WO2021215154A1 - Light transmissive electroconductive layer and light transmissive electroconductive film - Google Patents

Light transmissive electroconductive layer and light transmissive electroconductive film Download PDF

Info

Publication number
WO2021215154A1
WO2021215154A1 PCT/JP2021/011158 JP2021011158W WO2021215154A1 WO 2021215154 A1 WO2021215154 A1 WO 2021215154A1 JP 2021011158 W JP2021011158 W JP 2021011158W WO 2021215154 A1 WO2021215154 A1 WO 2021215154A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting conductive
conductive layer
layer
argon
Prior art date
Application number
PCT/JP2021/011158
Other languages
French (fr)
Japanese (ja)
Inventor
望 藤野
泰介 鴉田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2021517073A priority Critical patent/JP7213962B2/en
Priority to KR1020227030812A priority patent/KR20230004440A/en
Priority to CN202180029837.7A priority patent/CN115443511A/en
Publication of WO2021215154A1 publication Critical patent/WO2021215154A1/en
Priority to JP2022025302A priority patent/JP2022075677A/en
Priority to JP2024001042A priority patent/JP2024032742A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a light-transmitting conductive layer and a light-transmitting conductive film.
  • a low specific resistance is required for the transparent conductive film. Therefore, as a method for producing a transparent conductive film made of ITO having a low resistivity, a method for producing a transparent conductive film made of ITO having a low specific resistance and a horizontal magnetic field of 50 mT and sputtering with a mixed gas containing argon gas has been proposed (for example, Patent Documents). 1). Further, a transparent conductive film made of ITO mixed with xenon or krypton instead of argon gas has been proposed (see, for example, Patent Document 2 below).
  • Patent Document 1 cannot realize a transparent conductive film having a sufficiently low specific resistance. Further, even with the transparent conductive film described in Patent Document 2, there is a limit in achieving a low specific resistance. Further, xenon and krypton are very expensive with respect to argon because of their rarity, and it is preferable to use them in a small amount.
  • the present invention provides a light-transmitting conductive layer and a light-transmitting conductive film having low specific resistance.
  • the present invention (1) has a first main surface and a second main surface which is arranged so as to face each other on one side in the thickness direction of the first main surface at intervals, and in a plane direction orthogonal to the thickness direction.
  • a light-transmitting conductive layer having a single extending layer, the light-transmitting conductive layer contains a conductive oxide, and the conductive oxide is argon and a rare gas having an atomic number larger than that of argon.
  • the present invention (2) includes the light-transmitting conductive layer according to (1), wherein the light-transmitting conductive layer is crystalline.
  • the present invention (3) includes the light-transmitting conductive layer according to (1) or (2), which has a first region containing the noble gas and a second region containing argon in order in the thickness direction.
  • the present invention (4) includes the light-transmitting conductive layer according to any one of (1) to (3), wherein the noble gas is krypton.
  • the present invention (5) includes the light-transmitting conductive layer according to any one of (1) to (4), wherein the conductive oxide further contains indium and tin.
  • the present invention (6) includes the light-transmitting conductive layer according to any one of (1) to (5) and a base material in contact with the first main surface of the light-transmitting conductive layer.
  • the first region includes a light transmissive conductive film including the first main surface.
  • the light-transmitting conductive layer of the present invention has a low specific resistance.
  • the light-transmitting conductive film of the present invention includes the above-mentioned light-transmitting conductive layer, it is excellent in reliability.
  • FIG. 1 is an enlarged cross-sectional view of an embodiment of the light-transmitting conductive layer of the present invention.
  • FIG. 2 is a cross-sectional view of a light-transmitting conductive film provided with the light-transmitting conductive layer shown in FIG.
  • FIG. 3 is a schematic view of a sputtering apparatus for producing the light-transmitting conductive film shown in FIG.
  • FIG. 4 is a cross-sectional view of a modified example of the light-transmitting conductive film shown in FIG. 5A to 5D are enlarged cross-sectional views of a modified example of the light transmissive conductive layer shown in FIG. 1.
  • the second region includes the first main surface and the first region includes the second main surface.
  • FIG. 5B and 5C are deformation examples in which the first region and the second region are alternately arranged
  • FIG. 5D is a deformation example in which argon and a rare gas having an atomic number larger than that of argon are mixed.
  • FIG. 6 is a graph showing the relationship between the amount of oxygen introduced when the amorphous light-transmitting conductive layer is sputtered and formed and the surface resistance of the amorphous light-transmitting conductive layer.
  • 7A to 7B are cross-sectional views of another example of the laminate including the light-transmitting conductive layer, and FIG. 7A shows the light-transmitting conductive layer laminate in which the light-transmitting conductive layer is laminated on the functional layer.
  • FIG. 7B is a light-transmitting conductive film in which a light-transmitting conductive layer is laminated on a transparent base film.
  • the light-transmitting conductive layer 1 shown in FIG. 1 includes a light-transmitting conductive film 10 (see FIG. 2), a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, and an image display device, which will be described later.
  • a heater member light transmissive heater
  • the light transmissive conductive layer 1 is an intermediate member for manufacturing them.
  • the light-transmitting conductive layer 1 is a layer that can be distributed independently and can be used industrially.
  • the light-transmitting conductive layer 1 has a first main surface 2 and a second main surface 3 which is arranged so as to face the first main surface 2 at intervals in the thickness direction.
  • the light-transmitting conductive layer 1 is a single layer extending in the plane direction orthogonal to the thickness direction.
  • the light-transmitting conductive layer 1 has a composition containing a conductive oxide, and is preferably made of a conductive oxide.
  • the conductive oxide is the main component of the light-transmitting conductive layer 1, and contains a small amount of argon and a rare gas having an atomic number larger than that of argon. Specifically, a small amount of argon and a rare gas having an atomic number larger than that of argon are mixed in the conductive oxide.
  • Argon is derived from argon contained in the sputtering gas in the production method described later and is mixed in the conductive oxide. In FIG. 1, argon is drawn as a white circle.
  • Noble gas with an atomic number larger than argon examples include krypton, xenon, and radon. These can be used alone or in combination. Preferred are krypton and xenon, and more preferably krypton (specifically, krypton used alone) from the viewpoint of obtaining low cost and excellent electrical conductivity.
  • the noble gas having an atomic number larger than that of argon is derived from the noble gas contained in the sputtering gas in the production method described later and is mixed in the conductive oxide. In FIG. 1, a noble gas having an atomic number larger than that of argon is drawn as a black circle.
  • the conductive oxide is a matrix that disperses the above-mentioned argon and a rare gas having an atomic number larger than that of argon.
  • the conductive oxide for example, at least one metal selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W.
  • a metal oxide containing a metalloid can be mentioned.
  • the metal oxide may be further doped with the metal atoms and / or metalloid atoms shown in the above group, if necessary.
  • the conductive oxide examples include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin oxide composite oxide (ITO), and antimony.
  • Metal oxides such as tin composite oxide (ATO) can be mentioned.
  • Preferred examples of the conductive oxide include indium tin oxide composite oxide (ITO) containing both indium and tin from the viewpoint of improving transparency and electrical conductivity. If the conductive oxide is ITO, it is more excellent in transparency and conductivity.
  • the ratio of the tin oxide content to the total content of indium oxide (In 2 O 3 ) and tin oxide (SnO 2) in the ITO is, for example, 0.1% by mass or more. It is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and even more preferably 10% by mass or more.
  • the ratio of the number of tin atoms to the number of indium atoms in the ITO used is, for example, 0.001 or more, preferably 0.03 or more, more preferably 0.05 or more, still more preferable.
  • the ratio of the tin oxide content to the total content of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) in the ITO used is, for example, 20% by mass or less, preferably 15% by mass or less, more preferably. Is 13% by mass or less, more preferably 12% by mass or less.
  • the ratio of the number of tin atoms to the number of indium atoms in the ITO used is, for example, 0.23 or less, preferably 0.16 or less, more preferably 0.14 or less, still more preferable. Is 0.13 or less.
  • the ratio of the tin oxide content is below the above-mentioned upper limit and / or the ratio of the number of tin atoms to the number of indium atoms is below the above-mentioned upper limit, the light-transmitting conductive layer 1 that is easily crystallized by heating is obtained. be able to.
  • the ratio of the number of tin atoms to the number of indium atoms in ITO can be obtained, for example, by specifying the abundance ratio of indium atoms and tin atoms in the object to be measured by X-ray Photoelectron Spectroscopy. ..
  • the above-mentioned content ratio of tin oxide in ITO is obtained, for example, from the abundance ratio of the indium atom and the tin atom thus specified.
  • the abundance ratio of indium atoms and tin atoms in ITO and the above-mentioned content ratio of tin oxide can be judged from the content ratios of indium (In 2 O 3 ) and tin oxide (SnO 2) of the ITO target used at the time of sputter film formation. good.
  • the light-transmitting conductive layer 1 includes a first region 4 containing a rare gas having an atomic number larger than that of argon and a second region 5 containing argon in order in the thickness direction. ..
  • the first region 4 includes, for example, the first main surface 2.
  • a noble gas having an atomic number larger than that of argon is dispersed with respect to the conductive oxide in the thickness direction and the plane direction.
  • the content ratio of the rare gas having an atomic number larger than that of argon is, for example, 0.0001 atom% or more, preferably 0.001 atom% or more, and for example, 1.0 atom% or less. More preferably 0.7 atom% or less, further preferably 0.5 atom% or less, further preferably 0.3 atom% or less, particularly preferably 0.2 atom% or less, most preferably 0.15 atom% or less. Is.
  • the content ratio of the rare gas having an atomic number larger than that of argon is within the above range, the light-transmitting conductive layer 1 is excellent in specific resistance and transparency.
  • the mixing of argon is allowed in the first region 4.
  • the content R rg1 of the rare gas from the high atomic number argon in the first region 4 is higher than the content ratio R rg2 of the rare gas from the high atomic number argon in the second region 5.
  • R rg1 / R rg2 is, for example, 1 excess, preferably 1.2 or more, more preferably 1.5 or more, and, for example, 10,000 or less.
  • Rare gases having an atomic number higher than that of argon in the first region 4 can be obtained by, for example, Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and / or fluorescent X-ray analysis. , But preferably, from the viewpoint of ease of analysis, it is identified by fluorescent X-ray analysis. Details of X-ray fluorescence analysis will be described in Examples. When the Rutherford backscattering analysis is performed on the first region 4 and the light transmissive conductive layer 1 including the first region 4, it cannot be quantified because the noble gas atom content is not equal to or higher than the detection limit value (lower limit value). When the presence of a noble gas atom is identified by performing fluorescent X-ray analysis, it is determined that the light-transmitting conductive layer 1 includes a region having a Kr content ratio of 0.0001 atom% or more.
  • the ratio R1 (thickness ratio) occupied by the first region 4 in the light transmissive conductive layer 1 is, for example, 0.99 or less, preferably 0.95 or less, more preferably 0.9 or less, and further. It is preferably 0.8 or less, particularly preferably 0.7 or less, and for example, 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0. .2 or more, especially preferably 0.3 or more.
  • the ratio R1 occupied by the first region 4 is equal to or less than the above upper limit, the specific resistance of the light transmissive conductive layer 1 can be lowered, and a large gain amount (described later) of the specific resistance can be obtained.
  • the second region 5 includes the second main surface 3.
  • argon is dispersed with respect to the conductive oxide in the thickness direction and the plane direction.
  • the content ratio of the rare gas having an atomic number larger than that of argon is, for example, 0.001 atom% or more, and for example, 0.5 atom% or less.
  • the content ratio of argon is, for example, 0.001 atom% or more, preferably 0.01 atom% or more, and for example, 0.5 atom% or less, preferably 0. It is 4 atom% or less, more preferably 0.3 atom% or less, still more preferably 0.2 atom% or less.
  • the light-transmitting conductive layer 1 cannot be formed under high temperature conditions (for example, 200 ° C.), if the content ratio of argon is within the above range, the specific resistance and / or the gain amount of the specific resistance (described later). ) Is excellent, and the light-transmitting conductive layer 1 is obtained.
  • the argon content ratio R Ar2 in the second region 5 is higher than the argon content ratio R Ar1 in the first region 4.
  • R Ar2 / R Ar1 is, for example, 1 excess, preferably 1.2 or more, more preferably 1.5 or more, and, for example, 10,000 or less.
  • Argon in the light-transmitting conductive layer 1 is identified (determined to exist) by, for example, Rutherford Backscattering Spectroscopy (RBS), and is also quantified. Details of the Rutherford backscatter analysis method are described in Examples.
  • the ratio (thickness ratio) R2 occupied by the second region 5 in the light transmissive conductive layer 1 is, for example, 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, and further. It is preferably 0.2 or more, particularly preferably 0.3 or more, and for example, 0.99 or less, preferably 0.95 or less, more preferably 0.9 or less, still more preferably 0. It is 8.8 or less, particularly preferably 0.7 or less.
  • the ratio R2 occupied by the second region 5 is equal to or greater than the above lower limit, the specific resistance of the light transmissive conductive layer 1 can be lowered, and a large gain amount (described later) of the specific resistance can be obtained.
  • the ratio R2 occupied by the second region 5 is equal to or less than the above-mentioned upper limit, the light-transmitting conductive layer 1 is excellent in transparency and electrical conductivity.
  • the boundary between the first region 4 and the second region 5 is drawn by a virtual line (dashed line).
  • the boundary between the first region 4 and the second region 5 may not be discriminated.
  • the region having a high content ratio R3 of the rare gas having an atomic number larger than that of argon is the first region 4
  • the region having a high content ratio R4 of argon is the first region. 2 regions 5
  • the light-transmitting conductive layer 1 is, for example, amorphous (amorphous) or crystalline (crystalline). Amorphous is a film property that does not contain crystal grains, and crystalline is a film property that contains crystal grains. From the viewpoint of lowering the specific resistance, the light-transmitting conductive layer 1 is preferably crystalline, and more preferably contains a region in which crystal grains are present as a main region. In terms of plan view, including a region in which crystal grains are present means, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and further preferably 85% or more of the light transmissive conductive layer 1.
  • the light-transmitting conductive layer 1 includes a region in which crystal grains are present as a main region, a low resistivity can be obtained. Further, in the present application, in the case of the light transmissive conductive layer 1 having particularly high crystallinity in a plan view, specifically, the region where the crystal grains are present is 90% or more, preferably 95% or more, and also. When it is 100% or less, the light-transmitting conductive layer 1 can also be expressed as crystalline. If it is crystalline, crystal grains are provided on substantially the entire surface, so that even lower resistivity can be obtained. In the vicinity of the grain boundary, which is the terminal end of the crystal grain, the crystallinity may inevitably decrease, and even if it is crystalline, it does not have to be 100%.
  • the crystallinity of the light-transmitting conductive layer 1 is determined, for example, by observing the surface of the light-transmitting conductive layer 1 from the first main surface side or the second main surface side with TEM and confirming the presence of crystal grains. can. If crystal grains are observed, it is crystalline. Specific observation methods will be described in detail in Examples.
  • the light-transmitting conductive layer 1 is crystalline is determined by immersing the light-transmitting conductive layer 1 in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, followed by washing with water and drying. It can also be determined by measuring the resistance between terminals within about 15 mm with respect to the second main surface 3 of the light transmissive conductive layer 1. In the light-transmitting conductive layer 1 after immersion, washing with water, and drying, when the resistance between terminals (resistance between two terminals) between 15 mm is 10 k ⁇ or less, the light-transmitting conductive layer 1 is crystalline.
  • the thickness of the light-transmitting conductive layer 1 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, and for example, 1000 nm or less, preferably 300 nm. Less than, more preferably 250 nm or less, still more preferably 200 nm or less, still more preferably 160 nm or less, particularly preferably less than 150 nm, most preferably 148 nm or less. When the thickness of the light-transmitting conductive layer 1 is within the above range, the light-transmitting conductive layer 1 having excellent transparency and / or specific resistance can be obtained.
  • the total light transmittance (JIS K 7375-2008) of the light-transmitting conductive layer 1 is, for example, 60% or more, preferably 80% or more, more preferably. Is 85% or more, and is, for example, 100% or less.
  • the surface resistance of the light-transmitting conductive layer 1 is, for example, 200 ⁇ / ⁇ or less, preferably 100 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ or less, still more preferably. It is 15 ⁇ / ⁇ or less, particularly preferably 13 ⁇ / ⁇ or less, and is, for example, 0 ⁇ / ⁇ or more, and further 1 ⁇ / ⁇ or more.
  • the surface resistance can be measured by the 4-terminal method in accordance with JIS K7194.
  • the specific resistance of the light-transmitting conductive layer 1 is, for example, 5.000 ⁇ 10 -4 ⁇ ⁇ cm or less, preferably 2.500 ⁇ 10 -4 ⁇ ⁇ cm. Cm or less, more preferably 2.000 ⁇ 10 -4 ⁇ ⁇ cm or less, still more preferably 2.000 ⁇ 10 -4 ⁇ ⁇ cm or less, and particularly preferably 1.800 ⁇ 10 -4 ⁇ ⁇ cm or less.
  • the specific resistance is obtained by multiplying the surface resistance by the thickness.
  • the total content ratio of argon and the rare gas having an atomic number higher than that of argon in the light-transmitting conductive layer 1 is, for example, in the entire thickness direction, for example.
  • 1.2 atom% or less preferably 1.1 atom% or less, more preferably 1.0 atom% or less, still more preferably 0.8 atom% or less, particularly preferably 0.5 atom% or less, still more preferably.
  • It is 0.4 atom% or less, most preferably 0.3 atom% or less, and particularly preferably 0.2 atom% or less.
  • the impurity atom in the light transmissive conductive layer 1 that is, argon and the rare gas having an atomic number higher than that of argon. Since the total content ratio of (and) is small, the light-transmitting conductive layer 1 having high electron mobility and low specific resistance can be obtained.
  • the light-transmitting conductive film 10 has a film shape extending in the plane direction.
  • the light-transmitting conductive film 10 includes a resin layer 11 and a light-transmitting conductive layer 1 in order toward one side in the thickness direction.
  • the resin layer 11 forms the other surface of the light-transmitting conductive film 10 in the thickness direction.
  • the resin layer 11 has a film shape extending in the plane direction.
  • the resin layer 11 is a base material layer.
  • the resin layer 11 has flexibility.
  • the resin layer 11 includes a transparent base film 13 and a functional layer 14 in order toward one side in the thickness direction.
  • the resin layer 11 is preferably not adjacent to the glass substrate.
  • the transparent base film 13 has a film shape extending in the plane direction.
  • the transparent base film 13 forms the other surface of the resin layer 11 in the thickness direction.
  • the material of the transparent base film 13 is a polymer.
  • the polymer include olefin resins such as polyethylene, polypropylene and cycloolefin polymer (COP), and polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate and polyethylene naphthalate, for example, polyacrylate and / or polymethacrylate.
  • (Meta) acrylic resins such as, for example, resins such as polycarbonate resins, polyether sulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, and polystyrene resins.
  • resins such as polycarbonate resins, polyether sulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, and polystyrene resins.
  • a polyester resin is preferable, and PET is more preferable.
  • the thickness of the transparent base film 13 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further. It is preferably 75 ⁇ m or less.
  • the total light transmittance (JIS K 7375-2008) of the transparent base film 13 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and 100% or less.
  • the functional layer 14 forms one surface of the resin layer 11 in the thickness direction.
  • the functional layer 14 is arranged on one side of the transparent base film 13 in the thickness direction. Specifically, the functional layer 14 contacts all of one surface of the transparent base film 13 in the thickness direction.
  • the functional layer 14 extends in the plane direction.
  • the functional layer is a layer containing a resin. Examples of the functional layer 14 include a hard coat layer. In such a case, the resin layer 11 includes the transparent base film 13 and the hard coat layer in order toward one side in the thickness direction. In the following description, a case where the functional layer 14 is a hard coat layer will be described.
  • the hard coat layer is a scratch protection layer for making the light transmissive conductive layer 1 less likely to be scratched.
  • the hard coat layer forms one surface of the resin layer 11 in the thickness direction.
  • the hard coat layer is in contact with all of one surface of the transparent base film 13 in the thickness direction.
  • Examples of the material of the hard coat layer include a cured product of the hard coat composition (acrylic resin, urethane resin, etc.) described in JP-A-2016-179686.
  • the thickness of the hard coat layer is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the thickness of the resin layer 11 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 30 ⁇ m or more, and for example, 310 ⁇ m or less, preferably 210 ⁇ m or less. It is more preferably 110 ⁇ m or less, still more preferably 80 ⁇ m or less.
  • the total light transmittance (JIS K 7375-2008) of the resin layer 11 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and for example, 100% or less.
  • the light-transmitting conductive layer 1 forms one surface of the light-transmitting conductive film 10 in the thickness direction.
  • the light-transmitting conductive layer 1 is supported by the resin layer 11 from the other side in the thickness direction.
  • the light-transmitting conductive layer 1 is in contact with all of one surface of the resin layer 11 in the thickness direction. That is, the first main surface 2 of the light-transmitting conductive layer 1 comes into contact with one surface of the resin layer 11 in the thickness direction.
  • the second main surface 3 of the light transmissive conductive layer 1 is exposed on one side in the thickness direction.
  • the resin layer 11, the first region 4, and the second region 5 are sequentially arranged toward one side in the thickness direction.
  • the ratio of the thickness of the light-transmitting conductive layer 1 to the thickness of the resin layer 11 is, for example, 0.00001 or more, preferably 0.01 or more, more preferably 0.1 or more, and for example, 0. It is 5 or less, preferably 0.25 or less.
  • a method for manufacturing the light-transmitting conductive film 10 will be described with reference to FIG.
  • a light-transmitting conductive layer 1 is formed on the resin layer 11 by a roll-to-roll method.
  • the resin layer 11 is prepared. Specifically, the hard coat composition is applied to one surface of the transparent base film 13 in the thickness direction and dried, and then the hard coat composition is cured. As a result, the resin layer 11 is prepared in which the transparent base film 13 and the hard coat layer (functional layer 14) are sequentially provided on one side in the thickness direction.
  • the resin layer 11 is degassed.
  • the pressure of the resin layer 11 is reduced to, for example, 1 ⁇ 10 -1 Pa or less, preferably 1 ⁇ 10 -2 Pa or less, and for example, 1 ⁇ 10 -6 Pa or more. Leave it in the atmosphere. Specifically, the atmosphere around the resin layer 11 is depressurized by using a pump (described later) of the sputtering apparatus 30.
  • the light-transmitting conductive layer 1 is formed into a film by sputtering. Specifically, the light-transmitting conductive layer 1 is formed while the resin layer 11 is conveyed by the sputtering apparatus 30.
  • the sputtering apparatus 30 includes a feeding section 35, a sputtering section 36, and a winding section 37 in this order.
  • the feeding unit 35 includes a feeding roll 38 and a discharge port of the feeding side pump 33.
  • the sputter portion 36 includes a film forming roll 40, a first film forming chamber 41, and a second film forming chamber 42.
  • the film forming roll 40 includes a cooling device (not shown) configured to cool the film forming roll 40.
  • the first film forming chamber 41 accommodates the first target 51, the first gas supply machine 61, and the discharge port of the first pump 71.
  • the first target 51, the first gas supply machine 61, and the discharge port of the first pump 71 are arranged to face each other with respect to the film forming roll 40 at intervals.
  • Examples of the material of the first target 51 include the same materials as those of the above-mentioned conductive oxide.
  • the material of the first target 51 includes a sintered body of a conductive oxide. However, these conductive oxides are not yet mixed with a noble gas having an atomic number larger than that of argon and argon.
  • the first target 51 is configured to apply electric power.
  • a magnet (not shown) is arranged on the opposite side of the film forming roll 40 with respect to the first target 51.
  • the horizontal magnetic field strength on the surface of the first target 51 is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less.
  • the first gas supply machine 61 is configured to supply the first sputtering gas to the first film forming chamber 41.
  • the first sputtering gas contains a rare gas having an atomic number larger than that of argon.
  • a rare gas having an atomic number larger than that of argon for example, a rare gas having an atomic number larger than that of argon, and a first mixture containing a reactive gas such as oxygen. Examples include gas.
  • the first mixed gas is mentioned.
  • the first gas supply machine 61 When the sputtering gas is the first mixed gas, the first gas supply machine 61 includes a rare gas supply machine 63 and a first oxygen gas supply machine 64, and a rare gas having an atomic number larger than that of argon from each of them. And oxygen are supplied to the first film forming chamber 41.
  • the "noble gas" in the rare gas supply machine 63 means a rare gas that does not contain argon and has an atomic number larger than that of argon.
  • the second film forming chamber 42 is arranged adjacent to the first film forming chamber 41 in the circumferential direction of the film forming roll 40. As a result, the first film forming chamber 41 and the second film forming chamber 42 are sequentially arranged in the circumferential direction.
  • the second film forming chamber 42 accommodates the second target 52, the second gas supply machine 62, and the discharge port of the second pump 72.
  • the second target 52, the second gas supply machine 62, and the discharge port of the second pump 72 are arranged to face each other with respect to the film forming roll 40 at intervals.
  • Examples of the material of the second target 52 include the same materials as those of the above-mentioned conductive oxide.
  • the material of the second target 52 includes a sintered body of a conductive oxide. However, these conductive oxides are not yet mixed with a noble gas having an atomic number larger than that of argon and argon.
  • the second target 52 is configured to apply electric power.
  • a magnet (not shown) is arranged on the opposite side of the film forming roll 40 with respect to the second target 52.
  • the horizontal magnetic field strength on the surface of the second target 52 is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less.
  • the second gas supply machine 62 is configured to supply the second sputtering gas to the second film forming chamber 42.
  • the second sputtering gas include argon, and examples thereof include a second mixed gas containing argon and a reactive gas such as oxygen.
  • a second mixed gas is preferably used. If the second sputtering gas is the second mixed gas, the second gas supply machine 62 includes an argon supply machine 65 and a second oxygen gas supply machine 66, from which argon and oxygen are second. It is supplied to the film forming chamber 42.
  • the take-up unit 37 includes a take-up roll 39 and a discharge port of the take-up side pump 34.
  • the sputtering gas is supplied from the first gas supply machine 61 to the first film forming chamber 41.
  • the pressure of the noble gas having an atomic number higher than that of argon is, for example, 0.01 Pa or more, preferably 0.05 Pa or more. For example, it is 0.8 Pa or less, preferably 0.5 Pa or less, and more preferably 0.2 Pa or less.
  • the sputtering gas is supplied from the second gas supply machine 63 to the first film forming chamber 41.
  • the pressure of argon (if the sputtering gas is the second mixed gas, the partial pressure of argon) is, for example, 0.02 Pa or more, preferably 0.1 Pa or more, and for example, 1 Pa or less, preferably 0. It is .5 Pa or less.
  • the cooling device is driven to cool the film forming roll 40 (the surface).
  • the temperature (surface temperature) of the film forming roll 40 is, for example, 20.0 ° C. or lower, preferably 10.0 ° C. or lower, more preferably 0.0 ° C. or lower, and for example, ⁇ 50 ° C. or higher. Preferably, it is -25 ° C or higher.
  • the resin layer 11 is fed out from the feeding roll 38 by driving the feeding roll 38, the film forming roll 40, and the winding roll 39.
  • the resin layer 11 moves in order between the first film forming chamber 41 and the second film forming chamber 42 while contacting the surface of the film forming roll 40.
  • the resin layer 11 is cooled by contact with the surface of the film forming roll 40.
  • the sputtering gas is ionized to generate an ionized gas.
  • the ionized gas collides with the first target 51, the target material of the first target 51 becomes particles and is knocked out, and the particles adhere (deposit) to the resin layer 11 to form the first amorphous substance.
  • the conductive film 81 is formed.
  • a rare gas a rare gas having an atomic number larger than that of argon, preferably krypton contained in the sputtering gas is taken into the first amorphous conductive film 81 together with the particles.
  • the amount of the noble gas taken into the first amorphous conductive film 81 is adjusted by the magnetic field strength, the power density of the electric power applied to the first target 51, and / or the pressure in the first film forming chamber 41. Further, the thickness of the first amorphous conductive film 81 is adjusted by the power density of the electric power applied to the first target 51.
  • the sputtering gas is ionized in the vicinity of the second target 52 to generate an ionized gas.
  • the ionized gas collides with the second target 52, the target material of the second target 52 becomes particles and is knocked out, and the particles adhere (deposit) to the first amorphous conductive film 81.
  • the second amorphous conductive film 82 is formed.
  • argon contained in the sputtering gas is taken into the second amorphous conductive film 82 together with the particles.
  • the amount of the noble gas taken into the second amorphous conductive film 82 is adjusted by the magnetic field strength, the power density of the electric power applied to the second target 52, and / or the pressure in the second film forming chamber 42. Further, the thickness of the second amorphous conductive film 82 is adjusted by the power density of the electric power applied to the second target 52.
  • an amorphous light-transmitting conductive film 10 including the resin layer 11, the first amorphous conductive film 81, and the second amorphous conductive film 82 can be obtained.
  • the first amorphous conductive film 81 and the second amorphous conductive film 82 form the first region 4 and the second region 5, respectively. Since the first amorphous conductive film 81 and the second amorphous conductive film 82 each contain the same conductive oxide as a main component, their boundaries may not be observed.
  • the light-transmitting conductive layer 1 (amorphous light-transmitting conductive layer 1) is formed on one surface of the resin layer 11 in the thickness direction.
  • the light-transmitting conductive film 10 including the resin layer 11 and the light-transmitting conductive layer 1 is manufactured.
  • the total light transmittance (JIS K 7375-2008) of the light-transmitting conductive film 10 is, for example, 60% or more, preferably 80% or more, more preferably 83% or more, and for example, 100%. Below, it is preferably 95% or less.
  • the amorphous light-transmitting conductive layer 1 is crystallized. Specifically, for example, the amorphous light-transmitting conductive film 10 is heated.
  • the heating temperature is, for example, 80 ° C. or higher, preferably 110 ° C. or higher, more preferably 150 ° C. or higher, and for example, less than 200 ° C., preferably 180 ° C. or lower.
  • the heating time is, for example, 0.2 minutes or longer, preferably 5 minutes or longer, more preferably 10 minutes or longer, still more preferably 30 minutes or longer, still more preferably 1 hour or longer, and for example. 5 hours or less, preferably 3 hours or less.
  • the light-transmitting conductive film 10 including the resin layer 11 and the light-transmitting conductive layer 1 including the crystalline region is manufactured.
  • the total light transmittance (JIS K 7375-2008) of the crystalline light-transmitting conductive film 10 after heating the amorphous light-transmitting conductive layer 1 is, for example, 65% or more, preferably 80%. As mentioned above, it is more preferably 83% or more, and for example, 100% or less, preferably 95% or less.
  • This light-transmitting conductive film 10 is used for various articles.
  • the article include a touch sensor, an electromagnetic wave shield, a dimming element (for example, a voltage-driven dimming element such as PDLC, PNLC, SPD, for example, a current-driven dimming element such as electrochromic (EC)), and photoelectric.
  • Conversion elements such as electrodes of solar cell elements such as organic thin-film solar cells and dye-sensitized solar cells
  • heat ray control members for example, near-infrared reflecting and / or absorbing members, for example, far-infrared reflecting and / or absorbing members
  • Antenna member light transmissive antenna
  • heater member light transmissive heater
  • image display device lighting, etc.
  • the article includes a light-transmitting conductive film 10 and a member corresponding to each article.
  • Such an article can be obtained by fixing the light transmissive conductive film 10 and the member corresponding to each article.
  • the light-transmitting conductive layer 1 (including the light-transmitting conductive layer 1 having a pattern shape) in the light-transmitting conductive film 10 and the member corresponding to each article are connected via a fixing functional layer. And fix it.
  • Examples of the fixing functional layer include an adhesive layer and an adhesive layer.
  • the fixing functional layer any material having transparency can be used without particular limitation.
  • the fixing functional layer is preferably formed of a resin.
  • the resin include acrylic resin, silicone resin, polyester resin, polyurethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, epoxy resin, fluororesin, natural rubber, and synthetic rubber.
  • an acrylic resin is preferably selected as the resin from the viewpoint of excellent optical transparency, exhibiting adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance. NS.
  • the resin forming the fixing functional layer includes a known corrosion inhibitor and a migration inhibitor (for example, a material disclosed in Japanese Patent Application Laid-Open No. 2015-0222397) in order to suppress corrosion and migration of the light-transmitting conductive layer 1. Can also be added. Further, a known ultraviolet absorber may be added to the fixing functional layer (resin forming the fixing functional layer) in order to suppress deterioration of the article when it is used outdoors. Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilides compounds, cyanoacrylate compounds, and triazine compounds.
  • the resin layer 11 in the light-transmitting conductive film 10 and the member corresponding to each article can be fixed via the fixing functional layer.
  • the light-transmitting conductive layer 1 (including the light-transmitting conductive layer 1 having a pattern shape) is exposed in the light-transmitting conductive film 10. Therefore, the cover layer can be arranged on one surface of the light-transmitting conductive layer 1 in the thickness direction.
  • the cover layer is a layer that covers the light-transmitting conductive layer 1, and can improve the reliability of the light-transmitting conductive layer 1 and suppress functional deterioration due to scratches.
  • the material of the cover layer is preferably a dielectric.
  • the cover layer is formed from a mixture of resin and inorganic materials.
  • the resin include the resin exemplified by the fixing functional layer.
  • the inorganic material include materials exemplified by the material of the intermediate layer described later.
  • a corrosion inhibitor, a migration inhibitor, and an ultraviolet absorber can be added to the above-mentioned mixture of the resin and the inorganic material from the same viewpoint as the above-mentioned fixing functional layer.
  • the above-mentioned article is excellent in reliability because it includes the above-mentioned light-transmitting conductive film 10. Specifically, since the touch sensor, the light control element, the photoelectric conversion element, the heat ray control member, the antenna, the electromagnetic wave shield member, the image display device, the heater member, and the illumination include the above-mentioned light transmissive conductive film 10. Excellent reliability.
  • one light-transmitting conductive layer A made of a conductive oxide containing a rare gas having an atomic number larger than that of argon is more than another light-transmitting conductive layer B made of a conductive oxide containing argon.
  • Has low resistivity Specifically, one light-transmitting conductive layer A (corresponding to Comparative Example 2) composed of only the first region 4 is more than another light-transmitting conductive layer B (corresponding to Comparative Example 1) consisting of only the second region 5. , Has low resistivity.
  • the light-transmitting conductive layer 1 of this embodiment includes a first region 4 and a second region 5, so that the specific resistance (surface resistivity) of one light-transmitting conductive layer A It is expected (expected) to have a specific resistance (surface resistance) that is a combination of the specific resistance (surface resistance) of the other light-transmitting conductive layer B described above.
  • the specific resistance of the light transmissive conductive layer 1 of this embodiment has a lower specific resistance than the expected specific resistance (expected value, which will be described later) as described above. This is demonstrated by having the specific resistance gain amount described in later examples.
  • the gain amount of the specific resistance of the light transmissive conductive layer 1 is, for example, 1.0% or more, preferably 5.0% or more, more preferably 10.0% or more, and further, 12.0. % Or more, further 14.0% or more, further 15.0% or more, further 17.0% or more, further 18.0% or more, further 20.0% or more is preferable. Further, for example, it is 50.0% or less. How to obtain the gain amount of the specific resistance will be described in a later embodiment.
  • the conductive oxide contains argon and a rare gas having an atomic number larger than that of argon, while the specific resistance of the light-transmitting conductive layer 1 of one embodiment. Is surprisingly lower than the specific resistance of the light-transmitting conductive layer A.
  • the light transmissive conductive film 10 (see FIG. 2), the touch sensor, the dimming element, the photoelectric conversion element, the heat ray control member, the antenna, the electromagnetic wave shield member, and the image display device include the light transmissive conductive layer 1 described above, Excellent resistance and reliability. That is, since the above-mentioned article includes the above-mentioned light-transmitting conductive layer 1, it is excellent in resistance characteristics and reliability.
  • Modification example In the modified example, the same members and processes as in one embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as that of one embodiment, except for special mention. Further, one embodiment and a modification thereof can be combined as appropriate.
  • the first region 4 mixed with a rare gas having an atomic number larger than that of argon includes the first main surface 2 in contact with the resin layer 11.
  • the second region 5 mixed with argon may include the first main surface 2.
  • the second region 5 comes into contact with the resin layer 11.
  • the first region 4 is located on the first main surface 2 side. According to this configuration, a large gain amount of specific resistance (detailed in a later embodiment) can be secured.
  • the first region 4 and the second region 5 may be alternately and repeatedly arranged.
  • the first region 4, the second region 5, the first region 4, and the second region 5 are arranged in order toward one side in the thickness direction.
  • the second region 5, the first region 4, the second region 5, and the first region 4 are arranged in order toward one side in the thickness direction.
  • the first region 4 may be further arranged in a configuration in which the first region 4 and the second region 5 are alternately and repeatedly arranged toward one side in the thickness direction.
  • the second region 5 may be further arranged in a configuration in which the second region 5 and the first region 4 are alternately and repeatedly arranged toward one side in the thickness direction. Further, the first region 4, the second region 5, and the first region 4 may be arranged in order in the thickness direction. Further, the second region 5, the first region 4, and the second region 5 may be arranged in order in the thickness direction.
  • the light-transmitting conductive layer 1 does not have the first region 4 and the second region 5, and the light-transmitting conductive layer 1 has argon and a rare atomic number larger than that of argon.
  • the gas may be mixed (uniformly dispersed).
  • a sputtering gas containing both argon and a rare gas having an atomic number larger than that of argon is supplied from the gas supply machine to the film forming chamber. More specifically, the rare gas supply machine 63 supplies both argon and a rare gas having an atomic number larger than that of argon.
  • the volume ratio of the rare gas having an atomic number higher than that of argon to the total volume of the rare gas having an atomic number larger than that of argon and the argon gas is, for example, 1% by volume or more, preferably 10% by volume or more, more preferably 30.
  • volume or more more preferably 60% by volume or more, particularly preferably 70% by volume or more, most preferably 80% by volume or more, and for example, 99% by volume or less, preferably 90% by volume or less. More preferably, it is 88% by volume or less.
  • the amorphous light-transmitting conductive layer 1 is made of a third amorphous conductive film 83.
  • argon and a rare gas having an atomic number larger than that of argon are mixed (uniformly dispersed).
  • the third amorphous conductive film 83 is heated to crystallize it.
  • the light-transmitting conductive layer 1 in the light-transmitting conductive film 10, is in contact with all of one surface of the resin layer 11 in the thickness direction, but the light-transmitting conductive layer 1 is not shown. It may be patterned so that any region remains. That is, there may be a region where the light-transmitting conductive layer 1 does not exist on the resin layer 11. By patterning, it can be suitably used for touch sensors, dimming elements, photoelectric conversion elements and the like.
  • the resin layer 11 can further include other functional layers.
  • an anti-blocking layer 12 arranged on the other surface in the thickness direction of the transparent base film 13 can be provided.
  • the anti-blocking layer 12 imparts blocking resistance to the respective surfaces of the plurality of light-transmitting conductive films 10 that come into contact with each other when the light-transmitting conductive films 10 are laminated in the thickness direction.
  • the resin layer 11 can further provide an easy-adhesion layer between the anti-blocking layer 12 and the transparent base film 13.
  • the resin layer 11 may be provided with an intermediate layer (not shown) made of an inorganic layer on one side of the transparent base film 13.
  • the intermediate layer improves the surface hardness of the resin layer 11, adjusts the optical physical characteristics (specifically, the refractive index) of the light-transmitting conductive film 10, and receives the light-transmitting conductive layer 1 from the resin layer 11. It has the function of relieving stress at an intermediate point.
  • the intermediate layer can be provided at an arbitrary position with respect to the transparent base film 13, the functional layer 14, and the anti-blocking layer 12, and may be provided with a plurality of layers.
  • the resin layer 11 includes a transparent base film 13, a functional layer 14, and an intermediate layer in this order toward one side in the thickness direction.
  • the resin layer 11 includes, for example, an intermediate layer, an anti-blocking layer 12, a transparent base film 13, and a functional layer 14 in this order toward one side in the thickness direction.
  • the intermediate layer is preferably an inorganic dielectric, and its surface resistance is, for example, 1 ⁇ 10 6 ⁇ / ⁇ or more, preferably 1 ⁇ 10 8 ⁇ / ⁇ or more.
  • the material of the intermediate layer is composed of, for example, an inorganic oxide such as silicon oxide, titanium oxide, niobium oxide, aluminum oxide, zirconium dioxide and calcium oxide, and a fluoride such as magnesium fluoride.
  • the composition of the inorganic functional layer may or may not be a chemical composition.
  • the functional layer 14 may be an optical adjustment layer (not shown).
  • the resin layer 11 includes a transparent base film 13 and an optical adjustment layer in this order toward one side in the thickness direction.
  • the optical adjustment layer is a layer that suppresses the visibility of the pattern formed from the light transmissive conductive layer 1 and adjusts the optical physical characteristics (specifically, the refractive index) of the light transmissive conductive film 10.
  • the functional layer 14 may be a peeling functional layer (not shown).
  • the resin layer 11 includes a transparent base film 13 and a peeling function layer in order toward one side in the thickness direction.
  • the peeling functional layer is a layer (easy peeling layer) that can be easily peeled off from the transparent base film 13. If the resin layer 11 includes a peeling functional layer, the light-transmitting conductive layer 1 can be peeled from the transparent base film 13.
  • the peeled light-transmitting conductive layer 1 can be used, for example, by transferring and bonding to another member constituting the touch sensor.
  • the functional layer 14 may be an easy-adhesion layer (not shown).
  • the resin layer 11 includes a transparent base film 13 and an easy-adhesion layer in order toward one side in the thickness direction.
  • the easy-adhesion layer improves the adhesion between the transparent base film 13 and the light-transmitting conductive layer 1.
  • the functional layer 14 may be a plurality of layers. That is, the functional layer 14 can optionally include two or more layers selected from the group consisting of a hard coat layer, an optical adjustment layer, a peeling functional layer, and an easy-adhesion layer.
  • the resin layer 11 may be provided with the transparent base film 13, the easy-adhesion layer, the hard coat layer, and the optical adjustment layer in order toward one side in the thickness direction, and the resin layer 11 may be provided with the resin layer 11 in order.
  • the transparent base film 13, the peeling functional layer, the hard coat layer and / or the optical adjusting layer may be provided in order toward one side in the thickness direction.
  • the resin layer 11 includes the transparent base film 13, the peeling function layer, the hard coat layer and / or the optical adjustment layer in order toward one side in the thickness direction, the light transmissive conductive film 10 is used.
  • the laminate including the hard coat layer and / or the optical adjustment layer and the light transmissive conductive layer 1 can be peeled off.
  • the resin layer 11 can include only one of the functional layer 14 and the transparent base film 13.
  • 7A and 7B depict other examples of laminates that include a light transmissive conductive layer.
  • the resin layer 11 may not include the transparent base film 13 and may consist only of the functional layer 14.
  • the light-transmitting conductive layer laminate 20 does not have a film shape, and has a resin layer 11 (hard coat layer and / or an optical adjustment layer) and a light-transmitting conductive layer 1 in order in the thickness direction.
  • the light-transmitting conductive film 10 has a film shape.
  • the resin layer 11 may not include the functional layer 14 and may consist of only the transparent base film 13. That is, the light-transmitting conductive film 10 has the transparent base film 13 and the light-transmitting conductive layer 1 in order in the thickness direction.
  • the resin layer 11 may be provided with a transparent base material (not shown) containing glass in the functional layer 14.
  • 1 is exemplified as a suitable number of the light-transmitting conductive layer 1 in the light-transmitting conductive film 10, but for example, although not shown, it may be 2.
  • each of the two light-transmitting conductive layers 1 is arranged on both sides of the resin layer 11 in the thickness direction. That is, in this modification, the number of light-transmitting conductive layers 1 with respect to one resin layer 11 is preferably 2.
  • the temperature is lower than 80 ° C. (for example, 25).
  • a manufacturing method may be adopted in which the product is stored for a long time (for example, 1000 hours) in a temperature environment of (° C.).
  • Example 1 An ultraviolet curable hard coat composition containing an acrylic resin is applied to one surface in the thickness direction of a transparent base film 13 made of a long PET film (manufactured by Toray Industries, Inc., thickness 50 ⁇ m), and this is irradiated with ultraviolet rays to cure. A hard coat layer (functional layer 14) having a thickness of 2 ⁇ m was formed. As a result, the resin layer 11 including the transparent base film 13 and the hard coat layer was prepared.
  • the resin layer 11 was set in the sputtering apparatus 30. Subsequently, in the sputtering apparatus 30, the feeding side pump 33, the winding side pump 34, the first pump 71, and the second pump 72 are driven to set the ultimate vacuum degree to 0.9 ⁇ 10 -4 Pa. , The resin layer 11 was degassed. Further, the temperature of the film forming roll 40 was set to ⁇ 8 ° C.
  • the materials of the first target 51 and the second target were both sintered bodies of indium oxide and tin oxide. In the sintered body, the ratio of the tin oxide content to the total content of indium oxide and tin oxide was 10% by mass. In the sintered body, the ratio of the number of tin atoms to the number of indium atoms (number of tin atoms / number of indium atoms) is 0.102.
  • the resin layer 11 was conveyed from the feeding portion 35 toward the winding portion 37 along the film forming roll 40.
  • first film forming chamber 41 krypton was supplied from the rare gas supply machine 63 and oxygen was supplied from the first oxygen gas supply machine 64 while driving the first pump 71.
  • the pressure of the first film forming chamber 41 is set to 0.2 Pa, and the first target 51 is sputtered (power supply: DC, horizontal magnetic field strength on the first target: 90 mT) to obtain a first amorphous conductor having a thickness of 50 nm.
  • a film 81 (first region 4) was formed.
  • the second film forming chamber 42 while driving the second pump 72, argon was supplied from the argon feeder 65, and oxygen was supplied from the second oxygen gas feeder 66.
  • the pressure of the second film forming chamber 42 is 0.4 Pa, and the second target 52 is sputtered (power supply: DC, horizontal magnetic field strength on the second target: 90 mT) to obtain a second amorphous conductor having a thickness of 80 nm.
  • a film 82 (second region 5) was formed.
  • the amount of oxygen introduced from the first oxygen gas supply machine 64 and the second oxygen gas supply machine 66 is the first region X of the surface resistance-oxygen introduction amount curve and is amorphous.
  • the surface resistance of the light transmissive conductive layer 1 was adjusted to 50 ⁇ / ⁇ .
  • the ratio of oxygen gas to the total amount of krypton gas and oxygen gas introduced was about 2.5% of the flow rate.
  • the ratio of oxygen gas to the total amount of argon gas and oxygen gas introduced was about 1.5 flow rate%.
  • the first amorphous conductive film 81 and the second amorphous conductive film 82 were sequentially formed on one side in the thickness direction of the resin layer 11.
  • the resin layer 11 and the amorphous light-transmitting conductive layer 1 were formed into a light-transmitting conductive film 10.
  • Examples 2-4 and 6-7 The thickness of the first amorphous conductive film 81 (first region 4), the thickness of the second amorphous conductive film 82 (second region 5), and the surface resistance of the amorphous light-transmitting conductive layer 1.
  • a light-transmitting conductive film 10 was obtained in the same manner as in Example 1 except that the power densities of the first target 51 and the second target 52 were adjusted as shown in Table 1.
  • Example 5 A second mixed gas ( containing Ar and O 2 ) is supplied to the first film forming chamber 41 so that the pressure of the first film forming chamber 41 is 0.4 Pa, and the second amorphous conductive film 82 having a thickness of 42 nm (the first). After the 2 regions 5) are formed by sputtering, the first mixed gas ( containing Kr and O 2 ) is supplied to the second film forming chamber 42 so that the pressure of the second film forming chamber 42 is 0.2 Pa and the thickness is 76 nm. Examples except that the first amorphous conductive film 81 (first region 4) was formed by sputtering and the surface resistance of the amorphous light-transmitting conductive layer 1 was adjusted to 55 ⁇ / ⁇ . A light transmissive conductive film 10 was obtained in the same manner as in 1. The light-transmitting conductive film 10 of Example 5 corresponds to the light-transmitting conductive film 10 shown in FIG.
  • Example 8 A mixed gas of krypton and argon (85% by volume of krypton, 15% by volume of argon) is supplied from the rare gas supply machine 63, oxygen is supplied from the first oxygen gas supply machine 64, and oxygen of the first oxygen gas supply machine 64 is supplied.
  • the introduction amount is the first region X of the surface resistance-oxygen introduction amount curve shown in FIG. 6, and the surface resistance of the amorphous light-transmitting conductive layer 1 is 39 ⁇ / ⁇ (total introduction amount of krypton gas and oxygen gas).
  • the ratio of the oxygen gas to the gas gas is adjusted to be about 2.6% of the flow rate), and by adjusting the power density of the first target 51, the third non-third gas having a thickness of 147 nm is formed in the first film forming chamber 41.
  • the crystalline conductive film 83 was formed and the second amorphous conductive film 82 (second region 5) was not formed in the second film forming chamber 42.
  • a transmissive conductive film 10 was obtained.
  • the light-transmitting conductive film 10 of Example 8 corresponds to the light-transmitting conductive film 10 shown in FIG. 5D.
  • Comparative Example 1 A second mixed gas ( containing Ar and O 2 ) is supplied to both the first film forming chamber 41 and the second film forming chamber 42, and the pressure of the first film forming chamber 41 and the second film forming chamber 42 is reduced to 0.
  • a light transmissive conductive film 10 was obtained in the same manner as in Example 1 except that the value was changed to 4 Pa.
  • Comparative Example 2 The first mixed gas ( containing Kr and O 2 ) is supplied to both the first film forming chamber 41 and the second film forming chamber 42, and the pressure of the first film forming chamber 41 and the second film forming chamber 42 is reduced to 0.
  • a light transmissive conductive film 10 was obtained in the same manner as in Example 1 except that the value was changed to 2 Pa.
  • a cross-section observation sample of the light-transmitting conductive layer 1 of each Example and Comparative Example was prepared by the FIB microsampling method, and then the light-transmissive conductive layer in the cross-section observation sample was prepared by FE-TEM observation (cross-section observation). The thickness of 1 was measured. Details of the device and measurement conditions are as follows.
  • FIB microsampling method FIB device Hitachi FB2200 Acceleration voltage: 10kV
  • the thickness of the second amorphous conductive film 82 (second region 5) of Examples 1 to 4 and 6 to 7 was calculated by the following formula.
  • Thickness of the second amorphous conductive film 82 Thickness of the light-transmitting conductive layer 1-Thickness of the first amorphous conductive film 81
  • Example 5 Thintness of the first amorphous conductive film of Example 5 and the thickness of the second amorphous conductive film]
  • a sample was collected immediately after the formation of the second amorphous conductive film 82 and not yet the first amorphous conductive film 81 was formed, and the second amorphous conductive film of the sample was collected.
  • the thickness of 82 (second region 5) was determined by FE-TEM observation (cross-sectional observation).
  • the thickness of the first amorphous conductive film 81 (first region 4) of Example 5 was calculated by the following formula.
  • Thickness of the first amorphous conductive film 81 Thickness of the light-transmitting conductive layer 1-Thickness of the second amorphous conductive film 82
  • Example 8 Thin of the third amorphous conductive film of Example 8
  • the thickness of the third amorphous conductive film 83 immediately after sputtering was determined by FE-TEM observation (cross-sectional observation).
  • the detection limit value is the light transmittance attached to the measurement. It may vary depending on the thickness of the conductive layer 1). Therefore, in Table 1, it is shown that the Kr content of the light transmissive conductive layer 1 is below the detection limit value in the thickness of the light transmissive conductive layer 1. It is described as "a specific detection limit value in the thickness of the conductive layer 1" (the same applies to the method of expressing the rare gas (Kr + Ar) content).
  • the surface resistance (after heating) of the light-transmitting conductive layer 1 after heating in a hot air oven at 155 ° C. for 2 hours was measured in the same manner as above.
  • the expected value of the specific resistance of the light-transmitting conductive layer 1 of Examples 1 to 8 was determined. Specifically, the specific resistance of the light-transmitting conductive layer 1 after heating in Comparative Example 1 (mixed with Ar) was set to 2.301 ⁇ 10 -4 ⁇ cm with the thickness of the second amorphous conductive film 82 of each example. By dividing, the expected value (AV Ar ) of the surface resistivity of the second amorphous conductive film 82 after heating (155 ° C., 2 hours) was calculated (Equation (1)).
  • the light-transmitting conductive layer 1 is a layer in which argon and a rare gas having an atomic number larger than that of argon are mixed as shown in FIG. 5D of the present application
  • the argon gas to be introduced and the rare gas having an atomic number larger than that of argon are mixed.
  • the expected value was calculated by replacing the ratio of the amount of gas with the ratio of the first region 4 and the second region 5 of the light transmissive conductive layer 1.
  • the expected value of the specific resistance is a specific resistance that can be expected in calculation, and more specifically, the specific resistance of the light-transmitting conductive layer 1 of each embodiment having the first region 4 and the second region 5 is determined.
  • Gain amount (%) of specific resistance of light-transmitting conductive layer 1 [(expected value of specific resistance-measured value of specific resistance)] / (expected value of specific resistance) x 100
  • the measured value of the specific resistance of the light transmissive conductive layer 1 after heating at 155 ° C. for 2 hours is lower than the expected value of the specific resistance of the light transmissive conductive layer 1. It is a percentage of the expected value of the specific resistance of the light-transmitting conductive layer 1. If the gain amount of the specific resistance of the light transmissive conductive layer 1 is positive, it means that the measured value of the specific resistance of the light transmissive conductive layer 1 is lower than the expected value, that is, due to the mixing of Ar and Kr. This means that the effect of reducing the specific resistance of the light-transmitting conductive layer 1 is exerted as a remarkable effect.
  • a microtome knife was placed at an extremely acute angle with respect to the ITO film surface, and cutting was performed so that the cut surface was substantially parallel to the ITO film surface to obtain an observation sample.
  • This observation sample was observed using TEM in a plan view (magnification: 50,000 times). A region of 1.5 ⁇ m ⁇ 1.5 ⁇ m was arbitrarily selected from the TEM observation photographs, and the presence or absence of crystal grains was confirmed in that region. In each of the Examples and Comparative Examples, the presence of crystal grains was confirmed on the entire surface direction in the plan view, and the region where the crystal grains were present was included as the main region (crystallinity and crystallinity). Is).
  • the light-transmitting conductive layer and the light-transmitting conductive film of the present invention can be used in, for example, touch sensors, dimming elements, photoelectric conversion elements, heat ray control members, antennas, electromagnetic wave shield members, image display devices, heater members, and lighting. Used.

Abstract

The light-transmissive electroconductive layer 1 has a first main surface 2, and a second main surface 3 positioned so as to face one side of the first main surface 2 with respect to the thickness direction. The light-transmissive electroconductive layer 1 has a single layer extending in a planar direction. The light-transmissive electroconductive layer 1 contains an electroconductive oxide. The electroconductive oxide contains argon and a noble gas having an atomic number greater than that of argon.

Description

光透過性導電層および光透過性導電フィルムLight-transmitting conductive layer and light-transmitting conductive film
 本発明は、光透過性導電層および光透過性導電フィルムに関する。 The present invention relates to a light-transmitting conductive layer and a light-transmitting conductive film.
 従来、ITOからなる透明導電膜が知られている。 Conventionally, a transparent conductive film made of ITO is known.
 透明導電膜には、低い比抵抗が求められる。そこで、低比抵抗を有するITOからなる透明導電膜の製造方法として、ターゲット材上の水平方向磁場を50mTとし、アルゴンガスを含む混合ガスでスパッタリングする製造方法が提案されている(例えば、特許文献1)。また、アルゴンガスに変えて、キセノンまたはクリプトンが混入したITOからなる透明導電膜が提案されている(例えば、下記特許文献2参照。)。 A low specific resistance is required for the transparent conductive film. Therefore, as a method for producing a transparent conductive film made of ITO having a low resistivity, a method for producing a transparent conductive film made of ITO having a low specific resistance and a horizontal magnetic field of 50 mT and sputtering with a mixed gas containing argon gas has been proposed (for example, Patent Documents). 1). Further, a transparent conductive film made of ITO mixed with xenon or krypton instead of argon gas has been proposed (see, for example, Patent Document 2 below).
再表2013/080995号公報Re-table 2013/080995 特開平7-262829号公報Japanese Unexamined Patent Publication No. 7-262829
 近年、透明導電膜は、より低い比抵抗が求められている。特許文献1では、十分に低い比抵抗を有する透明導電膜を実現できない。また、特許文献2に記載の透明導電膜であっても、低い比抵抗を達成するには、限界がある。また、キセノンやクリプトンは、その希少性から、アルゴンに対して非常に高価であり、少量使用が好ましい。 In recent years, transparent conductive films have been required to have lower resistivity. Patent Document 1 cannot realize a transparent conductive film having a sufficiently low specific resistance. Further, even with the transparent conductive film described in Patent Document 2, there is a limit in achieving a low specific resistance. Further, xenon and krypton are very expensive with respect to argon because of their rarity, and it is preferable to use them in a small amount.
 本発明は、比抵抗が低い光透過性導電層および光透過性導電フィルムを提供する。 The present invention provides a light-transmitting conductive layer and a light-transmitting conductive film having low specific resistance.
 本発明(1)は、第1主面、および、前記第1主面の厚み方向一方側に間隔を隔てて対向配置される第2主面を有し、前記厚み方向に直交する面方向に延びる単一の層を有する光透過性導電層であって、前記光透過性導電層は、導電性酸化物を含み、前記導電性酸化物が、アルゴンと、前記アルゴンより原子番号が大きい希ガスとを含有する、光透過性導電層を含む。 The present invention (1) has a first main surface and a second main surface which is arranged so as to face each other on one side in the thickness direction of the first main surface at intervals, and in a plane direction orthogonal to the thickness direction. A light-transmitting conductive layer having a single extending layer, the light-transmitting conductive layer contains a conductive oxide, and the conductive oxide is argon and a rare gas having an atomic number larger than that of argon. Includes a light-transmitting conductive layer containing and.
 本発明(2)は、前記光透過性導電層が、結晶性である、(1)に記載の光透過性導電層を含む。 The present invention (2) includes the light-transmitting conductive layer according to (1), wherein the light-transmitting conductive layer is crystalline.
 本発明(3)は、前記希ガスを含む第1領域と、前記アルゴンを含む第2領域とを厚み方向に順に有する、(1)または(2)に記載の光透過性導電層を含む。 The present invention (3) includes the light-transmitting conductive layer according to (1) or (2), which has a first region containing the noble gas and a second region containing argon in order in the thickness direction.
 本発明(4)は、前記希ガスが、クリプトンである、(1)~(3)のいずれか一項に記載の光透過性導電層を含む。 The present invention (4) includes the light-transmitting conductive layer according to any one of (1) to (3), wherein the noble gas is krypton.
 本発明(5)は、前記導電性酸化物が、インジウムおよびスズをさらに含有する、(1)~(4)のいずれか一項に記載の光透過性導電層を含む。 The present invention (5) includes the light-transmitting conductive layer according to any one of (1) to (4), wherein the conductive oxide further contains indium and tin.
 本発明(6)は、(1)~(5)のいずれか一項に記載の光透過性導電層と、前記光透過性導電層の前記第1主面に接触する基材とを備え、前記第1領域が、前記第1主面を含む、光透過性導電フィルムを含む。 The present invention (6) includes the light-transmitting conductive layer according to any one of (1) to (5) and a base material in contact with the first main surface of the light-transmitting conductive layer. The first region includes a light transmissive conductive film including the first main surface.
 本発明の光透過性導電層は、比抵抗が低い。 The light-transmitting conductive layer of the present invention has a low specific resistance.
 本発明の光透過性導電フィルムは、上記した光透過性導電層を備えるので、信頼性に優れる。 Since the light-transmitting conductive film of the present invention includes the above-mentioned light-transmitting conductive layer, it is excellent in reliability.
図1は、本発明の光透過性導電層の一実施形態の拡大断面図である。FIG. 1 is an enlarged cross-sectional view of an embodiment of the light-transmitting conductive layer of the present invention. 図2は、図1に示す光透過性導電層を備える光透過性導電フィルムの断面図である。FIG. 2 is a cross-sectional view of a light-transmitting conductive film provided with the light-transmitting conductive layer shown in FIG. 図3は、図2に示す光透過性導電フィルムを製造するためのスパッタリング装置の概略図である。FIG. 3 is a schematic view of a sputtering apparatus for producing the light-transmitting conductive film shown in FIG. 図4は、図2に示す光透過性導電フィルムの変形例の断面図である。FIG. 4 is a cross-sectional view of a modified example of the light-transmitting conductive film shown in FIG. 図5A~図5Dは、図1に示す光透過性導電層の変形例の拡大断面図であり、図5Aは、第2領域が第1主面を含み、第1領域が第2主面を含む変形例、図5Bおよび図5Cは、第1領域と第2領域とが交互に配置される変形例、図5Dは、アルゴンとアルゴンより原子番号が大きい希ガスとが混在する変形例である。5A to 5D are enlarged cross-sectional views of a modified example of the light transmissive conductive layer shown in FIG. 1. In FIG. 5A, the second region includes the first main surface and the first region includes the second main surface. 5B and 5C are deformation examples in which the first region and the second region are alternately arranged, and FIG. 5D is a deformation example in which argon and a rare gas having an atomic number larger than that of argon are mixed. .. 図6は、非晶質の光透過性導電層をスパッタリング形成する時に、導入する酸素の量と、非晶質の光透過性導電層の表面抵抗との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the amount of oxygen introduced when the amorphous light-transmitting conductive layer is sputtered and formed and the surface resistance of the amorphous light-transmitting conductive layer. 図7A~図7Bは、光透過性導電層を含む積層体の他の例の断面図であり、図7Aが、光透過性導電層が機能層に積層される光透過性導電層積層体、図7Bが、光透過性導電層が透明基材フィルムに積層される光透過性導電フィルムである。7A to 7B are cross-sectional views of another example of the laminate including the light-transmitting conductive layer, and FIG. 7A shows the light-transmitting conductive layer laminate in which the light-transmitting conductive layer is laminated on the functional layer. FIG. 7B is a light-transmitting conductive film in which a light-transmitting conductive layer is laminated on a transparent base film.
  [光透過性導電層の一実施形態]
 図1に示す光透過性導電層1は、後述する光透過性導電フィルム10(図2参照)、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明などに備えられる一部材であって、光透過性導電層1は、それらを製造するための中間部材である。光透過性導電層1は、単独で流通し、産業上利用可能な層である。
[One Embodiment of Light Transmissive Conductive Layer]
The light-transmitting conductive layer 1 shown in FIG. 1 includes a light-transmitting conductive film 10 (see FIG. 2), a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, and an image display device, which will be described later. , A heater member (light transmissive heater), and a member provided for lighting and the like, and the light transmissive conductive layer 1 is an intermediate member for manufacturing them. The light-transmitting conductive layer 1 is a layer that can be distributed independently and can be used industrially.
 この光透過性導電層1は、第1主面2、および、第1主面2に対して厚み方向に間隔を隔てて対向配置される第2主面3を有する。光透過性導電層1は、厚み方向に直交する面方向に延びる単一の層である。 The light-transmitting conductive layer 1 has a first main surface 2 and a second main surface 3 which is arranged so as to face the first main surface 2 at intervals in the thickness direction. The light-transmitting conductive layer 1 is a single layer extending in the plane direction orthogonal to the thickness direction.
  [材料]
 光透過性導電層1は、導電性酸化物を含む組成からなり、好ましくは、導電性酸化物からなる。導電性酸化物は、光透過性導電層1の主成分であって、アルゴンと、アルゴンより原子番号が大きい希ガスとを微量含有する。具体的には、導電性酸化物には、アルゴンとアルゴンより原子番号が大きい希ガスとが微量混入している。
[material]
The light-transmitting conductive layer 1 has a composition containing a conductive oxide, and is preferably made of a conductive oxide. The conductive oxide is the main component of the light-transmitting conductive layer 1, and contains a small amount of argon and a rare gas having an atomic number larger than that of argon. Specifically, a small amount of argon and a rare gas having an atomic number larger than that of argon are mixed in the conductive oxide.
  [アルゴン]
 アルゴンは、後述する製造方法においてスパッタリングガスに含まれるアルゴンに由来して、導電性酸化物中に混入している。図1において、アルゴンが、白丸で描画される。
[Argon]
Argon is derived from argon contained in the sputtering gas in the production method described later and is mixed in the conductive oxide. In FIG. 1, argon is drawn as a white circle.
  [アルゴンより原子番号が大きい希ガス]
 アルゴンより原子番号が大きい希ガスとしては、例えば、クリプトン、キセノン、ラドンなどが挙げられる。これらは、単独または併用できる。好ましくは、クリプトン、キセノンが挙げられ、より好ましくは、低価格と優れた電気伝導性とを得る観点から、クリプトン(具体的には、クリプトンの単独使用)が挙げられる。アルゴンより原子番号が大きい希ガスは、後述する製造方法においてスパッタリングガスに含まれる希ガスに由来して、導電性酸化物中に混入している。図1において、アルゴンより原子番号が大きい希ガスが、黒丸で描画される。
[Noble gas with an atomic number larger than argon]
Examples of the noble gas having an atomic number larger than that of argon include krypton, xenon, and radon. These can be used alone or in combination. Preferred are krypton and xenon, and more preferably krypton (specifically, krypton used alone) from the viewpoint of obtaining low cost and excellent electrical conductivity. The noble gas having an atomic number larger than that of argon is derived from the noble gas contained in the sputtering gas in the production method described later and is mixed in the conductive oxide. In FIG. 1, a noble gas having an atomic number larger than that of argon is drawn as a black circle.
  [導電性酸化物]
 導電性酸化物は、上記したアルゴンと、アルゴンより原子番号が大きい希ガスとを分散するマトリクスである。導電性酸化物としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属または半金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子および/または半金属原子をドープしていてもよい。
[Conductive oxide]
The conductive oxide is a matrix that disperses the above-mentioned argon and a rare gas having an atomic number larger than that of argon. As the conductive oxide, for example, at least one metal selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. Alternatively, a metal oxide containing a metalloid can be mentioned. The metal oxide may be further doped with the metal atoms and / or metalloid atoms shown in the above group, if necessary.
 導電性酸化物としては、具体的には、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、インジウムガリウム複合酸化物(IGO)、インジウムスズ複合酸化物(ITO)、アンチモンスズ複合酸化物(ATO)などの金属酸化物が挙げられる。導電性酸化物として、好ましくは、透明性および電気伝導性を向上する観点から、インジウムおよびスズの両方を含有するインジウムスズ複合酸化物(ITO)が挙げられる。導電酸化物がITOであれば、透明性および導電性により一層優れる。 Specific examples of the conductive oxide include indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin oxide composite oxide (ITO), and antimony. Metal oxides such as tin composite oxide (ATO) can be mentioned. Preferred examples of the conductive oxide include indium tin oxide composite oxide (ITO) containing both indium and tin from the viewpoint of improving transparency and electrical conductivity. If the conductive oxide is ITO, it is more excellent in transparency and conductivity.
 導電性酸化物がITOである場合、当該ITOにおける酸化インジウム(In)および酸化スズ(SnO)の合計含有量に対する酸化スズの含有量の割合は、例えば、0.1質量%以上、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、7質量%以上、ことさらに好ましくは、10質量%以上である。用いられるITOにおけるインジウム原子数に対するスズ原子数の比率(スズ原子数/インジウム原子数)は、例えば、0.001以上、好ましくは、0.03以上、より好ましくは、0.05以上、さらに好ましくは、0.07以上、ことさらに好ましくは、0.10以上である。インジウム原子数に対する酸化スズの含有量の割合が上記した下限以上であり、および/または、スズ原子数の比率が上記した下限以上であれば、光透過性導電層1の耐久性を確保できる。 When the conductive oxide is ITO, the ratio of the tin oxide content to the total content of indium oxide (In 2 O 3 ) and tin oxide (SnO 2) in the ITO is, for example, 0.1% by mass or more. It is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and even more preferably 10% by mass or more. The ratio of the number of tin atoms to the number of indium atoms in the ITO used (number of tin atoms / number of indium atoms) is, for example, 0.001 or more, preferably 0.03 or more, more preferably 0.05 or more, still more preferable. Is 0.07 or more, more preferably 0.10 or more. When the ratio of the tin oxide content to the number of indium atoms is equal to or higher than the above-mentioned lower limit and / or the ratio of the number of tin atoms is equal to or higher than the above-mentioned lower limit, the durability of the light-transmitting conductive layer 1 can be ensured.
 用いられるITOにおける酸化インジウム(In)および酸化スズ(SnO)の合計含有量に対する酸化スズの含有量の割合は、例えば、20質量%以下、好ましくは、15質量%以下、より好ましくは、13質量%以下、さらに好ましくは、12質量%以下である。用いられるITOにおけるインジウム原子数に対するスズ原子数の比率(スズ原子数/インジウム原子数)は、例えば、0.23以下、好ましくは、0.16以下、より好ましくは、0.14以下、さらに好ましくは、0.13以下である。酸化スズの含有量の割合が上記した上限以下にあり、および/または、インジウム原子数に対するスズ原子数の比率が上記した上限以下にあれば、加熱により結晶化しやすい光透過性導電層1を得ることができる。 The ratio of the tin oxide content to the total content of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) in the ITO used is, for example, 20% by mass or less, preferably 15% by mass or less, more preferably. Is 13% by mass or less, more preferably 12% by mass or less. The ratio of the number of tin atoms to the number of indium atoms in the ITO used (number of tin atoms / number of indium atoms) is, for example, 0.23 or less, preferably 0.16 or less, more preferably 0.14 or less, still more preferable. Is 0.13 or less. If the ratio of the tin oxide content is below the above-mentioned upper limit and / or the ratio of the number of tin atoms to the number of indium atoms is below the above-mentioned upper limit, the light-transmitting conductive layer 1 that is easily crystallized by heating is obtained. be able to.
 ITOにおけるインジウム原子数に対するスズ原子数の比率は、例えば、測定対象物について、X線光電子分光法(X-ray Photoelectron Spectroscopy)によってインジウム原子とスズ原子との存在比率を特定することにより、求められる。ITOにおける酸化スズの上記含有割合は、例えば、そのようにして特定されたインジウム原子とスズ原子との存在比率から、求められる。ITOにおけるインジウム原子とスズ原子との存在比率および酸化スズの上記含有割合は、スパッタ成膜時に用いるITOターゲットの酸化インジウム(In)と酸化スズ(SnO)含有割合から判断してもよい。 The ratio of the number of tin atoms to the number of indium atoms in ITO can be obtained, for example, by specifying the abundance ratio of indium atoms and tin atoms in the object to be measured by X-ray Photoelectron Spectroscopy. .. The above-mentioned content ratio of tin oxide in ITO is obtained, for example, from the abundance ratio of the indium atom and the tin atom thus specified. The abundance ratio of indium atoms and tin atoms in ITO and the above-mentioned content ratio of tin oxide can be judged from the content ratios of indium (In 2 O 3 ) and tin oxide (SnO 2) of the ITO target used at the time of sputter film formation. good.
  [第1領域、第2領域]
 本実施形態では、図1に示すように、光透過性導電層1は、アルゴンより原子番号が大きい希ガスを含む第1領域4と、アルゴンを含む第2領域5とを厚み方向に順に備える。
[1st area, 2nd area]
In the present embodiment, as shown in FIG. 1, the light-transmitting conductive layer 1 includes a first region 4 containing a rare gas having an atomic number larger than that of argon and a second region 5 containing argon in order in the thickness direction. ..
  [第1領域]
 第1領域4は、例えば、第1主面2を含む。第1領域4では、導電性酸化物に対して、アルゴンより原子番号が大きい希ガスが厚み方向および面方向にたって分散されている。
[First area]
The first region 4 includes, for example, the first main surface 2. In the first region 4, a noble gas having an atomic number larger than that of argon is dispersed with respect to the conductive oxide in the thickness direction and the plane direction.
 第1領域4において、アルゴンより原子番号が大きい希ガスの含有割合は、例えば、0.0001atom%以上であり、好ましくは、0.001atom%以上であり、また、例えば、1.0atom%以下、より好ましくは、0.7atom%以下、さらに好ましくは、0.5atom%以下、ことさらに好ましくは、0.3atom%以下、とくに好ましくは、0.2atom%以下、もっとも好ましくは、0.15atom%以下である。アルゴンより原子番号が大きい希ガスの含有割合が、上記範囲であれば、光透過性導電層1の比抵抗および透明性に優れる。 In the first region 4, the content ratio of the rare gas having an atomic number larger than that of argon is, for example, 0.0001 atom% or more, preferably 0.001 atom% or more, and for example, 1.0 atom% or less. More preferably 0.7 atom% or less, further preferably 0.5 atom% or less, further preferably 0.3 atom% or less, particularly preferably 0.2 atom% or less, most preferably 0.15 atom% or less. Is. When the content ratio of the rare gas having an atomic number larger than that of argon is within the above range, the light-transmitting conductive layer 1 is excellent in specific resistance and transparency.
 なお、図1において図示しないが、第1領域4では、アルゴンの混入が許容される。但し、この場合、第1領域4におけるアルゴンより原子番号が大きい希ガスの含有割合Rrg1は、第2領域5におけるアルゴンより原子番号が大きい希ガスの含有割合Rrg2より高い。具体的には、Rrg1/Rrg2は、例えば、1超過、好ましくは、1.2以上、より好ましくは、1.5以上であり、また、例えば、10,000以下である。第1領域4におけるアルゴンより原子番号が大きい希ガスは、例えば、ラザフォード後方散乱分析(Rutherford Backscattering Spectrometry)、二次イオン質量分析法やレーザー共鳴イオン化質量分析法、および/または、蛍光X線分析により、同定される(存否が判断される)が、好ましくは、分析簡易性の観点から、蛍光X線分析で、同定される。蛍光X線分析の詳細は、実施例に記載する。第1領域4、および、第1領域4を含む光透過性導電層1において、ラザフォード後方散乱分析を実施すると、希ガス原子含有量が検出限界値(下限値)以上でないために定量できない一方、蛍光X線分析を実施すると、希ガス原子の存在が同定される場合には、当該光透過性導電層1はKr含有割合が0.0001atom%以上である領域を含む、と判断する。 Although not shown in FIG. 1, the mixing of argon is allowed in the first region 4. However, in this case, the content R rg1 of the rare gas from the high atomic number argon in the first region 4 is higher than the content ratio R rg2 of the rare gas from the high atomic number argon in the second region 5. Specifically, R rg1 / R rg2 is, for example, 1 excess, preferably 1.2 or more, more preferably 1.5 or more, and, for example, 10,000 or less. Rare gases having an atomic number higher than that of argon in the first region 4 can be obtained by, for example, Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and / or fluorescent X-ray analysis. , But preferably, from the viewpoint of ease of analysis, it is identified by fluorescent X-ray analysis. Details of X-ray fluorescence analysis will be described in Examples. When the Rutherford backscattering analysis is performed on the first region 4 and the light transmissive conductive layer 1 including the first region 4, it cannot be quantified because the noble gas atom content is not equal to or higher than the detection limit value (lower limit value). When the presence of a noble gas atom is identified by performing fluorescent X-ray analysis, it is determined that the light-transmitting conductive layer 1 includes a region having a Kr content ratio of 0.0001 atom% or more.
 厚み方向で、光透過性導電層1における第1領域4が占める比R1(厚み比)は、例えば、0.99以下、好ましくは、0.95以下、より好ましくは、0.9以下、さらに好ましくは、0.8以下、とりわけ好ましくは、0.7以下であり、また、例えば、0.01以上、好ましくは、0.05以上、より好ましくは、0.1以上、さらに好ましくは、0.2以上、とりわけ好ましくは、0.3以上である。第1領域4が占める比R1が上記した上限以下であれば、光透過性導電層1の比抵抗を低くでき、また、比抵抗の大きな利得量(後述)を得ることができる。 In the thickness direction, the ratio R1 (thickness ratio) occupied by the first region 4 in the light transmissive conductive layer 1 is, for example, 0.99 or less, preferably 0.95 or less, more preferably 0.9 or less, and further. It is preferably 0.8 or less, particularly preferably 0.7 or less, and for example, 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0. .2 or more, especially preferably 0.3 or more. When the ratio R1 occupied by the first region 4 is equal to or less than the above upper limit, the specific resistance of the light transmissive conductive layer 1 can be lowered, and a large gain amount (described later) of the specific resistance can be obtained.
  [第2領域]
 第2領域5は、第2主面3を含む。第2領域5では、導電性酸化物に対して、アルゴンが厚み方向および面方向にわたって分散されている。また、光透過性導電層1において、アルゴンより原子番号が大きい希ガスの含有割合は、例えば、0.001atom%以上であり、また、例えば、0.5atom%以下である。また、光透過性導電層1において、アルゴンの含有割合は、例えば、0.001atom%以上、好ましくは、0.01atom%以上であり、また、例えば、0.5atom%以下、好ましくは、0.4atom%以下、より好ましくは、0.3atom%以下、さらに好ましくは、0.2atom%以下である。光透過性導電層1を高温条件(例えば、200℃)で形成できない場合であっても、アルゴンの含有割合が、上記範囲であれば、比抵抗、および/また、比抵抗の利得量(後述)に優れる光透過性導電層1が得られる。
[Second area]
The second region 5 includes the second main surface 3. In the second region 5, argon is dispersed with respect to the conductive oxide in the thickness direction and the plane direction. Further, in the light transmissive conductive layer 1, the content ratio of the rare gas having an atomic number larger than that of argon is, for example, 0.001 atom% or more, and for example, 0.5 atom% or less. Further, in the light transmissive conductive layer 1, the content ratio of argon is, for example, 0.001 atom% or more, preferably 0.01 atom% or more, and for example, 0.5 atom% or less, preferably 0. It is 4 atom% or less, more preferably 0.3 atom% or less, still more preferably 0.2 atom% or less. Even when the light-transmitting conductive layer 1 cannot be formed under high temperature conditions (for example, 200 ° C.), if the content ratio of argon is within the above range, the specific resistance and / or the gain amount of the specific resistance (described later). ) Is excellent, and the light-transmitting conductive layer 1 is obtained.
 なお、図1において図示しないが、第2領域5では、アルゴンより原子番号が大きい希ガスの混入が許容される。但し、この場合には、第2領域5におけるアルゴンの含有割合RAr2は、第1領域4におけるアルゴンの含有割合RAr1より高い。具体的には、RAr2/RAr1は、例えば、1超過、好ましくは、1.2以上、より好ましくは、1.5以上であり、また、例えば、10,000以下である。光透過性導電層1における、アルゴンは、例えば、ラザフォード後方散乱分析法(RBS、Rutherford Backscattering Spectrometry)により同定され(存否が判断され)、併せて、定量される。ラザフォード後方散乱分析法の詳細は、実施例に記載する。 Although not shown in FIG. 1, in the second region 5, a noble gas having an atomic number larger than that of argon is allowed to be mixed. However, in this case, the argon content ratio R Ar2 in the second region 5 is higher than the argon content ratio R Ar1 in the first region 4. Specifically, R Ar2 / R Ar1 is, for example, 1 excess, preferably 1.2 or more, more preferably 1.5 or more, and, for example, 10,000 or less. Argon in the light-transmitting conductive layer 1 is identified (determined to exist) by, for example, Rutherford Backscattering Spectroscopy (RBS), and is also quantified. Details of the Rutherford backscatter analysis method are described in Examples.
 厚み方向で、光透過性導電層1における第2領域5が占める比(厚み比)R2は、例えば、0.01以上、好ましくは、0.05以上、より好ましくは、0.1以上、さらに好ましくは、0.2以上、とりわけ好ましくは、0.3以上であり、また、例えば、0.99以下、好ましくは、0.95以下、より好ましくは、0.9以下、さらに好ましくは、0.8以下、とりわけ好ましくは、0.7以下である。第2領域5が占める比R2が上記した下限以上であれば、光透過性導電層1の比抵抗を低くでき、また、比抵抗の大きな利得量(後述)を得ることができる。第2領域5が占める比R2が上記した上限以下であれば、光透過性導電層1が透明性および電気伝導性に優れる。 In the thickness direction, the ratio (thickness ratio) R2 occupied by the second region 5 in the light transmissive conductive layer 1 is, for example, 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, and further. It is preferably 0.2 or more, particularly preferably 0.3 or more, and for example, 0.99 or less, preferably 0.95 or less, more preferably 0.9 or less, still more preferably 0. It is 8.8 or less, particularly preferably 0.7 or less. When the ratio R2 occupied by the second region 5 is equal to or greater than the above lower limit, the specific resistance of the light transmissive conductive layer 1 can be lowered, and a large gain amount (described later) of the specific resistance can be obtained. When the ratio R2 occupied by the second region 5 is equal to or less than the above-mentioned upper limit, the light-transmitting conductive layer 1 is excellent in transparency and electrical conductivity.
 なお、図1において、第1領域4および第2領域5の境界を仮想線(2点鎖線)で描画している。しかし、実際には、第1領域4および第2領域5の境界を判別できない場合がある。この場合には、第1領域4および第2領域5のうち、アルゴンより原子番号が大きい希ガスの含有割合R3が高い領域が第1領域4であり、アルゴンの含有割合R4が高い領域が第2領域5である。 In FIG. 1, the boundary between the first region 4 and the second region 5 is drawn by a virtual line (dashed line). However, in reality, the boundary between the first region 4 and the second region 5 may not be discriminated. In this case, of the first region 4 and the second region 5, the region having a high content ratio R3 of the rare gas having an atomic number larger than that of argon is the first region 4, and the region having a high content ratio R4 of argon is the first region. 2 regions 5
  [光透過性導電層の物性]
 光透過性導電層1は、例えば、非晶性(非晶質)、または、結晶性(結晶質)である。非晶性とは、結晶粒を含有しない膜性であり、結晶性とは、結晶粒を含有する膜性である。光透過性導電層1は、比抵抗を低くする観点からは、好ましくは、結晶性であり、より好ましくは、結晶粒が存在する領域を主要な領域として含む。結晶粒が存在する領域を主要な領域として含むとは、平面視において、例えば、光透過性導電層1の例えば60%以上、好ましくは、80%以上、より好ましくは、85%以上、さらに好ましくは、90%以上、また、例えば、100%以下の領域で結晶粒が存在していることを意味する。光透過性導電層1が結晶粒が存在する領域を主要な領域として含めば、低い比抵抗が得られる。また、本願では、平面視において、特に結晶性が高い光透過性導電層1である場合、具体的には、結晶粒が存在する領域が、90%以上、好ましくは、95%以上、また、100%以下である場合、光透過性導電層1は、結晶質であるとも表現できる。結晶質であれば、実質的にほぼ全面に結晶粒を備えるため、さらに低い比抵抗が得られる。結晶粒の最末端である結晶粒界近傍では、不可避的に結晶性が低くなる場合があり、結晶質であっても、100%である必要性はない。
[Physical characteristics of light-transmitting conductive layer]
The light-transmitting conductive layer 1 is, for example, amorphous (amorphous) or crystalline (crystalline). Amorphous is a film property that does not contain crystal grains, and crystalline is a film property that contains crystal grains. From the viewpoint of lowering the specific resistance, the light-transmitting conductive layer 1 is preferably crystalline, and more preferably contains a region in which crystal grains are present as a main region. In terms of plan view, including a region in which crystal grains are present means, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and further preferably 85% or more of the light transmissive conductive layer 1. Means that crystal grains are present in a region of 90% or more, for example, 100% or less. If the light-transmitting conductive layer 1 includes a region in which crystal grains are present as a main region, a low resistivity can be obtained. Further, in the present application, in the case of the light transmissive conductive layer 1 having particularly high crystallinity in a plan view, specifically, the region where the crystal grains are present is 90% or more, preferably 95% or more, and also. When it is 100% or less, the light-transmitting conductive layer 1 can also be expressed as crystalline. If it is crystalline, crystal grains are provided on substantially the entire surface, so that even lower resistivity can be obtained. In the vicinity of the grain boundary, which is the terminal end of the crystal grain, the crystallinity may inevitably decrease, and even if it is crystalline, it does not have to be 100%.
 光透過性導電層1の結晶性は、例えば、光透過性導電層1の表面を、第1主面側もしくは第2主面側からTEMで観察し、結晶粒の存在を確認することで判断できる。結晶粒が観察されれば結晶性である。具体的な観察方法は、実施例に詳記する。 The crystallinity of the light-transmitting conductive layer 1 is determined, for example, by observing the surface of the light-transmitting conductive layer 1 from the first main surface side or the second main surface side with TEM and confirming the presence of crystal grains. can. If crystal grains are observed, it is crystalline. Specific observation methods will be described in detail in Examples.
 また、光透過性導電層1が、結晶質であるか否かは、光透過性導電層1を塩酸(20℃、濃度5質量%)に15分間浸漬し、続いて、水洗および乾燥した後、光透過性導電層1の第2主面3に対して15mm程度の間の端子間抵抗を測定することにより判断することもできる。上記浸漬・水洗・乾燥後の光透過性導電層1において、15mm間の端子間抵抗(2端子間抵抗)が10kΩ以下である場合、光透過性導電層1が結晶質である。 Whether or not the light-transmitting conductive layer 1 is crystalline is determined by immersing the light-transmitting conductive layer 1 in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, followed by washing with water and drying. It can also be determined by measuring the resistance between terminals within about 15 mm with respect to the second main surface 3 of the light transmissive conductive layer 1. In the light-transmitting conductive layer 1 after immersion, washing with water, and drying, when the resistance between terminals (resistance between two terminals) between 15 mm is 10 kΩ or less, the light-transmitting conductive layer 1 is crystalline.
 光透過性導電層1の厚みは、例えば、5nm以上、好ましくは、20nm以上、より好ましくは、50nm以上、さらに好ましくは、100nm以上であり、また、例えば、1000nm以下であり、好ましくは、300nm未満、より好ましくは、250nm以下、さらに好ましくは、200nm以下、ことさらに好ましくは、160nm以下、特に好ましくは、150nm未満、最も好ましくは、148nm以下である。光透過性導電層1の厚みが、上記範囲であれば、透明性および/または比抵抗に優れる光透過性導電層1を得られる。 The thickness of the light-transmitting conductive layer 1 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, and for example, 1000 nm or less, preferably 300 nm. Less than, more preferably 250 nm or less, still more preferably 200 nm or less, still more preferably 160 nm or less, particularly preferably less than 150 nm, most preferably 148 nm or less. When the thickness of the light-transmitting conductive layer 1 is within the above range, the light-transmitting conductive layer 1 having excellent transparency and / or specific resistance can be obtained.
 光透過性導電層1(非晶性または結晶性の光透過性導電層1)の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上であり、また、例えば、100%以下である。 The total light transmittance (JIS K 7375-2008) of the light-transmitting conductive layer 1 (amorphous or crystalline light-transmitting conductive layer 1) is, for example, 60% or more, preferably 80% or more, more preferably. Is 85% or more, and is, for example, 100% or less.
 光透過性導電層1(結晶性の光透過性導電層1)の表面抵抗は、例えば、200Ω/□以下、好ましくは、100Ω/□以下、より好ましくは、50Ω/□以下、さらに好ましくは、15Ω/□以下、とりわけ好ましくは、13Ω/□以下であり、また、例えば、0Ω/□超過、さらには、1Ω/□以上である。表面抵抗は、JIS K7194に準拠して、4端子法により測定することができる。 The surface resistance of the light-transmitting conductive layer 1 (crystalline light-transmitting conductive layer 1) is, for example, 200 Ω / □ or less, preferably 100 Ω / □ or less, more preferably 50 Ω / □ or less, still more preferably. It is 15 Ω / □ or less, particularly preferably 13 Ω / □ or less, and is, for example, 0 Ω / □ or more, and further 1 Ω / □ or more. The surface resistance can be measured by the 4-terminal method in accordance with JIS K7194.
 光透過性導電層1(結晶性の光透過性導電層1)の比抵抗は、例えば、例えば、5.000×10-4Ω・cm以下、好ましくは、2.500×10-4Ω・cm以下、より好ましくは、2.000×10-4Ω・cm以下、さらに好ましくは、2.000×10-4Ω・cm未満、ことさら好ましくは、1.800×10-4Ω・cm以下であり、また、例えば、0.100×10-4Ω・cm以上、さらには、0.500×10-4Ω・cm以上、さらには、1.000×10-4Ω・cm以上である。比抵抗は、表面抵抗に厚みを乗じて得られる。 The specific resistance of the light-transmitting conductive layer 1 (crystalline light-transmitting conductive layer 1) is, for example, 5.000 × 10 -4 Ω · cm or less, preferably 2.500 × 10 -4 Ω · cm. Cm or less, more preferably 2.000 × 10 -4 Ω · cm or less, still more preferably 2.000 × 10 -4 Ω · cm or less, and particularly preferably 1.800 × 10 -4 Ω · cm or less. For example, 0.100 × 10 -4 Ω · cm or more, further 0.500 × 10 -4 Ω · cm or more, and further 1.000 × 10 -4 Ω · cm or more. .. The specific resistance is obtained by multiplying the surface resistance by the thickness.
 光透過性導電層1(非晶性または結晶性の光透過性導電層1)におけるアルゴンと、アルゴンより原子番号が大きい希ガスとの合計の含有割合は、厚さ方向の全域において、例えば、1.2atom%以下、好ましくは、1.1atom%以下、より好ましくは、1.0atom%以下、さらに好ましくは、0.8atom%以下、とりわけ好ましくは、0.5atom%以下、ことさらに好ましくは、0.4atom%以下、最も好ましくは、0.3atom%以下、特に好ましくは、0.2atom%以下である。アルゴンと、アルゴンより原子番号が大きい希ガスとの合計の含有割合が上記した上限以下であれば、光透過性導電層1内の不純物原子(つまり、アルゴンと、アルゴンより原子番号が大きい希ガスと)の合計の含有割合が少ないため、電子移動度が高く、低比抵抗の光透過性導電層1を得ることができる。 The total content ratio of argon and the rare gas having an atomic number higher than that of argon in the light-transmitting conductive layer 1 (acrystalline or crystalline light-transmitting conductive layer 1) is, for example, in the entire thickness direction, for example. 1.2 atom% or less, preferably 1.1 atom% or less, more preferably 1.0 atom% or less, still more preferably 0.8 atom% or less, particularly preferably 0.5 atom% or less, still more preferably. It is 0.4 atom% or less, most preferably 0.3 atom% or less, and particularly preferably 0.2 atom% or less. If the total content ratio of argon and the noble gas having an atomic number higher than that of argon is equal to or less than the above upper limit, the impurity atom in the light transmissive conductive layer 1 (that is, argon and the rare gas having an atomic number higher than that of argon). Since the total content ratio of (and) is small, the light-transmitting conductive layer 1 having high electron mobility and low specific resistance can be obtained.
  [光透過性導電フィルム]
 次に、図1に示す光透過性導電層1を備える光透過性導電フィルム10を、図2を参照して説明する。
[Light-transmitting conductive film]
Next, the light-transmitting conductive film 10 provided with the light-transmitting conductive layer 1 shown in FIG. 1 will be described with reference to FIG.
 図2に示すように、光透過性導電フィルム10は、面方向に向かって延びるフィルム(フィルム)形状を有する。光透過性導電フィルム10は、樹脂層11と、光透過性導電層1とを、厚み方向一方側に向かって順に備える。 As shown in FIG. 2, the light-transmitting conductive film 10 has a film shape extending in the plane direction. The light-transmitting conductive film 10 includes a resin layer 11 and a light-transmitting conductive layer 1 in order toward one side in the thickness direction.
  [樹脂層]
 樹脂層11は、光透過性導電フィルム10の厚み方向他方面を形成する。樹脂層11は、面方向に向かって延びるフィルム形状を有する。樹脂層11は、基材層である。樹脂層11は、可撓性を有する。例えば、樹脂層11は、透明基材フィルム13と、機能層14とを厚み方向一方側に向かって順に備える。樹脂層11は、好ましくは、ガラス基板と隣接しない。
[Resin layer]
The resin layer 11 forms the other surface of the light-transmitting conductive film 10 in the thickness direction. The resin layer 11 has a film shape extending in the plane direction. The resin layer 11 is a base material layer. The resin layer 11 has flexibility. For example, the resin layer 11 includes a transparent base film 13 and a functional layer 14 in order toward one side in the thickness direction. The resin layer 11 is preferably not adjacent to the glass substrate.
 透明基材フィルム13は、面方向に向かって延びるフィルム形状を有する。透明基材フィルム13は、樹脂層11の厚み方向他方面を形成する。透明基材フィルム13の材料は、ポリマーである。ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(COP)などのオレフィン樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリアクリレートおよび/またはポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などの樹脂が挙げられ、好ましくは、ポリエステル樹脂、より好ましくは、PETが挙げられる。透明基材フィルム13の厚みは、例えば、1μm以上、好ましくは、10μm以上、より好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下、さらに好ましくは、75μm以下である。 The transparent base film 13 has a film shape extending in the plane direction. The transparent base film 13 forms the other surface of the resin layer 11 in the thickness direction. The material of the transparent base film 13 is a polymer. Examples of the polymer include olefin resins such as polyethylene, polypropylene and cycloolefin polymer (COP), and polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate and polyethylene naphthalate, for example, polyacrylate and / or polymethacrylate. (Meta) acrylic resins (acrylic resins and / or methacrylic resins) such as, for example, resins such as polycarbonate resins, polyether sulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, and polystyrene resins. However, a polyester resin is preferable, and PET is more preferable. The thickness of the transparent base film 13 is, for example, 1 μm or more, preferably 10 μm or more, more preferably 30 μm or more, and for example, 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and further. It is preferably 75 μm or less.
 透明基材フィルム13の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上であり、また、100%以下である。 The total light transmittance (JIS K 7375-2008) of the transparent base film 13 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and 100% or less.
 機能層14は、樹脂層11の厚み方向一方面を形成する。機能層14は、透明基材フィルム13の厚み方向一方面に配置されている。具体的には、機能層14は、透明基材フィルム13の厚み方向一方面の全部に接触する。機能層14は、面方向に延びる。機能層は、樹脂を含む層である。機能層14としては、例えば、ハードコート層が挙げられる。このような場合には、樹脂層11は、透明基材フィルム13と、ハードコート層とを、厚み方向一方側に向かって順に備える。以下の説明では、機能層14がハードコート層である場合について、説明する。 The functional layer 14 forms one surface of the resin layer 11 in the thickness direction. The functional layer 14 is arranged on one side of the transparent base film 13 in the thickness direction. Specifically, the functional layer 14 contacts all of one surface of the transparent base film 13 in the thickness direction. The functional layer 14 extends in the plane direction. The functional layer is a layer containing a resin. Examples of the functional layer 14 include a hard coat layer. In such a case, the resin layer 11 includes the transparent base film 13 and the hard coat layer in order toward one side in the thickness direction. In the following description, a case where the functional layer 14 is a hard coat layer will be described.
 ハードコート層は、光透過性導電層1に擦り傷を生じ難くするための擦傷保護層である。ハードコート層は、樹脂層11の厚み方向一方面を形成する。ハードコート層は、透明基材フィルム13の厚み方向一方面の全部に接触している。ハードコート層の材料としては、特開2016-179686号公報に記載のハードコート組成物(アクリル樹脂、ウレタン樹脂など)の硬化物が挙げられる。ハードコート層の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。 The hard coat layer is a scratch protection layer for making the light transmissive conductive layer 1 less likely to be scratched. The hard coat layer forms one surface of the resin layer 11 in the thickness direction. The hard coat layer is in contact with all of one surface of the transparent base film 13 in the thickness direction. Examples of the material of the hard coat layer include a cured product of the hard coat composition (acrylic resin, urethane resin, etc.) described in JP-A-2016-179686. The thickness of the hard coat layer is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 10 μm or less, preferably 5 μm or less.
  [樹脂層の物性]
 樹脂層11の厚みは、例えば、1μm以上、好ましくは、好ましくは、10μm以上、より好ましくは、15μm以上、さらに好ましくは、30μm以上であり、また、例えば、310μm以下、好ましくは、210μm以下、より好ましくは、110μm以下、さらに好ましくは、80μm以下である。
[Physical characteristics of resin layer]
The thickness of the resin layer 11 is, for example, 1 μm or more, preferably 10 μm or more, more preferably 15 μm or more, still more preferably 30 μm or more, and for example, 310 μm or less, preferably 210 μm or less. It is more preferably 110 μm or less, still more preferably 80 μm or less.
 樹脂層11の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上であり、また、例えば、100%以下である。 The total light transmittance (JIS K 7375-2008) of the resin layer 11 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and for example, 100% or less.
  [光透過性導電層]
 光透過性導電層1は、光透過性導電フィルム10の厚み方向一方面を形成する。光透過性導電層1は、その厚み方向他方側から、樹脂層11に支持されている。光透過性導電層1は、樹脂層11の厚み方向一方面の全部に接触している。つまり、光透過性導電層1の第1主面2が、樹脂層11の厚み方向一方面に接触する。一方、光透過性導電層1の第2主面3は、厚み方向一方側に露出している。これによって、この光透過性導電フィルム10では、樹脂層11と、第1領域4と、第2領域5とが、厚み方向一方側に向かって順に配置される。樹脂層11の厚みに対する光透過性導電層1の厚みの比は、例えば、0.00001以上、好ましくは、0.01以上、より好ましくは、0.1以上であり、また、例えば、0.5以下、好ましくは、0.25以下である。
[Light-transmitting conductive layer]
The light-transmitting conductive layer 1 forms one surface of the light-transmitting conductive film 10 in the thickness direction. The light-transmitting conductive layer 1 is supported by the resin layer 11 from the other side in the thickness direction. The light-transmitting conductive layer 1 is in contact with all of one surface of the resin layer 11 in the thickness direction. That is, the first main surface 2 of the light-transmitting conductive layer 1 comes into contact with one surface of the resin layer 11 in the thickness direction. On the other hand, the second main surface 3 of the light transmissive conductive layer 1 is exposed on one side in the thickness direction. As a result, in the light-transmitting conductive film 10, the resin layer 11, the first region 4, and the second region 5 are sequentially arranged toward one side in the thickness direction. The ratio of the thickness of the light-transmitting conductive layer 1 to the thickness of the resin layer 11 is, for example, 0.00001 or more, preferably 0.01 or more, more preferably 0.1 or more, and for example, 0. It is 5 or less, preferably 0.25 or less.
  [光透過性導電フィルムの製造方法]
 次に、光透過性導電フィルム10の製造方法を、図3を参照して説明する。この方法では、例えば、ロール-トゥ-ロール方式で、樹脂層11に光透過性導電層1を成膜する。
[Manufacturing method of light-transmitting conductive film]
Next, a method for manufacturing the light-transmitting conductive film 10 will be described with reference to FIG. In this method, for example, a light-transmitting conductive layer 1 is formed on the resin layer 11 by a roll-to-roll method.
 この方法では、まず、樹脂層11を準備する。具体的には、ハードコート組成物を、透明基材フィルム13の厚み方向一方面に塗布および乾燥後、ハードコート組成物を硬化させる。これにより、透明基材フィルム13と、ハードコート層(機能層14)とを厚み方向一方側に順に備える樹脂層11を準備する。 In this method, first, the resin layer 11 is prepared. Specifically, the hard coat composition is applied to one surface of the transparent base film 13 in the thickness direction and dried, and then the hard coat composition is cured. As a result, the resin layer 11 is prepared in which the transparent base film 13 and the hard coat layer (functional layer 14) are sequentially provided on one side in the thickness direction.
 その後、必要により、樹脂層11を脱ガス処理する。樹脂層11を脱ガス処理するには、樹脂層11を、例えば、1×10-1Pa以下、好ましくは、1×10-2Pa以下、また、例えば、1×10-6Pa以上の減圧雰囲気下に放置する。具体的には、スパッタリング装置30のポンプ(後述)を用いて、樹脂層11の周囲の雰囲気を減圧する。 Then, if necessary, the resin layer 11 is degassed. In order to degas the resin layer 11, the pressure of the resin layer 11 is reduced to, for example, 1 × 10 -1 Pa or less, preferably 1 × 10 -2 Pa or less, and for example, 1 × 10 -6 Pa or more. Leave it in the atmosphere. Specifically, the atmosphere around the resin layer 11 is depressurized by using a pump (described later) of the sputtering apparatus 30.
 次いで、光透過性導電層1を、スパッタリングによって成膜する。具体的には、樹脂層11をスパッタリング装置30で搬送しながら、光透過性導電層1を成膜する。 Next, the light-transmitting conductive layer 1 is formed into a film by sputtering. Specifically, the light-transmitting conductive layer 1 is formed while the resin layer 11 is conveyed by the sputtering apparatus 30.
  [スパッタリング装置]
 スパッタリング装置30は、繰出部35と、スパッタ部36と、巻取部37とを順に備える。
[Sputtering device]
The sputtering apparatus 30 includes a feeding section 35, a sputtering section 36, and a winding section 37 in this order.
 繰出部35は、繰出ロール38と、繰出側ポンプ33の排出口とを備える。 The feeding unit 35 includes a feeding roll 38 and a discharge port of the feeding side pump 33.
 スパッタ部36は、成膜ロール40と、第1成膜室41と、第2成膜室42とを備える。 The sputter portion 36 includes a film forming roll 40, a first film forming chamber 41, and a second film forming chamber 42.
 成膜ロール40は、成膜ロール40を冷却するように構成される図示しない冷却装置を備える。 The film forming roll 40 includes a cooling device (not shown) configured to cool the film forming roll 40.
 第1成膜室41は、第1ターゲット51と、第1ガス供給機61と、第1ポンプ71の排出口とを収容する。第1ターゲット51と、第1ガス供給機61と、第1ポンプ71の排出口とは、成膜ロール40に対して間隔を隔てて対向配置されている。 The first film forming chamber 41 accommodates the first target 51, the first gas supply machine 61, and the discharge port of the first pump 71. The first target 51, the first gas supply machine 61, and the discharge port of the first pump 71 are arranged to face each other with respect to the film forming roll 40 at intervals.
 第1ターゲット51の材料としては、上記した導電性酸化物と同様の材料が挙げられる。なお、第1ターゲット51の材料は、導電性酸化物の焼結体を含む。ただし、これら導電性酸化物には、まだ、アルゴンより原子番号が大きい希ガスとアルゴンとの混入がない。第1ターゲット51は、電力を印加するように構成されている。 Examples of the material of the first target 51 include the same materials as those of the above-mentioned conductive oxide. The material of the first target 51 includes a sintered body of a conductive oxide. However, these conductive oxides are not yet mixed with a noble gas having an atomic number larger than that of argon and argon. The first target 51 is configured to apply electric power.
 第1ターゲット51に対する成膜ロール40の反対側には、マグネット(図示せず)が配置されている。第1ターゲット51表面上の水平磁場強度は、例えば、10mT以上、好ましくは、60mT以上であり、また、例えば、300mT以下である。マグネットを配置し、第1ターゲット51表面上の水平磁場強度を上記範囲とすることで、後述の第1非晶質導電膜81(第1領域4)に含まれ、アルゴンより原子番号が大きい希ガスの含有量を、調整できる。 A magnet (not shown) is arranged on the opposite side of the film forming roll 40 with respect to the first target 51. The horizontal magnetic field strength on the surface of the first target 51 is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less. By arranging a magnet and setting the horizontal magnetic field strength on the surface of the first target 51 within the above range, it is contained in the first amorphous conductive film 81 (first region 4) described later and has a rare atomic number larger than that of argon. The gas content can be adjusted.
 第1ガス供給機61は、第1のスパッタリングガスを、第1成膜室41に供給するように構成されている。第1のスパッタリングガスとしては、アルゴンより原子番号が大きい希ガスを含む。具体的には、第1のスパッタリングガスとしては、例えば、アルゴンより原子番号が大きい希ガス、また、例えば、アルゴンより原子番号が大きい希ガスと、酸素などの反応性ガスとを含む第1混合ガスなどが挙げられる。好ましくは、第1混合ガスが挙げられる。 The first gas supply machine 61 is configured to supply the first sputtering gas to the first film forming chamber 41. The first sputtering gas contains a rare gas having an atomic number larger than that of argon. Specifically, as the first sputtering gas, for example, a rare gas having an atomic number larger than that of argon, for example, a rare gas having an atomic number larger than that of argon, and a first mixture containing a reactive gas such as oxygen. Examples include gas. Preferably, the first mixed gas is mentioned.
 スパッタリングガスが第1混合ガスである場合には、第1ガス供給機61は、希ガス供給機63と、第1酸素ガス供給機64とを含み、それぞれから、アルゴンより原子番号が大きい希ガスと、酸素とが第1成膜室41に供給される。なお、希ガス供給機63における「希ガス」は、アルゴンを含まず、アルゴンより原子番号が大きい希ガスを意味する。 When the sputtering gas is the first mixed gas, the first gas supply machine 61 includes a rare gas supply machine 63 and a first oxygen gas supply machine 64, and a rare gas having an atomic number larger than that of argon from each of them. And oxygen are supplied to the first film forming chamber 41. The "noble gas" in the rare gas supply machine 63 means a rare gas that does not contain argon and has an atomic number larger than that of argon.
 第2成膜室42は、成膜ロール40の周方向において、第1成膜室41に隣接して配置される。これにより、第1成膜室41と第2成膜室42とが、周方向において順に配置される。第2成膜室42は、第2ターゲット52と、第2ガス供給機62と、第2ポンプ72の排出口とを収容する。第2ターゲット52と、第2ガス供給機62と、第2ポンプ72の排出口とは、成膜ロール40に対して間隔を隔てて対向配置されている。 The second film forming chamber 42 is arranged adjacent to the first film forming chamber 41 in the circumferential direction of the film forming roll 40. As a result, the first film forming chamber 41 and the second film forming chamber 42 are sequentially arranged in the circumferential direction. The second film forming chamber 42 accommodates the second target 52, the second gas supply machine 62, and the discharge port of the second pump 72. The second target 52, the second gas supply machine 62, and the discharge port of the second pump 72 are arranged to face each other with respect to the film forming roll 40 at intervals.
 第2ターゲット52の材料としては、上記した導電性酸化物と同様の材料が挙げられる。なお、第2ターゲット52の材料は、導電性酸化物の焼結体を含む。ただし、これら導電性酸化物には、まだ、アルゴンより原子番号が大きい希ガスとアルゴンとの混入がない。第2ターゲット52は、電力を印加するように構成されている。 Examples of the material of the second target 52 include the same materials as those of the above-mentioned conductive oxide. The material of the second target 52 includes a sintered body of a conductive oxide. However, these conductive oxides are not yet mixed with a noble gas having an atomic number larger than that of argon and argon. The second target 52 is configured to apply electric power.
 第2ターゲット52に対する成膜ロール40の反対側には、マグネット(図示せず)が配置されている。第2ターゲット52表面上の水平磁場強度は、例えば、10mT以上、好ましくは、60mT以上であり、また、例えば、300mT以下である。マグネットを配置し、第2ターゲット52表面上の水平磁場強度を上記範囲とすることで、後述の第2非晶質導電膜82(第2領域5)に含まれるアルゴンの含有量を調整できる。 A magnet (not shown) is arranged on the opposite side of the film forming roll 40 with respect to the second target 52. The horizontal magnetic field strength on the surface of the second target 52 is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less. By arranging the magnet and setting the horizontal magnetic field strength on the surface of the second target 52 within the above range, the content of argon contained in the second amorphous conductive film 82 (second region 5) described later can be adjusted.
 第2ガス供給機62は、第2のスパッタリングガスを、第2成膜室42に供給するように構成されている。第2のスパッタリングガスとしては、例えば、アルゴン、また、例えば、アルゴンと、酸素などの反応性ガスとを含む第2混合ガスなどが挙げられる。好ましくは、第2混合ガスが挙げられる。第2のスパッタリングガスが第2混合ガスであれば、第2ガス供給機62は、アルゴン供給機65と、第2酸素ガス供給機66とを含み、それぞれから、アルゴンと、酸素とが第2成膜室42に供給される。 The second gas supply machine 62 is configured to supply the second sputtering gas to the second film forming chamber 42. Examples of the second sputtering gas include argon, and examples thereof include a second mixed gas containing argon and a reactive gas such as oxygen. A second mixed gas is preferably used. If the second sputtering gas is the second mixed gas, the second gas supply machine 62 includes an argon supply machine 65 and a second oxygen gas supply machine 66, from which argon and oxygen are second. It is supplied to the film forming chamber 42.
 巻取部37は、巻取ロール39と、巻取側ポンプ34の排出口とを備える。 The take-up unit 37 includes a take-up roll 39 and a discharge port of the take-up side pump 34.
  [光透過性導電フィルムの製造]
 このスパッタリング装置30を用いて、光透過性導電層1を樹脂層11に成膜するには、まず、樹脂層11を、繰出ロール38、成膜ロール40および巻取ロール39に掛け渡す。
[Manufacturing of light-transmitting conductive film]
In order to form the light-transmitting conductive layer 1 on the resin layer 11 by using this sputtering apparatus 30, first, the resin layer 11 is passed over the feeding roll 38, the film forming roll 40, and the winding roll 39.
 第1ポンプ71を駆動しながら、第1ガス供給機61からスパッタリングガスを第1成膜室41に供給する。アルゴンより原子番号が大きい希ガスの圧力(スパッタリングガスが第1混合ガスであれば、アルゴンより原子番号が大きい希ガスの分圧)は、例えば、0.01Pa以上、好ましくは、0.05Pa以上であり、また、例えば、0.8Pa以下、好ましくは、0.5Pa以下、より好ましくは、0.2Pa以下である。 While driving the first pump 71, the sputtering gas is supplied from the first gas supply machine 61 to the first film forming chamber 41. The pressure of the noble gas having an atomic number higher than that of argon (if the sputtering gas is the first mixed gas, the partial pressure of the rare gas having an atomic number higher than that of argon) is, for example, 0.01 Pa or more, preferably 0.05 Pa or more. For example, it is 0.8 Pa or less, preferably 0.5 Pa or less, and more preferably 0.2 Pa or less.
 第2ポンプ72を駆動しながら、第2ガス供給機63からスパッタリングガスを第1成膜室41に供給する。アルゴンの圧力(スパッタリングガスが第2混合ガスであれば、アルゴンの分圧)は、例えば、0.02Pa以上、好ましくは、0.1Pa以上であり、また、例えば、1Pa以下、好ましくは、0.5Pa以下である。 While driving the second pump 72, the sputtering gas is supplied from the second gas supply machine 63 to the first film forming chamber 41. The pressure of argon (if the sputtering gas is the second mixed gas, the partial pressure of argon) is, for example, 0.02 Pa or more, preferably 0.1 Pa or more, and for example, 1 Pa or less, preferably 0. It is .5 Pa or less.
 また、冷却装置を駆動して、成膜ロール40(の表面)を冷却する。成膜ロール40の温度(表面温度)は、例えば、20.0℃以下、好ましくは、10.0℃以下、より好ましくは、0.0℃以下であり、また、例えば、-50℃以上、好ましくは、-25℃以上である。樹脂層11を十分に冷却することで、スパッタリング時に、樹脂層11からガス(水および/または有機溶剤)が過度に発生することを抑制できる。その結果、光透過性導電層1に含まれる不純物の量を低減でき、比抵抗に優れる光透過性導電層1が得られる。 Also, the cooling device is driven to cool the film forming roll 40 (the surface). The temperature (surface temperature) of the film forming roll 40 is, for example, 20.0 ° C. or lower, preferably 10.0 ° C. or lower, more preferably 0.0 ° C. or lower, and for example, −50 ° C. or higher. Preferably, it is -25 ° C or higher. By sufficiently cooling the resin layer 11, it is possible to prevent excessive generation of gas (water and / or organic solvent) from the resin layer 11 during sputtering. As a result, the amount of impurities contained in the light-transmitting conductive layer 1 can be reduced, and the light-transmitting conductive layer 1 having excellent specific resistance can be obtained.
 続いて、繰出ロール38、成膜ロール40および巻取ロール39を駆動することにより、繰出ロール38から樹脂層11が繰り出される。樹脂層11は、成膜ロール40の表面に接触しながら、第1成膜室41と第2成膜室42とを順に移動する。この際、樹脂層11は、成膜ロール40の表面との接触によって、冷却される。 Subsequently, the resin layer 11 is fed out from the feeding roll 38 by driving the feeding roll 38, the film forming roll 40, and the winding roll 39. The resin layer 11 moves in order between the first film forming chamber 41 and the second film forming chamber 42 while contacting the surface of the film forming roll 40. At this time, the resin layer 11 is cooled by contact with the surface of the film forming roll 40.
 第1ターゲット51の近傍において、スパッタリングガスをイオン化させて、イオン化ガスを生成する。続いて、イオン化ガスが、第1ターゲット51に衝突し、第1ターゲット51のターゲット材料が粒子となって叩き出され、粒子が、樹脂層11に付着(堆積)して、第1非晶質導電膜81が形成される。この時、粒子とともに、スパッタリングガスに含まれる希ガス(アルゴンより原子番号が大きい希ガス、好ましくは、クリプトン)が第1非晶質導電膜81に取り込まれる。第1非晶質導電膜81に取り込まれる希ガスの量は、磁場強度、第1ターゲット51に印加する電力の電力密度、および/または、第1成膜室41内の圧力により調整する。また、第1非晶質導電膜81の厚みは、第1ターゲット51に印加する電力の電力密度で調節する。 In the vicinity of the first target 51, the sputtering gas is ionized to generate an ionized gas. Subsequently, the ionized gas collides with the first target 51, the target material of the first target 51 becomes particles and is knocked out, and the particles adhere (deposit) to the resin layer 11 to form the first amorphous substance. The conductive film 81 is formed. At this time, a rare gas (a rare gas having an atomic number larger than that of argon, preferably krypton) contained in the sputtering gas is taken into the first amorphous conductive film 81 together with the particles. The amount of the noble gas taken into the first amorphous conductive film 81 is adjusted by the magnetic field strength, the power density of the electric power applied to the first target 51, and / or the pressure in the first film forming chamber 41. Further, the thickness of the first amorphous conductive film 81 is adjusted by the power density of the electric power applied to the first target 51.
 続いて、第2ターゲット52の近傍において、スパッタリングガスをイオン化させて、イオン化ガスを生成する。続いて、イオン化ガスが、第2ターゲット52に衝突し、第2ターゲット52のターゲット材料が粒子となって叩き出され、粒子が、第1非晶質導電膜81に付着(堆積)して、第2非晶質導電膜82が形成される。この時、粒子とともに、スパッタリングガスに含まれるアルゴンが第2非晶質導電膜82に取り込まれる。第2非晶質導電膜82に取り込まれる希ガスの量は、磁場強度、第2ターゲット52に印加する電力の電力密度、および/または、第2成膜室42内の圧力により調整する。また、第2非晶質導電膜82の厚みは、第2ターゲット52に印加する電力の電力密度で調節する。 Subsequently, the sputtering gas is ionized in the vicinity of the second target 52 to generate an ionized gas. Subsequently, the ionized gas collides with the second target 52, the target material of the second target 52 becomes particles and is knocked out, and the particles adhere (deposit) to the first amorphous conductive film 81. The second amorphous conductive film 82 is formed. At this time, argon contained in the sputtering gas is taken into the second amorphous conductive film 82 together with the particles. The amount of the noble gas taken into the second amorphous conductive film 82 is adjusted by the magnetic field strength, the power density of the electric power applied to the second target 52, and / or the pressure in the second film forming chamber 42. Further, the thickness of the second amorphous conductive film 82 is adjusted by the power density of the electric power applied to the second target 52.
 これによって、樹脂層11と、第1非晶質導電膜81と、第2非晶質導電膜82とを備える非晶質の光透過性導電フィルム10が得られる。 As a result, an amorphous light-transmitting conductive film 10 including the resin layer 11, the first amorphous conductive film 81, and the second amorphous conductive film 82 can be obtained.
 第1非晶質導電膜81と、第2非晶質導電膜82とのそれぞれは、第1領域4と第2領域5とのそれぞれをなす。第1非晶質導電膜81と、第2非晶質導電膜82とは、それぞれが、主成分として同一の導電性酸化物を含有することから、それらの境界は観察されない場合がある。 The first amorphous conductive film 81 and the second amorphous conductive film 82 form the first region 4 and the second region 5, respectively. Since the first amorphous conductive film 81 and the second amorphous conductive film 82 each contain the same conductive oxide as a main component, their boundaries may not be observed.
 これにより、図2に示すように、光透過性導電層1(非晶質の光透過性導電層1)が、樹脂層11の厚み方向一方面に形成される。これにより、樹脂層11と光透過性導電層1とを備える光透過性導電フィルム10が製造される。 As a result, as shown in FIG. 2, the light-transmitting conductive layer 1 (amorphous light-transmitting conductive layer 1) is formed on one surface of the resin layer 11 in the thickness direction. As a result, the light-transmitting conductive film 10 including the resin layer 11 and the light-transmitting conductive layer 1 is manufactured.
 この光透過性導電フィルム10の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、83%以上であり、また、例えば、100%以下、好ましくは、95%以下である。 The total light transmittance (JIS K 7375-2008) of the light-transmitting conductive film 10 is, for example, 60% or more, preferably 80% or more, more preferably 83% or more, and for example, 100%. Below, it is preferably 95% or less.
 その後、非晶質の光透過性導電層1を結晶化する。具体的には、例えば、非晶質の光透過性導電フィルム10を加熱する。加熱条件として、加熱温度は、例えば、80℃以上、好ましくは、110℃以上、より好ましくは、150℃以上であり、また、例えば、200℃未満、好ましくは、180℃以下であり、また、加熱時間は、例えば、0.2分間以上、好ましくは、5分間以上、より好ましくは、10分間以上、さらに好ましくは、30分間以上、ことさらに好ましくは、1時間以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。 After that, the amorphous light-transmitting conductive layer 1 is crystallized. Specifically, for example, the amorphous light-transmitting conductive film 10 is heated. As the heating conditions, the heating temperature is, for example, 80 ° C. or higher, preferably 110 ° C. or higher, more preferably 150 ° C. or higher, and for example, less than 200 ° C., preferably 180 ° C. or lower. The heating time is, for example, 0.2 minutes or longer, preferably 5 minutes or longer, more preferably 10 minutes or longer, still more preferably 30 minutes or longer, still more preferably 1 hour or longer, and for example. 5 hours or less, preferably 3 hours or less.
 これにより、樹脂層11と、結晶性の領域を含む光透過性導電層1とを備える光透過性導電フィルム10が製造される。 As a result, the light-transmitting conductive film 10 including the resin layer 11 and the light-transmitting conductive layer 1 including the crystalline region is manufactured.
 非晶質の光透過性導電層1を加熱した後の、結晶性の光透過性導電フィルム10の全光線透過率(JIS K 7375-2008)は、例えば、65%以上、好ましくは、80%以上、より好ましくは、83%以上であり、また、例えば、100%以下、好ましくは、95%以下である。 The total light transmittance (JIS K 7375-2008) of the crystalline light-transmitting conductive film 10 after heating the amorphous light-transmitting conductive layer 1 is, for example, 65% or more, preferably 80%. As mentioned above, it is more preferably 83% or more, and for example, 100% or less, preferably 95% or less.
 この光透過性導電フィルム10は、種々の物品に用いられる。物品としては、例えば、タッチセンサ、電磁波シールド、調光素子(例えば、PDLC、PNLC、SPDなどの電圧駆動型調光素子、例えば、エレクトロクロミック(EC)などの電流駆動型調光素子)、光電変換素子(有機薄膜太陽電池や色素増感太陽電池に代表される太陽電池素子の電極など)、熱線制御部材(例えば、近赤外線反射および/または吸収部材、例えば、遠赤外線反射および/または吸収部材)、アンテナ部材(光透過性アンテナ)、ヒータ部材(光透過性ヒータ)、画像表示装置、照明などに用いられる。 This light-transmitting conductive film 10 is used for various articles. Examples of the article include a touch sensor, an electromagnetic wave shield, a dimming element (for example, a voltage-driven dimming element such as PDLC, PNLC, SPD, for example, a current-driven dimming element such as electrochromic (EC)), and photoelectric. Conversion elements (such as electrodes of solar cell elements such as organic thin-film solar cells and dye-sensitized solar cells), heat ray control members (for example, near-infrared reflecting and / or absorbing members, for example, far-infrared reflecting and / or absorbing members) ), Antenna member (light transmissive antenna), heater member (light transmissive heater), image display device, lighting, etc.
 物品は、光透過性導電フィルム10と、各物品に対応する部材とを備える。 The article includes a light-transmitting conductive film 10 and a member corresponding to each article.
 このような物品は、光透過性導電フィルム10と、各物品に対応する部材とを固定することにより得られる。 Such an article can be obtained by fixing the light transmissive conductive film 10 and the member corresponding to each article.
 具体的には、例えば、光透過性導電フィルム10における光透過性導電層1(パターン形状を有する光透過性導電層1を含む)と、各物品に対応する部材とを、固着機能層を介して固定する。 Specifically, for example, the light-transmitting conductive layer 1 (including the light-transmitting conductive layer 1 having a pattern shape) in the light-transmitting conductive film 10 and the member corresponding to each article are connected via a fixing functional layer. And fix it.
 固着機能層としては、例えば、粘着層および接着層が挙げられる。 Examples of the fixing functional layer include an adhesive layer and an adhesive layer.
 固着機能層としては、透明性を有するものであれば特に材料の制限なく使用できる。固着機能層は、好ましくは、樹脂から形成されている。樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリビニルエーテル樹脂、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン樹脂、エポキシ樹脂、フッ素樹脂、天然ゴム、および、合成ゴムが挙げられる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性などの粘着特性を示し、耐候性および耐熱性などにも優れるという観点から、樹脂として、好ましくは、アクリル樹脂が選択される。 As the fixing functional layer, any material having transparency can be used without particular limitation. The fixing functional layer is preferably formed of a resin. Examples of the resin include acrylic resin, silicone resin, polyester resin, polyurethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, epoxy resin, fluororesin, natural rubber, and synthetic rubber. Can be mentioned. In particular, an acrylic resin is preferably selected as the resin from the viewpoint of excellent optical transparency, exhibiting adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance. NS.
 固着機能層を形成する樹脂には、光透過性導電層1の腐食およびマイグレーション抑制するために、公知の腐食防止剤、および、マイグレーション防止剤(例えば、特開2015-022397号に開示の材料)を添加することもできる。また、固着機能層(固着機能層を形成する樹脂)には、物品の屋外使用時の劣化を抑制するために、公知の紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば、ベンゾフェノン化合物、ベンゾトリアゾール化合物、サリチル酸化合物、シュウ酸アニリド化合物、シアノアクリレート化合物、および、トリアジン化合物が挙げられる。 The resin forming the fixing functional layer includes a known corrosion inhibitor and a migration inhibitor (for example, a material disclosed in Japanese Patent Application Laid-Open No. 2015-0222397) in order to suppress corrosion and migration of the light-transmitting conductive layer 1. Can also be added. Further, a known ultraviolet absorber may be added to the fixing functional layer (resin forming the fixing functional layer) in order to suppress deterioration of the article when it is used outdoors. Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilides compounds, cyanoacrylate compounds, and triazine compounds.
 また、光透過性導電フィルム10における樹脂層11と、各物品に対応する部材とを、固着機能層を介して固定することもできる。このような場合には、光透過性導電フィルム10において、光透過性導電層1(パターン形状を有する光透過性導電層1を含む)が露出する。そのため、光透過性導電層1の厚み方向一方面にカバー層を配置することもできる。 Further, the resin layer 11 in the light-transmitting conductive film 10 and the member corresponding to each article can be fixed via the fixing functional layer. In such a case, the light-transmitting conductive layer 1 (including the light-transmitting conductive layer 1 having a pattern shape) is exposed in the light-transmitting conductive film 10. Therefore, the cover layer can be arranged on one surface of the light-transmitting conductive layer 1 in the thickness direction.
 カバー層は、光透過性導電層1を被覆する層であり、光透過性導電層1の信頼性を向上させ、キズによる機能劣化を抑制できる。 The cover layer is a layer that covers the light-transmitting conductive layer 1, and can improve the reliability of the light-transmitting conductive layer 1 and suppress functional deterioration due to scratches.
 カバー層の材料は、好ましくは、誘電体である。カバー層は、樹脂および無機材料の混合物から形成されている。樹脂としては、固着機能層で例示する樹脂が挙げられる。無機材料としては、後述する中間層の材料で例示する材料が挙げられる。 The material of the cover layer is preferably a dielectric. The cover layer is formed from a mixture of resin and inorganic materials. Examples of the resin include the resin exemplified by the fixing functional layer. Examples of the inorganic material include materials exemplified by the material of the intermediate layer described later.
 また、上記した樹脂および無機材料の混合物には、上記した固着機能層と同様の観点から、腐食防止剤、マイグレーション防止剤、および、紫外線吸収剤を添加することもできる。 Further, a corrosion inhibitor, a migration inhibitor, and an ultraviolet absorber can be added to the above-mentioned mixture of the resin and the inorganic material from the same viewpoint as the above-mentioned fixing functional layer.
 上記した物品は、上記した光透過性導電フィルム10を備えるため、信頼性に優れる。具体的には、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材、および、照明は、上記した光透過性導電フィルム10を備えるため、信頼性に優れる。 The above-mentioned article is excellent in reliability because it includes the above-mentioned light-transmitting conductive film 10. Specifically, since the touch sensor, the light control element, the photoelectric conversion element, the heat ray control member, the antenna, the electromagnetic wave shield member, the image display device, the heater member, and the illumination include the above-mentioned light transmissive conductive film 10. Excellent reliability.
  [作用効果]
 一般に、アルゴンより原子番号が大きい希ガスを含有する導電性酸化物からなる一の光透過性導電性層Aは、アルゴンを含有する導電性酸化物からなる他の光透過性導電性層Bより、低い比抵抗を有する。具体的には、第1領域4のみからなる一の光透過性導電層A(比較例2相当)は、第2領域5のみからなる他の光透過性導電層B(比較例1相当)より、低い比抵抗を有する。
[Action effect]
In general, one light-transmitting conductive layer A made of a conductive oxide containing a rare gas having an atomic number larger than that of argon is more than another light-transmitting conductive layer B made of a conductive oxide containing argon. , Has low resistivity. Specifically, one light-transmitting conductive layer A (corresponding to Comparative Example 2) composed of only the first region 4 is more than another light-transmitting conductive layer B (corresponding to Comparative Example 1) consisting of only the second region 5. , Has low resistivity.
 この一実施形態の光透過性導電層1は、図1に示すように、第1領域4と第2領域5とを備えるので、一の光透過性導電層Aの比抵抗(表面抵抗)と、上記した他の光透過性導電層Bの比抵抗(表面抵抗)とを、合成した比抵抗(表面抵抗)を有すると期待(予想)される。 As shown in FIG. 1, the light-transmitting conductive layer 1 of this embodiment includes a first region 4 and a second region 5, so that the specific resistance (surface resistivity) of one light-transmitting conductive layer A It is expected (expected) to have a specific resistance (surface resistance) that is a combination of the specific resistance (surface resistance) of the other light-transmitting conductive layer B described above.
 しかしながら、この一実施形態の光透過性導電層1の比抵抗は、上記したような期待される比抵抗(期待値、後述)よりも低い比抵抗を有する。このことは、後の実施例で記載される比抵抗の利得量を有することから実証される。 However, the specific resistance of the light transmissive conductive layer 1 of this embodiment has a lower specific resistance than the expected specific resistance (expected value, which will be described later) as described above. This is demonstrated by having the specific resistance gain amount described in later examples.
 この光透過性導電層1の比抵抗の利得量は、例えば、1.0%以上、好ましくは、5.0%以上、より好ましくは、10.0%以上であり、さらには、12.0%以上、さらには、14.0%以上、さらには、15.0%以上、さらには17.0%以上、さらには18.0%以上、さらには、20.0%以上が好適であり、また、例えば、50.0%以下である。比抵抗の利得量の求め方は、後の実施例で説明する。 The gain amount of the specific resistance of the light transmissive conductive layer 1 is, for example, 1.0% or more, preferably 5.0% or more, more preferably 10.0% or more, and further, 12.0. % Or more, further 14.0% or more, further 15.0% or more, further 17.0% or more, further 18.0% or more, further 20.0% or more is preferable. Further, for example, it is 50.0% or less. How to obtain the gain amount of the specific resistance will be described in a later embodiment.
 さらに、一実施形態の光透過性導電層1では、導電性酸化物が、アルゴンと、アルゴンより原子番号が大きい希ガスとを含有しながら、一実施形態の光透過性導電層1の比抵抗は、驚くべきことに、光透過性導電層Aの比抵抗より低い。 Further, in the light-transmitting conductive layer 1 of one embodiment, the conductive oxide contains argon and a rare gas having an atomic number larger than that of argon, while the specific resistance of the light-transmitting conductive layer 1 of one embodiment. Is surprisingly lower than the specific resistance of the light-transmitting conductive layer A.
 光透過性導電フィルム10(図2参照)、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材および画像表示装置は、上記した光透過性導電層1を備えるので、抵抗特性および信頼性に優れる。つまり、上記した物品は、上記した光透過性導電層1を備えるので、抵抗特性および信頼性に優れる。 Since the light transmissive conductive film 10 (see FIG. 2), the touch sensor, the dimming element, the photoelectric conversion element, the heat ray control member, the antenna, the electromagnetic wave shield member, and the image display device include the light transmissive conductive layer 1 described above, Excellent resistance and reliability. That is, since the above-mentioned article includes the above-mentioned light-transmitting conductive layer 1, it is excellent in resistance characteristics and reliability.
  [変形例]
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
[Modification example]
In the modified example, the same members and processes as in one embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as that of one embodiment, except for special mention. Further, one embodiment and a modification thereof can be combined as appropriate.
 一実施形態では、アルゴンより原子番号が大きい希ガスが混入した第1領域4が、樹脂層11に接触する第1主面2を含む。 In one embodiment, the first region 4 mixed with a rare gas having an atomic number larger than that of argon includes the first main surface 2 in contact with the resin layer 11.
 しかし、図4に示すように、アルゴンが混入した第2領域5が、第1主面2を含んでもよい。第2領域5は、樹脂層11に接触する。 However, as shown in FIG. 4, the second region 5 mixed with argon may include the first main surface 2. The second region 5 comes into contact with the resin layer 11.
 好適には、一実施形態のように、第1領域4が、第1主面2側に位置する。この構成によれば、比抵抗の利得量(後の実施例で詳説)を大きく確保できる。 Preferably, as in one embodiment, the first region 4 is located on the first main surface 2 side. According to this configuration, a large gain amount of specific resistance (detailed in a later embodiment) can be secured.
 例えば、図5Bおよび図5Cに示すように、第1領域4と第2領域5とが交互に繰り返し配置されてもよい。具体的には、図5Bの変形例では、第1領域4と、第2領域5と、第1領域4と、第2領域5とが、厚み方向一方側に向かって順に配置される。図5Cの変形例では、第2領域5と、第1領域4と、第2領域5と、第1領域4とが、厚み方向一方側に向かって順に配置される。また、図示しないが、厚み方向一方側に向かって、第1領域4と第2領域5とが交互に繰り返し配置された構成に、さらに第1領域4が配置されていてもよい。厚み方向一方側に向かって、第2領域5と第1領域4とが交互に繰り返し配置された構成に、さらに第2領域5が配置されていてもよい。また、第1領域4と、第2領域5と、第1領域4とが、厚み方向に順に配置されていてもよい。また、第2領域5と、第1領域4と、第2領域5とが、厚み方向に順に配置されていてもよい。 For example, as shown in FIGS. 5B and 5C, the first region 4 and the second region 5 may be alternately and repeatedly arranged. Specifically, in the modified example of FIG. 5B, the first region 4, the second region 5, the first region 4, and the second region 5 are arranged in order toward one side in the thickness direction. In the modified example of FIG. 5C, the second region 5, the first region 4, the second region 5, and the first region 4 are arranged in order toward one side in the thickness direction. Further, although not shown, the first region 4 may be further arranged in a configuration in which the first region 4 and the second region 5 are alternately and repeatedly arranged toward one side in the thickness direction. The second region 5 may be further arranged in a configuration in which the second region 5 and the first region 4 are alternately and repeatedly arranged toward one side in the thickness direction. Further, the first region 4, the second region 5, and the first region 4 may be arranged in order in the thickness direction. Further, the second region 5, the first region 4, and the second region 5 may be arranged in order in the thickness direction.
 さらには、図5Dに示すように、光透過性導電層1が、第1領域4および第2領域5を有さず、光透過性導電層1において、アルゴンと、アルゴンより原子番号が大きい希ガスとが、混在(均一に分散)されていてもよい。図5Dに示す光透過性導電層1を形成するには、ガス供給機から、アルゴンと、アルゴンより原子番号が大きい希ガスとの両方を含むスパッタリングガスを成膜室に供給する。より具体的には、希ガス供給機63から、アルゴンと、アルゴンより原子番号が大きい希ガスとの両方を供給する。アルゴンより原子番号が大きい希ガスとアルゴンガスとの合計体積に対する、アルゴンより原子番号が大きい希ガスの体積割合は、例えば、1体積%以上、好ましくは、10体積%以上、より好ましくは、30体積%以上、さらに好ましくは、60体積%以上、とりわけ好ましくは、70体積%以上、もっとも好ましくは、80体積%以上であり、また、例えば、99体積%以下、好ましくは、90体積%以下、より好ましくは、88体積%以下である。 Further, as shown in FIG. 5D, the light-transmitting conductive layer 1 does not have the first region 4 and the second region 5, and the light-transmitting conductive layer 1 has argon and a rare atomic number larger than that of argon. The gas may be mixed (uniformly dispersed). In order to form the light-transmitting conductive layer 1 shown in FIG. 5D, a sputtering gas containing both argon and a rare gas having an atomic number larger than that of argon is supplied from the gas supply machine to the film forming chamber. More specifically, the rare gas supply machine 63 supplies both argon and a rare gas having an atomic number larger than that of argon. The volume ratio of the rare gas having an atomic number higher than that of argon to the total volume of the rare gas having an atomic number larger than that of argon and the argon gas is, for example, 1% by volume or more, preferably 10% by volume or more, more preferably 30. By volume or more, more preferably 60% by volume or more, particularly preferably 70% by volume or more, most preferably 80% by volume or more, and for example, 99% by volume or less, preferably 90% by volume or less. More preferably, it is 88% by volume or less.
 スパッタリング直後の、非晶質の光透過性導電層1は、第3非晶質導電膜83からなる。第3非晶質導電膜83では、アルゴンと、アルゴンより原子番号が大きい希ガスとが、混在(均一に分散)する。成膜後、第3非晶質導電膜83を加熱し、これを結晶化する。 Immediately after sputtering, the amorphous light-transmitting conductive layer 1 is made of a third amorphous conductive film 83. In the third amorphous conductive film 83, argon and a rare gas having an atomic number larger than that of argon are mixed (uniformly dispersed). After the film formation, the third amorphous conductive film 83 is heated to crystallize it.
 一実施形態では、光透過性導電フィルム10において、光透過性導電層1は、樹脂層11の厚み方向一方面の全部に接触しているが、光透過性導電層1は、図示しないが、任意の領域が残存するように、パターニングされていてもよい。すなわち、光透過性導電層1が、樹脂層11上に、存在しない領域があってもよい。パターニングにより、タッチセンサ、調光素子、光電変換素子などに、好適に使用できる。 In one embodiment, in the light-transmitting conductive film 10, the light-transmitting conductive layer 1 is in contact with all of one surface of the resin layer 11 in the thickness direction, but the light-transmitting conductive layer 1 is not shown. It may be patterned so that any region remains. That is, there may be a region where the light-transmitting conductive layer 1 does not exist on the resin layer 11. By patterning, it can be suitably used for touch sensors, dimming elements, photoelectric conversion elements and the like.
 樹脂層11は、他の機能層をさらに備えることができる。例えば、図2および図4の仮想線で示すように、透明基材フィルム13の厚み方向他方面に配置されるアンチブロッキング層12を備えることができる。アンチブロッキング層12は、光透過性導電フィルム10を厚み方向に積層した場合などに、互いに接触する複数の光透過性導電フィルム10のそれぞれの表面に耐ブロッキング性を付与する。 The resin layer 11 can further include other functional layers. For example, as shown by the virtual lines in FIGS. 2 and 4, an anti-blocking layer 12 arranged on the other surface in the thickness direction of the transparent base film 13 can be provided. The anti-blocking layer 12 imparts blocking resistance to the respective surfaces of the plurality of light-transmitting conductive films 10 that come into contact with each other when the light-transmitting conductive films 10 are laminated in the thickness direction.
 また、樹脂層11が、アンチブロッキング層12と、透明基材フィルム13との間に、さらに、易接着層を備えることもできる。 Further, the resin layer 11 can further provide an easy-adhesion layer between the anti-blocking layer 12 and the transparent base film 13.
 また、樹脂層11は、透明基材フィルム13の一方側に、無機層からなる中間層(図示せず)を備えることもできる。中間層は、樹脂層11の表面硬度を向上したり、光透過性導電フィルム10の光学物性(具体的には、屈折率)を調整したり、光透過性導電層1が樹脂層11から受ける応力を中間地点で緩和する機能を有する。中間層は、透明基材フィルム13、機能層14、および、アンチブロッキング層12に対し、任意の位置に備えることができ、複数層備えていてもよい。例えば、樹脂層11は、透明基材フィルム13と、機能層14と、中間層とを、厚み方向一方側に向かって順に備える。また、樹脂層11は、例えば、中間層と、アンチブロッキング層12と、透明基材フィルム13と、機能層14とを厚み方向一方側に向かって順に備える。中間層は、好ましくは、無機誘電体であり、その表面抵抗が、例えば、1×10Ω/□以上、好ましくは、1×10Ω/□以上である。中間層の材料は、例えば、酸化珪素、酸化チタン、酸化ニオブ、酸化アルミニウム、二酸化ジルコニウム、酸化カルシウムなどの無機酸化物やフッ化マグネシウムなどのフッ化物を含有する組成からなる。なお、無機機能層の組成は、化学両論組成であってもなくてもよい。 Further, the resin layer 11 may be provided with an intermediate layer (not shown) made of an inorganic layer on one side of the transparent base film 13. The intermediate layer improves the surface hardness of the resin layer 11, adjusts the optical physical characteristics (specifically, the refractive index) of the light-transmitting conductive film 10, and receives the light-transmitting conductive layer 1 from the resin layer 11. It has the function of relieving stress at an intermediate point. The intermediate layer can be provided at an arbitrary position with respect to the transparent base film 13, the functional layer 14, and the anti-blocking layer 12, and may be provided with a plurality of layers. For example, the resin layer 11 includes a transparent base film 13, a functional layer 14, and an intermediate layer in this order toward one side in the thickness direction. Further, the resin layer 11 includes, for example, an intermediate layer, an anti-blocking layer 12, a transparent base film 13, and a functional layer 14 in this order toward one side in the thickness direction. The intermediate layer is preferably an inorganic dielectric, and its surface resistance is, for example, 1 × 10 6 Ω / □ or more, preferably 1 × 10 8 Ω / □ or more. The material of the intermediate layer is composed of, for example, an inorganic oxide such as silicon oxide, titanium oxide, niobium oxide, aluminum oxide, zirconium dioxide and calcium oxide, and a fluoride such as magnesium fluoride. The composition of the inorganic functional layer may or may not be a chemical composition.
 機能層14が、光学調整層(図示せず)でもよい。この変形例では、樹脂層11は、透明基材フィルム13と、光学調整層とを、厚み方向一方側に向かって順に備える。光学調整層は、光透過性導電層1から形成されるパターンの視認を抑制して、光透過性導電フィルム10の光学物性(具体的には、屈折率)を調整する層である。 The functional layer 14 may be an optical adjustment layer (not shown). In this modification, the resin layer 11 includes a transparent base film 13 and an optical adjustment layer in this order toward one side in the thickness direction. The optical adjustment layer is a layer that suppresses the visibility of the pattern formed from the light transmissive conductive layer 1 and adjusts the optical physical characteristics (specifically, the refractive index) of the light transmissive conductive film 10.
 機能層14が、剥離機能層(図示せず)でもよい。この変形例では、樹脂層11は、透明基材フィルム13と、剥離機能層とを、厚み方向一方側に向かって順に備える。剥離機能層は、透明基材フィルム13に対して剥離が容易な層(易剥離層)である。樹脂層11が、剥離機能層を備えれば、透明基材フィルム13から、光透過性導電層1を剥離することができる。剥離された光透過性導電層1は、例えば、タッチセンサを構成する他の部材に転写及び貼り合せすることで用いることができる。 The functional layer 14 may be a peeling functional layer (not shown). In this modification, the resin layer 11 includes a transparent base film 13 and a peeling function layer in order toward one side in the thickness direction. The peeling functional layer is a layer (easy peeling layer) that can be easily peeled off from the transparent base film 13. If the resin layer 11 includes a peeling functional layer, the light-transmitting conductive layer 1 can be peeled from the transparent base film 13. The peeled light-transmitting conductive layer 1 can be used, for example, by transferring and bonding to another member constituting the touch sensor.
 機能層14が、易接着層(図示せず)でもよい。この変形例では、樹脂層11は、透明基材フィルム13と、易接着層とを、厚み方向一方側に向かって順に備える。易接着層は、透明基材フィルム13と光透過性導電層1との密着性を向上する。 The functional layer 14 may be an easy-adhesion layer (not shown). In this modification, the resin layer 11 includes a transparent base film 13 and an easy-adhesion layer in order toward one side in the thickness direction. The easy-adhesion layer improves the adhesion between the transparent base film 13 and the light-transmitting conductive layer 1.
 機能層14は、複層であってもよい。つまり、機能層14は、ハードコート層、光学調整層、剥離機能層および易接着層からなる群から選択される2つ以上の層を任意に含むことができる。詳しくは、樹脂層11は、透明基材フィルム13と、易接着層と、ハードコート層と、光学調整層とを厚み方向一方側に向かって順に備えることもでき、また、樹脂層11は、透明基材フィルム13と、剥離機能層と、ハードコート層および/または光学調整層とを厚み方向一方側に向かって順に備えることもできる。 The functional layer 14 may be a plurality of layers. That is, the functional layer 14 can optionally include two or more layers selected from the group consisting of a hard coat layer, an optical adjustment layer, a peeling functional layer, and an easy-adhesion layer. Specifically, the resin layer 11 may be provided with the transparent base film 13, the easy-adhesion layer, the hard coat layer, and the optical adjustment layer in order toward one side in the thickness direction, and the resin layer 11 may be provided with the resin layer 11 in order. The transparent base film 13, the peeling functional layer, the hard coat layer and / or the optical adjusting layer may be provided in order toward one side in the thickness direction.
 樹脂層11が、透明基材フィルム13と、剥離機能層と、ハードコート層および/または光学調整層とを、厚み方向一方側に向かって順に備える場合には、光透過性導電フィルム10から、ハードコート層および/または光学調整層と光透過性導電層1とを備える積層体を剥離することができる。 When the resin layer 11 includes the transparent base film 13, the peeling function layer, the hard coat layer and / or the optical adjustment layer in order toward one side in the thickness direction, the light transmissive conductive film 10 is used. The laminate including the hard coat layer and / or the optical adjustment layer and the light transmissive conductive layer 1 can be peeled off.
 図7Aおよび図7Bに示すように、樹脂層11は、機能層14および透明基材フィルム13のうち、いずれか一方のみを備えることができる。図7Aおよび図7Bは、光透過性導電層を含む積層体の他の例を描画する。 As shown in FIGS. 7A and 7B, the resin layer 11 can include only one of the functional layer 14 and the transparent base film 13. 7A and 7B depict other examples of laminates that include a light transmissive conductive layer.
 例えば、図7Aに示すように、この光透過性導電層積層体20では、樹脂層11が、透明基材フィルム13を備えず、機能層14のみからなることもできる。光透過性導電層積層体20は、フィルム形状を有さず、樹脂層11(ハードコート層および/または光学調整層)と、光透過性導電層1とを厚み方向に順に有する。 For example, as shown in FIG. 7A, in the light-transmitting conductive layer laminate 20, the resin layer 11 may not include the transparent base film 13 and may consist only of the functional layer 14. The light-transmitting conductive layer laminate 20 does not have a film shape, and has a resin layer 11 (hard coat layer and / or an optical adjustment layer) and a light-transmitting conductive layer 1 in order in the thickness direction.
 他方、図7Bに示すように、光透過性導電フィルム10は、フィルム形状を有する。樹脂層11は、機能層14を備えず、透明基材フィルム13のみからなることもできる。つまり、光透過性導電フィルム10は、透明基材フィルム13と、光透過性導電層1とを厚み方向に順に有する。 On the other hand, as shown in FIG. 7B, the light-transmitting conductive film 10 has a film shape. The resin layer 11 may not include the functional layer 14 and may consist of only the transparent base film 13. That is, the light-transmitting conductive film 10 has the transparent base film 13 and the light-transmitting conductive layer 1 in order in the thickness direction.
 また、樹脂層11には、ガラスを含む透明基材(図示せず)が機能層14に設けられてもよい。 Further, the resin layer 11 may be provided with a transparent base material (not shown) containing glass in the functional layer 14.
 一実施形態では、光透過性導電フィルム10における光透過性導電層1の好適な数として1を例示しているが、例えば、図示しないが、2であってもよい。この変形例では、2つの光透過性導電層1のそれぞれが、樹脂層11の厚み方向両側のそれぞれに配置される。つまり、この変形例では、1つの樹脂層11に対する光透過性導電層1の数は、好ましくは、2である。 In one embodiment, 1 is exemplified as a suitable number of the light-transmitting conductive layer 1 in the light-transmitting conductive film 10, but for example, although not shown, it may be 2. In this modification, each of the two light-transmitting conductive layers 1 is arranged on both sides of the resin layer 11 in the thickness direction. That is, in this modification, the number of light-transmitting conductive layers 1 with respect to one resin layer 11 is preferably 2.
 結晶性の領域を含む光透過性導電層1の製造方法の一実施形態として、非晶質の光透過性導電層1を加熱する製造方法を記載したが、例えば、80℃未満(例えば、25℃)の温度環境で、長時間(例えば、1000時間)保管する製造方法を採用してもよい。 As an embodiment of the method for producing the light-transmitting conductive layer 1 including the crystalline region, a method for producing the amorphous light-transmitting conductive layer 1 is described, but for example, the temperature is lower than 80 ° C. (for example, 25). A manufacturing method may be adopted in which the product is stored for a long time (for example, 1000 hours) in a temperature environment of (° C.).
 以下に、実施例および比較例を示し、本発明をさらに具体的に説明する。なお、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, specific numerical values such as a compounding ratio (content ratio), a physical property value, and a parameter used in the following description are described in the above-mentioned "Mode for carrying out the invention", and the compounding ratio corresponding to them ( Substitute the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess") such as content ratio), physical property value, parameter, etc. be able to. In addition, unless otherwise specified in the following description, "part" and "%" are based on mass.
  実施例1
 長尺のPETフィルム(東レ社製、厚み50μm)からなる透明基材フィルム13の厚み方向一方面に、アクリル樹脂を含む紫外線硬化性のハードコート組成物を塗布し、これを紫外線照射して硬化させて、厚みが2μmであるハードコート層(機能層14)を形成した。これにより、透明基材フィルム13と、ハードコート層とを備える樹脂層11を準備した。
Example 1
An ultraviolet curable hard coat composition containing an acrylic resin is applied to one surface in the thickness direction of a transparent base film 13 made of a long PET film (manufactured by Toray Industries, Inc., thickness 50 μm), and this is irradiated with ultraviolet rays to cure. A hard coat layer (functional layer 14) having a thickness of 2 μm was formed. As a result, the resin layer 11 including the transparent base film 13 and the hard coat layer was prepared.
 次いで、樹脂層11をスパッタリング装置30にセットした。続いて、スパッタリング装置30において、繰出側ポンプ33と、巻取側ポンプ34と、第1ポンプ71と、第2ポンプ72とを駆動して、到達真空度を0.9×10-4Paにし、樹脂層11を脱ガス処理した。また、成膜ロール40の温度を、-8℃にした。スパッタリング装置30において、第1ターゲット51と第2ターゲットとの材料は、いずれも、酸化インジウムと酸化スズとの焼結体であった。焼結体において、酸化インジウムと酸化スズとの合計含有量に対する酸化スズの含有量の割合は、10質量%であった。焼結体において、インジウム原子数に対するスズ原子数の比率(スズ原子数/インジウム原子数)は、0.102である。 Next, the resin layer 11 was set in the sputtering apparatus 30. Subsequently, in the sputtering apparatus 30, the feeding side pump 33, the winding side pump 34, the first pump 71, and the second pump 72 are driven to set the ultimate vacuum degree to 0.9 × 10 -4 Pa. , The resin layer 11 was degassed. Further, the temperature of the film forming roll 40 was set to −8 ° C. In the sputtering apparatus 30, the materials of the first target 51 and the second target were both sintered bodies of indium oxide and tin oxide. In the sintered body, the ratio of the tin oxide content to the total content of indium oxide and tin oxide was 10% by mass. In the sintered body, the ratio of the number of tin atoms to the number of indium atoms (number of tin atoms / number of indium atoms) is 0.102.
 その後、樹脂層11を、成膜ロール40に沿うように、繰出部35から巻取部37に向けて搬送した。 After that, the resin layer 11 was conveyed from the feeding portion 35 toward the winding portion 37 along the film forming roll 40.
 第1成膜室41では、第1ポンプ71を駆動しながら、クリプトンを希ガス供給機63から供給し、酸素を第1酸素ガス供給機64から供給した。第1成膜室41の圧力を、0.2Paとし、第1ターゲット51をスパッタリング(電源:DC、第1ターゲット上の水平磁場強度:90mT)することで、厚み50nmの第1非晶質導電膜81(第1領域4)を形成した。 In the first film forming chamber 41, krypton was supplied from the rare gas supply machine 63 and oxygen was supplied from the first oxygen gas supply machine 64 while driving the first pump 71. The pressure of the first film forming chamber 41 is set to 0.2 Pa, and the first target 51 is sputtered (power supply: DC, horizontal magnetic field strength on the first target: 90 mT) to obtain a first amorphous conductor having a thickness of 50 nm. A film 81 (first region 4) was formed.
 第2成膜室42では、第2ポンプ72を駆動しながら、アルゴンをアルゴン供給機65から供給し、酸素を第2酸素ガス供給機66から供給した。第2成膜室42の圧力を、0.4Paとし、第2ターゲット52をスパッタリング(電源:DC、第2ターゲット上の水平磁場強度:90mT)することで、厚み80nmの第2非晶質導電膜82(第2領域5)を形成した。 In the second film forming chamber 42, while driving the second pump 72, argon was supplied from the argon feeder 65, and oxygen was supplied from the second oxygen gas feeder 66. The pressure of the second film forming chamber 42 is 0.4 Pa, and the second target 52 is sputtered (power supply: DC, horizontal magnetic field strength on the second target: 90 mT) to obtain a second amorphous conductor having a thickness of 80 nm. A film 82 (second region 5) was formed.
 なお、第1酸素ガス供給機64および第2酸素ガス供給機66からの酸素導入量は、図6に示すように、表面抵抗-酸素導入量曲線の第1領域X、かつ、非晶質の光透過性導電層1の表面抵抗が50Ω/□になるように調整した。この際、クリプトンガスと酸素ガスとの合計導入量に対する酸素ガスの割合は、約2.5流量%とした。アルゴンガスと酸素ガスとの合計導入量に対する酸素ガスの割合は、約1.5流量%とした。 As shown in FIG. 6, the amount of oxygen introduced from the first oxygen gas supply machine 64 and the second oxygen gas supply machine 66 is the first region X of the surface resistance-oxygen introduction amount curve and is amorphous. The surface resistance of the light transmissive conductive layer 1 was adjusted to 50 Ω / □. At this time, the ratio of oxygen gas to the total amount of krypton gas and oxygen gas introduced was about 2.5% of the flow rate. The ratio of oxygen gas to the total amount of argon gas and oxygen gas introduced was about 1.5 flow rate%.
 これにより、図2に示すように、第1非晶質導電膜81と、第2非晶質導電膜82とを、樹脂層11の厚み方向一方側に順に形成した。 As a result, as shown in FIG. 2, the first amorphous conductive film 81 and the second amorphous conductive film 82 were sequentially formed on one side in the thickness direction of the resin layer 11.
 これによって、樹脂層11と、非晶質の光透過性導電層1とを光透過性導電フィルム10を得た。 As a result, the resin layer 11 and the amorphous light-transmitting conductive layer 1 were formed into a light-transmitting conductive film 10.
  実施例2~4および6~7
 第1非晶質導電膜81(第1領域4)の厚みと、第2非晶質導電膜82(第2領域5)の厚みと、非晶質の光透過性導電層1の表面抵抗とが、表1に記載の通りになるように、第1ターゲット51および第2ターゲット52の電力密度を調節した以外は、実施例1と同様にして、光透過性導電フィルム10を得た。
Examples 2-4 and 6-7
The thickness of the first amorphous conductive film 81 (first region 4), the thickness of the second amorphous conductive film 82 (second region 5), and the surface resistance of the amorphous light-transmitting conductive layer 1. However, a light-transmitting conductive film 10 was obtained in the same manner as in Example 1 except that the power densities of the first target 51 and the second target 52 were adjusted as shown in Table 1.
  実施例5
 第1成膜室41に第2混合ガス(Ar、O含有)を供給して、第1成膜室41の圧力を0.4Paとし、厚み42nmの第2非晶質導電膜82(第2領域5)をスパッタリングで形成した後、第2成膜室42に第1混合ガス(Kr、O含有)を供給して第2成膜室42の圧力を0.2Paとし、厚み76nmの第1非晶質導電膜81(第1領域4)をスパッタリングで形成し、かつ、非晶質の光透過性導電層1の表面抵抗が55Ω/□になるように調整した以外は、実施例1と同様にして、光透過性導電フィルム10を得た。実施例5の光透過性導電フィルム10は、図4に示す光透過性導電フィルム10に対応する。
Example 5
A second mixed gas ( containing Ar and O 2 ) is supplied to the first film forming chamber 41 so that the pressure of the first film forming chamber 41 is 0.4 Pa, and the second amorphous conductive film 82 having a thickness of 42 nm (the first). After the 2 regions 5) are formed by sputtering, the first mixed gas ( containing Kr and O 2 ) is supplied to the second film forming chamber 42 so that the pressure of the second film forming chamber 42 is 0.2 Pa and the thickness is 76 nm. Examples except that the first amorphous conductive film 81 (first region 4) was formed by sputtering and the surface resistance of the amorphous light-transmitting conductive layer 1 was adjusted to 55 Ω / □. A light transmissive conductive film 10 was obtained in the same manner as in 1. The light-transmitting conductive film 10 of Example 5 corresponds to the light-transmitting conductive film 10 shown in FIG.
  実施例8
 希ガス供給機63から、クリプトンおよびアルゴンの混合ガス(クリプトン85体積%、アルゴン15体積%)を供給し、第1酸素ガス供給機64から酸素を供給し、第1酸素ガス供給機64の酸素導入量を、図6に示す表面抵抗-酸素導入量曲線の第1領域X、かつ、非晶質の光透過性導電層1の表面抵抗が39Ω/□(クリプトンガスと酸素ガスの合計導入量に対する酸素ガスの割合は、約2.6流量%)になるように調整し、また、第1ターゲット51の電力密度を調節することで、第1成膜室41において、厚み147nmの第3非晶質導電膜83を形成し、かつ、第2成膜室42では第2非晶質導電膜82(第2領域5)を形成しなかったこと以外は、実施例1と同様にして、光透過性導電フィルム10を得た。実施例8の光透過性導電フィルム10は、図5Dに示す光透過性導電フィルム10に対応する。
Example 8
A mixed gas of krypton and argon (85% by volume of krypton, 15% by volume of argon) is supplied from the rare gas supply machine 63, oxygen is supplied from the first oxygen gas supply machine 64, and oxygen of the first oxygen gas supply machine 64 is supplied. The introduction amount is the first region X of the surface resistance-oxygen introduction amount curve shown in FIG. 6, and the surface resistance of the amorphous light-transmitting conductive layer 1 is 39Ω / □ (total introduction amount of krypton gas and oxygen gas). The ratio of the oxygen gas to the gas gas is adjusted to be about 2.6% of the flow rate), and by adjusting the power density of the first target 51, the third non-third gas having a thickness of 147 nm is formed in the first film forming chamber 41. Light in the same manner as in Example 1 except that the crystalline conductive film 83 was formed and the second amorphous conductive film 82 (second region 5) was not formed in the second film forming chamber 42. A transmissive conductive film 10 was obtained. The light-transmitting conductive film 10 of Example 8 corresponds to the light-transmitting conductive film 10 shown in FIG. 5D.
  比較例1
  第1成膜室41および第2成膜室42の両方に、第2混合ガス(Ar、O含有)を供給し、第1成膜室41および第2成膜室42の圧力を0.4Paに変更した以外は、実施例1と同様にして、光透過性導電フィルム10を得た。
Comparative Example 1
A second mixed gas ( containing Ar and O 2 ) is supplied to both the first film forming chamber 41 and the second film forming chamber 42, and the pressure of the first film forming chamber 41 and the second film forming chamber 42 is reduced to 0. A light transmissive conductive film 10 was obtained in the same manner as in Example 1 except that the value was changed to 4 Pa.
  比較例2
  第1成膜室41および第2成膜室42の両方に、第1混合ガス(Kr、O含有)を供給し、第1成膜室41および第2成膜室42の圧力を0.2Paに変更した以外は、実施例1と同様にして、光透過性導電フィルム10を得た。
Comparative Example 2
The first mixed gas ( containing Kr and O 2 ) is supplied to both the first film forming chamber 41 and the second film forming chamber 42, and the pressure of the first film forming chamber 41 and the second film forming chamber 42 is reduced to 0. A light transmissive conductive film 10 was obtained in the same manner as in Example 1 except that the value was changed to 2 Pa.
   [評価]
 各実施例および比較例の光透過性導電フィルム10について、下記の事項を評価した。
 その結果を表1に記載する。
[evaluation]
The following items were evaluated for the light-transmitting conductive film 10 of each Example and Comparative Example.
The results are shown in Table 1.
 [厚み]
 [光透過性導電層の厚み]
 FIBマイクロサンプリング法により、各実施例および比較例の光透過性導電層1の断面観察用サンプルを作製し、その後、FE-TEM観察(断面観察)により、断面観察用サンプルにおける光透過性導電層1の厚みを測定した。装置および測定条件の詳細は、以下の通りである。
[Thickness]
[Thickness of light-transmitting conductive layer]
A cross-section observation sample of the light-transmitting conductive layer 1 of each Example and Comparative Example was prepared by the FIB microsampling method, and then the light-transmissive conductive layer in the cross-section observation sample was prepared by FE-TEM observation (cross-section observation). The thickness of 1 was measured. Details of the device and measurement conditions are as follows.
 FIBマイクロサンプリング法
  FIB装置:Hitachi製 FB2200
  加速電圧:10kV
FIB microsampling method FIB device: Hitachi FB2200
Acceleration voltage: 10kV
 FE-TEM観察
  FE-TEM装置:JEOL製 JEM-2800
  加速電圧:200kV
FE-TEM observation FE-TEM device: JEM-2800 manufactured by JEOL
Acceleration voltage: 200kV
  [実施例1~4、6~7の第1非晶質導電膜の厚みと、第2非晶質導電膜の厚み] 
  実施例1~4、6~7において、第1非晶質導電膜81を形成した直後であって、まだ、第2非晶質導電膜82を形成していないサンプルを採取し、サンプルの第1非晶質導電膜81(第1領域4)の厚みをFE-TEM観察(断面観察)により求めた。
[Thickness of the first amorphous conductive film and the thickness of the second amorphous conductive film of Examples 1 to 4, 6 to 7]
In Examples 1 to 4, 6 to 7, a sample was collected immediately after the formation of the first amorphous conductive film 81 and not yet formed of the second amorphous conductive film 82, and the sample was collected. 1 The thickness of the amorphous conductive film 81 (first region 4) was determined by FE-TEM observation (cross-sectional observation).
 続いて、実施例1~4、6~7の第2非晶質導電膜82(第2領域5)の厚みを次式により求めた。 Subsequently, the thickness of the second amorphous conductive film 82 (second region 5) of Examples 1 to 4 and 6 to 7 was calculated by the following formula.
  第2非晶質導電膜82の厚み=光透過性導電層1の厚み-第1非晶質導電膜81の厚み Thickness of the second amorphous conductive film 82 = Thickness of the light-transmitting conductive layer 1-Thickness of the first amorphous conductive film 81
  [実施例5の第1非晶質導電膜の厚みと、第2非晶質導電膜の厚み]
 実施例5において、第2非晶質導電膜82を形成した直後であって、まだ、第1非晶質導電膜81を形成していないサンプルを採取し、サンプルの第2非晶質導電膜82(第2領域5)の厚みをFE-TEM観察(断面観察)により求めた。
[Thickness of the first amorphous conductive film of Example 5 and the thickness of the second amorphous conductive film]
In Example 5, a sample was collected immediately after the formation of the second amorphous conductive film 82 and not yet the first amorphous conductive film 81 was formed, and the second amorphous conductive film of the sample was collected. The thickness of 82 (second region 5) was determined by FE-TEM observation (cross-sectional observation).
 続いて、実施例5の第1非晶質導電膜81(第1領域4)の厚みを次式により求めた。 Subsequently, the thickness of the first amorphous conductive film 81 (first region 4) of Example 5 was calculated by the following formula.
  第1非晶質導電膜81の厚み=光透過性導電層1の厚み-第2非晶質導電膜82の厚み Thickness of the first amorphous conductive film 81 = Thickness of the light-transmitting conductive layer 1-Thickness of the second amorphous conductive film 82
  [実施例8の第3非晶質導電膜の厚み]
  実施例8において、スパッタリング直後の第3非晶質導電膜83の厚みをFE-TEM観察(断面観察)により求めた。
[Thickness of the third amorphous conductive film of Example 8]
In Example 8, the thickness of the third amorphous conductive film 83 immediately after sputtering was determined by FE-TEM observation (cross-sectional observation).
  [Krの同定(存否の確認)]
 走査型蛍光X線分析装置(リガク社製、ZSX PrimusIV)を用いて、光透過性導電層1内にKrが混入されたか否かを確認した。具体的には、以下の条件にて、5回繰り返し測定を行って各走査角度の平均値を算出し、X線スペクトルを作成した。作成したX線スペクトルの、28.2°近傍にピークが出ていることを確認することでKrを特定する。その結果、実施例1~8および比較例2で、Krの混入を確認した。一方、比較例1では、Krの混入が確認されなかった。
[Identification of Kr (confirmation of existence)]
Using a scanning fluorescent X-ray analyzer (ZSX Primus IV, manufactured by Rigaku Co., Ltd.), it was confirmed whether or not Kr was mixed in the light transmissive conductive layer 1. Specifically, under the following conditions, the measurement was repeated 5 times to calculate the average value of each scanning angle, and an X-ray spectrum was created. Kr is specified by confirming that a peak appears near 28.2 ° in the created X-ray spectrum. As a result, the contamination of Kr was confirmed in Examples 1 to 8 and Comparative Example 2. On the other hand, in Comparative Example 1, no Kr contamination was confirmed.
<測定条件>
 スペクトル: Kr-KA
 測定径: 30mm
 雰囲気:真空
 ターゲット: Rh
 管電圧50 kV
 管電流60 mA
 1次フィルタ: Ni40
 走査角度(deg): 27.0-29.5
 ステップ(deg): 0.020
 速度(Deg/min):0.75
 アッテネータ: 1/1
 スリット: S2
 分光結晶: LiF(200)
 検出器: SC
 PHA: 100-300
<Measurement conditions>
Spectrum: Kr-KA
Measurement diameter: 30 mm
Atmosphere: Vacuum Target: Rh
Tube voltage 50 kV
Tube current 60 mA
Primary filter: Ni40
Scanning angle (deg): 27.0-29.5
Step (deg): 0.020
Velocity (Deg / min): 0.75
Attenuator: 1/1
Slit: S2
Spectral crystal: LiF (200)
Detector: SC
PHA: 100-300
[KrおよびArの同定(定量)]
 実施例1~8および比較例1~2の光透過性導電層1内に含有されるKrおよびAr原子の含有量を、ラザフォード後方散乱分析法(RBS、Rutherford Backscattering Spectrometry)によって分析した。検出元素である、In+Sn(ラザフォード後方散乱分光法では、InとSnを分離しての測定が困難であるため、2元素の合算として評価した)、O、Ar、Krの5元素に関して、元素比率を求めることにより、光透過性導電層1におけるKr原子およびAr原子の含有量(atom%)を求めた。具体的な使用装置および測定条件は下記のとおりである。分析結果として、Kr含有量(atom%)、Ar含有量(atom%)、および希ガス(Kr+Ar)含有量(atom%)を表1に掲げる。
[Identification of Kr and Ar (quantitative)]
The contents of Kr and Ar atoms contained in the light-transmitting conductive layer 1 of Examples 1 to 8 and Comparative Examples 1 and 2 were analyzed by Rutherford Backscattering Spectroscopy (RBS). The element ratios of the detected elements, In + Sn (in Rutherford backscattering spectroscopy, it is difficult to measure In and Sn separately, so they were evaluated as the sum of the two elements), O, Ar, and Kr. The content (atom%) of Kr atom and Ar atom in the light transmissive conductive layer 1 was determined. The specific equipment used and measurement conditions are as follows. As the analysis results, the Kr content (atom%), Ar content (atom%), and noble gas (Kr + Ar) content (atom%) are listed in Table 1.
 Kr含有量の分析に関し、実施例1~8および比較例2では、検出限界値(下限値)以上の確かな測定値が得られなかった(検出限界値は、測定に付される光透過性導電層1の厚さによって異なりうる)。そのため、表1では、光透過性導電層1のKr含有量について、光透過性導電層1の厚さにおける検出限界値を下回っていることを示すため、「<測定に付された光透過性導電層1の厚さにおける具体的な検出限界値」と表記する(希ガス(Kr+Ar)含有量の表記の仕方についても同様である)。 Regarding the analysis of Kr content, in Examples 1 to 8 and Comparative Example 2, a reliable measurement value equal to or higher than the detection limit value (lower limit value) could not be obtained (the detection limit value is the light transmittance attached to the measurement). It may vary depending on the thickness of the conductive layer 1). Therefore, in Table 1, it is shown that the Kr content of the light transmissive conductive layer 1 is below the detection limit value in the thickness of the light transmissive conductive layer 1. It is described as "a specific detection limit value in the thickness of the conductive layer 1" (the same applies to the method of expressing the rare gas (Kr + Ar) content).
 なお、比較例1では、上記した走査型蛍光X線分析装置を用いるKrの定量分析によって、Krの混入が確認されなかったことから、表1には、実施例1~8および比較例2に記載した「<測定に付された光透過性導電層1の厚さにおける具体的な検出限界値」を表記しない。 In Comparative Example 1, no contamination of Kr was confirmed by the quantitative analysis of Kr using the above-mentioned scanning fluorescent X-ray analyzer. Therefore, Table 1 shows Examples 1 to 8 and Comparative Example 2. The described "<specific detection limit value in the thickness of the light transmissive conductive layer 1 attached to the measurement" is not indicated.
<使用装置>
 Pelletron 3SDH(National Electrostatics Corporation製)
<Device used>
Pelletron 3SDH (manufactured by National Electrostatics Corporation)
<測定条件>
 入射イオン: 4He++
 入射エネルギー: 2300keV
 入射角: 0 deg
 散乱角: 160deg
 試料電流:6nA
 ビーム径:2mmφ
 面内回転:無
 照射量:75μC
<Measurement conditions>
Incident ion: 4He ++
Incident energy: 2300 keV
Incident angle: 0 deg
Scattering angle: 160deg
Sample current: 6nA
Beam diameter: 2 mmφ
In-plane rotation: No irradiation amount: 75 μC
 [表面抵抗]
 光透過性導電層1の表面抵抗(初期)を、JIS K7194(1994年)に準じて四端子法により測定した。
[Surface resistance]
The surface resistance (initial) of the light transmissive conductive layer 1 was measured by the four-terminal method according to JIS K7194 (1994).
 155℃の熱風オーブンで2時間加熱した後の光透過性導電層1の表面抵抗(加熱後)を、上記と同様にして測定した。 The surface resistance (after heating) of the light-transmitting conductive layer 1 after heating in a hot air oven at 155 ° C. for 2 hours was measured in the same manner as above.
 [比抵抗]
  [比抵抗の実測値]
 各実施例および比較例の加熱後の光透過性導電層1の比抵抗を、その表面抵抗と、光透過性導電層1の厚みとを乗じて、比抵抗の実測値を求めた。なお、光透過性導電層1の比抵抗の実測値は、実測した光透過性導電層1の表面抵抗に基づいて算出されるので、「実測値」と表記とする。
[Specific resistance]
[Actual value of resistivity]
The specific resistance of the light-transmitting conductive layer 1 after heating in each Example and Comparative Example was multiplied by the surface resistance thereof and the thickness of the light-transmitting conductive layer 1 to obtain an actually measured value of the specific resistance. Since the actual measurement value of the specific resistance of the light transmissive conductive layer 1 is calculated based on the actually measured surface resistance of the light transmissive conductive layer 1, it is referred to as "actual measurement value".
  [比抵抗の期待値]
  実施例1~8の光透過性導電層1の比抵抗の期待値を求めた。具体的には、比較例1(Ar混入)の加熱後の光透過性導電層1の比抵抗2.301×10-4Ωcmを、各実施例の第2非晶質導電膜82の厚みで除することで、第2非晶質導電膜82の加熱後(155℃、2時間)の表面抵抗の期待値(AVAr)を算出した(式(1))。続いて、比較例2(Kr混入)の加熱後の比抵抗1.599×10-4Ωcmを、各実施例の第1非晶質導電膜81の厚みで除することで、第1非晶質導電膜81の加熱後(155℃、2時間加熱)の表面抵抗の期待値(AVkr)を算出した(式(2))。このようにして求めた、AVArおよびAVkrと、各実施例の光透過性導電層1の厚みを以下の式(3)に代入することで、各実施例の加熱後(155℃、2時間加熱後)の光透過性導電層1の、比抵抗の期待値を求めた。
[Expected value of resistivity]
The expected value of the specific resistance of the light-transmitting conductive layer 1 of Examples 1 to 8 was determined. Specifically, the specific resistance of the light-transmitting conductive layer 1 after heating in Comparative Example 1 (mixed with Ar) was set to 2.301 × 10 -4 Ωcm with the thickness of the second amorphous conductive film 82 of each example. By dividing, the expected value (AV Ar ) of the surface resistivity of the second amorphous conductive film 82 after heating (155 ° C., 2 hours) was calculated (Equation (1)). Subsequently, the specific resistance after heating of Comparative Example 2 (mixed with Kr) of 1.599 × 10 -4 Ωcm is divided by the thickness of the first amorphous conductive film 81 of each example to obtain the first amorphous conductive film. The expected value (AV kr ) of the surface resistivity of the quality conductive film 81 after heating (heating at 155 ° C. for 2 hours) was calculated (Equation (2)). By substituting the AV Ar and AV kr obtained in this way and the thickness of the light-transmitting conductive layer 1 of each example into the following formula (3), after heating of each example (155 ° C., 2). The expected value of the specific resistance of the light-transmitting conductive layer 1 (after heating for a time) was determined.
式(1)  第2非晶質導電膜82の加熱後の表面抵抗の期待値(AVAr)={比較例1の光透過性導電層1の比抵抗/第2非晶質導電膜82の厚み Equation (1) Expected value of surface resistance of the second amorphous conductive film 82 after heating (AV Ar ) = {Specific resistance of the light-transmitting conductive layer 1 of Comparative Example 1 / The second amorphous conductive film 82 Thickness
式(2)  第1非晶質導電膜81の加熱後の表面抵抗の期待値(AVkr )={比較例2の光透過性導電層1の比抵抗/第1非晶質導電膜81の厚み Equation (2) Expected value of surface resistance of the first amorphous conductive film 81 after heating (AV kr ) = {Specific resistance of the light-transmitting conductive layer 1 of Comparative Example 2 / The first amorphous conductive film 81 Thickness
式(3) 光透過性導電層1の比抵抗の期待値={(AVAr×AVkr)/(AVAr+AVkr)}× 光透過性導電層1の厚み Equation (3) Expected value of specific resistance of the light-transmitting conductive layer 1 = {(AV Ar × AV kr ) / (AV Ar + AV kr )} × Thickness of the light-transmitting conductive layer 1
 また、光透過性導電層1が本願図5Dのように、アルゴンと、アルゴンより原子番号が大きい希ガスとが混在する層である場合は、導入するアルゴンガスと、アルゴンより原子番号が大きい希ガスの量の割合を、光透過性導電層1の第1領域4および第2領域5との割合に置換えて期待値を計算した。例えば、クリプトン:アルゴン=2:1の混合ガスで光透過性導電層1を形成した場合は、第1領域4:第2領域5=2:1の厚みであると換算し、式(1)~(3)を用いて、光透過性導電層1の比抵抗の期待値を求めた。具体的には、実施例8においては、クリプトン:アルゴン=85:15(体積比)の混合ガスで光透過性導電層1を形成したため、第1領域4:第2領域5=85:15の厚みであると換算し、式(1)~(3)を用いて、比抵抗の期待値を算出した。 When the light-transmitting conductive layer 1 is a layer in which argon and a rare gas having an atomic number larger than that of argon are mixed as shown in FIG. 5D of the present application, the argon gas to be introduced and the rare gas having an atomic number larger than that of argon are mixed. The expected value was calculated by replacing the ratio of the amount of gas with the ratio of the first region 4 and the second region 5 of the light transmissive conductive layer 1. For example, when the light-transmitting conductive layer 1 is formed with a mixed gas of krypton: argon = 2: 1, it is converted into a thickness of 1st region 4: 2nd region 5 = 2: 1 and the formula (1) is used. Using (3), the expected value of the specific resistance of the light-transmitting conductive layer 1 was obtained. Specifically, in Example 8, since the light-transmitting conductive layer 1 was formed with a mixed gas of krypton: argon = 85:15 (volume ratio), the first region 4: the second region 5 = 85:15. Converted to the thickness, the expected value of the specific resistance was calculated using the formulas (1) to (3).
 比抵抗の期待値とは、計算上期待できる比抵抗であり、より具体的には、第1領域4と第2領域5とを有する各実施例の光透過性導電層1の比抵抗を、第2領域5のみからなる比較例1の光透過性導電層1(他の光透過性導電層B)の比抵抗と、第1領域4のみからなる比較例2の光透過性導電層1(一の光透過性導電層A)の比抵抗とから、計算上の目安として期待される(求められる)比抵抗である。 The expected value of the specific resistance is a specific resistance that can be expected in calculation, and more specifically, the specific resistance of the light-transmitting conductive layer 1 of each embodiment having the first region 4 and the second region 5 is determined. The specific resistance of the light-transmitting conductive layer 1 (another light-transmitting conductive layer B) of Comparative Example 1 consisting of only the second region 5 and the light-transmitting conductive layer 1 of Comparative Example 2 consisting of only the first region 4 (the other light-transmitting conductive layer B). From the specific resistance of one light-transmitting conductive layer A), it is the specific resistance expected (obtained) as a guideline for calculation.
  [比抵抗の利得量]
 実施例1~8の光透過性導電層1の比抵抗の利得量を下記式から求めた。
[Gain amount of resistivity]
The gain amount of the specific resistance of the light-transmitting conductive layer 1 of Examples 1 to 8 was calculated from the following formula.
 光透過性導電層1の比抵抗の利得量(%)=[(比抵抗の期待値-比抵抗の実測値)]/(比抵抗の期待値)×100 Gain amount (%) of specific resistance of light-transmitting conductive layer 1 = [(expected value of specific resistance-measured value of specific resistance)] / (expected value of specific resistance) x 100
 光透過性導電層1の比抵抗の利得量は、155℃、2時間加熱後の光透過性導電層1の比抵抗の実測値が、光透過性導電層1の比抵抗の期待値を下回った分の、光透過性導電層1の比抵抗の期待値に対する百分率である。光透過性導電層1の比抵抗の利得量が正であれば、光透過性導電層1の比抵抗の実測値が期待値を下回ったことを意味し、つまり、ArとKrとの混入により、光透過性導電層1の比抵抗を低減する効果が顕著な効果として奏していることを意味する。 Regarding the gain amount of the specific resistance of the light transmissive conductive layer 1, the measured value of the specific resistance of the light transmissive conductive layer 1 after heating at 155 ° C. for 2 hours is lower than the expected value of the specific resistance of the light transmissive conductive layer 1. It is a percentage of the expected value of the specific resistance of the light-transmitting conductive layer 1. If the gain amount of the specific resistance of the light transmissive conductive layer 1 is positive, it means that the measured value of the specific resistance of the light transmissive conductive layer 1 is lower than the expected value, that is, due to the mixing of Ar and Kr. This means that the effect of reducing the specific resistance of the light-transmitting conductive layer 1 is exerted as a remarkable effect.
 [透過率]
 155℃、2時間加熱後の光透過性導電フィルム10の全光線透過率をヘーズメーター(スガ試験機社製、形式:HGM-2DP)で測定した。
[Transmittance]
The total light transmittance of the light-transmitting conductive film 10 after heating at 155 ° C. for 2 hours was measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd., model: HGM-2DP).
[結晶性の評価]
 表1には記載しないが、155℃の熱風オーブンで2時間加熱した後の実施例1~8および比較例1~2のそれぞれの光透過性導電層1を表面から透過型電子顕微鏡(TEM)で観察し、結晶粒が存在することを確認することで、いずれも、結晶質であることを確認した。具体的には、155℃、2時間加熱後の、各実施例および比較例の光透過性導電フィルム10を切り出し、ウルトラミクロトームの試料ホルダに固定した。次いで、ITO膜面に対して極鋭角にミクロトームナイフを設置し、切断面がITO膜面と略平行となるように切削して観察試料を得た。この観察試料を、平面視にてTEMを用いて観察した(倍率:50000倍)。TEM観察写真の中、1.5μm×1.5μmの領域を任意で選定し、その領域で結晶粒の有無を確認した。なお、各実施例および比較例では、平面視において、面方向全面に結晶粒の存在が確認され、結晶粒が存在する領域を主要な領域として含むこと(結晶性であること、また、結晶質であること)がわかった。
[Evaluation of crystallinity]
Although not shown in Table 1, the light-transmitting conductive layers 1 of Examples 1 to 8 and Comparative Examples 1 and 2 after heating in a hot air oven at 155 ° C. for 2 hours are subjected to a transmission electron microscope (TEM) from the surface. By observing with and confirming the existence of crystal grains, it was confirmed that all of them were crystalline. Specifically, after heating at 155 ° C. for 2 hours, the light-transmitting conductive films 10 of each Example and Comparative Example were cut out and fixed to a sample holder of an ultramicrotome. Next, a microtome knife was placed at an extremely acute angle with respect to the ITO film surface, and cutting was performed so that the cut surface was substantially parallel to the ITO film surface to obtain an observation sample. This observation sample was observed using TEM in a plan view (magnification: 50,000 times). A region of 1.5 μm × 1.5 μm was arbitrarily selected from the TEM observation photographs, and the presence or absence of crystal grains was confirmed in that region. In each of the Examples and Comparative Examples, the presence of crystal grains was confirmed on the entire surface direction in the plan view, and the region where the crystal grains were present was included as the main region (crystallinity and crystallinity). Is).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の光透過性導電層および光透過性導電フィルムは、例えば、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材、および、照明に用いられる。 The light-transmitting conductive layer and the light-transmitting conductive film of the present invention can be used in, for example, touch sensors, dimming elements, photoelectric conversion elements, heat ray control members, antennas, electromagnetic wave shield members, image display devices, heater members, and lighting. Used.
1 光透過性導電層
2 第1主面
3 第2主面
4 第1領域
5 第2領域
10 光透過性導電フィルム
11 樹脂層
1 Light-transmitting conductive layer 2 1st main surface 3 2nd main surface 4 1st region 5 2nd region 10 Light-transmitting conductive film 11 Resin layer

Claims (6)

  1.  第1主面、および、前記第1主面の厚み方向一方側に間隔を隔てて対向配置される第2主面を有し、前記厚み方向に直交する面方向に延びる単一の層を有する光透過性導電層であって、
     前記光透過性導電層は、導電性酸化物を含み、
     前記導電性酸化物が、アルゴンと、前記アルゴンより原子番号が大きい希ガスとを含有することを特徴とする、光透過性導電層。
    It has a first main surface and a second main surface which is arranged to face each other on one side in the thickness direction of the first main surface at intervals, and has a single layer extending in the plane direction orthogonal to the thickness direction. A light-transmitting conductive layer
    The light-transmitting conductive layer contains a conductive oxide and contains
    A light-transmitting conductive layer, wherein the conductive oxide contains argon and a rare gas having an atomic number larger than that of argon.
  2.  前記光透過性導電層が、結晶性であることを特徴とする、請求項1に記載の光透過性導電層。 The light-transmitting conductive layer according to claim 1, wherein the light-transmitting conductive layer is crystalline.
  3.  前記希ガスを含む第1領域と、前記アルゴンを含む第2領域とを厚み方向に順に有することを特徴とする、請求項1または2に記載の光透過性導電層。 The light-transmitting conductive layer according to claim 1 or 2, wherein the first region containing the noble gas and the second region containing argon are sequentially provided in the thickness direction.
  4.  前記希ガスが、クリプトンであることを特徴とする、請求項1~3いずれか一項に記載の光透過性導電層。 The light-transmitting conductive layer according to any one of claims 1 to 3, wherein the noble gas is krypton.
  5.  前記導電性酸化物が、インジウムおよびスズをさらに含有することを特徴とする、請求項1~4のいずれか一項に記載の光透過性導電層。 The light-transmitting conductive layer according to any one of claims 1 to 4, wherein the conductive oxide further contains indium and tin.
  6.  請求項1~5のいずれか一項に記載の光透過性導電層と、
     前記光透過性導電層の前記第1主面に接触する基材と
     を備え、
     前記第1領域が、前記第1主面を含むことを特徴とする、光透過性導電フィルム。
     
     
     
    The light-transmitting conductive layer according to any one of claims 1 to 5.
    A base material that comes into contact with the first main surface of the light-transmitting conductive layer is provided.
    A light-transmitting conductive film, wherein the first region includes the first main surface.


PCT/JP2021/011158 2020-04-20 2021-03-18 Light transmissive electroconductive layer and light transmissive electroconductive film WO2021215154A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021517073A JP7213962B2 (en) 2020-04-20 2021-03-18 Light-transmitting conductive layer and light-transmitting conductive film
KR1020227030812A KR20230004440A (en) 2020-04-20 2021-03-18 Light-transmitting conductive layer and light-transmitting conductive film
CN202180029837.7A CN115443511A (en) 2020-04-20 2021-03-18 Light-transmitting conductive layer and light-transmitting conductive film
JP2022025302A JP2022075677A (en) 2020-04-20 2022-02-22 Production method of optically transparent conductive layer and optically transparent conductive film
JP2024001042A JP2024032742A (en) 2020-04-20 2024-01-09 Light-transparent conductive layer and light-transparent conductive film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-074854 2020-04-20
JP2020074854 2020-04-20
JP2020-200422 2020-12-02
JP2020200422 2020-12-02

Publications (1)

Publication Number Publication Date
WO2021215154A1 true WO2021215154A1 (en) 2021-10-28

Family

ID=78270705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011158 WO2021215154A1 (en) 2020-04-20 2021-03-18 Light transmissive electroconductive layer and light transmissive electroconductive film

Country Status (5)

Country Link
JP (3) JP7213962B2 (en)
KR (1) KR20230004440A (en)
CN (1) CN115443511A (en)
TW (1) TW202145261A (en)
WO (1) WO2021215154A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443511A (en) * 2020-04-20 2022-12-06 日东电工株式会社 Light-transmitting conductive layer and light-transmitting conductive film
JP2024005997A (en) * 2022-06-30 2024-01-17 日東電工株式会社 Production method of transparent conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038654A (en) * 1998-07-21 2000-02-08 Nippon Sheet Glass Co Ltd Production of substrate with transparent electrically conductive film, substrate with transparent electrically conductive film and liquid crystal displaying element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (en) * 1992-05-29 1993-12-17 Tonen Corp Manufacture of transparent conductive film
JPH07262829A (en) * 1994-03-25 1995-10-13 Hitachi Ltd Transparent conductive film and its forming method
JPH1036961A (en) * 1996-07-22 1998-02-10 Sumitomo Metal Mining Co Ltd Film formation by sputtering method
KR20070030620A (en) * 2005-09-13 2007-03-16 삼성에스디아이 주식회사 Method for depositing electrode and the organic light emitting display produced using it
JP5376307B2 (en) * 2009-06-01 2013-12-25 大日本印刷株式会社 Ion plating method and apparatus, and gas barrier film forming method by ion plating
JP2013080995A (en) 2011-09-30 2013-05-02 Toshiba Corp Electronic apparatus
JP6066154B2 (en) * 2014-05-20 2017-01-25 日東電工株式会社 Method for producing transparent conductive film
CN115443511A (en) * 2020-04-20 2022-12-06 日东电工株式会社 Light-transmitting conductive layer and light-transmitting conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038654A (en) * 1998-07-21 2000-02-08 Nippon Sheet Glass Co Ltd Production of substrate with transparent electrically conductive film, substrate with transparent electrically conductive film and liquid crystal displaying element

Also Published As

Publication number Publication date
KR20230004440A (en) 2023-01-06
JP7213962B2 (en) 2023-01-27
TW202145261A (en) 2021-12-01
CN115443511A (en) 2022-12-06
JP2024032742A (en) 2024-03-12
JP2022075677A (en) 2022-05-18
JPWO2021215154A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP2024032742A (en) Light-transparent conductive layer and light-transparent conductive film
JP6974656B1 (en) Transparent conductive layer and transparent conductive sheet
JP7372995B2 (en) Method for producing a light-transparent conductive layer laminate and light-transparent conductive layer laminate
WO2021187575A1 (en) Light-transmitting conductive film and transparent conductive film
WO2021187576A1 (en) Transparent conductive film
WO2022092190A2 (en) Transparent conductive film, and production method for transparent conductive film
JP7068558B2 (en) Transparent conductive film
JP7389940B2 (en) Transparent conductive layers, transparent conductive films and articles
JP7451505B2 (en) Method for manufacturing transparent conductive film
WO2021187572A1 (en) Transparent conductive film and method for producing transparent conductive film
WO2023042846A1 (en) Transparent electroconductive layer, transparent electroconductive film, and article
WO2023042844A1 (en) Transparent electroconductive film
WO2021187578A1 (en) Light-transmitting electroconductive film and transparent electroconductive film
KR20240019750A (en) transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517073

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793407

Country of ref document: EP

Kind code of ref document: A1