WO2021187572A1 - Transparent conductive film and method for producing transparent conductive film - Google Patents

Transparent conductive film and method for producing transparent conductive film Download PDF

Info

Publication number
WO2021187572A1
WO2021187572A1 PCT/JP2021/011146 JP2021011146W WO2021187572A1 WO 2021187572 A1 WO2021187572 A1 WO 2021187572A1 JP 2021011146 W JP2021011146 W JP 2021011146W WO 2021187572 A1 WO2021187572 A1 WO 2021187572A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
transmitting conductive
conductive layer
base material
Prior art date
Application number
PCT/JP2021/011146
Other languages
French (fr)
Japanese (ja)
Inventor
望 藤野
順平 小笹
健太 森地
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180021982.0A priority Critical patent/CN115298761A/en
Priority to JP2021517070A priority patent/JP7213961B2/en
Priority to KR1020227030807A priority patent/KR20220155284A/en
Publication of WO2021187572A1 publication Critical patent/WO2021187572A1/en
Priority to JP2022177317A priority patent/JP2023017917A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive film and a method for producing the transparent conductive film.
  • optical films such as transparent conductive films are known to be used for optical applications such as touch panels.
  • a transparent conductive film having a film base material and a polycrystalline layer of indium tin oxide formed on the film base material has been proposed (see, for example, Patent Document 1). ).
  • an amorphous layer of indium tin oxide is arranged on the surface of the film substrate in the presence of argon gas by sputtering, and then the amorphous layer is heated. It is obtained by crystallizing the amorphous layer of indium tin oxide.
  • such a polycrystalline layer may be heated again.
  • a heating step may be required when forming a member necessary for producing a touch sensor, a photoelectric conversion element, or the like on a transparent conductive film.
  • a step of applying a metal-containing paste on a polycrystalline layer and heating the touch sensor to form a routing wiring of the touch sensor can be mentioned. In such a case, it is required to suppress the change in the resistance value of the polycrystalline layer (excellent in heating stability) before and after heating.
  • an inorganic base material such as a glass base material is applied, and the base material temperature when the indium tin oxide layer (transparent conductive layer) is sputtered is set to a high temperature (for example, 230 ° C.). It can be realized by setting the above).
  • the film base material polymer film
  • the base material temperature cannot be set to a high temperature (the base material temperature is usually less than 200 ° C., preferably less than 200 ° C.). Therefore, the prior art including Patent Document 1 has not been able to realize a transparent conductive film having sufficiently excellent heating stability.
  • the present invention is to provide a transparent conductive film having excellent heating stability and a method for producing the transparent conductive film.
  • the present invention [1] includes a base material layer and a light-transmitting conductive layer in this order, the base material layer contains a resin layer, and the light-transmitting conductive layer contains krypton atoms and / or xenon atoms. , A transparent conductive film.
  • the present invention [2] includes the transparent conductive film according to the above [1], wherein the thickness of the light-transmitting conductive layer is 60 nm or more and 100 nm or less.
  • the present invention [3] is the transparent conductive film according to the above [1] or [2], wherein the light-transmitting conductive layer is crystalline and contains crystal grains having a particle size of 35 nm or more. Includes.
  • the transparent conductive film according to any one of the above [1] to [3], wherein the light-transmitting conductive layer contains an indium tin composite oxide.
  • the present invention [5] includes the transparent conductive film according to any one of the above [1] to [4], wherein the light-transmitting conductive layer has a pattern shape.
  • a light-transmitting conductive layer is arranged on a base material layer by a sputtering method targeting a material constituting the light-transmitting conductive layer in the presence of krypton and / or xenon, and the base material is described.
  • the layer is a method for producing a transparent conductive film, which comprises a resin layer.
  • a light-transmitting conductive layer is arranged on a base material layer by a sputtering method targeting a material constituting the light-transmitting conductive layer in the presence of krypton and / or xenon. do.
  • the sputtering gas is taken into the light-transmitting conductive layer.
  • the sputtering gas (krypton atom and / or xenone atom) is incorporated into the light-transmitting conductive layer. Can be suppressed.
  • the transparent conductive film of the present invention is excellent in heating stability.
  • FIG. 1 is a schematic view showing an embodiment of the transparent conductive film of the present invention.
  • FIG. 2 is a schematic view showing an embodiment of the method for producing a transparent conductive film of the present invention
  • FIG. 2A shows a step of preparing a base material layer in the first step
  • FIG. 2B shows a first step.
  • a step of arranging an amorphous light-transmitting conductive layer by sputtering on one surface in the thickness direction of the base material layer is shown
  • FIG. 2C shows that the amorphous light-transmitting conductive layer is heated.
  • the process of forming the crystalline light-transmitting conductive layer is shown.
  • FIG. 3 is a graph showing the relationship between the amount of oxygen gas introduced when the amorphous light-transmitting conductive layer is arranged in the first step and the resistance value of the amorphous light-transmitting conductive layer.
  • FIG. 4 is a schematic view showing an embodiment in which the light-transmitting conductive layer of the transparent conductive film shown in FIG. 1 is patterned.
  • FIG. 5 is a schematic view showing a modified example of the transparent conductive film (when the base material layer does not have a transparent base material and is composed of only a functional layer).
  • the transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a plane direction orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface.
  • the transparent conductive film 1 is provided in a touch sensor, a light control element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shield member, an image display device, a heater member (light transmissive heater), lighting, and the like, which will be described later.
  • One member, the transparent conductive film 1 is an intermediate member for manufacturing them.
  • the transparent conductive film 1 is a device that is distributed independently and can be used industrially.
  • the transparent conductive film 1 includes a base material layer 2 and a light-transmitting conductive layer 3 in order toward one side in the thickness direction. More specifically, the transparent conductive film 1 includes a base material layer 2 and a light-transmitting conductive layer 3 arranged on the upper surface (one side in the thickness direction) of the base material layer 2. Preferably, the transparent conductive film 1 includes only the base material layer 2 and the light transmitting conductive layer 3.
  • the thickness of the transparent conductive film 1 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 10 ⁇ m or more. ..
  • Base material layer 2 is a transparent base material for ensuring the mechanical strength of the transparent conductive film 1.
  • the base material layer 2 has a film shape.
  • the base material layer 2 is arranged on the entire lower surface of the light-transmitting conductive layer 3 so as to come into contact with the lower surface of the light-transmitting conductive layer 3.
  • the base material layer 2 includes a transparent base material 4 and a functional layer 5 as a resin layer.
  • the base material layer 2 includes a transparent base material 4 and a functional layer 5 in order toward one side in the thickness direction.
  • the base material layer 2 includes a transparent base material 4 and a functional layer 5 arranged on one surface of the transparent base material 4 in the thickness direction.
  • the transparent base material 4 has a film shape.
  • the transparent base material 4 is made of, for example, a polymer film. As a result, the transparent conductive film 1 is excellent in manufacturing efficiency.
  • the transparent conductive film 1 (crystalline light-transmitting conductive layer 3) is reheated from the viewpoint of imparting dimensional stability of the transparent conductive film 1.
  • this transparent conductive film 1 is excellent in heating stability.
  • Examples of the material of the transparent base material 4 include olefin resins such as polyethylene, polypropylene, and cycloolefin polymers, and polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, such as polymethacrylate.
  • Meta) acrylic resin (acrylic resin and / or methacrylic resin), for example, polycarbonate resin, melamine resin, polystyrene resin and the like, preferably olefin resin, polyester resin, (meth) acrylic resin, polycarbonate resin, melamine resin and the like.
  • These include, more preferably polyester resin, and even more preferably polyethylene terephthalate (PET).
  • the transparent base material 4 made of the above material has low heat resistance, it cannot be applied to a heating step of 200 ° C. or higher (specifically, a second step described later), but such a transparent base material 4 can be used. According to this, it is possible to obtain a transparent conductive film 1 having excellent smoothness and heating stability.
  • the transparent base material 4 has transparency. Specifically, the total light transmittance (JIS K 7375-2008) of the transparent base material 4 is, for example, 60% or more, preferably 80% or more, and more preferably 85% or more.
  • the thickness of the transparent substrate 4 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably. , 60 ⁇ m or less.
  • the functional layer 5 is arranged on one side of the transparent base material 4 in the thickness direction.
  • the functional layer 5 has a film shape.
  • Examples of the functional layer 5 include a hard coat layer.
  • the base material layer 2 includes the transparent base material 4 and the hard coat layer in order toward one side in the thickness direction.
  • the functional layer 5 is a hard coat layer
  • the hard coat layer is a scratch protection layer for making it difficult for the transparent conductive film 1 to be scratched.
  • the material of the hard coat layer is, for example, a hard coat composition.
  • the hard coat composition include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin (binder resin) such as an acrylic resin or a urethane resin.
  • the thickness of the hard coat layer is, for example, 0.1 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the number of base material layers 2 in the transparent conductive film 1 is not particularly limited, and is preferably 1. 3. 3.
  • Light-transmitting conductive layer The light-transmitting conductive layer 3 is a transparent layer that exhibits excellent conductivity.
  • the light-transmitting conductive layer 3 has a film shape.
  • the light-transmitting conductive layer 3 is arranged on the entire upper surface (one surface in the thickness direction) of the base material layer 2 (hard coat layer) so as to be in contact with one surface in the thickness direction of the base material layer 2.
  • the material of the light transmissive conductive layer 3 for example, at least selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W.
  • Metal oxides containing one type of metal and / or metalloid can be mentioned.
  • the metal oxide may be further doped with the metal atoms shown in the above group, if necessary.
  • the light-transmitting conductive layer 3 include, for example, indium tin oxide composite oxide (ITO), indium gallium composite oxide (IGO), indium zinc composite oxide (IZO), and indium gallium zinc composite oxide (IGZO).
  • ITO indium tin oxide composite oxide
  • IGO indium gallium composite oxide
  • IZO indium zinc composite oxide
  • IGZO indium gallium zinc composite oxide
  • an antimony-containing oxide such as an anti-monstin composite oxide (ATO), preferably an indium-containing oxide, more preferably an indium tin composite oxide (ITO).
  • the specific resistance can be lowered.
  • the content ratio of tin oxide is, for example, 0.5% by mass or more, preferably 3% by mass or more, based on the total amount of tin oxide and indium oxide. More preferably, it is 5% by mass or more, further preferably 8% by mass or more, particularly preferably 9% by mass or more, and for example, 20% by mass or less, preferably 15% by mass or less, more preferably. It is 12% by mass or less.
  • the tin oxide content is equal to or higher than the above lower limit, lowering the resistance is promoted.
  • the content ratio of tin oxide is not more than the above-mentioned upper limit, the light-transmitting conductive layer 3 is excellent in heating stability.
  • the light-transmitting conductive layer 3 can include a region in which the proportion of tin oxide is 8% by mass or more.
  • the surface resistance value can be reduced.
  • the light-transmitting conductive layer 3 has a first region 11 as an example of a region in which the ratio of tin oxide is 8% by mass or more, and a first region 11 having a ratio of tin oxide lower than the ratio of tin oxide in the first region 11. Includes 2 regions 12 and.
  • the light-transmitting conductive layer 3 includes a layered first region 11 and a layered second region 12 arranged on one surface of the first region 11 in the thickness direction in order. The boundary between the first region 11 and the second region 12 is not confirmed by observation with a measuring device, and it is permissible that the boundary is unclear.
  • the light-transmitting conductive layer 3 may have a concentration gradient in which the tin oxide concentration gradually increases from one surface in the thickness direction to the other surface.
  • a desired crystallization rate can be obtained by adjusting the ratio of the region.
  • the proportion of tin oxide in the first region 11 is preferably 9% by mass or more, more preferably 10% by mass or more, and 20% by mass or less.
  • the ratio of the thickness of the first region 11 to the thickness of the light-transmitting conductive layer 3 is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. Further, for example, it is 99% or less, preferably 97% or less.
  • the ratio of the thickness of the first region 11 is equal to or greater than the above lower limit, the ratio of tin oxide in the light transmissive conductive layer 3 can be increased, and therefore the surface resistance value can be sufficiently reduced.
  • the proportion of tin oxide in the second region 12 is, for example, less than 8% by mass, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, and for example. It is 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more.
  • the ratio of the thickness of the second region 12 to the thickness of the light transmissive conductive layer 3 is, for example, 1% or more, preferably 3% or more, and for example, 50% or less, preferably 30% or less. It is preferably 20% or less, more preferably 10% or less.
  • the ratio of the ratio of tin oxide in the first region 11 to the ratio of tin oxide in the second region 12 is, for example, 1.5.
  • the above is preferably 2 or more, more preferably 2.5 or more, and for example, 5 or less, preferably 4 or less.
  • the tin oxide concentration in each of the light-transmitting conductive layer 3, the first region 11 and the second region 12 is measured by X-ray photoelectron spectroscopy.
  • the tin oxide content can be estimated from the target component (known) used when forming the amorphous light-transmitting conductive layer 3 by sputtering.
  • the light-transmitting conductive layer 3 contains a trace amount of sputtering gas (krypton atom and / or xenon atom), which will be described in detail later.
  • sputtering gas krypton atom and / or xenon atom
  • the content of the sputtering gas (cryptone atom and / or xenone atom) in the light transmissive conductive layer 3 is, for example, 1.0 atom% or less, preferably 0.5 atom% or less, more preferably 0.2 atom. % Or less, more preferably 0.1 atomic% or less, and particularly preferably less than 0.1 atomic%.
  • the lower limit of the above content is the corresponding ratio when the presence of krypton atom and / or xenon atom can be confirmed by the fluorescent X-ray analyzer, and is at least 0.0001 atomic% or more.
  • the light-transmitting conductive layer 3 is crystalline or amorphous.
  • the specific resistance can be reduced.
  • the crystallinity of the light-transmitting conductive layer 3 is determined by, for example, immersing the transparent conductive film 1 in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, washing with water and drying, and then the light-transmitting conductive layer. It can be determined by measuring the resistance between terminals within about 15 mm with respect to the surface on the 3rd side. In the transparent conductive film 1 after immersion, washing with water, and drying, when the resistance between terminals between 15 mm is 10 k ⁇ or less, the light-transmitting conductive layer 3 is crystalline, while the resistance exceeds 10 k ⁇ . , The light-transmitting conductive layer 3 is amorphous.
  • the light-transmitting conductive layer 3 has transparency. Specifically, the total light transmittance (JIS K 7375-2008) of the light-transmitting conductive layer 3 is, for example, 60% or more, preferably 80% or more, and more preferably 85% or more.
  • the thickness of the light transmissive conductive layer 3 is, for example, 10 nm or more, preferably 20 nm or more, more preferably 40 nm or more, still more preferably 50 nm or more, particularly preferably 60 nm or more, and for example, 1000 nm or less. It is preferably less than 300 nm, more preferably 250 nm or less, still more preferably 180 nm or less, particularly preferably less than 150 nm, and particularly preferably 140 nm or less.
  • the heating stability of the transparent conductive film 1 can be further improved.
  • the thickness of the light-transmitting conductive layer 3 is not more than the above upper limit, the heating stability of the transparent conductive film 1 can be further improved.
  • the thickness of the light-transmitting conductive layer 3 can be measured by observing the cross section of the transparent conductive film 1 using, for example, a transmission electron microscope.
  • the specific resistance of the light transmissive conductive layer 3 is, for example, 5.0 ⁇ 10 -4 ⁇ ⁇ cm or less, preferably 2.5 ⁇ 10 -4 ⁇ ⁇ cm or less, more preferably 2.4 ⁇ 10 ⁇ . 4 ⁇ ⁇ cm or less, more preferably 2.2 ⁇ 10 -4 ⁇ ⁇ cm or less, particularly preferably 2.0 ⁇ 10 -4 ⁇ ⁇ cm or less, particularly preferably 1.8 ⁇ 10 -4 ⁇ ⁇ Cm or less, and for example 0.1 ⁇ 10 -4 ⁇ ⁇ cm or more, preferably 0.5 ⁇ 10 -4 ⁇ ⁇ cm or more, more preferably 1.0 ⁇ 10 -4 ⁇ ⁇ cm. It is cm or more, more preferably 1.01 ⁇ 10 -4 ⁇ ⁇ cm or more.
  • the resistivity can be measured by the 4-terminal method in accordance with JIS K7194.
  • the surface resistance value of the light transmissive conductive layer 3 is, for example, 200 ⁇ / ⁇ or less, preferably 80 ⁇ / ⁇ or less, more preferably 60 ⁇ / ⁇ or less, still more preferably 50 ⁇ / ⁇ or less, and particularly preferably 30 ⁇ . / ⁇ or less, most preferably 20 ⁇ / ⁇ or less, and usually 0 ⁇ / ⁇ or more, and 1 ⁇ / ⁇ or more.
  • the surface resistance value can be measured by the 4-terminal method in accordance with JIS K7194.
  • the number of the light-transmitting conductive layers 3 in the transparent conductive film 1 is not particularly limited, and is preferably 1. Specifically, the number of light-transmitting conductive layers 3 with respect to one base material layer 2 is preferably 1. 4. Method for Producing Transparent Conductive Film Next, refer to FIG. 2 for a method for producing the transparent conductive film 1, in particular, a method for producing the transparent conductive film 1 in which the light transmissive conductive layer 3 is amorphous. ,explain.
  • the method for producing the transparent conductive film 1 is that the material constituting the light-transmitting conductive layer 3 is targeted by sputtering in the presence of krypton and / or xenone.
  • a first step of arranging an amorphous light-transmitting conductive layer 3 on one surface of the base material layer 2 in the thickness direction is provided. Further, in this manufacturing method, each layer is arranged in order by, for example, a roll-to-roll method.
  • the base material layer 2 is prepared.
  • a diluted solution of the hard coat composition is applied to one surface of the transparent base material 4 in the thickness direction, and after drying, the hard coat composition is cured by irradiation with ultraviolet rays. As a result, a hard coat layer (functional layer 5) is formed on one surface of the transparent base material 4 in the thickness direction.
  • the amorphous light-transmitting conductive layer 3 is arranged on one surface of the base material layer 2 in the thickness direction by sputtering.
  • krypton gas and / or xenon gas are opposed to a target made of the material of the light-transmitting conductive layer 3 in the thickness direction of the base material layer 2.
  • the target material is sputtered in the presence of xenon gas alone).
  • a magnet is arranged on the side opposite to the base material layer 2 with respect to the target.
  • the horizontal magnetic field strength on the target surface is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less.
  • the temperature of the base material layer 2 when forming the light-transmitting conductive layer 3 by sputtering is not particularly limited, but preferably cools the base material layer 2.
  • the temperature of the base material layer 2 is, for example, 15 ° C. or lower, more preferably 10 ° C. or lower, still more preferably 5 ° C. or lower, particularly preferably 0 ° C. or lower, and for example,-.
  • the temperature is 50 ° C. or higher, preferably ⁇ 30 ° C., more preferably ⁇ 20 ° C. or higher.
  • the base material layer 2 When the temperature is equal to or lower than the above temperature, the base material layer 2 can be cooled during sputtering, outgas (water or organic solvent) is less likely to be emitted from the base material layer 2, and impurity components in the light transmissive conductive layer 3 can be reduced. Therefore, a light-transmitting conductive layer 3 having low resistivity and excellent heating stability can be obtained.
  • the temperature is above the above temperature, deterioration of the physical properties of the base material layer 2 can be suppressed.
  • the partial pressure of krypton gas and / or xenon gas in the sputtering apparatus is, for example, 0.1 Pa or more, preferably 0.3 Pa or more, and for example, 10 Pa or less, preferably 5 Pa or less, more preferably. It is 1 Pa or less.
  • a reactive gas such as oxygen can be present in addition to krypton gas and / or xenon gas.
  • the amount of the reactive gas introduced can be estimated from the surface resistance of the amorphous light-transmitting conductive layer 3.
  • the film quality (surface resistance) of the amorphous light-transmitting conductive layer 3 changes depending on the amount of the reactive gas introduced into the amorphous light-transmitting conductive layer 3, which is the purpose.
  • the amount of the reactive gas introduced can be adjusted according to the surface resistance of the amorphous light-transmitting conductive layer 3.
  • the amount of the reactive gas introduced is adjusted in the range X of FIG. It is preferable to obtain a crystalline light-transmitting conductive layer 3.
  • the amount of the reactive gas introduced is not limited, but when the reactive gas is oxygen, the ratio of the amount of oxygen introduced to the total amount of krypton gas and / or xenone gas and oxygen introduced is, for example, 0.01 flow rate%.
  • the above and for example, less than 5% by mass, preferably less than 4.5% by mass. If the amount of oxygen introduced is within the above range, it can be surely set within the range of region X in FIG.
  • the surface resistance of the amorphous light-transmitting conductive layer 3 is, for example, 300 ⁇ / ⁇ or less, preferably 200 ⁇ / ⁇ or less, more preferably 150 ⁇ / ⁇ or less, and for example.
  • the reactive gas is introduced so as to be 30 ⁇ / ⁇ or more, preferably 70 ⁇ / ⁇ or more.
  • the pressure in the sputtering apparatus is the total pressure of the partial pressure of the krypton gas and / or the xenon gas and the partial pressure of the reactive gas.
  • the first target and the second target having different tin oxide concentrations may be arranged in order in the sputtering apparatus along the transport direction of the base material layer 2.
  • the material of the first target is, for example, ITO (tin oxide concentration: 8% by mass or more) in the first region 11 described above.
  • the material of the second target is, for example, ITO (tin oxide concentration: less than 8% by mass) in the second region 12 described above.
  • the amorphous light-transmitting conductive layer 3 is arranged on one surface of the base material layer 2 in the thickness direction.
  • the amorphous light-transmitting conductive layer 3 When the amorphous light-transmitting conductive layer 3 is formed by sputtering using the first target and the second target described above, the amorphous light-transmitting conductive layer 3 has a tin oxide concentration.
  • the first amorphous layer and the second amorphous layer which are different from each other, are provided in order toward one side in the thickness direction.
  • the materials of the first amorphous layer and the second amorphous layer are the same as the materials of the first target and the second target, respectively.
  • the tin oxide concentration in ITO of the first amorphous layer is, for example, 8% by mass or more.
  • the tin oxide concentration in ITO of the second amorphous layer is, for example, less than 8% by mass.
  • the ratio of the thickness of the first amorphous layer to the thickness of the amorphous light-transmitting conductive layer 3 is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably. It is 90% or more, and for example, 99% or less, preferably 97% or less.
  • the ratio of the thickness of the second amorphous layer to the thickness of the light-transmitting conductive layer 3 is, for example, 1% or more, preferably 3% or more, and for example, 50% or less, preferably 30% or less. , More preferably 20% or less, still more preferably 10% or less.
  • a transparent conductive film 1 (sometimes referred to as an amorphous laminated film) composed of the base material layer 2 and the amorphous light-transmitting conductive layer 3 is obtained.
  • the amorphous light transmitting conductive layer 3 is heated after the first step described above to crystallize.
  • the second step of forming the quality light-transmitting conductive layer 3 is carried out.
  • the method for producing the transparent conductive film 1 targets the material constituting the light transmitting conductive layer 3 in the presence of krypton and / or xenone.
  • the first step of arranging the amorphous light-transmitting conductive layer 3 on one surface in the thickness direction of the base material layer 2 and the amorphous light-transmitting conductive layer 3 are heated to be crystalline.
  • a second step of forming the light-transmitting conductive layer 3 of the above is provided.
  • the second step is carried out after the first step described above.
  • the amorphous laminated film is heated.
  • the amorphous light-transmitting conductive layer 3 is heated by a heating device such as an infrared heater or an oven.
  • the heating temperature is, for example, 80 ° C. or higher, preferably 110 ° C. or higher, and for example, less than 200 ° C., preferably 180 ° C. or lower, more preferably 160 ° C. or lower, and heating.
  • the time is, for example, 1 minute or more, preferably 10 minutes or more, more preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
  • the amorphous light-transmitting conductive layer 3 is crystallized, and the crystalline light-transmitting conductive layer 3 is formed.
  • the crystalline light-transmitting conductive layer 3 is the first amorphous layer. And the first region 11 and the second region 12 corresponding to the second amorphous layer, respectively.
  • the transparent conductive film 1 including the base material layer 2 and the crystalline light-transmitting conductive layer 3 in this order is manufactured.
  • the transparent conductive film 1 including the base material layer 2 and the amorphous or crystalline light-transmitting conductive layer 3 in this order is manufactured.
  • the light-transmitting conductive layer 3 is, for example, 35 nm or more, preferably 100 nm or more, more preferably 200 nm or more, still more preferably 250 nm or more.
  • the particle size is 300 nm or more, most preferably 400 nm or more, further 480 nm or more, further 550 nm or more, and for example, 2000 nm or less, preferably 1000 nm or less, more preferably 600 nm or less. Contains crystal grains having.
  • the particle size is within the above range (particularly, if it is 35 nm or more), the specific resistance of the light-transmitting conductive layer 3 can be reduced, and the heating stability of the transparent conductive film 1 can be further improved. It can be further improved.
  • the carrier density of the crystalline light-transmitting conductive layer 3 is not particularly limited, but is, for example, 30 ⁇ 10 19 cm -3 or more, preferably 70 ⁇ 10 19 cm -3 or more, more preferably 90 ⁇ 10 19 cm -3 or more, more preferably 100 ⁇ 10 19 cm -3 or more, and 300 ⁇ 10 19 cm -3 or less, preferably 200 ⁇ 10 19 cm -3 or less, more preferably 190 ⁇ 10 It is 19 cm -3 or less.
  • the carrier density is within the above range, the light-transmitting conductive layer 3 having excellent low resistivity can be obtained.
  • the mobility of the crystalline light-transmitting conductive layer 3 is not particularly limited, but is, for example, 15 cm 2 / V ⁇ s or more, preferably 20 cm 2 / V ⁇ s or more, more preferably 25 cm 2 / V ⁇ s. Above, more preferably 27 cm 2 / V ⁇ s or more, particularly preferably 28 cm 2 / V ⁇ s or more, and 50 cm 2 / V ⁇ s or less, preferably 40 cm 2 / V ⁇ s or less. .. When the mobility is within the above range, the light-transmitting conductive layer 3 having excellent low resistivity can be obtained.
  • the carrier density and mobility can be measured using a Hall effect measuring device (for example, trade name "HL5500PC", manufactured by Bio-Rad).
  • the amorphous light-transmitting conductive layer 3 is arranged by sputtering in the presence of krypton gas and / or xenon gas.
  • the sputtering gas is taken into the amorphous light-transmitting conductive layer 3.
  • the sputtering gas (krypton atom and / or xenone atom) is amorphous because a krypton atom and / or a xenone atom having a larger atomic weight than argon is used as the sputtering gas instead of the commonly used argon. It is possible to suppress the incorporation into the light-transmitting conductive layer 3 of the above.
  • Such an amorphous light-transmitting conductive layer 3 becomes a crystalline light-transmitting conductive layer 3 in the second step.
  • the crystalline light-transmitting conductive layer 3 contains krypton atoms and / or xenon atoms, the amount of krypton atoms and / or xenon atoms incorporated is suppressed as described above. Therefore, the transparent conductive film 1 is excellent in heating stability.
  • the light-transmitting conductive layer 3 can be patterned in the transparent conductive film 1. That is, the light-transmitting conductive layer 3 has a pattern shape.
  • the transparent conductive film 1 has a pattern portion 7 having a light-transmitting conductive layer 3 and a non-patterned portion 8 having no light-transmitting conductive layer 3.
  • the light-transmitting conductive layer 3 is crystallized.
  • this transparent conductive film 1 is used for various articles.
  • articles include touch sensors, dimming elements (voltage-driven dimming elements such as PDLC, PNLC and SPD, current-driven dimming elements such as electrochromic (EC)), and photoelectric conversion elements (organic thin-film solar cells).
  • electrodes of solar cell elements typified by dye-sensitized solar cells), heat ray control members (near-infrared reflection and / or absorption members and far-infrared reflection and / or absorption members), antennas (light-transmitting antennas) , Electromagnetic wave shield member, image display device, heater member (light transmissive heater), and illumination.
  • the article includes a transparent conductive film 1 and a member corresponding to each article.
  • Such an article can be obtained by fixing the transparent conductive film 1 and the member corresponding to each article.
  • the light-transmitting conductive layer 3 (including the light-transmitting conductive layer 3 having a pattern shape) in the transparent conductive film 1 and the member corresponding to each article are fixed via the fixing functional layer. ..
  • Examples of the fixing functional layer include an adhesive layer and an adhesive layer.
  • the fixing functional layer any material having transparency can be used without particular limitation.
  • the fixing functional layer is preferably formed of a resin.
  • the resin include acrylic resin, silicone resin, polyester resin, polyurethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, epoxy resin, fluororesin, natural rubber, and synthetic rubber.
  • an acrylic resin is preferably selected as the resin from the viewpoint of excellent optical transparency, exhibiting adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance. NS.
  • the fixing functional layer contains a known corrosion inhibitor and a migration inhibitor (for example, Japanese Patent Application Laid-Open No. 2015-022397) in order to suppress corrosion and migration of the light-transmitting conductive layer 3. (Disclosure material) can also be added.
  • a known ultraviolet absorber may be added to the fixing functional layer (resin forming the fixing functional layer) in order to suppress deterioration of the article when it is used outdoors. Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilides compounds, cyanoacrylate compounds, and triazine compounds.
  • the base material layer 2 in the transparent conductive film 1 and the member corresponding to each article can be fixed via the fixing functional layer.
  • the light-transmitting conductive layer 3 (including the light-transmitting conductive layer 3 having a pattern shape) is exposed in the transparent conductive film 1. Therefore, the cover layer can be arranged on the upper surface of the light-transmitting conductive layer 3.
  • the cover layer is a layer that covers the light-transmitting conductive layer 3, and can improve the reliability of the light-transmitting conductive layer 3 and suppress functional deterioration due to scratches.
  • the cover layer is preferably a dielectric.
  • the cover layer is formed from a mixture of resin and inorganic materials.
  • the resin include the resin exemplified by the fixing functional layer.
  • the inorganic material include materials exemplified by the material of the intermediate layer described later.
  • a corrosion inhibitor, a migration inhibitor, and an ultraviolet absorber can be added to the cover layer (mixture of resin and inorganic material) from the same viewpoint as the above-mentioned fixing functional layer.
  • Such articles include the transparent conductive film 1 of the present invention. , Excellent heating stability. 5.
  • the same members and processes as in one embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as that of one embodiment, except for special mention. Further, one embodiment and a modification thereof can be combined as appropriate.
  • the light-transmitting conductive layer 3 does not include the second region in which the proportion of tin oxide is less than 8% by mass, and may include only the first region 11 in which the proportion of tin oxide is 8% by mass or more.
  • the functional layer 5 was a hard coat layer, but an optical adjustment layer can be arranged as the functional layer 5.
  • the base material layer 2 includes the transparent base material 4 and the optical adjustment layer in order toward one side in the thickness direction.
  • the optical adjustment layer is a layer that suppresses the visibility of the pattern formed from the light transmissive conductive layer 3 and adjusts the optical physical characteristics (specifically, the refractive index) of the transparent conductive film 1.
  • the material of the optical adjustment layer is, for example, an optical adjustment composition.
  • Examples of the optical adjustment composition include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably inorganic particles such as zirconia).
  • a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably inorganic particles such as zirconia).
  • the thickness of the optical adjustment layer 8 is, for example, 0.05 ⁇ m or more, and is, for example, 1 ⁇ m or less.
  • a diluted solution of the optical adjustment composition is applied to one surface in the thickness direction of the transparent base material 4, and after drying, the optical adjustment composition is cured by irradiation with ultraviolet rays.
  • a peeling functional layer can be arranged.
  • the base material layer 2 includes the transparent base material 4 and the peeling function layer in order toward one side in the thickness direction.
  • the peeling functional layer is a layer (easy peeling layer) that can be easily peeled off from the light-transmitting conductive layer 3.
  • the light-transmitting conductive layer 3 can be peeled from the transparent conductive film 1.
  • the peeled light-transmitting conductive layer 3 can be used, for example, by transferring and bonding to another member constituting the touch sensor.
  • an easy-adhesion layer can be arranged as the functional layer 5.
  • the base material layer 2 includes the transparent base material 4 and the easy-adhesion layer in order toward one side in the thickness direction.
  • the easy-adhesion layer is a layer for ensuring the adhesion between the transparent base material 4 and the layer formed on the easy-adhesion layer. For example, the adhesion between the transparent base material 4 and the light-transmitting conductive layer 3 is maintained. Can be improved.
  • the functional layer 5 may be a plurality of layers.
  • the base material layer 2 can optionally include, as the functional layer 5, two or more layers selected from the group consisting of a hard coat layer, an optical adjustment layer, a peeling functional layer, and an easy-adhesion layer.
  • the base material layer 2 may be provided with the transparent base material 4, the easy-adhesion layer, the hard coat layer, and the optical adjustment layer in order toward one side in the thickness direction, and the base material layer 2 may be provided.
  • the transparent base material 4, the peeling function layer, the hard coat layer and / or the optical adjustment layer may be provided in order toward one side in the thickness direction.
  • the transparent conductive film 1 is hard.
  • the laminate including the coat layer and / or the optical adjustment layer and the light transmissive conductive layer 3 can be peeled off.
  • the base material layer 2 may not include the functional layer 5 and may be composed of only the transparent base material 4.
  • the base material layer 2 may not include the transparent base material 4 and may be composed of only the functional layer 5.
  • Examples of the transparent conductive film 1 provided with such a base material layer 2 include the above-mentioned laminate (a laminate having a hard coat layer and / or an optical adjustment layer and a light-transmitting conductive layer 3).
  • the transparent conductive film 1 includes a base material layer 2 (functional layer 5) and a light-transmitting conductive layer 3 in order toward one side in the thickness direction.
  • the base material layer 2 can also be composed of a transparent base material 4 containing glass and a functional layer 5.
  • the base material layer 2 may be provided with an anti-blocking layer (not shown) on the other surface of the transparent base material 4.
  • the base material layer 2 includes an anti-blocking layer, a transparent base material 4, and a functional layer 5 in order toward one side in the thickness direction.
  • the anti-blocking layer imparts blocking resistance to the respective surfaces of the plurality of transparent conductive films 1 in contact with each other when the transparent conductive films 1 are laminated in the thickness direction.
  • the anti-blocking layer has a film shape.
  • the material of the anti-blocking layer is, for example, an anti-blocking composition.
  • anti-blocking composition examples include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably organic particles such as polystyrene).
  • a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably organic particles such as polystyrene).
  • the thickness of the anti-blocking layer is, for example, 0.1 ⁇ m or more, and for example, 10 ⁇ m or less.
  • a diluted solution of the anti-blocking composition is applied to the other surface of the transparent base material 4 in the thickness direction, dried, and then the anti-blocking composition is cured by irradiation with ultraviolet rays.
  • a functional layer 5 such as an easy-adhesion layer can be further provided between the anti-blocking layer and the transparent base material 4.
  • the base material layer 2 may be provided with an intermediate layer (not shown) made of an inorganic layer on one side of the transparent base material 4.
  • the intermediate layer has a function of improving the surface hardness of the base material layer 2 and relaxing the stress received by the light-transmitting conductive layer 3 from the base material layer 2 at an intermediate point.
  • the intermediate layer can be provided at an arbitrary position with respect to the transparent base material 4, the functional layer 5, and the anti-blocking layer with respect to one side in the thickness direction of the transparent conductive film, and a plurality of layers may be provided.
  • the base material layer 2 includes a transparent base material 4, a functional layer 5, and an intermediate layer in order toward one side in the thickness direction.
  • the base material layer 2 includes, for example, an intermediate layer, an anti-blocking layer, a transparent base material 4, and a functional layer 5 in order toward one side in the thickness direction.
  • the intermediate layer is preferably an inorganic dielectric, and its surface resistance value is, for example, 1 ⁇ 10 6 ⁇ / ⁇ or more, preferably 1 ⁇ 10 8 ⁇ / ⁇ or more.
  • the material of the intermediate layer is composed of, for example, an inorganic oxide such as silicon oxide, titanium oxide, niobium oxide, aluminum oxide, zirconium dioxide and calcium oxide, and a fluoride such as magnesium fluoride.
  • the composition of the inorganic functional layer may or may not be a chemical composition.
  • 1 is exemplified as a suitable number of the light-transmitting conductive layer 3 in the transparent conductive film 1, but for example, although not shown, it may be 2.
  • each of the two light-transmitting conductive layers 3 is arranged on both sides of the base material layer 2 in the thickness direction. That is, in a preferred example of this modification, the number of light-transmitting conductive layers 3 with respect to one base material layer 2 is preferably 2.
  • Example 1 Production of transparent conductive film Example 1 (First step) An ultraviolet curable resin made of an acrylic resin was applied to one surface of a film base material made of a PET film roll (manufactured by Toray Industries, Inc., thickness 50 ⁇ m) as a transparent base material, and cured by ultraviolet irradiation. As a result, a hard coat layer having a thickness of 2 ⁇ m was formed. As a result, a base material layer was obtained.
  • the base material layer was placed in a vacuum sputtering apparatus, and the base material layer was degassed by sufficiently vacuum exhausting so that the ultimate vacuum degree was 0.9 ⁇ 10 -4 Pa. Then, while transporting the base material layer along the film forming roll, indium oxide and tin oxide are baked under reduced pressure (0.4 Pa) in which krypton as a sputtering gas and oxygen as a reactive gas are introduced.
  • ITO indium oxide and tin oxide
  • oxygen oxygen as a reactive gas
  • An amorphous light-transmitting conductive layer (first amorphous layer having a tin oxide concentration of 10% by mass) was formed.
  • the amount of oxygen introduced was adjusted so that the region X of the resistance-oxygen curve shown in FIG. 3 and the surface resistance of the amorphous light-transmitting conductive layer were 45 ⁇ / ⁇ (total introduction of krypton and oxygen).
  • the ratio of the amount of oxygen introduced to the amount is about 1.4% by mass).
  • an amorphous laminated film composed of a base material layer and an amorphous light-transmitting conductive layer was obtained.
  • the obtained amorphous laminated film was heated in a hot air oven at 155 ° C. for 1 hour.
  • the amorphous light-transmitting conductive layer was used as a crystalline light-transmitting conductive layer, and a transparent conductive film composed of a base material layer and a crystalline light-transmitting conductive layer was obtained.
  • Example 3 A second target made of ITO having a tin oxide concentration of 3% by mass was further installed in the vacuum sputtering apparatus of Example 1 to form a first amorphous layer having a thickness of 60 nm (tin oxide concentration of 10% by mass). After that, a second amorphous layer having a thickness of 3 nm (tin oxide concentration is 3% by mass) is continuously formed on one surface of the first amorphous layer, and an amorphous light-transmitting conductive layer is formed.
  • a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of oxygen introduced was adjusted so that the surface resistance of the above was 120 ⁇ / ⁇ .
  • Example 4 and Comparative Examples 2 to 4 Transparent conductivity is the same as in Example 3, except that the sputtering gas, the thicknesses of the first and second regions, and the surface resistance of the amorphous light-transmitting conductive layer are changed according to the description in Table 1. I got a film. 2. Evaluation ⁇ Thickness measurement> (Thickness of transparent substrate and hard coat layer) The thickness of the transparent base material and the thickness of the hard coat layer were measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock). The results are shown in Table 1.
  • Example 3 Thin of light-transmitting conductive layer
  • Example 4 Comparative Example 2, Comparative Example 3 and Comparative Example 4
  • the thickness of the first region is set on one surface in the thickness direction of the first region before the second region is arranged.
  • a cross-section observation sample in which only the first region was formed was prepared, and the sample was measured by FE-TEM observation.
  • the thickness of the second region was calculated by subtracting the thickness of the first region from the thickness of the light-transmitting conductive layer. The results are shown in Table 1.
  • FIB device Hitachi FB2200
  • acceleration voltage 10kV
  • FE-TEM device JEOL JEM-2800
  • acceleration voltage 200kV ⁇ Evaluation of resistance value>
  • R1 and R1' specific resistance of the light-transmitting conductive layer were measured by the four-terminal method according to JIS K7194 (1994). The results are shown in Table 1.
  • the heating stability was evaluated as the ratio (R2 / R1) of the surface resistance (R2) to the surface resistance (R1).
  • the heating stability (R2 / R1) is an evaluation of the amount of change in the resistance value when the crystalline light-transmitting conductive layer is reheated, and the closer the value is to 1, the more stable the heating is. Shows excellent sex. The results are shown in Table 1.
  • the transparent conductive film and the method for manufacturing the transparent conductive film of the present invention include a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, an image display device, and a heater member (light transmitting heater). , And, preferably used in lighting.
  • Transparent conductive film 1 Transparent conductive film 2 Base material layer 3 Light-transmitting conductive layer 4 Transparent base material

Abstract

A transparent conductive film 1 is equipped, in order, with a substrate layer 2 and an optically transparent conductive layer 3. The substrate layer 2 includes a resin layer. The optically transparent conductive layer 3 includes a krypton atom and/or a xenon atom.

Description

透明導電性フィルムおよび透明導電性フィルムの製造方法Method for manufacturing transparent conductive film and transparent conductive film
 本発明は、透明導電性フィルム、および、その透明導電性フィルムの製造方法に関する。 The present invention relates to a transparent conductive film and a method for producing the transparent conductive film.
 近年、透明導電性フィルムなどの光学フィルムは、タッチパネルなどの光学用途に用いられることが知られている。 In recent years, optical films such as transparent conductive films are known to be used for optical applications such as touch panels.
 このような透明導電性フィルムとして、フィルム基材と、フィルム基材上に形成されたインジウムスズ酸化物の多結晶層とを有する透明導電性フィルムが提案されている(例えば、特許文献1参照。)。 As such a transparent conductive film, a transparent conductive film having a film base material and a polycrystalline layer of indium tin oxide formed on the film base material has been proposed (see, for example, Patent Document 1). ).
 また、このような透明導電性フィルムは、スパッタリングにより、アルゴンガス存在下で、フィルム基材の表面に、インジウムスズ酸化物の非晶質層を配置した後、この非晶質層を加熱し、インジウムスズ酸化物の非晶質層を結晶化させることにより得られる。 Further, in such a transparent conductive film, an amorphous layer of indium tin oxide is arranged on the surface of the film substrate in the presence of argon gas by sputtering, and then the amorphous layer is heated. It is obtained by crystallizing the amorphous layer of indium tin oxide.
特開2014-103067号公報Japanese Unexamined Patent Publication No. 2014-103067
 一方、このような多結晶層(結晶質)を、再度加熱する場合がある。例えば、タッチセンサや光電変換素子などを作成するにあたり必要となる部材を、透明導電性フィルム上に形成する際、加熱工程が必要になる場合がある。より具体的な一例として、例えば、タッチセンサを作成する際、多結晶層上に金属含有ペーストを塗布、加熱してタッチセンサの引き回し配線を形成する工程などが挙げられる。このような場合には、加熱前後において、多結晶層の抵抗値の変化を抑制する(加熱安定性に優れる)ことが要求される。 On the other hand, such a polycrystalline layer (crystalline) may be heated again. For example, a heating step may be required when forming a member necessary for producing a touch sensor, a photoelectric conversion element, or the like on a transparent conductive film. As a more specific example, for example, when creating a touch sensor, a step of applying a metal-containing paste on a polycrystalline layer and heating the touch sensor to form a routing wiring of the touch sensor can be mentioned. In such a case, it is required to suppress the change in the resistance value of the polycrystalline layer (excellent in heating stability) before and after heating.
 加熱安定性に優れる多結晶層は、例えば、ガラス基材などの無機基材を適用し、インジウムスズ酸化物層(透明導電層)をスパッタリング形成する際の基材温度を高温(例えば、230℃以上)に設定することで実現することができる。しかし、フィルム基材(高分子フィルム)は、耐熱性に劣り、熱による寸法変形が大きいため、基材温度を高温に設定することはできない(基材温度は、通常、200℃未満、好ましくは、180℃以下に設定される。)このため、特許文献1を含む従来技術では、加熱安定性に十分優れる透明導電性フィルムを実現できていなかった。 For the polycrystalline layer having excellent heating stability, for example, an inorganic base material such as a glass base material is applied, and the base material temperature when the indium tin oxide layer (transparent conductive layer) is sputtered is set to a high temperature (for example, 230 ° C.). It can be realized by setting the above). However, since the film base material (polymer film) is inferior in heat resistance and has a large dimensional deformation due to heat, the base material temperature cannot be set to a high temperature (the base material temperature is usually less than 200 ° C., preferably less than 200 ° C.). Therefore, the prior art including Patent Document 1 has not been able to realize a transparent conductive film having sufficiently excellent heating stability.
 本発明は、加熱安定性に優れる透明導電性フィルム、および、その透明導電性フィルムの製造方法を提供することにある。 The present invention is to provide a transparent conductive film having excellent heating stability and a method for producing the transparent conductive film.
 本発明[1]は、基材層と、光透過性導電層とを順に備え、前記基材層は、樹脂層を含み、前記光透過性導電層は、クリプトン原子および/またはキセノン原子を含む、透明導電性フィルムである。 The present invention [1] includes a base material layer and a light-transmitting conductive layer in this order, the base material layer contains a resin layer, and the light-transmitting conductive layer contains krypton atoms and / or xenon atoms. , A transparent conductive film.
 本発明[2]は、前記光透過性導電層の厚みが、60nm以上100nm以下である、上記[1]に記載の透明導電性フィルムを含んでいる。 The present invention [2] includes the transparent conductive film according to the above [1], wherein the thickness of the light-transmitting conductive layer is 60 nm or more and 100 nm or less.
 本発明[3]は、前記光透過性導電層が、結晶質であり、かつ、35nm以上の粒径を有する結晶粒を含む、上記[1]または[2]に記載の透明導電性フィルムを含んでいる。 The present invention [3] is the transparent conductive film according to the above [1] or [2], wherein the light-transmitting conductive layer is crystalline and contains crystal grains having a particle size of 35 nm or more. Includes.
 本発明[4]は、前記光透過性導電層が、インジウムスズ複合酸化物を含む、上記[1]~[3]のいずれか一項に記載の透明導電性フィルムを含んでいる。 In the present invention [4], the transparent conductive film according to any one of the above [1] to [3], wherein the light-transmitting conductive layer contains an indium tin composite oxide.
 本発明[5]は、前記光透過性導電層が、パターン形状を有する、上記[1]~[4]のいずれか一項に記載の透明導電性フィルムを含んでいる。 The present invention [5] includes the transparent conductive film according to any one of the above [1] to [4], wherein the light-transmitting conductive layer has a pattern shape.
 本発明[6]は、クリプトンおよび/またはキセノン存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置し、前記基材層は、樹脂層を含むことを特徴とする、透明導電性フィルムの製造方法である。 In the present invention [6], a light-transmitting conductive layer is arranged on a base material layer by a sputtering method targeting a material constituting the light-transmitting conductive layer in the presence of krypton and / or xenon, and the base material is described. The layer is a method for producing a transparent conductive film, which comprises a resin layer.
 本発明の透明導電性フィルムの製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置する。 In the method for producing a transparent conductive film of the present invention, a light-transmitting conductive layer is arranged on a base material layer by a sputtering method targeting a material constituting the light-transmitting conductive layer in the presence of krypton and / or xenon. do.
 スパッタリング法によって、光透過性導電層を配置する場合には、スパッタリングガスが光透過性導電層に取り込まれる。 When the light-transmitting conductive layer is arranged by the sputtering method, the sputtering gas is taken into the light-transmitting conductive layer.
 この方法では、スパッタリングガスとして、アルゴンに代えて、アルゴンよりも原子量の大きいクリプトン原子および/またはキセノン原子を用いるため、スパッタリングガス(クリプトン原子および/またはキセノン原子)が光透過性導電層に取り込まれることを抑制できる。 In this method, since a krypton atom and / or a xenone atom having a larger atomic weight than argon is used as the sputtering gas instead of argon, the sputtering gas (krypton atom and / or xenone atom) is incorporated into the light-transmitting conductive layer. Can be suppressed.
 これにより、加熱安定性に優れる透明導電性フィルムを製造することができる。 This makes it possible to produce a transparent conductive film having excellent heating stability.
 そのため、本発明の透明導電性フィルムは、加熱安定性に優れる。 Therefore, the transparent conductive film of the present invention is excellent in heating stability.
図1は、本発明の透明導電性フィルムの一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the transparent conductive film of the present invention. 図2は、本発明の透明導電性フィルムの製造方法の一実施形態を示す概略図であり、図2Aは、第1工程において、基材層を準備する工程を示し、図2Bは、第1工程において、基材層の厚み方向一方面に、スパッタリングすることにより、非晶質の光透過性導電層を配置する工程を示し、図2Cは、非晶質の光透過性導電層を加熱して、結晶質の光透過性導電層を形成する工程を示す。FIG. 2 is a schematic view showing an embodiment of the method for producing a transparent conductive film of the present invention, FIG. 2A shows a step of preparing a base material layer in the first step, and FIG. 2B shows a first step. In the step, a step of arranging an amorphous light-transmitting conductive layer by sputtering on one surface in the thickness direction of the base material layer is shown, and FIG. 2C shows that the amorphous light-transmitting conductive layer is heated. The process of forming the crystalline light-transmitting conductive layer is shown. 図3は、第1工程において、非晶質の光透過性導電層を配置する時に、導入する酸素ガスの量と、非晶質の光透過性導電層の抵抗値との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the amount of oxygen gas introduced when the amorphous light-transmitting conductive layer is arranged in the first step and the resistance value of the amorphous light-transmitting conductive layer. be. 図4は、図1に示す透明導電性フィルムの光透過性導電層をパターン化した態様を示す概略図である。FIG. 4 is a schematic view showing an embodiment in which the light-transmitting conductive layer of the transparent conductive film shown in FIG. 1 is patterned. 図5は、透明導電性フィルムの変形例(基材層が、透明基材を備えず、機能層のみからなる場合)を示す概略図である。FIG. 5 is a schematic view showing a modified example of the transparent conductive film (when the base material layer does not have a transparent base material and is composed of only a functional layer).
 1.透明導電性フィルム
 透明導電性フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む)を有し、厚み方向と直交する面方向に延び、平坦な上面および平坦な下面を有する。
1. 1. Transparent Conductive Film The transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a plane direction orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface.
 透明導電性フィルム1は、後述するタッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明などに備えられる一部材であって、透明導電性フィルム1は、それらを製造するための中間部材である。透明導電性フィルム1は、単独で流通し、産業上利用可能なデバイスである。 The transparent conductive film 1 is provided in a touch sensor, a light control element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shield member, an image display device, a heater member (light transmissive heater), lighting, and the like, which will be described later. One member, the transparent conductive film 1 is an intermediate member for manufacturing them. The transparent conductive film 1 is a device that is distributed independently and can be used industrially.
 具体的には、図1に示すように、透明導電性フィルム1は、基材層2と、光透過性導電層3とを、厚み方向一方側に向かって順に備える。透明導電性フィルム1は、より具体的には、基材層2と、基材層2の上面(厚み方向一方面)に配置される光透過性導電層3とを備える。好ましくは、透明導電性フィルム1は、基材層2および光透過性導電層3のみを備える。 Specifically, as shown in FIG. 1, the transparent conductive film 1 includes a base material layer 2 and a light-transmitting conductive layer 3 in order toward one side in the thickness direction. More specifically, the transparent conductive film 1 includes a base material layer 2 and a light-transmitting conductive layer 3 arranged on the upper surface (one side in the thickness direction) of the base material layer 2. Preferably, the transparent conductive film 1 includes only the base material layer 2 and the light transmitting conductive layer 3.
 透明導電性フィルム1の厚みは、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、150μm以下、さらに好ましくは、100μm以下であり、また、例えば、1μm以上、好ましくは、10μm以上である。 The thickness of the transparent conductive film 1 is, for example, 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and for example, 1 μm or more, preferably 10 μm or more. ..
 2.基材層
 基材層2は、透明導電性フィルム1の機械強度を確保するための透明な基材である。
2. Base material layer The base material layer 2 is a transparent base material for ensuring the mechanical strength of the transparent conductive film 1.
 基材層2は、フィルム形状を有する。基材層2は、光透過性導電層3の下面に接触するように、光透過性導電層3の下面全面に、配置されている。 The base material layer 2 has a film shape. The base material layer 2 is arranged on the entire lower surface of the light-transmitting conductive layer 3 so as to come into contact with the lower surface of the light-transmitting conductive layer 3.
 基材層2は、樹脂層としての透明基材4および機能層5を備えている。 The base material layer 2 includes a transparent base material 4 and a functional layer 5 as a resin layer.
 具体的には、基材層2は、透明基材4と、機能層5とを、厚み方向一方側に向かって順に備える。具体的には、基材層2は、透明基材4と、透明基材4の厚み方向一方面に配置される機能層5とを備える。 Specifically, the base material layer 2 includes a transparent base material 4 and a functional layer 5 in order toward one side in the thickness direction. Specifically, the base material layer 2 includes a transparent base material 4 and a functional layer 5 arranged on one surface of the transparent base material 4 in the thickness direction.
 透明基材4は、フィルム形状を有する。 The transparent base material 4 has a film shape.
 透明基材4は、例えば、高分子フィルムからなる。これにより、透明導電性フィルム1は製造効率に優れる。 The transparent base material 4 is made of, for example, a polymer film. As a result, the transparent conductive film 1 is excellent in manufacturing efficiency.
 また、透明基材4が、高分子フィルムからなると、透明導電性フィルム1の寸法安定性付与などの観点から、透明導電性フィルム1(結晶質の光透過性導電層3)を再加熱する場合があるが、この透明導電性フィルム1は、加熱安定性に優れる。 Further, when the transparent base material 4 is made of a polymer film, the transparent conductive film 1 (crystalline light-transmitting conductive layer 3) is reheated from the viewpoint of imparting dimensional stability of the transparent conductive film 1. However, this transparent conductive film 1 is excellent in heating stability.
 透明基材4の材料としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリカーボネート樹脂、メラミン樹脂、ポリスチレン樹脂などが挙げられ、好ましくは、オレフィン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、メラミン樹脂が挙げられ、より好ましくは、ポリエステル樹脂、さらに好ましくは、ポリエチレンテレフタレート(PET)が挙げられる。上記材料からなる透明基材4は、耐熱性が低いため、200℃以上の加熱工程(具体的には、後述する第2工程)に適用することができないが、このような透明基材4によれば、平滑性に優れ、加熱安定性を有する透明導電性フィルム1を得ることができる。 Examples of the material of the transparent base material 4 include olefin resins such as polyethylene, polypropylene, and cycloolefin polymers, and polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, such as polymethacrylate. Meta) acrylic resin (acrylic resin and / or methacrylic resin), for example, polycarbonate resin, melamine resin, polystyrene resin and the like, preferably olefin resin, polyester resin, (meth) acrylic resin, polycarbonate resin, melamine resin and the like. These include, more preferably polyester resin, and even more preferably polyethylene terephthalate (PET). Since the transparent base material 4 made of the above material has low heat resistance, it cannot be applied to a heating step of 200 ° C. or higher (specifically, a second step described later), but such a transparent base material 4 can be used. According to this, it is possible to obtain a transparent conductive film 1 having excellent smoothness and heating stability.
 透明基材4は、透明性を有している。具体的には、透明基材4の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上である。 The transparent base material 4 has transparency. Specifically, the total light transmittance (JIS K 7375-2008) of the transparent base material 4 is, for example, 60% or more, preferably 80% or more, and more preferably 85% or more.
 透明基材4の厚みは、例えば、1μm以上、好ましくは、10μm以上、好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下、さらに好ましくは、60μm以下である。 The thickness of the transparent substrate 4 is, for example, 1 μm or more, preferably 10 μm or more, preferably 30 μm or more, and for example, 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, still more preferably. , 60 μm or less.
 機能層5は、透明基材4の厚み方向一方面に配置されている。 The functional layer 5 is arranged on one side of the transparent base material 4 in the thickness direction.
 機能層5は、フィルム形状を有する。 The functional layer 5 has a film shape.
 機能層5としては、例えば、ハードコート層が挙げられる。 Examples of the functional layer 5 include a hard coat layer.
 このような場合には、基材層2は、透明基材4と、ハードコート層とを、厚み方向一方側に向かって順に備える。 In such a case, the base material layer 2 includes the transparent base material 4 and the hard coat layer in order toward one side in the thickness direction.
 以下の説明では、機能層5がハードコート層である場合について、説明する。 In the following description, the case where the functional layer 5 is a hard coat layer will be described.
 ハードコート層は、透明導電性フィルム1に擦り傷を生じ難くするための擦傷保護層である。 The hard coat layer is a scratch protection layer for making it difficult for the transparent conductive film 1 to be scratched.
 ハードコート層の材料は、例えば、ハードコート組成物である。ハードコート組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル樹脂、ウレタン樹脂などの樹脂(バインダー樹脂)を含有する。 The material of the hard coat layer is, for example, a hard coat composition. Examples of the hard coat composition include the mixture described in JP-A-2016-179686. The mixture contains, for example, a resin (binder resin) such as an acrylic resin or a urethane resin.
 ハードコート層の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。 The thickness of the hard coat layer is, for example, 0.1 μm or more, and for example, 10 μm or less, preferably 5 μm or less.
 なお、透明導電性フィルム1における基材層2の数は、特に限定されず、好ましくは、1である。
3.光透過性導電層
 光透過性導電層3は、優れた導電性を発現する透明な層である。
The number of base material layers 2 in the transparent conductive film 1 is not particularly limited, and is preferably 1.
3. 3. Light-transmitting conductive layer The light-transmitting conductive layer 3 is a transparent layer that exhibits excellent conductivity.
 光透過性導電層3は、フィルム形状を有する。光透過性導電層3は、基材層2(ハードコート層)の上面(厚み方向一方面)全面に、基材層2の厚み方向一方面に接触するように、配置されている。 The light-transmitting conductive layer 3 has a film shape. The light-transmitting conductive layer 3 is arranged on the entire upper surface (one surface in the thickness direction) of the base material layer 2 (hard coat layer) so as to be in contact with one surface in the thickness direction of the base material layer 2.
 光透過性導電層3の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属および/または半金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。 As the material of the light transmissive conductive layer 3, for example, at least selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. Metal oxides containing one type of metal and / or metalloid can be mentioned. The metal oxide may be further doped with the metal atoms shown in the above group, if necessary.
 光透過性導電層3としては、具体的には、例えば、インジウムスズ複合酸化物(ITO)、インジウムガリウム複合酸化物(IGO)、インジウム亜鉛複合酸化物(IZO)インジウムガリウム亜鉛複合酸化物(IGZO)などのインジウム含有酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、インジウムスズ複合酸化物(ITO)が挙げられる。 Specific examples of the light-transmitting conductive layer 3 include, for example, indium tin oxide composite oxide (ITO), indium gallium composite oxide (IGO), indium zinc composite oxide (IZO), and indium gallium zinc composite oxide (IGZO). ) And the like, for example, an antimony-containing oxide such as an anti-monstin composite oxide (ATO), preferably an indium-containing oxide, more preferably an indium tin composite oxide (ITO). Can be mentioned.
 光透過性導電層3が、インジウムスズ複合酸化物を含むと、比抵抗を低くできる。 If the light-transmitting conductive layer 3 contains an indium tin composite oxide, the specific resistance can be lowered.
 光透過性導電層3の材料としてITOを用いる場合、酸化スズの含有割合は、酸化スズおよび酸化インジウムの合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、8質量%以上、とりわけ好ましくは、9質量%以上であり、また、例えば、20質量%以下、好ましくは、15質量%以下、より好ましくは、12質量%以下である。 When ITO is used as the material of the light transmissive conductive layer 3, the content ratio of tin oxide is, for example, 0.5% by mass or more, preferably 3% by mass or more, based on the total amount of tin oxide and indium oxide. More preferably, it is 5% by mass or more, further preferably 8% by mass or more, particularly preferably 9% by mass or more, and for example, 20% by mass or less, preferably 15% by mass or less, more preferably. It is 12% by mass or less.
 酸化スズの含有割合が上記した下限以上であれば、低抵抗化が促進される。酸化スズの含有割合が上記した上限以下であれば、光透過性導電層3は、加熱安定性に優れる。 If the tin oxide content is equal to or higher than the above lower limit, lowering the resistance is promoted. When the content ratio of tin oxide is not more than the above-mentioned upper limit, the light-transmitting conductive layer 3 is excellent in heating stability.
 また、光透過性導電層3は、酸化スズの割合が8質量%以上である領域を含むことができる。光透過性導電層3が酸化スズの割合が8質量%以上である領域を含む場合には、表面抵抗値を小さくすることができる。 Further, the light-transmitting conductive layer 3 can include a region in which the proportion of tin oxide is 8% by mass or more. When the light-transmitting conductive layer 3 includes a region in which the proportion of tin oxide is 8% by mass or more, the surface resistance value can be reduced.
 例えば、光透過性導電層3は、酸化スズの割合が8質量%以上である領域の一例としての第1領域11と、第1領域11における酸化スズの割合より低い酸化スズの割合である第2領域12とを含む。具体的には、光透過性導電層3は、層状の第1領域11と、第1領域11の厚み方向一方面に配置される層状の第2領域12とを順に含む。なお、第1領域11および第2領域12の境界は、測定装置による観察で確認されず、不明瞭であることが許容される。なお、この光透過性導電層3では、厚み方向一方面から他方面に向かって酸化スズ濃度が次第に高くなる濃度勾配を有してもよい。光透過性導電層3が上記した第1領域11に加え、第2領域12を含む場合には、その領域の比率調整により所望の結晶化速度を得ることができる。 For example, the light-transmitting conductive layer 3 has a first region 11 as an example of a region in which the ratio of tin oxide is 8% by mass or more, and a first region 11 having a ratio of tin oxide lower than the ratio of tin oxide in the first region 11. Includes 2 regions 12 and. Specifically, the light-transmitting conductive layer 3 includes a layered first region 11 and a layered second region 12 arranged on one surface of the first region 11 in the thickness direction in order. The boundary between the first region 11 and the second region 12 is not confirmed by observation with a measuring device, and it is permissible that the boundary is unclear. The light-transmitting conductive layer 3 may have a concentration gradient in which the tin oxide concentration gradually increases from one surface in the thickness direction to the other surface. When the light-transmitting conductive layer 3 includes the second region 12 in addition to the first region 11 described above, a desired crystallization rate can be obtained by adjusting the ratio of the region.
 第1領域11における酸化スズの割合は、好ましくは、9質量%以上、より好ましくは、10質量%以上であり、また、20質量%以下である。 The proportion of tin oxide in the first region 11 is preferably 9% by mass or more, more preferably 10% by mass or more, and 20% by mass or less.
 光透過性導電層3の厚みにおける第1領域11の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上であり、また、例えば、99%以下、好ましくは、97%以下である。 The ratio of the thickness of the first region 11 to the thickness of the light-transmitting conductive layer 3 is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. Further, for example, it is 99% or less, preferably 97% or less.
 第1領域11の厚みの割合が上記した下限以上であれば、光透過性導電層3における酸化スズの割合を高くでき、そのため、表面抵抗値を十分に下げることができる。 When the ratio of the thickness of the first region 11 is equal to or greater than the above lower limit, the ratio of tin oxide in the light transmissive conductive layer 3 can be increased, and therefore the surface resistance value can be sufficiently reduced.
 第2領域12における酸化スズの割合は、例えば、8質量%未満、好ましくは、7質量%以下、より好ましくは、5質量%以下、さらに好ましくは、4質量%以下であり、また、例えば、1質量%以上、好ましくは、2質量%以上、より好ましくは、3質量%以上である。 The proportion of tin oxide in the second region 12 is, for example, less than 8% by mass, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, and for example. It is 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more.
 光透過性導電層3の厚みにおける第2領域12の厚みの割合は、例えば、1%以上、好ましくは、3%以上であり、また、例えば、50%以下、好ましくは、30%以下、より好ましくは、20%以下、さらに好ましくは、10%以下である。 The ratio of the thickness of the second region 12 to the thickness of the light transmissive conductive layer 3 is, for example, 1% or more, preferably 3% or more, and for example, 50% or less, preferably 30% or less. It is preferably 20% or less, more preferably 10% or less.
 第2領域12における酸化スズの割合に対する、第1領域11における酸化スズの割合の比(第1領域11における酸化スズの割合/第2領域12における酸化スズの割合)は、例えば、1.5以上、好ましくは、2以上、より好ましくは、2.5以上であり、また、例えば、5以下、好ましくは、4以下である。 The ratio of the ratio of tin oxide in the first region 11 to the ratio of tin oxide in the second region 12 (the ratio of tin oxide in the first region 11 / the ratio of tin oxide in the second region 12) is, for example, 1.5. The above is preferably 2 or more, more preferably 2.5 or more, and for example, 5 or less, preferably 4 or less.
 光透過性導電層3、第1領域11および第2領域12のそれぞれにおける酸化スズ濃度は、X線光電子分光法によって、測定される。または、酸化スズの含有割合は、非晶質の光透過性導電層3をスパッタリングで形成するときに用いられるターゲットの成分(既知)から推測することもできる。 The tin oxide concentration in each of the light-transmitting conductive layer 3, the first region 11 and the second region 12 is measured by X-ray photoelectron spectroscopy. Alternatively, the tin oxide content can be estimated from the target component (known) used when forming the amorphous light-transmitting conductive layer 3 by sputtering.
 また、光透過性導電層3は、詳しくは後述するが、微量のスパッタリングガス(クリプトン原子および/またはキセノン原子)を含む。 Further, the light-transmitting conductive layer 3 contains a trace amount of sputtering gas (krypton atom and / or xenon atom), which will be described in detail later.
 光透過性導電層3におけるスパッタリングガス(クリプトン原子および/またはキセノン原子)の含有量は、例えば、1.0原子%以下、好ましくは、0.5原子%以下、より好ましくは、0.2原子%以下、さらに好ましくは、0.1原子%以下、とりわけ好ましくは、0.1原子%未満である。 The content of the sputtering gas (cryptone atom and / or xenone atom) in the light transmissive conductive layer 3 is, for example, 1.0 atom% or less, preferably 0.5 atom% or less, more preferably 0.2 atom. % Or less, more preferably 0.1 atomic% or less, and particularly preferably less than 0.1 atomic%.
 上記含有量の下限は、蛍光X線分析装置により、クリプトン原子および/またはキセノン原子の存在を確認できたときに対応する割合であり、少なくとも、0.0001原子%以上である。 The lower limit of the above content is the corresponding ratio when the presence of krypton atom and / or xenon atom can be confirmed by the fluorescent X-ray analyzer, and is at least 0.0001 atomic% or more.
 また、光透過性導電層3は、結晶質または非晶質である。 Further, the light-transmitting conductive layer 3 is crystalline or amorphous.
 光透過性導電層3が、結晶質であれば、比抵抗を小さくできる。 If the light-transmitting conductive layer 3 is crystalline, the specific resistance can be reduced.
 光透過性導電層3の結晶質性は、例えば、透明導電性フィルム1を塩酸(20℃、濃度5質量%)に15分間浸漬し、続いて、水洗および乾燥した後、光透過性導電層3側の表面に対して15mm程度の間の端子間抵抗を測定することにより判断できる。上記浸漬・水洗・乾燥後の透明導電性フィルム1において、15mm間の端子間抵抗が10kΩ以下である場合、光透過性導電層3は結晶質であり、一方、上記抵抗が10kΩを超過する場合、光透過性導電層3は非晶質である。 The crystallinity of the light-transmitting conductive layer 3 is determined by, for example, immersing the transparent conductive film 1 in hydrochloric acid (20 ° C., concentration 5% by mass) for 15 minutes, washing with water and drying, and then the light-transmitting conductive layer. It can be determined by measuring the resistance between terminals within about 15 mm with respect to the surface on the 3rd side. In the transparent conductive film 1 after immersion, washing with water, and drying, when the resistance between terminals between 15 mm is 10 kΩ or less, the light-transmitting conductive layer 3 is crystalline, while the resistance exceeds 10 kΩ. , The light-transmitting conductive layer 3 is amorphous.
 光透過性導電層3は、透明性を有している。具体的には、光透過性導電層3の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上である。 The light-transmitting conductive layer 3 has transparency. Specifically, the total light transmittance (JIS K 7375-2008) of the light-transmitting conductive layer 3 is, for example, 60% or more, preferably 80% or more, and more preferably 85% or more.
 光透過性導電層3の厚みは、例えば、10nm以上、好ましくは、20nm以上、より好ましくは、40nm以上、さらに好ましくは、50nm以上、とりわけ好ましくは、60nm以上であり、また、例えば、1000nm以下、好ましくは、300nm未満、より好ましくは、250nm以下、さらに好ましくは、180nm以下、とりわけ好ましくは、150nm未満、特に好ましくは、140nm以下である。 The thickness of the light transmissive conductive layer 3 is, for example, 10 nm or more, preferably 20 nm or more, more preferably 40 nm or more, still more preferably 50 nm or more, particularly preferably 60 nm or more, and for example, 1000 nm or less. It is preferably less than 300 nm, more preferably 250 nm or less, still more preferably 180 nm or less, particularly preferably less than 150 nm, and particularly preferably 140 nm or less.
 光透過性導電層3の厚みが、上記下限以上であれば、透明導電性フィルム1の加熱安定性をより一層向上させることができる。 When the thickness of the light-transmitting conductive layer 3 is equal to or greater than the above lower limit, the heating stability of the transparent conductive film 1 can be further improved.
 また、光透過性導電層3の厚みが、上記上限以下であれば、透明導電性フィルム1の加熱安定性をより一層向上させることができる。 Further, if the thickness of the light-transmitting conductive layer 3 is not more than the above upper limit, the heating stability of the transparent conductive film 1 can be further improved.
 なお、光透過性導電層3の厚みは、例えば、透過型電子顕微鏡を用いて、透明導電性フィルム1の断面を観察することにより測定することができる。 The thickness of the light-transmitting conductive layer 3 can be measured by observing the cross section of the transparent conductive film 1 using, for example, a transmission electron microscope.
 光透過性導電層3の比抵抗は、例えば、5.0×10-4Ω・cm以下、好ましくは、2.5×10-4Ω・cm以下、より好ましくは、2.4×10-4Ω・cm以下、さらに好ましくは、2.2×10-4Ω・cm以下、とりわけ好ましくは、2.0×10-4Ω・cm以下、特に好ましくは、1.8×10-4Ω・cm以下であり、また、例えば、0.1×10-4Ω・cm以上、好ましくは、0.5×10-4Ω・cm以上、より好ましくは、1.0×10-4Ω・cm以上、さらに好ましくは、1.01×10-4Ω・cm以上である。 The specific resistance of the light transmissive conductive layer 3 is, for example, 5.0 × 10 -4 Ω · cm or less, preferably 2.5 × 10 -4 Ω · cm or less, more preferably 2.4 × 10 −. 4 Ω · cm or less, more preferably 2.2 × 10 -4 Ω · cm or less, particularly preferably 2.0 × 10 -4 Ω · cm or less, particularly preferably 1.8 × 10 -4 Ω · Cm or less, and for example 0.1 × 10 -4 Ω · cm or more, preferably 0.5 × 10 -4 Ω · cm or more, more preferably 1.0 × 10 -4 Ω · cm. It is cm or more, more preferably 1.01 × 10 -4 Ω · cm or more.
 なお、比抵抗は、JIS K7194に準拠して、4端子法により測定することができる。 The resistivity can be measured by the 4-terminal method in accordance with JIS K7194.
 光透過性導電層3の表面抵抗値は、例えば、200Ω/□以下、好ましくは、80Ω/□以下、より好ましくは、60Ω/□以下、さらに好ましくは、50Ω/□以下、とりわけ好ましくは、30Ω/□以下、最も好ましくは、20Ω/□以下であり、また、通常、0Ω/□超過、また、1Ω/□以上である。 The surface resistance value of the light transmissive conductive layer 3 is, for example, 200 Ω / □ or less, preferably 80 Ω / □ or less, more preferably 60 Ω / □ or less, still more preferably 50 Ω / □ or less, and particularly preferably 30 Ω. / □ or less, most preferably 20 Ω / □ or less, and usually 0 Ω / □ or more, and 1 Ω / □ or more.
 なお、表面抵抗値は、JIS K7194に準拠して、4端子法により測定することができる。 The surface resistance value can be measured by the 4-terminal method in accordance with JIS K7194.
 なお、透明導電性フィルム1における光透過性導電層3の数は、例えば、特に限定されず、好ましくは、1である。具体的には、1つの基材層2に対する光透過性導電層3の数は、好ましくは、1である。
4.透明導電性フィルムの製造方法
 次に、透明導電性フィルム1の製造方法、とりわけ、光透過性導電層3が、非晶質である透明導電性フィルム1の製造方法について、図2を参照して、説明する。
The number of the light-transmitting conductive layers 3 in the transparent conductive film 1 is not particularly limited, and is preferably 1. Specifically, the number of light-transmitting conductive layers 3 with respect to one base material layer 2 is preferably 1.
4. Method for Producing Transparent Conductive Film Next, refer to FIG. 2 for a method for producing the transparent conductive film 1, in particular, a method for producing the transparent conductive film 1 in which the light transmissive conductive layer 3 is amorphous. ,explain.
 透明導電性フィルム1(光透過性導電層3が、非晶質である場合)の製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層3を構成する材料をターゲットとするスパッタリング法によって、基材層2の厚み方向一方面に、非晶質の光透過性導電層3を配置する第1工程を備える。また、この製造方法では、各層を、例えば、ロールトゥロール方式で、順に配置する。 The method for producing the transparent conductive film 1 (when the light-transmitting conductive layer 3 is amorphous) is that the material constituting the light-transmitting conductive layer 3 is targeted by sputtering in the presence of krypton and / or xenone. According to the method, a first step of arranging an amorphous light-transmitting conductive layer 3 on one surface of the base material layer 2 in the thickness direction is provided. Further, in this manufacturing method, each layer is arranged in order by, for example, a roll-to-roll method.
 第1工程では、図2Aに示すように、まず、基材層2を準備する。 In the first step, as shown in FIG. 2A, first, the base material layer 2 is prepared.
 詳しくは、透明基材4の厚み方向一方面に、ハードコート組成物の希釈液を塗布し、乾燥後、紫外線照射により、ハードコート組成物を硬化させる。これにより、透明基材4の厚み方向一方面に、ハードコート層(機能層5)を形成する。 Specifically, a diluted solution of the hard coat composition is applied to one surface of the transparent base material 4 in the thickness direction, and after drying, the hard coat composition is cured by irradiation with ultraviolet rays. As a result, a hard coat layer (functional layer 5) is formed on one surface of the transparent base material 4 in the thickness direction.
 これにより、基材層2を準備する。 This prepares the base material layer 2.
 次いで、図2Bに示すように、基材層2の厚み方向一方面に、スパッタリングすることにより、非晶質の光透過性導電層3を配置する。 Next, as shown in FIG. 2B, the amorphous light-transmitting conductive layer 3 is arranged on one surface of the base material layer 2 in the thickness direction by sputtering.
 具体的には、スパッタリング装置において、光透過性導電層3の材料からなるターゲットに、基材層2の厚み方向一方面を対向させながら、クリプトンガスおよび/またはキセノンガス(好ましくは、クリプトンガス単独またはキセノンガス単独)の存在下、ターゲット材料をスパッタリングする。 Specifically, in a sputtering apparatus, krypton gas and / or xenon gas (preferably krypton gas alone) are opposed to a target made of the material of the light-transmitting conductive layer 3 in the thickness direction of the base material layer 2. Alternatively, the target material is sputtered in the presence of xenon gas alone).
 ターゲットに対する、基材層2とは反対側には、マグネットが配置されている。ターゲット表面上の水平磁場強度は、例えば、10mT以上、好ましくは、60mT以上であり、また、例えば、300mT以下である。マグネットを配置し、ターゲット表面上の水平磁場強度を上記範囲とすることで、光透過性導電層3内の不純物量を低減し、低比抵抗性、および、加熱安定性に優れる光透過性導電層3を製造できる。 A magnet is arranged on the side opposite to the base material layer 2 with respect to the target. The horizontal magnetic field strength on the target surface is, for example, 10 mT or more, preferably 60 mT or more, and for example, 300 mT or less. By arranging a magnet and setting the horizontal magnetic field strength on the target surface within the above range, the amount of impurities in the light-transmitting conductive layer 3 is reduced, and the light-transmitting conductivity is excellent in low resistivity and heating stability. Layer 3 can be manufactured.
 スパッタリングにより光透過性導電層3を形成する際の、基材層2の温度は、特に限定されないが、好ましくは、基材層2を冷却する。具体的には、基材層2の温度を、例えば、15℃以下、より好ましくは、10℃以下、さらに好ましくは、5℃以下、とりわけ好ましくは、0℃以下であり、また、例えば、-50℃以上、好ましくは、-30℃、より好ましくは、-20℃以上にする。上記温度以下であれば、スパッタリング時に基材層2を冷却でき、基材層2からのアウトガス(水や有機溶剤)が出にくく、光透過性導電層3内の不純物成分を低減できる。そのため、低比抵抗性、および、加熱安定性に優れる光透過性導電層3を得られる。上記温度以上であれば、基材層2の物性劣化を抑制できる。 The temperature of the base material layer 2 when forming the light-transmitting conductive layer 3 by sputtering is not particularly limited, but preferably cools the base material layer 2. Specifically, the temperature of the base material layer 2 is, for example, 15 ° C. or lower, more preferably 10 ° C. or lower, still more preferably 5 ° C. or lower, particularly preferably 0 ° C. or lower, and for example,-. The temperature is 50 ° C. or higher, preferably −30 ° C., more preferably −20 ° C. or higher. When the temperature is equal to or lower than the above temperature, the base material layer 2 can be cooled during sputtering, outgas (water or organic solvent) is less likely to be emitted from the base material layer 2, and impurity components in the light transmissive conductive layer 3 can be reduced. Therefore, a light-transmitting conductive layer 3 having low resistivity and excellent heating stability can be obtained. When the temperature is above the above temperature, deterioration of the physical properties of the base material layer 2 can be suppressed.
 スパッタリング装置内におけるクリプトンガスおよび/またはキセノンガスの分圧は、例えば、0.1Pa以上、好ましくは、0.3Pa以上であり、また、例えば、10Pa以下、好ましくは、5Pa以下、より好ましくは、1Pa以下である。 The partial pressure of krypton gas and / or xenon gas in the sputtering apparatus is, for example, 0.1 Pa or more, preferably 0.3 Pa or more, and for example, 10 Pa or less, preferably 5 Pa or less, more preferably. It is 1 Pa or less.
 また、ターゲット材料をスパッタリングする際に、クリプトンガスおよび/またはキセノンガス以外に、例えば、酸素などの反応性ガスを存在させることもできる。 Further, when sputtering the target material, a reactive gas such as oxygen can be present in addition to krypton gas and / or xenon gas.
 図3に示すように、反応性ガスの導入量は、非晶質の光透過性導電層3の表面抵抗によって見積もることができる。詳しくは、非晶質の光透過性導電層3内部に導入される反応性ガスの導入量によって、非晶質の光透過性導電層3の膜質(表面抵抗)が変化するため、目的とする非晶質の光透過性導電層3の表面抵抗に応じて、反応性ガスの導入量を調整することができる。なお、非晶質の光透過性導電層3を加熱して結晶膜の光透過性導電層3を得るためには、図3の領域Xの範囲で反応性ガスの導入量を調整し、非晶質の光透過性導電層3を得るのが良い。 As shown in FIG. 3, the amount of the reactive gas introduced can be estimated from the surface resistance of the amorphous light-transmitting conductive layer 3. Specifically, the film quality (surface resistance) of the amorphous light-transmitting conductive layer 3 changes depending on the amount of the reactive gas introduced into the amorphous light-transmitting conductive layer 3, which is the purpose. The amount of the reactive gas introduced can be adjusted according to the surface resistance of the amorphous light-transmitting conductive layer 3. In order to heat the amorphous light-transmitting conductive layer 3 to obtain the light-transmitting conductive layer 3 of the crystal film, the amount of the reactive gas introduced is adjusted in the range X of FIG. It is preferable to obtain a crystalline light-transmitting conductive layer 3.
 反応性ガスの導入量に限定はないが、反応性ガスが酸素の場合、クリプトンガスおよび/またはキセノンガスと酸素の合計導入量に対する、酸素の導入量の割合は、例えば、0.01流量%以上であり、また、例えば、5質量%未満、好ましくは、4.5質量%未満である。酸素の導入量が上記の範囲内であれば、確実に、図3の領域Xの範囲に設定できる。 The amount of the reactive gas introduced is not limited, but when the reactive gas is oxygen, the ratio of the amount of oxygen introduced to the total amount of krypton gas and / or xenone gas and oxygen introduced is, for example, 0.01 flow rate%. The above, and for example, less than 5% by mass, preferably less than 4.5% by mass. If the amount of oxygen introduced is within the above range, it can be surely set within the range of region X in FIG.
 具体的には、非晶質の光透過性導電層3の表面抵抗が、例えば、300Ω/□以下、好ましくは、200Ω/□以下、より好ましくは、150Ω/□以下であり、また、例えば、30Ω/□以上、好ましくは、70Ω/□以上となるように、反応性ガスを導入する。 Specifically, the surface resistance of the amorphous light-transmitting conductive layer 3 is, for example, 300 Ω / □ or less, preferably 200 Ω / □ or less, more preferably 150 Ω / □ or less, and for example. The reactive gas is introduced so as to be 30 Ω / □ or more, preferably 70 Ω / □ or more.
 スパッタリング装置内における圧力は、クリプトンガスおよび/またはキセノンガスの分圧、および、反応性ガスの分圧の合計圧力である。 The pressure in the sputtering apparatus is the total pressure of the partial pressure of the krypton gas and / or the xenon gas and the partial pressure of the reactive gas.
 なお、光透過性導電層3の材料としてITOを用いる場合、酸化スズ濃度が互いに異なる第1ターゲットおよび第2ターゲットを、スパッタリング装置において、基材層2の搬送方向に沿って順に配置することもできる。第1ターゲットの材料は、例えば、上記した第1領域11におけるITO(酸化スズ濃度:8質量%以上)である。第2ターゲットの材料は、例えば、上記した第2領域12におけるITO(酸化スズ濃度:8質量%未満)である。 When ITO is used as the material of the light-transmitting conductive layer 3, the first target and the second target having different tin oxide concentrations may be arranged in order in the sputtering apparatus along the transport direction of the base material layer 2. can. The material of the first target is, for example, ITO (tin oxide concentration: 8% by mass or more) in the first region 11 described above. The material of the second target is, for example, ITO (tin oxide concentration: less than 8% by mass) in the second region 12 described above.
 上記のスパッタリングにより、非晶質の光透過性導電層3が、基材層2の厚み方向一方面に配置される。 By the above sputtering, the amorphous light-transmitting conductive layer 3 is arranged on one surface of the base material layer 2 in the thickness direction.
 なお、非晶質の光透過性導電層3が、上記した第1ターゲットおよび第2ターゲットを用いるスパッタリングにより形成されている場合には、非晶質の光透過性導電層3は、酸化スズ濃度が互いに異なる第1非晶質層および第2非晶質層を、厚み方向一方側に向かって順に備える。第1非晶質層および第2非晶質層のそれぞれの材料は、第1ターゲットおよび第2ターゲットの材料と同一である。具体的には、第1非晶質層のITOにおける酸化スズ濃度は、例えば、8質量%以上である。第2非晶質層のITOにおける酸化スズ濃度は、例えば、8質量%未満である。 When the amorphous light-transmitting conductive layer 3 is formed by sputtering using the first target and the second target described above, the amorphous light-transmitting conductive layer 3 has a tin oxide concentration. The first amorphous layer and the second amorphous layer, which are different from each other, are provided in order toward one side in the thickness direction. The materials of the first amorphous layer and the second amorphous layer are the same as the materials of the first target and the second target, respectively. Specifically, the tin oxide concentration in ITO of the first amorphous layer is, for example, 8% by mass or more. The tin oxide concentration in ITO of the second amorphous layer is, for example, less than 8% by mass.
 非晶質の光透過性導電層3の厚みにおける第1非晶質層の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上であり、また、例えば、99%以下、好ましくは、97%以下である。 The ratio of the thickness of the first amorphous layer to the thickness of the amorphous light-transmitting conductive layer 3 is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably. It is 90% or more, and for example, 99% or less, preferably 97% or less.
 光透過性導電層3の厚みにおける第2非晶質層の厚みの割合は、例えば、1%以上、好ましくは、3%以上であり、また、例えば、50%以下、好ましくは、30%以下、より好ましくは、20%以下、さらに好ましくは、10%以下である。 The ratio of the thickness of the second amorphous layer to the thickness of the light-transmitting conductive layer 3 is, for example, 1% or more, preferably 3% or more, and for example, 50% or less, preferably 30% or less. , More preferably 20% or less, still more preferably 10% or less.
 これによって、基材層2および非晶質の光透過性導電層3からなる透明導電性フィルム1(非晶質積層フィルムと称する場合がある。)を得る。 As a result, a transparent conductive film 1 (sometimes referred to as an amorphous laminated film) composed of the base material layer 2 and the amorphous light-transmitting conductive layer 3 is obtained.
 また、光透過性導電層3が、結晶質である透明導電性フィルム1を製造する場合には、上記した第1工程の後に、非晶質の光透過性導電層3を加熱して、結晶質の光透過性導電層3を形成する第2工程を実施する。 Further, when the transparent conductive film 1 in which the light transmitting conductive layer 3 is crystalline is produced, the amorphous light transmitting conductive layer 3 is heated after the first step described above to crystallize. The second step of forming the quality light-transmitting conductive layer 3 is carried out.
 つまり、透明導電性フィルム1(光透過性導電層3が、結晶質である場合)の製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層3を構成する材料をターゲットとするスパッタリング法によって、基材層2の厚み方向一方面に、非晶質の光透過性導電層3を配置する第1工程と、非晶質の光透過性導電層3を加熱して、結晶質の光透過性導電層3を形成する第2工程とを備える。 That is, the method for producing the transparent conductive film 1 (when the light transmitting conductive layer 3 is crystalline) targets the material constituting the light transmitting conductive layer 3 in the presence of krypton and / or xenone. By the sputtering method, the first step of arranging the amorphous light-transmitting conductive layer 3 on one surface in the thickness direction of the base material layer 2 and the amorphous light-transmitting conductive layer 3 are heated to be crystalline. A second step of forming the light-transmitting conductive layer 3 of the above is provided.
 この方法では、上記した第1工程の後に、第2工程を実施する。 In this method, the second step is carried out after the first step described above.
 第2工程では、非晶質積層フィルムを加熱する。例えば、赤外線ヒータ、オーブンなどの加熱装置によって、非晶質の光透過性導電層3を加熱する。 In the second step, the amorphous laminated film is heated. For example, the amorphous light-transmitting conductive layer 3 is heated by a heating device such as an infrared heater or an oven.
 加熱条件として、加熱温度は、例えば、80℃以上、好ましくは、110℃以上あり、また、例えば、200℃未満、好ましくは、180℃以下、より好ましくは、160℃以下であり、また、加熱時間は、例えば、1分間以上、好ましくは、10分間以上、さらに好ましくは、30分間以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。 As the heating conditions, the heating temperature is, for example, 80 ° C. or higher, preferably 110 ° C. or higher, and for example, less than 200 ° C., preferably 180 ° C. or lower, more preferably 160 ° C. or lower, and heating. The time is, for example, 1 minute or more, preferably 10 minutes or more, more preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
 これにより、図2Cに示すように、非晶質の光透過性導電層3が結晶化され、結晶質の光透過性導電層3が形成される。 As a result, as shown in FIG. 2C, the amorphous light-transmitting conductive layer 3 is crystallized, and the crystalline light-transmitting conductive layer 3 is formed.
 なお、非晶質の光透過性導電層3が、第1非晶質層および第2非晶質層を含む場合には、結晶質の光透過性導電層3は、第1非晶質層および第2非晶質層のそれぞれに対応する第1領域11および第2領域12を含む。 When the amorphous light-transmitting conductive layer 3 includes the first amorphous layer and the second amorphous layer, the crystalline light-transmitting conductive layer 3 is the first amorphous layer. And the first region 11 and the second region 12 corresponding to the second amorphous layer, respectively.
 これにより、基材層2と、結晶質の光透過性導電層3とを順に備える透明導電性フィルム1が製造される。 As a result, the transparent conductive film 1 including the base material layer 2 and the crystalline light-transmitting conductive layer 3 in this order is manufactured.
 以上より、基材層2と、非晶質または結晶質の光透過性導電層3とを順に備えた透明導電性フィルム1が製造される。 From the above, the transparent conductive film 1 including the base material layer 2 and the amorphous or crystalline light-transmitting conductive layer 3 in this order is manufactured.
 結晶質の光透過性導電層3を備える透明導電性フィルム1において、光透過性導電層3は、例えば、35nm以上、好ましくは、100nm以上、より好ましくは、200nm以上、さらに好ましくは、250nm以上、とりわけ好ましくは、300nm以上、最も好ましくは、400nm以上、さらには、480nm以上、さらには、550nm以上、また、例えば、2000nm以下、好ましくは、1000nm以下、より好ましくは、600nm以下の粒径を有する結晶粒を含む。 In the transparent conductive film 1 provided with the crystalline light-transmitting conductive layer 3, the light-transmitting conductive layer 3 is, for example, 35 nm or more, preferably 100 nm or more, more preferably 200 nm or more, still more preferably 250 nm or more. Particularly preferably, the particle size is 300 nm or more, most preferably 400 nm or more, further 480 nm or more, further 550 nm or more, and for example, 2000 nm or less, preferably 1000 nm or less, more preferably 600 nm or less. Contains crystal grains having.
 上記粒径が、上記範囲内であれば(とりわけ、35nm以上であれば)、光透過性導電層3の比抵抗を低減させることができ、また、透明導電性フィルム1の加熱安定性をより一層向上させることができる。 If the particle size is within the above range (particularly, if it is 35 nm or more), the specific resistance of the light-transmitting conductive layer 3 can be reduced, and the heating stability of the transparent conductive film 1 can be further improved. It can be further improved.
 なお、結晶粒の粒径の測定方法は、後述する実施例において詳述する。 The method for measuring the grain size of the crystal grains will be described in detail in Examples described later.
 結晶質の光透過性導電層3のキャリア密度に特に限定はないが、例えば、30×1019cm-3以上、好ましくは、70×1019cm-3以上、より好ましくは、90×1019cm-3以上、さらに好ましくは、100×1019cm-3以上であり、また、300×1019cm-3以下、好ましくは、200×1019cm-3以下、より好ましくは、190×1019cm-3以下である。キャリア密度が上記範囲内であれば、低比抵抗に優れる光透過性導電層3が得られる。 The carrier density of the crystalline light-transmitting conductive layer 3 is not particularly limited, but is, for example, 30 × 10 19 cm -3 or more, preferably 70 × 10 19 cm -3 or more, more preferably 90 × 10 19 cm -3 or more, more preferably 100 × 10 19 cm -3 or more, and 300 × 10 19 cm -3 or less, preferably 200 × 10 19 cm -3 or less, more preferably 190 × 10 It is 19 cm -3 or less. When the carrier density is within the above range, the light-transmitting conductive layer 3 having excellent low resistivity can be obtained.
 結晶質の光透過性導電層3の移動度に特に限定はないが、例えば、15cm/V・s以上、好ましくは、20cm/V・s以上、より好ましくは、25cm/V・s以上、さらに好ましくは、27cm/V・s以上、とりわけ好ましくは、28cm/V・s以上であり、また、50cm/V・s以下、好ましくは、40cm/V・s以下である。移動度が、上記範囲内であれば、低比抵抗に優れる光透過性導電層3が得られる。 The mobility of the crystalline light-transmitting conductive layer 3 is not particularly limited, but is, for example, 15 cm 2 / V · s or more, preferably 20 cm 2 / V · s or more, more preferably 25 cm 2 / V · s. Above, more preferably 27 cm 2 / V · s or more, particularly preferably 28 cm 2 / V · s or more, and 50 cm 2 / V · s or less, preferably 40 cm 2 / V · s or less. .. When the mobility is within the above range, the light-transmitting conductive layer 3 having excellent low resistivity can be obtained.
 なお、キャリア密度、および、移動度は、ホール効果測定装置(例えば、商品名「HL5500PC」,バイオラッド社製)を用いて測定できる。 The carrier density and mobility can be measured using a Hall effect measuring device (for example, trade name "HL5500PC", manufactured by Bio-Rad).
 また、上記したように、この方法において、第1工程では、クリプトンガスおよび/またはキセノンガス存在下で、スパッタリングすることにより、非晶質の光透過性導電層3を配置する。 Further, as described above, in this method, in the first step, the amorphous light-transmitting conductive layer 3 is arranged by sputtering in the presence of krypton gas and / or xenon gas.
 スパッタリング法によって、非晶質の光透過性導電層3を配置する場合には、スパッタリングガスが非晶質の光透過性導電層3に取り込まれる。 When the amorphous light-transmitting conductive layer 3 is arranged by the sputtering method, the sputtering gas is taken into the amorphous light-transmitting conductive layer 3.
 しかし、この方法では、スパッタリングガスとして、通常用いられるアルゴンに代えて、アルゴンよりも原子量の大きいクリプトン原子および/またはキセノン原子を用いるため、スパッタリングガス(クリプトン原子および/またはキセノン原子)が非晶質の光透過性導電層3に取り込まれることを抑制できる。 However, in this method, the sputtering gas (krypton atom and / or xenone atom) is amorphous because a krypton atom and / or a xenone atom having a larger atomic weight than argon is used as the sputtering gas instead of the commonly used argon. It is possible to suppress the incorporation into the light-transmitting conductive layer 3 of the above.
 そして、このような非晶質の光透過性導電層3は、第2工程において、結晶質の光透過性導電層3となる。 Then, such an amorphous light-transmitting conductive layer 3 becomes a crystalline light-transmitting conductive layer 3 in the second step.
 そのため、結晶質の光透過性導電層3は、クリプトン原子および/またはキセノン原子を含むものの、上記したように、クリプトン原子および/またはキセノン原子が取り込まれている量は抑制されている。そのため、この透明導電性フィルム1は、加熱安定性に優れる。 Therefore, although the crystalline light-transmitting conductive layer 3 contains krypton atoms and / or xenon atoms, the amount of krypton atoms and / or xenon atoms incorporated is suppressed as described above. Therefore, the transparent conductive film 1 is excellent in heating stability.
 また、図4に示すように、透明導電性フィルム1では、光透過性導電層3をパターン化することもできる。つまり、光透過性導電層3は、パターン形状を有する。 Further, as shown in FIG. 4, the light-transmitting conductive layer 3 can be patterned in the transparent conductive film 1. That is, the light-transmitting conductive layer 3 has a pattern shape.
 光透過性導電層3をパターン化するには、例えば、第1工程の後に、非晶質の光透過性導電層3を、エッチングする。これによって、透明導電性フィルム1は、光透過性導電層3を有するパターン部7と、光透過性導電層3を有していない非パターン部8とを有する。 To pattern the light-transmitting conductive layer 3, for example, after the first step, the amorphous light-transmitting conductive layer 3 is etched. As a result, the transparent conductive film 1 has a pattern portion 7 having a light-transmitting conductive layer 3 and a non-patterned portion 8 having no light-transmitting conductive layer 3.
 その後、第2工程において、光透過性導電層3を結晶化させる。 Then, in the second step, the light-transmitting conductive layer 3 is crystallized.
 また、第2工程により結晶質の光透過性導電層3を得てから、光透過性導電層3をパターン化することもできる。 It is also possible to pattern the light-transmitting conductive layer 3 after obtaining the crystalline light-transmitting conductive layer 3 by the second step.
 そして、この透明導電性フィルム1は、種々の物品に用いられる。物品としては、例えば、タッチセンサ、調光素子(PDLC、PNLCやSPDなどの電圧駆動型調光素子やエレクトロクロミック(EC)などの電流駆動型調光素子)、光電変換素子(有機薄膜太陽電池や色素増感太陽電池に代表される太陽電池素子の電極など)、熱線制御部材(近赤外反射および/または吸収部材や遠赤外反射および/または吸収部材)、アンテナ(光透過性アンテナ)、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明が挙げられる。 And, this transparent conductive film 1 is used for various articles. Examples of articles include touch sensors, dimming elements (voltage-driven dimming elements such as PDLC, PNLC and SPD, current-driven dimming elements such as electrochromic (EC)), and photoelectric conversion elements (organic thin-film solar cells). And electrodes of solar cell elements typified by dye-sensitized solar cells), heat ray control members (near-infrared reflection and / or absorption members and far-infrared reflection and / or absorption members), antennas (light-transmitting antennas) , Electromagnetic wave shield member, image display device, heater member (light transmissive heater), and illumination.
 物品は、透明導電性フィルム1と、各物品に対応する部材とを備える。 The article includes a transparent conductive film 1 and a member corresponding to each article.
 このような物品は、透明導電性フィルム1と、各物品に対応する部材とを固定することにより得られる。 Such an article can be obtained by fixing the transparent conductive film 1 and the member corresponding to each article.
 具体的には、透明導電性フィルム1における光透過性導電層3(パターン形状を有する光透過性導電層3を含む)と、各物品に対応する部材とを、固着機能層を介して固定する。 Specifically, the light-transmitting conductive layer 3 (including the light-transmitting conductive layer 3 having a pattern shape) in the transparent conductive film 1 and the member corresponding to each article are fixed via the fixing functional layer. ..
 固着機能層としては、例えば、粘着層および接着層が挙げられる。 Examples of the fixing functional layer include an adhesive layer and an adhesive layer.
 固着機能層としては、透明性を有するものであれば特に材料の制限なく使用できる。固着機能層は、好ましくは、樹脂から形成されている。樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリビニルエーテル樹脂、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン樹脂、エポキシ樹脂、フッ素樹脂、天然ゴム、および、合成ゴムが挙げられる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性などの粘着特性を示し、耐候性および耐熱性等にも優れるという観点から、樹脂として、好ましくは、アクリル樹脂が選択される。 As the fixing functional layer, any material having transparency can be used without particular limitation. The fixing functional layer is preferably formed of a resin. Examples of the resin include acrylic resin, silicone resin, polyester resin, polyurethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, epoxy resin, fluororesin, natural rubber, and synthetic rubber. Can be mentioned. In particular, an acrylic resin is preferably selected as the resin from the viewpoint of excellent optical transparency, exhibiting adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance. NS.
 固着機能層(固着機能層を形成する樹脂)には、光透過性導電層3の腐食およびマイグレーション抑制するために、公知の腐食防止剤、および、マイグレーション防止剤(例えば、特開2015-022397号に開示の材料)を添加することもできる。また、固着機能層(固着機能層を形成する樹脂)には、物品の屋外使用時の劣化を抑制するために、公知の紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸系化合物、シュウ酸アニリド系化合物、シアノアクリレート系化合物、および、トリアジン系化合物が挙げられる。 The fixing functional layer (resin forming the fixing functional layer) contains a known corrosion inhibitor and a migration inhibitor (for example, Japanese Patent Application Laid-Open No. 2015-022397) in order to suppress corrosion and migration of the light-transmitting conductive layer 3. (Disclosure material) can also be added. Further, a known ultraviolet absorber may be added to the fixing functional layer (resin forming the fixing functional layer) in order to suppress deterioration of the article when it is used outdoors. Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, salicylic acid compounds, oxalic acid anilides compounds, cyanoacrylate compounds, and triazine compounds.
 また、透明導電性フィルム1における基材層2と、各物品に対応する部材とを、固着機能層を介して固定することもできる。このような場合には、透明導電性フィルム1において、光透過性導電層3(パターン形状を有する光透過性導電層3を含む)が露出する。そのため、光透過性導電層3の上面にカバー層を配置することもできる。 Further, the base material layer 2 in the transparent conductive film 1 and the member corresponding to each article can be fixed via the fixing functional layer. In such a case, the light-transmitting conductive layer 3 (including the light-transmitting conductive layer 3 having a pattern shape) is exposed in the transparent conductive film 1. Therefore, the cover layer can be arranged on the upper surface of the light-transmitting conductive layer 3.
 カバー層は、光透過性導電層3を被覆する層であり、光透過性導電層3の信頼性を向上させ、キズによる機能劣化を抑制できる。 The cover layer is a layer that covers the light-transmitting conductive layer 3, and can improve the reliability of the light-transmitting conductive layer 3 and suppress functional deterioration due to scratches.
 カバー層は、好ましくは、誘電体である。カバー層は、樹脂および無機材料の混合物から形成されている。樹脂としては、固着機能層で例示する樹脂が挙げられる。無機材料としては、後述する中間層の材料で例示する材料が挙げられる。 The cover layer is preferably a dielectric. The cover layer is formed from a mixture of resin and inorganic materials. Examples of the resin include the resin exemplified by the fixing functional layer. Examples of the inorganic material include materials exemplified by the material of the intermediate layer described later.
 また、カバー層(樹脂および無機材料の混合物)には、上記した固着機能層と同様の観点から、腐食防止剤、マイグレーション防止剤、および、紫外線吸収剤を添加することもできる。 Further, a corrosion inhibitor, a migration inhibitor, and an ultraviolet absorber can be added to the cover layer (mixture of resin and inorganic material) from the same viewpoint as the above-mentioned fixing functional layer.
 このような物品(タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材、および、照明)は、本発明の透明導電性フィルム1を備えるため、加熱安定性に優れる。
5.変形例
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
Such articles (touch sensor, dimming element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shield member, image display device, heater member, and lighting) include the transparent conductive film 1 of the present invention. , Excellent heating stability.
5. Modified Examples In the modified examples, the same members and processes as in one embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same action and effect as that of one embodiment, except for special mention. Further, one embodiment and a modification thereof can be combined as appropriate.
 光透過性導電層3は、酸化スズの割合が8質量%未満である第2領域を含まず、酸化スズの割合が8質量%以上である第1領域11のみを含むこともできる。 The light-transmitting conductive layer 3 does not include the second region in which the proportion of tin oxide is less than 8% by mass, and may include only the first region 11 in which the proportion of tin oxide is 8% by mass or more.
 上記した説明では、機能層5が、ハードコート層であったが、機能層5として、光学調整層を配置することもできる。 In the above description, the functional layer 5 was a hard coat layer, but an optical adjustment layer can be arranged as the functional layer 5.
 このような場合には、基材層2は、透明基材4と、光学調整層とを、厚み方向一方側に向かって順に備える。 In such a case, the base material layer 2 includes the transparent base material 4 and the optical adjustment layer in order toward one side in the thickness direction.
 光学調整層は、光透過性導電層3から形成されるパターンの視認を抑制して、透明導電性フィルム1の光学物性(具体的には、屈折率)を調整する層である。 The optical adjustment layer is a layer that suppresses the visibility of the pattern formed from the light transmissive conductive layer 3 and adjusts the optical physical characteristics (specifically, the refractive index) of the transparent conductive film 1.
 光学調整層の材料は、例えば、光学調整組成物である。光学調整組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。 The material of the optical adjustment layer is, for example, an optical adjustment composition. Examples of the optical adjustment composition include the mixture described in JP-A-2016-179686.
 混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ジルコニアなどの無機の粒子)とを含有する。光学調整層8の厚みは、例えば、0.05μm以上であり、また、例えば、1μm以下である。 The mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably inorganic particles such as zirconia). The thickness of the optical adjustment layer 8 is, for example, 0.05 μm or more, and is, for example, 1 μm or less.
 また、光学調整層を形成するには、光学調整組成物の希釈液を、透明基材4の厚み方向一方面に塗布し、乾燥後、紫外線照射により、光学調整組成物を硬化させる。 Further, in order to form the optical adjustment layer, a diluted solution of the optical adjustment composition is applied to one surface in the thickness direction of the transparent base material 4, and after drying, the optical adjustment composition is cured by irradiation with ultraviolet rays.
 これにより、光学調整層を形成する。 This forms an optical adjustment layer.
 また、機能層5として、剥離機能層を配置することもできる。 Further, as the functional layer 5, a peeling functional layer can be arranged.
 このような場合には、基材層2は、透明基材4と、剥離機能層とを、厚み方向一方側に向かって順に備える。 In such a case, the base material layer 2 includes the transparent base material 4 and the peeling function layer in order toward one side in the thickness direction.
 剥離機能層は、光透過性導電層3に対して剥離が容易な層(易剥離層)である。 The peeling functional layer is a layer (easy peeling layer) that can be easily peeled off from the light-transmitting conductive layer 3.
 基材層2が、剥離機能層を備えれば、透明導電性フィルム1から、光透過性導電層3を剥離することができる。剥離された光透過性導電層3は、例えば、タッチセンサを構成する他の部材に転写及び貼り合せすることで用いることができる。 If the base material layer 2 includes a peeling functional layer, the light-transmitting conductive layer 3 can be peeled from the transparent conductive film 1. The peeled light-transmitting conductive layer 3 can be used, for example, by transferring and bonding to another member constituting the touch sensor.
 また、機能層5として、易接着層を配置することもできる。 Further, an easy-adhesion layer can be arranged as the functional layer 5.
 このような場合には、基材層2は、透明基材4と、易接着層とを、厚み方向一方側に向かって順に備える。 In such a case, the base material layer 2 includes the transparent base material 4 and the easy-adhesion layer in order toward one side in the thickness direction.
 易接着層は、透明基材4と易接着層上に形成される層との密着性を担保するための層であり、例えば、透明基材4と光透過性導電層3との密着性を向上することができる。 The easy-adhesion layer is a layer for ensuring the adhesion between the transparent base material 4 and the layer formed on the easy-adhesion layer. For example, the adhesion between the transparent base material 4 and the light-transmitting conductive layer 3 is maintained. Can be improved.
 機能層5は、複層であってもよい。 The functional layer 5 may be a plurality of layers.
 つまり、基材層2は、機能層5として、ハードコート層、光学調整層、剥離機能層および易接着層からなる群から選択される2つ以上の層を任意に含むことができる。 That is, the base material layer 2 can optionally include, as the functional layer 5, two or more layers selected from the group consisting of a hard coat layer, an optical adjustment layer, a peeling functional layer, and an easy-adhesion layer.
 詳しくは、基材層2は、透明基材4と、易接着層と、ハードコート層と、光学調整層とを厚み方向一方側に向かって順に備えることもでき、また、基材層2は、透明基材4と、剥離機能層と、ハードコート層および/または光学調整層とを厚み方向一方側に向かって順に備えることもできる。 Specifically, the base material layer 2 may be provided with the transparent base material 4, the easy-adhesion layer, the hard coat layer, and the optical adjustment layer in order toward one side in the thickness direction, and the base material layer 2 may be provided. , The transparent base material 4, the peeling function layer, the hard coat layer and / or the optical adjustment layer may be provided in order toward one side in the thickness direction.
 基材層2が、透明基材4と、剥離機能層と、ハードコート層および/または光学調整層とを、厚み方向一方側に向かって順に備える場合には、透明導電性フィルム1から、ハードコート層および/または光学調整層と光透過性導電層3とを備える積層体を剥離することができる。 When the base material layer 2 includes the transparent base material 4, the peeling function layer, the hard coat layer and / or the optical adjustment layer in order toward one side in the thickness direction, the transparent conductive film 1 is hard. The laminate including the coat layer and / or the optical adjustment layer and the light transmissive conductive layer 3 can be peeled off.
 また、基材層2は、機能層5を備えず、透明基材4のみからなることもできる。 Further, the base material layer 2 may not include the functional layer 5 and may be composed of only the transparent base material 4.
 また、基材層2が、透明基材4を備えず、機能層5のみからなることもできる。 Further, the base material layer 2 may not include the transparent base material 4 and may be composed of only the functional layer 5.
 このような基材層2を備える透明導電性フィルム1として、例えば、上記した積層体(ハードコート層および/または光学調整層と光透過性導電層3とを備える積層体)が挙げられる。 Examples of the transparent conductive film 1 provided with such a base material layer 2 include the above-mentioned laminate (a laminate having a hard coat layer and / or an optical adjustment layer and a light-transmitting conductive layer 3).
 詳しくは、図5に示すように、透明導電性フィルム1は、基材層2(機能層5)と、光透過性導電層3とを厚み方向一方側に向かって順に備える。 Specifically, as shown in FIG. 5, the transparent conductive film 1 includes a base material layer 2 (functional layer 5) and a light-transmitting conductive layer 3 in order toward one side in the thickness direction.
 また、基材層2は、ガラスを含む透明基材4と機能層5とからなることもできる。 Further, the base material layer 2 can also be composed of a transparent base material 4 containing glass and a functional layer 5.
 また、基材層2は、透明基材4の他方面に、アンチブロッキング層(図示せず)を備えることもできる。 Further, the base material layer 2 may be provided with an anti-blocking layer (not shown) on the other surface of the transparent base material 4.
 このような場合には、基材層2は、アンチブロッキング層と、透明基材4と、機能層5とを、厚み方向一方側に向かって順に備える。 In such a case, the base material layer 2 includes an anti-blocking layer, a transparent base material 4, and a functional layer 5 in order toward one side in the thickness direction.
 アンチブロッキング層は、透明導電性フィルム1を厚み方向に積層した場合などに、互いに接触する複数の透明導電性フィルム1のそれぞれの表面に耐ブロッキング性を付与する。 The anti-blocking layer imparts blocking resistance to the respective surfaces of the plurality of transparent conductive films 1 in contact with each other when the transparent conductive films 1 are laminated in the thickness direction.
 アンチブロッキング層は、フィルム形状を有する。 The anti-blocking layer has a film shape.
 アンチブロッキング層の材料は、例えば、アンチブロッキング組成物である。 The material of the anti-blocking layer is, for example, an anti-blocking composition.
 アンチブロッキング組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。 Examples of the anti-blocking composition include the mixture described in JP-A-2016-179686.
 混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ポリスチレンなどの有機の粒子)とを含有する。 The mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably organic particles such as polystyrene).
 アンチブロッキング層の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下である。 The thickness of the anti-blocking layer is, for example, 0.1 μm or more, and for example, 10 μm or less.
 また、アンチブロッキング層を形成するには、アンチブロッキング組成物の希釈液を、透明基材4の厚み方向他方面に塗布し、乾燥後、紫外線照射により、アンチブロッキング組成物を硬化させる。 Further, in order to form an anti-blocking layer, a diluted solution of the anti-blocking composition is applied to the other surface of the transparent base material 4 in the thickness direction, dried, and then the anti-blocking composition is cured by irradiation with ultraviolet rays.
 これにより、アンチブロッキング層を形成する。 This forms an anti-blocking layer.
 また、アンチブロッキング層と、透明基材4との間に、さらに、易接着層などの機能層5を備えることもできる。 Further, a functional layer 5 such as an easy-adhesion layer can be further provided between the anti-blocking layer and the transparent base material 4.
 また、基材層2は、透明基材4の一方側に、無機層からなる中間層(図示せず)を備えることもできる。 Further, the base material layer 2 may be provided with an intermediate layer (not shown) made of an inorganic layer on one side of the transparent base material 4.
 中間層は、基材層2の表面硬度を向上したり、光透過性導電層3が基材層2から受ける応力を中間地点で緩和する機能を有する。 The intermediate layer has a function of improving the surface hardness of the base material layer 2 and relaxing the stress received by the light-transmitting conductive layer 3 from the base material layer 2 at an intermediate point.
 中間層は、透明基材4、機能層5、および、アンチブロッキング層に対し、透明導電フィルムの厚み方向一方側に対し、任意の位置に備えることができ、複数層備えていても良い。 The intermediate layer can be provided at an arbitrary position with respect to the transparent base material 4, the functional layer 5, and the anti-blocking layer with respect to one side in the thickness direction of the transparent conductive film, and a plurality of layers may be provided.
 例えば、基材層2は、透明基材4と、機能層5と、中間層とを、厚み方向一方側に向かって順に備える。また、基材層2は、例えば、中間層と、アンチブロッキング層と、透明基材4と、機能層5とを厚み方向一方側に向かって順に備える。 For example, the base material layer 2 includes a transparent base material 4, a functional layer 5, and an intermediate layer in order toward one side in the thickness direction. Further, the base material layer 2 includes, for example, an intermediate layer, an anti-blocking layer, a transparent base material 4, and a functional layer 5 in order toward one side in the thickness direction.
 中間層は、好ましくは、無機誘電体であり、その表面抵抗値が、例えば、1×10Ω/□以上、好ましくは1×10Ω/□以上である。 The intermediate layer is preferably an inorganic dielectric, and its surface resistance value is, for example, 1 × 10 6 Ω / □ or more, preferably 1 × 10 8 Ω / □ or more.
 中間層の材料は、例えば、酸化珪素、酸化チタン、酸化ニオブ、酸化アルミニウム、二酸化ジルコニウム、酸化カルシウムなどの無機酸化物やフッ化マグネシウムなどのフッ化物を含有する組成からなる。なお、無機機能層の組成は、化学両論組成であってもなくてもよい。 The material of the intermediate layer is composed of, for example, an inorganic oxide such as silicon oxide, titanium oxide, niobium oxide, aluminum oxide, zirconium dioxide and calcium oxide, and a fluoride such as magnesium fluoride. The composition of the inorganic functional layer may or may not be a chemical composition.
 一実施形態では、透明導電性フィルム1における光透過性導電層3の好適な数として1を例示しているが、例えば、図示しないが、2であってもよい。この場合には、2つの光透過性導電層3のそれぞれが、基材層2の厚み方向両側のそれぞれに配置される。つまり、この変形例の好適例では、1つの基材層2に対する光透過性導電層3の数は、好ましくは、2である。 In one embodiment, 1 is exemplified as a suitable number of the light-transmitting conductive layer 3 in the transparent conductive film 1, but for example, although not shown, it may be 2. In this case, each of the two light-transmitting conductive layers 3 is arranged on both sides of the base material layer 2 in the thickness direction. That is, in a preferred example of this modification, the number of light-transmitting conductive layers 3 with respect to one base material layer 2 is preferably 2.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。
1.透明導電性フィルムの製造
  実施例1
(第1工程)
 透明基材としてのPETフィルムロール(東レ社製、厚み50μm)からなるフィルム基材の一方の面に、アクリル樹脂からなる紫外線硬化性樹脂を塗布し、紫外線照射により硬化させた。これにより、厚みが2μmであるハードコート層を形成した。これにより、基材層を得た。
Specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are the compounding ratios (content ratio) corresponding to those described in the above-mentioned "Form for carrying out the invention". ), Physical property values, parameters, etc., can be replaced with the corresponding upper limit value (numerical value defined as "less than or equal to" or "less than") or lower limit value (numerical value defined as "greater than or equal to" or "excess"). can. In addition, unless otherwise specified in the following description, "part" and "%" are based on mass.
1. 1. Production of transparent conductive film Example 1
(First step)
An ultraviolet curable resin made of an acrylic resin was applied to one surface of a film base material made of a PET film roll (manufactured by Toray Industries, Inc., thickness 50 μm) as a transparent base material, and cured by ultraviolet irradiation. As a result, a hard coat layer having a thickness of 2 μm was formed. As a result, a base material layer was obtained.
 次いで、基材層を真空スパッタ装置に設置して、到達真空度が0.9×10-4Paとなるよう十分に真空排気し、基材層の脱ガス処理を行った。その後、基材層を成膜ロールに沿うように搬送しながら、スパッタリングガスとして、クリプトン、および、反応性ガスとしての酸素を導入した減圧下(0.4Pa)で、酸化インジウムと酸化スズの焼結体であり、酸化スズ濃度が10質量%であるITOからなる第1ターゲットを、以下の設備、条件にてスパッタリングすることにより、基材層(ハードコート層)の一方面に、厚み150nmの非晶質の光透過性導電層(酸化スズ濃度が10質量%である第1非晶質層)を形成した。なお、酸素導入量は、図3に示す抵抗-酸素曲線の領域X、かつ、非晶質の光透過性導電層の表面抵抗が45Ω/□になるように調整した(クリプトンおよび酸素の合計導入量に対する酸素導入量の割合は、約1.4質量%)。これにより、基材層および非晶質の光透過性導電層からなる非晶質積層フィルムを得た。
(第2工程)
 得られた非晶質積層フィルムを、155℃の熱風オーブンで1時間加熱した。これにより、非晶質の光透過性導電層を、結晶質の光透過性導電層とし、基材層および結晶質の光透過性導電層からなる透明導電性フィルムを得た。
<成膜設備・条件>
電源:DC電源
第1ターゲットの水平磁場強度:90mT
成膜気圧:0.4Pa
成膜ロール温度(基材層の温度):-8℃
  実施例2、実施例5、比較例1および比較例5
 表1の記載に従って、スパッタリングガス、第1領域の厚み、成膜ロール温度、および、非晶質の光透過性導電層の表面抵抗を変更した以外は、実施例1と同様にして、透明導電性フィルムを得た。
Next, the base material layer was placed in a vacuum sputtering apparatus, and the base material layer was degassed by sufficiently vacuum exhausting so that the ultimate vacuum degree was 0.9 × 10 -4 Pa. Then, while transporting the base material layer along the film forming roll, indium oxide and tin oxide are baked under reduced pressure (0.4 Pa) in which krypton as a sputtering gas and oxygen as a reactive gas are introduced. By sputtering the first target made of ITO, which is a composite and has a tin oxide concentration of 10% by mass, under the following equipment and conditions, one surface of the base material layer (hard coat layer) has a thickness of 150 nm. An amorphous light-transmitting conductive layer (first amorphous layer having a tin oxide concentration of 10% by mass) was formed. The amount of oxygen introduced was adjusted so that the region X of the resistance-oxygen curve shown in FIG. 3 and the surface resistance of the amorphous light-transmitting conductive layer were 45 Ω / □ (total introduction of krypton and oxygen). The ratio of the amount of oxygen introduced to the amount is about 1.4% by mass). As a result, an amorphous laminated film composed of a base material layer and an amorphous light-transmitting conductive layer was obtained.
(Second step)
The obtained amorphous laminated film was heated in a hot air oven at 155 ° C. for 1 hour. As a result, the amorphous light-transmitting conductive layer was used as a crystalline light-transmitting conductive layer, and a transparent conductive film composed of a base material layer and a crystalline light-transmitting conductive layer was obtained.
<Film formation equipment / conditions>
Power supply: DC power supply Horizontal magnetic field strength of the first target: 90 mT
Film formation pressure: 0.4 Pa
Film formation roll temperature (temperature of base material layer): -8 ° C
Example 2, Example 5, Comparative Example 1 and Comparative Example 5
Transparent conductivity is the same as in Example 1 except that the sputtering gas, the thickness of the first region, the film formation roll temperature, and the surface resistance of the amorphous light-transmitting conductive layer are changed according to the description in Table 1. A sex film was obtained.
  実施例3
 実施例1の真空スパッタ装置に、酸化スズ濃度が3質量%であるITOからなる第2ターゲットをさらに設置し、厚み60nmの第1非晶質層(酸化スズ濃度が10質量%)を形成した後、連続して、第1非晶質層の一方面に、厚み3nmの第2非晶質層(酸化スズ濃度が3質量%)を形成し、また、非晶質の光透過性導電層の表面抵抗が120Ω/□になるように酸素導入量を調整した以外は、実施例1と同様にして、透明導電性フィルムを得た。
Example 3
A second target made of ITO having a tin oxide concentration of 3% by mass was further installed in the vacuum sputtering apparatus of Example 1 to form a first amorphous layer having a thickness of 60 nm (tin oxide concentration of 10% by mass). After that, a second amorphous layer having a thickness of 3 nm (tin oxide concentration is 3% by mass) is continuously formed on one surface of the first amorphous layer, and an amorphous light-transmitting conductive layer is formed. A transparent conductive film was obtained in the same manner as in Example 1 except that the amount of oxygen introduced was adjusted so that the surface resistance of the above was 120 Ω / □.
  実施例4および比較例2~比較例4
 表1の記載に従って、スパッタリングガス、第1領域と第2領域の厚み、および、非晶質の光透過性導電層の表面抵抗を変更した以外は、実施例3と同様にして、透明導電性フィルムを得た。
2.評価
 <厚み測定>
 (透明基材およびハードコート層の厚み)
 透明基材の厚み、ハードコート層の厚みを、膜厚計(Peacock社製 デジタルダイアルゲージDG-205)を用いて測定した。その結果を表1に示す。
Example 4 and Comparative Examples 2 to 4
Transparent conductivity is the same as in Example 3, except that the sputtering gas, the thicknesses of the first and second regions, and the surface resistance of the amorphous light-transmitting conductive layer are changed according to the description in Table 1. I got a film.
2. Evaluation <Thickness measurement>
(Thickness of transparent substrate and hard coat layer)
The thickness of the transparent base material and the thickness of the hard coat layer were measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock). The results are shown in Table 1.
 (光透過性導電層の厚み)
 FIBマイクロサンプリング法により、各実施例および各比較例の透明導電性フィルムの断面を調製した。次いで、光透過性導電層の断面を、FE-TEM観察し、光透過性導電層(第1領域および第2領域)の厚みを測定した。ここで、実施例3、実施例4、比較例2、比較例3および比較例4において、第1領域の厚みは、第1領域の厚み方向一方面に、第2領域を配置する前に、第1領域のみ形成した、断面観察用サンプルを作製し、そのサンプルをFE-TEM観察にすることにより測定した。また、第2領域の厚みは、光透過性導電層の厚みから、第1領域の厚みを差し引くことにより算出した。その結果を表1に示す。
(Thickness of light-transmitting conductive layer)
The cross section of the transparent conductive film of each Example and each Comparative Example was prepared by the FIB microsampling method. Next, the cross section of the light-transmitting conductive layer was observed by FE-TEM, and the thickness of the light-transmitting conductive layer (first region and second region) was measured. Here, in Example 3, Example 4, Comparative Example 2, Comparative Example 3 and Comparative Example 4, the thickness of the first region is set on one surface in the thickness direction of the first region before the second region is arranged. A cross-section observation sample in which only the first region was formed was prepared, and the sample was measured by FE-TEM observation. The thickness of the second region was calculated by subtracting the thickness of the first region from the thickness of the light-transmitting conductive layer. The results are shown in Table 1.
 なお、装置および測定条件を以下に示す。
FIB装置:Hitachi製 FB2200、 加速電圧: 10kV
FE-TEM装置:JEOL製 JEM-2800、加速電圧: 200kV
 <抵抗値の評価>
 各実施例および各比較例の透明導電性フィルムについて、光透過性導電層の表面抵抗(R1)および比抵抗(R1´)を、JIS K7194(1994年)に準じて四端子法により測定した。その結果を表1に示す。
The device and measurement conditions are shown below.
FIB device: Hitachi FB2200, acceleration voltage: 10kV
FE-TEM device: JEOL JEM-2800, acceleration voltage: 200kV
<Evaluation of resistance value>
For the transparent conductive films of each example and each comparative example, the surface resistivity (R1) and specific resistance (R1') of the light-transmitting conductive layer were measured by the four-terminal method according to JIS K7194 (1994). The results are shown in Table 1.
 <加熱安定性>
 各実施例および各比較例の透明導電性フィルムを、さらに、155℃の熱風オーブンで1時間加熱した後、光透過性導電層の表面抵抗(R2)および比抵抗(R2´)を測定した。その結果を表1に示す。
<Heating stability>
The transparent conductive films of each example and each comparative example were further heated in a hot air oven at 155 ° C. for 1 hour, and then the surface resistivity (R2) and specific resistance (R2') of the light-transmitting conductive layer were measured. The results are shown in Table 1.
 次いで、加熱安定性を、表面抵抗(R1)に対する、表面抵抗(R2)の比(R2/R1)として評価した。 Next, the heating stability was evaluated as the ratio (R2 / R1) of the surface resistance (R2) to the surface resistance (R1).
 つまり、加熱安定性(R2/R1)とは、結晶質の光透過性導電層を再加熱したときの、抵抗値の変化量を評価したものであり、その値が1に近いほうが、加熱安定性に優れることを示す。その結果を表1に示す。 That is, the heating stability (R2 / R1) is an evaluation of the amount of change in the resistance value when the crystalline light-transmitting conductive layer is reheated, and the closer the value is to 1, the more stable the heating is. Shows excellent sex. The results are shown in Table 1.
 <外観>
 各実施例および各比較例の透明導電性フィルムを、水平な台に静置し、シワやスジの発生状況を確認し、製品の加工、組み込みする上で、実用上の問題(ITOフィルム上に製品に必要な機能の層を形成する際の塗工ムラやタッチパネルにおける外観ムラ)の有無で評価した。
〇:実用上、外観の問題ない水準であった。
×:実用上、外観が問題となる水準であった。
<Appearance>
Practical problems (on the ITO film) in placing the transparent conductive films of each example and each comparative example on a horizontal table, checking the occurrence of wrinkles and streaks, and processing and incorporating the product. The evaluation was made based on the presence or absence of coating unevenness when forming a layer of functions required for the product and appearance unevenness on the touch panel).
〇: Practically, there was no problem with the appearance.
X: Practically, the appearance was at a problematic level.
 <結晶粒の粒径の測定>
 実施例および比較例の透明導電性フィルムを切り出し、ウルトラミクロトームの試料ホルダに固定した。次いで、ITO膜面に対して極鋭角にミクロトームナイフを設置し、切断面がITO膜面と略平行となるように切削して観察試料を得た。この観察試料を、透過型電子顕微鏡を用いて観察した(倍率:50000倍)。TEM観察写真の中、1.5μm□の領域を任意で選定し、この1.5μmの領域で観察される結晶粒の中で、最大である結晶粒を選定した。この最大である結晶粒の粒界上に、任意の2点の測定点を配置し、測定点間の距離を直線距離で求めた。本測定では、この測定点間の距離の中で、測定点間の距離が最大となる測定点間距離を粒径とした。その結果を表1に示す。
<Measurement of grain size>
The transparent conductive films of Examples and Comparative Examples were cut out and fixed to the sample holder of the ultramicrotome. Next, a microtome knife was placed at an extremely acute angle with respect to the ITO film surface, and cutting was performed so that the cut surface was substantially parallel to the ITO film surface to obtain an observation sample. This observation sample was observed using a transmission electron microscope (magnification: 50,000 times). In the TEM observation photograph, a region of 1.5 μm □ was arbitrarily selected, and among the crystal grains observed in this 1.5 μm region, the largest crystal grain was selected. Arbitrary two measurement points were placed on the grain boundaries of the crystal grains, which was the maximum, and the distance between the measurement points was determined by a linear distance. In this measurement, the distance between the measurement points that maximizes the distance between the measurement points is defined as the particle size. The results are shown in Table 1.
 <クリプトン原子の同定>
 走査型蛍光X線分析装置(リガク社製、ZSX PrimusIV)を用いて、実施例1~4の光透過性導電層内にクリプトン原子を含むことを確認した。具体的には、以下の条件にて、5回繰り返し測定を行って各走査角度の平均値を算出し、X線スペクトルを作成した。作成したX線スペクトルの、28.2°近傍にピークが出ていることを確認することでクリプトン原子の混入を特定した。
<測定条件>
スペクトル:Kr-KA
測定径:30mm
雰囲気:真空
ターゲット:Rh
管電圧:50kV
管電流:60mA
1次フィルタ:Ni40
走査角度(deg):27.0~29.5
ステップ(deg):0.020
速度(Deg/min):0.75
アッテネータ:1/1
スリット:S2
分光結晶:LiF(200)
検出器:SC
PHA:100-300
<Identification of krypton atom>
Using a scanning fluorescent X-ray analyzer (ZSX Primus IV, manufactured by Rigaku Co., Ltd.), it was confirmed that the light-transmitting conductive layers of Examples 1 to 4 contained krypton atoms. Specifically, under the following conditions, the measurement was repeated 5 times to calculate the average value of each scanning angle, and an X-ray spectrum was created. By confirming that the peak appeared in the vicinity of 28.2 ° in the prepared X-ray spectrum, the contamination of krypton atoms was identified.
<Measurement conditions>
Spectrum: Kr-KA
Measurement diameter: 30 mm
Atmosphere: Vacuum Target: Rh
Tube voltage: 50kV
Tube current: 60mA
Primary filter: Ni40
Scanning angle (deg): 27.0 to 29.5
Step (deg): 0.020
Velocity (Deg / min): 0.75
Attenuator: 1/1
Slit: S2
Spectral crystal: LiF (200)
Detector: SC
PHA: 100-300
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の透明導電性フィルムおよび透明導電性フィルムの製造方法は、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明において、好適に用いられる。 The transparent conductive film and the method for manufacturing the transparent conductive film of the present invention include a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, an image display device, and a heater member (light transmitting heater). , And, preferably used in lighting.
 1   透明導電性フィルム
 2   基材層
 3   光透過性導電性層
 4   透明基材
1 Transparent conductive film 2 Base material layer 3 Light-transmitting conductive layer 4 Transparent base material

Claims (6)

  1.  基材層と、光透過性導電層とを順に備え、
     前記基材層は、樹脂層を含み、
     前記光透過性導電層は、クリプトン原子および/またはキセノン原子を含むことを特徴とする、透明導電性フィルム。
    A base material layer and a light-transmitting conductive layer are provided in this order.
    The base material layer includes a resin layer and contains a resin layer.
    A transparent conductive film, wherein the light-transmitting conductive layer contains krypton atoms and / or xenon atoms.
  2.  前記光透過性導電層の厚みが、60nm以上100nm以下であることを特徴とする、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the thickness of the light-transmitting conductive layer is 60 nm or more and 100 nm or less.
  3.  前記光透過性導電層が、結晶質であり、かつ、35nm以上の粒径を有する結晶粒を含むことを特徴とする、請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1 or 2, wherein the light-transmitting conductive layer is crystalline and contains crystal grains having a particle size of 35 nm or more.
  4.  前記光透過性導電層が、インジウムスズ複合酸化物を含むことを特徴とする、請求項1~3のいずれか一項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 3, wherein the light-transmitting conductive layer contains an indium tin composite oxide.
  5.  前記光透過性導電層が、パターン形状を有することを特徴とする、請求項1~4のいずれか一項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 4, wherein the light-transmitting conductive layer has a pattern shape.
  6.  クリプトンおよび/またはキセノン存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置し、
     前記基材層は、樹脂層を含むことを特徴とする、透明導電性フィルムの製造方法。
    In the presence of krypton and / or xenon, the light-transmitting conductive layer is placed on the substrate layer by a sputtering method targeting the material constituting the light-transmitting conductive layer.
    A method for producing a transparent conductive film, wherein the base material layer contains a resin layer.
PCT/JP2021/011146 2020-03-19 2021-03-18 Transparent conductive film and method for producing transparent conductive film WO2021187572A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180021982.0A CN115298761A (en) 2020-03-19 2021-03-18 Transparent conductive film and method for producing transparent conductive film
JP2021517070A JP7213961B2 (en) 2020-03-19 2021-03-18 Transparent conductive film and method for producing transparent conductive film
KR1020227030807A KR20220155284A (en) 2020-03-19 2021-03-18 Transparent conductive film and method for manufacturing the transparent conductive film
JP2022177317A JP2023017917A (en) 2020-03-19 2022-11-04 Transparent conductive film and method for manufacturing transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020049864 2020-03-19
JP2020-049864 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187572A1 true WO2021187572A1 (en) 2021-09-23

Family

ID=77771034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011146 WO2021187572A1 (en) 2020-03-19 2021-03-18 Transparent conductive film and method for producing transparent conductive film

Country Status (5)

Country Link
JP (2) JP7213961B2 (en)
KR (1) KR20220155284A (en)
CN (1) CN115298761A (en)
TW (1) TW202229590A (en)
WO (1) WO2021187572A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (en) * 1992-05-29 1993-12-17 Tonen Corp Manufacture of transparent conductive film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262829A (en) * 1994-03-25 1995-10-13 Hitachi Ltd Transparent conductive film and its forming method
CN102106083B (en) 2008-07-30 2015-11-25 京瓷株式会社 Duplexer, communication module assembly and communication equipment
JP5620967B2 (en) * 2012-11-22 2014-11-05 日東電工株式会社 Transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (en) * 1992-05-29 1993-12-17 Tonen Corp Manufacture of transparent conductive film

Also Published As

Publication number Publication date
KR20220155284A (en) 2022-11-22
JPWO2021187572A1 (en) 2021-09-23
CN115298761A (en) 2022-11-04
JP7213961B2 (en) 2023-01-27
TW202229590A (en) 2022-08-01
JP2023017917A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
JP7073589B2 (en) Transparent conductive layer and transparent conductive film
JP2024032742A (en) Light-transparent conductive layer and light-transparent conductive film
WO2021187572A1 (en) Transparent conductive film and method for producing transparent conductive film
CN115298757A (en) Light-transmitting conductive film and transparent conductive film
WO2021187579A1 (en) Transparent conductive film
WO2022092190A2 (en) Transparent conductive film, and production method for transparent conductive film
KR20220155279A (en) Manufacturing method of transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517070

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772327

Country of ref document: EP

Kind code of ref document: A1