と姿勢制御が行われる。また、飛行の過程でカメラ201により法面300の撮影が行われる。すなわち、カメラ201により経路302に沿った法面300の動画撮影が行われる。
以上の例では、TS100により法面300の三次元情報が得られており、TS100により法面300上で輝点301を動かすことで、UAV200の飛行制御が行われる。これは、TS100による輝点301を利用した間接的なUAV200の飛行制御と捉えることができる。
通常、法面300の検査は、定期的に行われる。これは、橋梁やトンネルの内壁等の場合も同じである。よって、経路302を登録しておけば、次回の検査も同様な飛行制御を行うことができ、作業の手間を省くことができる。
(その他)
TS100において、測距光の光源とは別に、ポイント指示用レーザー光の光源を用意する形態も可能である。また、ポイント指示用レーザー光の光源として、TSでなく、輝点の位置制御と描画機能を有するレーザーポインタを用いることもできる。また、輝点描画図形の形状変更によってUAVに動作指示を行う形態も可能である。例えば、緊急帰還の指示を輝点描画図形の形状の変更で行う形態等が可能である。
本実施形態で示す技術は、トンネルの壁面や天井、建物の外壁面、室内の壁面や天井、崖等の法面、橋梁の側面や裏面、橋脚の壁面、煙突の壁面、重油備蓄タンクやガスタンク等の外壁面、各種プラント設備の外壁面、パイプライン設備の外壁面、工場設備の外壁面、船舶や航空機の外側表面等をUAVから撮影する技術に利用することができる。
図2の輝点描画部108を独立したハードウェアとして、そこからTS100に輝点描画のための制御信号を送信する形態も可能である。
図5の構成において、飛行制御装置210とカメラ姿勢制御装置220を分離せず、統合した構成も可能である。この場合、統合された制御部でUAV200の飛行制御とカメラ201の姿勢制御とが行なわれる。
カメラ201としてステレオカメラを採用する形態も可能である。この場合、輝点301とUAV200の相対的な三次元位置および向きの関係が撮影画像から特定でき、それを利用して壁面300に対するUAV200の姿勢と位置の制御が行なわれる。すなわち、ステレオ画像を利用して輝点301に対して、常に特定の位置関係となるようにUAV200の姿勢と位置の制御を行うことで、一定の位置および姿勢の関係を維持した状態で輝点301を追いかけるようにUAV200の飛行制御が行なわれる。
この場合、ステレオ画像に基づく輝点位置算出部、輝点の位置に対して特定の相対位置となるようにUAVの飛行を制御する飛行制御装置を備えたハードウェアを用意する。このハードウェアは、UAVに装備してもいし、地上側に配置してもよい。
100…TS(トータルステーション)、200…UAV、201…カメラ、300…壁面、301…輝点、302…輝点の移動軌跡。

Claims (2)

  1. 測距光を兼ねるレーザーポイント光を発光するトータルステーションを用いた無人航空機の制御方法であって、
    既知の位置に設置した前記トータルステーションから対象物に前記測距光を兼ねるレーザーポイント光を照射することで前記対象物上において輝点による描画図形の形成を行い、
    無人航空機に搭載したカメラにより前記対象物における前記描画図形を撮影し、
    前記カメラが撮影した画像中に写った前記描画図形が特定の画面位置に写り、且つ、前記描画図形の画面上での大きさが規定のものとなるように前記無人航空機の飛行制御が行われ、
    予め設定された特定の経路に沿って前記トータルステーションからの前記レーザーポイント光の照射位置を移動させることで、前記無人航空機を前記経路に沿って飛行させ、
    前記測距光を兼ねるレーザーポイント光により前記トータルステーションから前記輝点までの距離が計測され、
    前記計測された距離に基づき、前記描画図形が予め定めた大きさとなるように調整される無人航空機の制御方法。
  2. 測距光を兼ねるレーザーポイント光を発光するトータルステーションを用いた無人航空機の制御をコンピュータに行なわせるためのプログラムであって、
    コンピュータに
    既知の位置に設置した前記トータルステーションから対象物に前記測距光を兼ねるレーザーポイント光を照射することで前記対象物上において輝点による描画図形の形成と、
    無人航空機に搭載したカメラによる前記対象物における前記描画図形の撮影と、
    前記カメラが撮影した画像中に写った前記描画図形が特定の画面位置に写り、且つ、前記描画図形の画面上での大きさが規定のものとなるように前記無人航空機の飛行制御と、
    予め設定された特定の経路に沿って前記トータルステーションからの前記レーザーポイント光の照射位置を移動させることで、前記無人航空機の前記経路に沿っての飛行と
    を実行させ、
    前記測距光を兼ねるレーザーポイント光により前記トータルステーションから前記輝点までの距離が計測され、
    前記計測された距離に基づき、前記描画図形が予め定めた大きさとなるように調整される無人航空機の制御用プログラム。
JP2017201004A 2017-10-17 2017-10-17 無人航空機の制御方法および無人航空機の制御用プログラム Active JP7022559B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017201004A JP7022559B2 (ja) 2017-10-17 2017-10-17 無人航空機の制御方法および無人航空機の制御用プログラム
CN201811131254.1A CN109669468B (zh) 2017-10-17 2018-09-27 测量装置、无人机及其控制装置、控制方法及存储介质
EP18199439.3A EP3474109B1 (en) 2017-10-17 2018-10-09 Measuring device, control device for unmanned aerial vehicle and method for controlling unmanned aerial vehicle
US16/160,187 US11048276B2 (en) 2017-10-17 2018-10-15 Measuring device, control device for unmanned aerial vehicle and computer program product for controlling unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201004A JP7022559B2 (ja) 2017-10-17 2017-10-17 無人航空機の制御方法および無人航空機の制御用プログラム

Publications (2)

Publication Number Publication Date
JP2019073182A JP2019073182A (ja) 2019-05-16
JP7022559B2 true JP7022559B2 (ja) 2022-02-18

Family

ID=63832247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201004A Active JP7022559B2 (ja) 2017-10-17 2017-10-17 無人航空機の制御方法および無人航空機の制御用プログラム

Country Status (3)

Country Link
US (1) US11048276B2 (ja)
EP (1) EP3474109B1 (ja)
JP (1) JP7022559B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020405B1 (en) * 2018-02-08 2019-08-19 Fugro N V Method of and apparatus for analyzing images
CN110825098B (zh) * 2019-11-18 2024-05-07 国网江苏省电力有限公司泰州供电分公司 一种无人机配电网智能巡检***
JP7376780B2 (ja) * 2019-11-21 2023-11-09 日本電信電話株式会社 飛行制御システム、飛行制御装置、飛行体、及び飛行制御方法
KR102210083B1 (ko) * 2020-01-02 2021-02-01 고한결 드론제어시스템
JP7360983B2 (ja) 2020-03-31 2023-10-13 関西電力株式会社 データ取得装置および該方法
CN112712567B (zh) * 2020-12-15 2022-12-09 武汉筑梦科技有限公司 发光颜色实时鉴别***及方法
CN113281785A (zh) * 2021-05-20 2021-08-20 风迈智能科技(重庆)有限公司 一种基于无人机激光雷达的输电通道树障预警方法
CN113418509A (zh) * 2021-05-20 2021-09-21 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种用于农业的自动对靶检测装置及检测方法
CN113920185B (zh) * 2021-09-03 2023-04-11 佛山中科云图智能科技有限公司 一种杆塔线路点云数据校核方法
CN114463489B (zh) * 2021-12-28 2023-06-27 上海网罗电子科技有限公司 一种优化无人机航线的倾斜摄影建模***及方法
KR102655895B1 (ko) * 2022-05-09 2024-04-08 중앙대학교 산학협력단 드론과 링크를 이용한 센서 설치장치 및 설치방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116453A (ja) 2015-12-25 2017-06-29 俊雄 小泉 無人機を用いた構造物等の検査方法
WO2017150433A1 (ja) 2016-03-02 2017-09-08 日本電気株式会社 無人航空機、無人航空機制御システム、飛行制御方法およびプログラム記憶媒体
JP2017174159A (ja) 2016-03-24 2017-09-28 日本電気株式会社 無人飛行装置制御システム、無人飛行装置制御方法および画像投影装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665198A (en) * 1969-02-28 1972-05-23 Norwegian Defence Research Est Aircraft landing guidance system using collimated fan shaped radiation beams
JPS5124319B2 (ja) 1972-11-11 1976-07-23
JP4647514B2 (ja) * 2006-02-17 2011-03-09 株式会社日立ソリューションズ 航空画像処理装置および航空画像処理方法
EP2041515A4 (en) 2006-07-13 2009-11-11 Velodyne Acoustics Inc HIGH DEFINITION LIDAR SYSTEM
JP5263804B2 (ja) 2007-04-20 2013-08-14 株式会社トプコン 多点測定方法及び測量装置
JP5124319B2 (ja) 2008-03-21 2013-01-23 株式会社トプコン 測量機、測量システム、測定対象の検出方法、および測定対象の検出プログラム
US20090306840A1 (en) * 2008-04-08 2009-12-10 Blenkhorn Kevin P Vision-based automated landing system for unmanned aerial vehicles
JP5688876B2 (ja) 2008-12-25 2015-03-25 株式会社トプコン レーザスキャナ測定システムの較正方法
WO2011146523A2 (en) 2010-05-17 2011-11-24 Velodyne Acoustics, Inc. High definition lidar system
JP5725922B2 (ja) 2011-03-25 2015-05-27 株式会社トプコン 測量システム及びこの測量システムに用いる測量用ポール及びこの測量システムに用いる携帯型無線送受信装置
TW201249713A (en) * 2011-06-02 2012-12-16 Hon Hai Prec Ind Co Ltd Unmanned aerial vehicle control system and method
FR3003361A1 (fr) * 2013-03-18 2014-09-19 Delta Drone Procede et dispositif de determination d'une interdistance entre un drone et un objet, procede de pilotage de vol d'un drone
US10132928B2 (en) 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
US10061328B2 (en) * 2015-08-12 2018-08-28 Qualcomm Incorporated Autonomous landing and control
JP6634314B2 (ja) 2016-03-01 2020-01-22 株式会社タクマ 無人航空機を用いた施設内点検システム
US11009894B2 (en) * 2016-03-28 2021-05-18 Nec Corporation Unmanned flying device control system, unmanned flying device control method, and inspection device
CN106767706B (zh) * 2016-12-09 2019-05-14 中山大学 一种无人机勘查交通事故现场的航拍图像采集方法及***
IL249870B (en) * 2016-12-29 2022-02-01 Israel Aerospace Ind Ltd Autonomous landing with the help of an image
CN108475075A (zh) * 2017-05-25 2018-08-31 深圳市大疆创新科技有限公司 一种控制方法、装置及云台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116453A (ja) 2015-12-25 2017-06-29 俊雄 小泉 無人機を用いた構造物等の検査方法
WO2017150433A1 (ja) 2016-03-02 2017-09-08 日本電気株式会社 無人航空機、無人航空機制御システム、飛行制御方法およびプログラム記憶媒体
JP2017174159A (ja) 2016-03-24 2017-09-28 日本電気株式会社 無人飛行装置制御システム、無人飛行装置制御方法および画像投影装置

Also Published As

Publication number Publication date
CN109669468A (zh) 2019-04-23
US11048276B2 (en) 2021-06-29
EP3474109B1 (en) 2021-07-14
US20190113937A1 (en) 2019-04-18
JP2019073182A (ja) 2019-05-16
EP3474109A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP7022559B2 (ja) 無人航空機の制御方法および無人航空機の制御用プログラム
US10088332B2 (en) Flight plan preparing method and flying vehicle guiding system
CA3006155C (en) Positioning system for aerial non-destructive inspection
US11822351B2 (en) Three-dimensional information processing unit, apparatus having three-dimensional information processing unit, unmanned aerial vehicle, informing device, method and program for controlling mobile body using three-dimensional information processing unit
US11009893B2 (en) Flying vehicle tracking method, flying vehicle image acquiring method, flying vehicle displaying method and flying vehicle guiding system
EP2818958B1 (en) Flying vehicle guiding system and associated guiding method
JP2018013337A (ja) 飛行物体の誘導位置決め装置および方法
JP2016111414A (ja) 飛行体の位置検出システム及び飛行体
JP2015145784A (ja) 測定システム
JP2017224123A (ja) 無人飛行装置制御システム、無人飛行装置制御方法および無人飛行装置
JP2019039868A (ja) 情報処理装置、情報処理方法および情報処理用プログラム
JP2019016197A (ja) 移動体誘導システム
US20210229810A1 (en) Information processing device, flight control method, and flight control system
JP6946509B2 (ja) 飛行計画作成方法及び飛行体誘導システム
CN109669468B (zh) 测量装置、无人机及其控制装置、控制方法及存储介质
EP3943979A1 (en) Indoor device localization
KR20130066909A (ko) 짐벌 플랫폼의 지향 오차 측정 방법 및 그 장치
JP2020160018A (ja) 船舶の積載物の数量検収システム
KR102504743B1 (ko) 시설물의 모델링을 기반으로 하는 점검 드론의 위치 보정장치 및 보정방법
US20220230550A1 (en) 3d localization and mapping systems and methods
JP2002005658A (ja) ステレオ画像撮影用のシステム
JP2023048409A (ja) 測量システム
JP2006121261A (ja) カメラスタビライザ目標位置補正方法
JP2020160019A (ja) 物体の三次元形状の測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150