WO2021212656A1 - Procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse - Google Patents

Procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse Download PDF

Info

Publication number
WO2021212656A1
WO2021212656A1 PCT/CN2020/098814 CN2020098814W WO2021212656A1 WO 2021212656 A1 WO2021212656 A1 WO 2021212656A1 CN 2020098814 W CN2020098814 W CN 2020098814W WO 2021212656 A1 WO2021212656 A1 WO 2021212656A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladle
alloying
manganese
steel
tapping
Prior art date
Application number
PCT/CN2020/098814
Other languages
English (en)
Chinese (zh)
Inventor
曹余良
周桂成
袁广鹏
吴国平
贾攀
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020227036492A priority Critical patent/KR102581522B1/ko
Priority to AU2020443584A priority patent/AU2020443584B2/en
Publication of WO2021212656A1 publication Critical patent/WO2021212656A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/22Rotary drums; Supports therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a fast alloying process of high-manganese austenitic steel for low temperature.
  • High-manganese austenitic steel for low temperature use (15% ⁇ [Mn] ⁇ 30%), due to the high manganese content of molten steel and easy oxidation of manganese, it cannot be added to the converter together with the scrap steel.
  • Manganese can only be carried out through the converter tapping and LF refining process
  • the alloying of manganese leads to long manganese alloying time (more than 8 hours), low production efficiency, which is not conducive to continuous casting production; and long-term LF furnace alloying is likely to cause high content of molten steel hydrogen and nitrogen gas, which will affect the quality of continuous casting billets. Have a greater impact.
  • the technical problem to be solved by the present invention is to provide a rapid alloying process for high manganese austenitic steel at low temperature in view of the shortcomings of the above prior art, reducing the manganese alloying time of high manganese austenitic steel from 8 hours to Within 3 hours, the production efficiency and the quality of molten steel were improved, and the rapid alloying of high-manganese austenitic steel for low temperature was realized.
  • the technical solution of the present invention to solve the above technical problems is: a rapid alloying process of high manganese austenitic steel for low temperature, including manganese alloy baking ⁇ converter tapping and tapping alloying ⁇ LF slag alloying, specifically:
  • the grid plate is welded into a support with the same diameter as the bottom of the ladle, and the support is put into the bottom of the ladle; then the manganese alloy that needs to be baked is added to the ladle, and the amount of manganese alloy added is 230-260Kg/ t steel, and the addition amount does not exceed three-quarters of the volume of the ladle;
  • the tapping amount the weight of the standard ladle holding steel-the weight of the baked manganese alloy -1/3*The weight of the standard ladle containing steel, the converter tapping temperature is 1660°C-1700°C, and the tapping time is 3-5min;
  • LF refining furnace electrode heating and heating, stirring and desulfurization under 400-500NL/min large argon gas, large argon gas stirring and heating, heating and alloying, raising the temperature of molten steel to 1580°C-1600°C, and the heating time is more than 60 minutes;
  • the present invention further defines the scheme:
  • the ladle age of the aforementioned prepared ladle is before one third of the total ladle age.
  • a layer of lime for steelmaking is added on the manganese alloy.
  • the amount of lime added is 8-10Kg/t steel.
  • the baked alloy steel ladle is hoisted to the tapping station of the converter, and the bottom blowing of the ladle is turned on, and the flow rate of the bottom blowing of the ladle is 600-800 Nl/min.
  • the aforementioned lime is added in batches during the cooling process of large argon gas to accelerate the cooling, each batch of lime is added 1.5Kg/t, and the total amount added in the cooling process is not more than 6Kg/t.
  • the present invention carries out the process control of suitable alloy amount, suitable baking temperature, baking time and baking batch in advance through the steel ladle, and at the same time optimizing the converter steel tapping temperature and LF alloying process, greatly shortening LF refining furnace alloying time.
  • the LF refining furnace alloying time is shortened from 9 hours to 3 hours, which reduces the probability of increasing the molten steel gas content caused by the long-term heating of the LF refining furnace for alloying, which not only ensures continuous production, but also improves product quality .
  • 150t converter, 150t LF refining furnace smelting, 25Mn steel grade are selected, and a high-manganese austenitic steel rapid alloying process for low temperature is provided, including manganese alloy baking ⁇ converter tapping and tapping alloying ⁇ LF
  • the process flow of slag alloying is as follows:
  • Ladle preparation The total ladle age is 100 furnaces, and the No. 23 ladle with the ladle age of 19 furnaces is selected as the alloy baking ladle;
  • the electrodes of LF refining furnace are heated and sampled. For details, see Table 1. Large argon gas is stirred for desulfurization, the bottom blowing of the ladle is turned on, the argon flow rate is 500 NL/min, the large argon gas is stirred and heated for alloying for 77 minutes, and the molten steel temperature is 1593°C;
  • the present invention can also have other embodiments. All technical solutions formed by equivalent replacements or equivalent transformations fall within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

L'invention concerne un procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse, comprenant la cuisson d'un alliage de manganèse → la coulée au convertisseur et l'alliage par coulée → alliage de laitier de poche (LFS) et spécifiquement : (1) la préparation d'une poche dont l'âge est à un stade précoce ; (2) la préparation d'une pièce de support de poche et transporter l'alliage de manganèse qui nécessite une cuisson dans la poche ; (3) la cuisson de l'alliage dans la poche ; (4) la régulation de la quantité de coulée et de la température de coulée d'un convertisseur ; (5) le traitement d'alliage par élévation de la température du four d'affinage de poche ; et (6) le brassage à l'argon par le fond, le refroidissement et le traitement d'alliage en four d'affinage de poche. Le procédé d'alliage selon l'invention réduit le temps d'alliage au manganèse d'un acier austénitique à haute teneur en manganèse de huit heures à environ trois heures, améliorant le rendement de la production et la qualité de l'acier fondu.
PCT/CN2020/098814 2020-04-24 2020-06-29 Procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse WO2021212656A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227036492A KR102581522B1 (ko) 2020-04-24 2020-06-29 저온용 고(高) 망간 오스테나이트강의 급속 합금화 공정
AU2020443584A AU2020443584B2 (en) 2020-04-24 2020-06-29 Low-temperature high-manganese austenitic steel rapid alloying process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010333385.9A CN111394644A (zh) 2020-04-24 2020-04-24 一种低温用高锰奥氏体钢快速合金化工艺
CN202010333385.9 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021212656A1 true WO2021212656A1 (fr) 2021-10-28

Family

ID=71428012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098814 WO2021212656A1 (fr) 2020-04-24 2020-06-29 Procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse

Country Status (4)

Country Link
KR (1) KR102581522B1 (fr)
CN (1) CN111394644A (fr)
AU (1) AU2020443584B2 (fr)
WO (1) WO2021212656A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032473A (zh) * 2021-11-29 2022-02-11 东北大学 一种免涂层热成形钢的合金加入方法
CN114686784A (zh) * 2022-04-02 2022-07-01 四川罡宸不锈钢有限责任公司 一种节镍型奥氏体不锈钢材料及制备方法
CN114908208A (zh) * 2022-04-18 2022-08-16 包头钢铁(集团)有限责任公司 一种利用转炉终点温度冶炼Mn含量12%以上高合金钢方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974980A (zh) * 2020-07-22 2020-11-24 南京钢铁股份有限公司 一种转炉炼钢过程中冶炼高合金钢的合金预热工艺
CN114317882A (zh) * 2021-12-21 2022-04-12 中车长江铜陵车辆有限公司 一种双联冶炼的合金烘烤方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097516A (ja) * 2000-09-21 2002-04-02 Kawasaki Steel Corp 真空脱ガス槽内での高マンガン鋼の溶製方法
WO2006061261A1 (fr) * 2004-12-06 2006-06-15 F.A.R. - Fonderie Acciaierie Roiale - Spa Procede permettant d'obtenir un alliage d'acier au manganese ainsi qu'alliage d'acier au manganese ainsi obtenu
CN103882181A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种含锰钢合金化的工艺
JP2016065274A (ja) * 2014-09-24 2016-04-28 Jfeスチール株式会社 低炭素高マンガン鋼の溶製方法
CN107586915A (zh) * 2017-09-06 2018-01-16 东北大学 一种中高锰钢中锰元素的合金化方法
CN109750210A (zh) * 2018-12-29 2019-05-14 广西长城机械股份有限公司 低氧、氢含量高锰钢的生产方法
CN110616362A (zh) * 2019-09-30 2019-12-27 河钢股份有限公司 一种低温环境用高锰钢的炼钢方法
CN110724792A (zh) * 2019-09-30 2020-01-24 河钢股份有限公司 一种用lf精炼炉生产低温环境用高锰钢的冶炼方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034545A (ja) * 1998-07-14 2000-02-02 Daido Steel Co Ltd 熱間加工性の改善されたオーステナイト系耐熱鋼およびその製造方法
CN105420440A (zh) * 2014-09-19 2016-03-23 鞍钢股份有限公司 一种转炉冶炼中、高锰合金钢的合金加入方法
CN105420446A (zh) * 2014-09-22 2016-03-23 南京钢铁股份有限公司 一种lf炉轻处理冶炼方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097516A (ja) * 2000-09-21 2002-04-02 Kawasaki Steel Corp 真空脱ガス槽内での高マンガン鋼の溶製方法
WO2006061261A1 (fr) * 2004-12-06 2006-06-15 F.A.R. - Fonderie Acciaierie Roiale - Spa Procede permettant d'obtenir un alliage d'acier au manganese ainsi qu'alliage d'acier au manganese ainsi obtenu
CN103882181A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种含锰钢合金化的工艺
JP2016065274A (ja) * 2014-09-24 2016-04-28 Jfeスチール株式会社 低炭素高マンガン鋼の溶製方法
CN107586915A (zh) * 2017-09-06 2018-01-16 东北大学 一种中高锰钢中锰元素的合金化方法
CN109750210A (zh) * 2018-12-29 2019-05-14 广西长城机械股份有限公司 低氧、氢含量高锰钢的生产方法
CN110616362A (zh) * 2019-09-30 2019-12-27 河钢股份有限公司 一种低温环境用高锰钢的炼钢方法
CN110724792A (zh) * 2019-09-30 2020-01-24 河钢股份有限公司 一种用lf精炼炉生产低温环境用高锰钢的冶炼方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032473A (zh) * 2021-11-29 2022-02-11 东北大学 一种免涂层热成形钢的合金加入方法
CN114686784A (zh) * 2022-04-02 2022-07-01 四川罡宸不锈钢有限责任公司 一种节镍型奥氏体不锈钢材料及制备方法
CN114908208A (zh) * 2022-04-18 2022-08-16 包头钢铁(集团)有限责任公司 一种利用转炉终点温度冶炼Mn含量12%以上高合金钢方法
CN114908208B (zh) * 2022-04-18 2023-09-26 包头钢铁(集团)有限责任公司 一种利用转炉终点温度冶炼Mn含量12%以上高合金钢方法

Also Published As

Publication number Publication date
KR102581522B1 (ko) 2023-09-22
KR20220154813A (ko) 2022-11-22
AU2020443584B2 (en) 2023-02-02
CN111394644A (zh) 2020-07-10
AU2020443584A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021212656A1 (fr) Procédé d'alliage rapide à basse température d'acier austénitique à haute teneur en manganèse
WO2020093710A1 (fr) Processus de fusion d'acier pour canalisation résistant aux acides de haute pureté
CN102978505B (zh) 高强if钢的冶炼方法
JP7359972B2 (ja) 高リン熔鉄からニッケル系鋼を生産する方法
CN1686666A (zh) 大型高铬钢冷轧辊辊坯的生产方法
CN102618795B (zh) 含氮高合金耐热钢ZG3Cr24Ni7N的冶炼工艺
CN102277534A (zh) 气瓶用热轧型钢及其生产方法
CN102912222B (zh) 18mnd5核电用低合金结构钢及工艺控制方法
WO2019128285A1 (fr) Procédé d'anti-carburation destiné à la production d'un acier à faible teneur en carbone et à faible teneur en soufre au moyen d'un four de raffinage de four-poche
US20230265547A1 (en) Nickel-Based Superalloy Steel And Preparation Method Thereof
CN102260835B (zh) 核电用钢18MnNiMo及其制备方法
CN109762956A (zh) 一种大转炉大废钢比冶炼过程的控制方法
CN110343949A (zh) 含有铌钒元素的hrb400e高强度抗震钢筋生产方法及钢材
CN106319147A (zh) Lf炉脱硫控碳保氮控制方法
CN105861781B (zh) 一种硅镇静钢经ans‑ob工艺的精炼方法
CN117230360A (zh) 一种单真空300m钢的制备方法
CN113943145A (zh) 一种不烧镁碳砖及其制备方法和应用
CN109280741B (zh) 一种奥氏体不锈钢精炼方法
CN113699301B (zh) 采用大流量氧气提升产能的转炉冶炼方法
CN115305411A (zh) 一种超深冲冷轧搪瓷钢高效生产的方法
CN114908208B (zh) 一种利用转炉终点温度冶炼Mn含量12%以上高合金钢方法
CN110699592A (zh) 一种高碳铬铁合金的制备工艺
CN109402326B (zh) 一种lf炉添加铁水精炼工艺
CN115449592B (zh) 熔融废钢铁水lf炉高效加热升温方法
CN109055661A (zh) 一种低磷不锈钢的生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036492

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020443584

Country of ref document: AU

Date of ref document: 20200629

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20932664

Country of ref document: EP

Kind code of ref document: A1