WO2021208541A1 - 一种导电膜及其制备方法 - Google Patents

一种导电膜及其制备方法 Download PDF

Info

Publication number
WO2021208541A1
WO2021208541A1 PCT/CN2021/071607 CN2021071607W WO2021208541A1 WO 2021208541 A1 WO2021208541 A1 WO 2021208541A1 CN 2021071607 W CN2021071607 W CN 2021071607W WO 2021208541 A1 WO2021208541 A1 WO 2021208541A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
conductive film
conductive
thickness
Prior art date
Application number
PCT/CN2021/071607
Other languages
English (en)
French (fr)
Inventor
冯俊敏
张万财
吴婷婷
Original Assignee
深圳市海瀚新能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010287928.8A external-priority patent/CN113990580A/zh
Priority claimed from CN202020542804.5U external-priority patent/CN211879035U/zh
Application filed by 深圳市海瀚新能源技术有限公司 filed Critical 深圳市海瀚新能源技术有限公司
Priority to CN202180041435.9A priority Critical patent/CN116195009A/zh
Priority to EP21787972.5A priority patent/EP4138098A4/en
Publication of WO2021208541A1 publication Critical patent/WO2021208541A1/zh
Priority to US17/946,057 priority patent/US20230033304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/227Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present disclosure relates to the technical field of conductive films, and in particular to a conductive film and a preparation method thereof.
  • the composite conductive film includes an insulating layer (polymer base layer) and a first conductive layer and a second conductive layer respectively provided on two surfaces of the insulating layer.
  • the same process is usually used to deposit metal multiple times on the insulating layer, so as to obtain the first conductive layer and the second conductive layer with a thicker thickness.
  • the thickness of the first conductive layer and the second conductive layer usually has the defect of compactness or conductivity.
  • the purpose of the present disclosure is to provide a conductive film and a preparation method thereof. Under the condition that the thickness of the metal conductive layer can be ensured, the density and conductivity of the conductive film are better.
  • Another object of the present disclosure is to provide a composite conductive film material and a preparation method thereof, aiming to improve the density and conductivity of the composite conductive film material.
  • embodiments of the present disclosure provide a method for preparing a conductive film, which includes the following steps: forming a metal process layer on the surface of the insulating layer by evaporation coating, water electroplating, or electroless plating, and using magnetron sputtering A metal transition layer is formed on the surface of the metal process layer away from the insulating layer, and a metal functional layer is formed on the surface of the metal transition layer away from the metal process layer.
  • the metal process layer is prepared by evaporation coating, water electroplating or electroless plating, the metal process layer can be quickly accumulated to a certain thickness, and the efficiency is fast.
  • the obtained metal process layer has good conductivity and can be used as a metal transition.
  • the metal transition layer is obtained by magnetron sputtering.
  • the magnetron sputtering method is cold deposition, which can make the metal transition layer more dispersed and the surface of the metal transition layer more uniform. The density is better, and there is no crack, so that the subsequent functional layer has higher density and better uniformity, so as to obtain a conductive film with a thicker metal conductive layer and better density and conductivity.
  • a water electroplating method is used to form a metal functional layer on the surface of the metal transition layer away from the metal process layer.
  • the metal functional layer formed by water electroplating has better conductivity and better compactness. Then, when the metal functional layer is formed by water electroplating, the polymer base film with the metal process layer and the metal transition layer is used as the base film.
  • the substrate of water electroplating the substrate not only has good electrical conductivity, and the basis of water electroplating is a metal transition layer with good compactness, which can make the formed metal functional layer also have good compactness in order to obtain compactness , Metal functional layer with better conductivity.
  • the insulating layer is pretreated so that the water content of the insulating layer is less than 1000 ppm.
  • the pretreatment can be baking.
  • the present disclosure provides a conductive film, which is prepared by the above-mentioned method for preparing the conductive film. After the preparation process is optimized, the density of the conductive film can be greater than 60%, and the effect of significantly improving the density of the conductive film is achieved.
  • the metal functional layer mainly plays a role of conduction, and the metal functional layer has high compactness and good uniformity, so as to obtain a conductive film with better compactness and conductivity.
  • the metal process layer, the metal transition layer, and the metal function layer may not be limited.
  • the metal process layer is selected from at least one of a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, and an alloy layer;
  • the metal transition layer is selected from At least one of a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, and an alloy layer;
  • the metal functional layer is selected from at least one of a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, and an alloy layer A sort of.
  • the metal process layer, the metal transition layer and the metal functional layer are all copper layers.
  • the thickness of the metal process layer is 2-100 nm
  • the thickness of the metal transition layer is 5-50 nm
  • the thickness of the metal functional layer is 30-2500 nm.
  • the thickness of the metal functional layer is 300-1500 nm.
  • the metal process layer, metal transition layer and metal functional layer are all of the same metal and are prepared by different processes.
  • the metal transition layer is thin, the metal functional layer can have a good density effect to improve The performance of the conductive film.
  • an adhesive layer is further included, and the adhesive layer is disposed between the insulating layer and the metal process layer.
  • the setting of the bonding layer can have a certain bonding effect, and cooperate with the control of the moisture content of the insulating layer, and have a certain synergistic effect, which can effectively improve the bonding force between the metal process layer and the insulating layer, and further avoid the metal process
  • the layer is peeled off to make the bonding effect of the entire conductive film better.
  • the thickness of the adhesive layer is 2-40 nm.
  • the bonding layer is a metal material layer, and the metal material layer includes one or more of Ti metal layer, W metal layer, Cr metal layer, Ni metal layer, Cu metal layer and alloy layers thereof.
  • the bonding force between the layers of the entire conductive film can be better.
  • a protective layer is further included, and the protective layer is disposed on the surface of the metal functional layer away from the metal transition layer. It can protect the metal functional layer, prevent the metal functional layer from being oxidized or even fall off, and prevent the metal functional layer from being damaged.
  • the thickness of the protective layer is 0.1-100 nm.
  • the protective layer is a conductive non-metal protective layer or an inert metal protective layer, which can well protect the metal functional layer.
  • embodiments of the present disclosure provide a composite conductive film material, which includes an insulating layer and a conductive layer provided on the surface of the insulating layer, and the conductive layer is the aforementioned conductive film.
  • the moisture content of the insulating layer is ⁇ 1000 ppm.
  • a composite conductive film usually includes an insulating layer (polymer base layer) and a first conductive layer and a second conductive layer respectively disposed on two surfaces of the insulating layer.
  • the inventor found that when the composite conductive film is used, the conductive layer may wrinkle on the insulating layer, causing problems such as peeling.
  • the inventor found through research that controlling the moisture content of the insulating layer to be less than 1000 ppm can effectively improve the bonding force between the insulating layer and the conductive layer of the conductive film, improve the problem of peeling of the conductive layer, and make the performance of the conductive film more excellent.
  • an adhesive layer is further included, and the adhesive layer is disposed between the insulating layer and the conductive layer.
  • the thickness of the adhesive layer is 2-40 nm.
  • the bonding layer is a metal material layer, and the metal material layer includes one or more of Ti metal layer, W metal layer, Cr metal layer, Ni metal layer, Cu metal layer and alloy layers thereof.
  • the setting of the adhesive layer matched with the moisture content of the insulating layer ⁇ 1000ppm, can double the bonding force between the insulating layer and the conductive layer of the conductive film, and obtain a conductive film with better bonding effect.
  • the embodiments of the present disclosure provide a method for preparing a composite conductive film material to prepare and form the above composite conductive film material.
  • the insulating layer is pretreated so that the water content of the insulating layer is less than 1000 ppm.
  • the pretreatment can be baking.
  • FIG. 1 is a schematic structural diagram of a conductive composite film material provided by an embodiment of the disclosure
  • Figure 2 is a scanning force microscope image of a conductive film
  • Figure 3 is a scanning electron micrograph of the conductive film
  • Figure 4 is a dark field diagram of the conductive film
  • Figure 5 is a bright field diagram of the conductive film
  • Figure 6 is a photo of the finished conductive film.
  • Icon 110-insulating layer; 120-adhesive layer; 130-metal process layer; 140-metal transition layer; 150-metal functional layer; 160-protective layer.
  • the same process is usually used to deposit a metal conductive layer on the insulating layer. If you want to obtain a thicker metal conductive layer, it is usually obtained by single or multiple depositions using the same process.
  • the evaporation coating is a thermal deposition method, which can quickly accumulate the metal conductive layer to a certain thickness, with fast efficiency and good conductivity.
  • the metal conductive layer obtained by the evaporation coating method is not uniform, has poor toughness and low strength, and will cause a certain degree of deformation of the film.
  • the alkaline electroplating method is an electrochemical deposition process, which can quickly accumulate the metal conductive layer to a certain thickness with fast efficiency and good conductivity.
  • the conductive layer obtained by the alkaline electroplating method has poor density.
  • magnetron sputtering is used to form a metal conductive layer on the surface of the insulating layer, since magnetron sputtering is a cold deposition method, it will not generate particularly large heat during the deposition process, and the formed metal conductive layer is a sheet Shape structure, good dispersibility, and good compactness. However, since its formation principle is formed under the action of a plasma magnetic field, new impurities (such as inert gas molecules) will be introduced, which will result in low purity of the metal conductive layer and poor conductivity.
  • impurities such as inert gas molecules
  • the substrate must have certain conductivity.
  • the conductive polymer layer is formed by water electroplating to form a metal conductive layer in order to obtain a conductive polymer layer in between.
  • the surface is a thin film of a metal conductive layer.
  • the conductive performance of conductive polymers is worse than that of metals. Therefore, the conductive performance of the conductive polymer substrate may be insufficient, which makes the effect of water electroplating to form a metal conductive layer not good.
  • the inventor also found that if a metal conductive layer is formed on the insulating layer by evaporation coating, and then a thicker metal conductive layer is further formed on the metal conductive layer by water electroplating. Due to the uneven metal conductive layer formed by the evaporation coating method, the toughness is poor. When the metal conductive layer is further thickened by water electroplating, the thickened metal conductive layer will also have the defects of unevenness, poor toughness, and poor compactness. .
  • the metal conductive layer is formed on the metal insulating layer by magnetron sputtering, then a thicker metal conductive layer is further formed on the metal conductive layer by water electroplating. Since the metal conductive layer formed by magnetron sputtering contains impurities, the purity is not high, the conductivity is poor and uneven, then, in the process of water electroplating, the conductivity of the substrate is poor (uneven conductivity), which will cause thickening The metal conductive layer is not uniform, and a thick metal conductive layer cannot be obtained.
  • FIG. 1 is a schematic diagram of the structure of the conductive composite film material provided by the present disclosure. It is prepared by the following preparation method of conductive composite membrane material, please refer to Fig. 1.
  • the preparation method of conductive composite membrane material in Fig. 1 is as follows:
  • the material of the base layer may be OPP (O-phenylphenol), PET (Polyethylene terephthalate) ), PI (Polyimide), PS (Polystyrene), PPS (Polyphenylene sulphide), CPP (cast polypropylene film, Cast polypropylene), PEN (polyethylene naphthalate) Glycol ester, Polyethylene naphthalate two formal acid glycol ester), PVC (Polyvinyl chloride), PEEK (Polyether-ether-ketone), PES (Polyethersulfone resin) , PPSU (Polyphenylene sulfone resin), PE (Polyethylene), non-woven fabric.
  • OPP O-phenylphenol
  • PET Polyethylene terephthalate
  • PI Polyimide
  • PS Polystyrene
  • PPS Polyphenylene sulphide
  • CPP cast polypropylene film, Cast polypropylene
  • PEN polyethylene naphthalate Glycol
  • the thickness of the base layer is 1.2-12 ⁇ m, and further, the thickness of the base layer is 1.2-6 ⁇ m.
  • the thickness of the base layer is 1.2 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 4 ⁇ m, 8 ⁇ m, or 12 ⁇ m.
  • the water content of the insulating layer 110 may not be controlled.
  • the formation of the bonding layer 120 is coordinated with the control of the water content of the insulating layer 110 (water content ⁇ 1000 ppm), and has a certain synergistic effect, which can effectively improve the bonding force between the subsequently formed metal process layer 130 and the insulating layer 110, and further The peeling of the metal process layer 130 is avoided, so that the bonding effect of the entire conductive film is better.
  • the thickness of the adhesive layer 120 is 2-40 nm.
  • the thickness of the adhesive layer 120 is 2 nm, 10 nm, 15 nm, 20 nm, 30 nm, or 40 nm.
  • the adhesive layer 120 may be formed on one surface of the insulating layer 110, or the adhesive layer 120 may be formed on both surfaces of the insulating layer 110.
  • the embodiment of the present disclosure is not limited, and it may be based on whether the target conductive film is conductive on one side or The two sides are conductive to control the formation of the adhesive layer 120. In other embodiments, the adhesive layer 120 may not be provided.
  • the bonding layer 120 may be a metal material layer, and the metal material layer may be one or more of Ti metal layer, W metal layer, Cr metal layer, Ni metal layer, Cu metal layer and alloy layers thereof. Under the condition of ensuring the compactness of the functional layer, the bonding force between the layers of the entire conductive film can be better.
  • the bonding layer 120 may be a Ti metal layer, the bonding layer 120 may be a W metal layer, the bonding layer 120 may be a Ni metal layer, the bonding layer 120 may be a Cu metal layer, and the bonding layer 120 may be a Ti alloy.
  • the bonding layer 120 may be a W alloy layer, the bonding layer 120 may be a Ni alloy layer, and the bonding layer 120 may be a Cu alloy layer or the like.
  • the metal material layer may be one type or multiple types, for example: it may be a pure metal layer; it may also be an alloy layer; it is also possible to form a metal layer first, and then form another metal layer ; It is also possible to form a metal layer first, and then form an alloy layer.
  • the embodiments of the present disclosure are not limited.
  • the method of forming the adhesive layer 120 may be a method of evaporation coating, or a method of magnetron sputtering, which is not limited in the embodiment of the present disclosure.
  • the metal process layer 130 is formed on the surface of the insulating layer 110 by evaporation coating, water electroplating or electroless plating, which can quickly accumulate the metal process layer 130 to a certain thickness with high efficiency, and the resulting metal process layer 130 is electrically conductive It has good properties and can be used as a deposition substrate for the subsequent formation of the metal transition layer 140.
  • the metal process layer 130 is formed on the surface of the insulating layer 110 by evaporation coating, water electroplating, or electroless plating.
  • the metal process layer 130 may be formed on one surface, or the metal process layer 130 may be formed on both surfaces.
  • the embodiment of the present disclosure is not limited, and the control of the metal process layer 130 can be performed according to whether the target conductive film is conductive on one side or on both sides. form.
  • the metal process layer 130 is formed on the surface of the bonding layer 120 by evaporation coating, water electroplating or electroless plating.
  • the metal process layer 130 may be a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, an alloy layer thereof, etc., which are not limited in the embodiment of the present disclosure. If the metal process layer 130 is a copper metal layer, the production cost of the conductive film can be greatly reduced while ensuring better conductivity.
  • the thickness of the metal process layer 130 is 2-100 nm, and further, the thickness of the metal process layer 130 is 20-50 nm.
  • the thickness of the metal process layer 130 may be 2 nm, 15 nm, 20 nm, 40 nm, 50 nm, 60 nm, or 100 nm.
  • the metal transition layer 140 may be a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, an alloy layer thereof, etc., which are not limited in the embodiment of the present disclosure. If the metal transition layer 140 is a copper metal layer, the production cost of the conductive film can be greatly reduced while ensuring better conductivity.
  • the thickness of the metal transition layer 140 is 5-50 nm, and further, the thickness of the metal transition layer 140 is 8-30 nm.
  • the thickness of the metal transition layer 140 may be 5 nm, 8 nm, 10 nm, 15 nm, 20 nm, or 50 nm.
  • a metal functional layer 150 on the surface of the metal transition layer 140 that is away from the metal process layer 130. Since the metal transition layer 140 has better compactness, forming the metal functional layer 150 on the metal transition layer 140 can make the resulting metal functional layer 150 more dense and uniform, so as to obtain excellent electrical conductivity. membrane.
  • the metal functional layer 150 may be a copper metal layer, a nickel metal layer, an aluminum metal layer, a titanium metal layer, an alloy layer thereof, etc., which are not limited in the embodiment of the present disclosure. If the metal functional layer 150 is a copper metal layer, the production cost of the conductive film can be greatly reduced while ensuring better conductivity.
  • the thickness of the metal functional layer 150 is 30-2500 nm, further, the thickness of the metal functional layer 150 is 300-1500 nm, and further, the thickness of the metal functional layer 150 is 500-1000 nm.
  • the thickness of the metal functional layer 150 may be 30 nm, 100 nm, 500 nm, 800 nm, 1000 nm, 2000 nm, or 2500 nm.
  • the metal functional layer 150 is formed on the surface of the metal transition layer 140 that is away from the metal process layer 130 by using water electroplating. Since the metal process layer 130 has good conductivity and the metal transition layer 140 has good compactness, when the metal functional layer 150 is formed by water electroplating, a polymer base film with the metal process layer 130 and the metal transition layer 140 will be formed As a substrate for water electroplating, the substrate not only has good electrical conductivity, but the basis of water electroplating is the metal transition layer 140 with good compactness, which can make the formed metal functional layer 150 have good compactness, and The metal functional layer 150 formed by water electroplating has a higher purity, and a thicker metal functional layer 150 can be obtained, so as to obtain a denser, conductive, and thicker metal functional layer 150.
  • the metal functional layer 150 can also be formed on the surface of the metal transition layer 140 by evaporation coating or nano-spraying.
  • the metal process layer 130, the metal transition layer 140, and the metal functional layer 150 are all the same metal, or different types of metals. If the metal process layer 130, the metal transition layer 140 and the metal functional layer 150 are all of the same metal and are prepared by different processes, the metal functional layer 150 can be made to have a good shape when the metal transition layer 140 is thinner. The denser effect, thicker thickness and better purity, to improve the performance of the conductive film.
  • a protective layer 160 on the surface of the metal functional layer 150 away from the metal transition layer 140. It can protect the metal functional layer 150, prevent the metal functional layer 150 from being oxidized or even fall off, and prevent the metal functional layer 150 from being damaged.
  • the formation method of the protective layer 160 is not limited.
  • the protective layer 160 is a conductive non-metal protective layer or an inert metal protective layer.
  • the thickness of the protective layer 160 is 0.1-100 nm, and further, the thickness of the protective layer 160 is 10-50 nm.
  • the thickness of the protective layer 160 is 0.1 nm, 2 nm, 10 nm, 30 nm, 50 nm, 80 nm, or 100 nm.
  • the metal of the inert metal protective layer is one of Cr, Ni, Ni alloy, and Cr alloy.
  • the protective layer 160 may be a Cr layer; the protective layer 160 may be a Ni layer; the protective layer 160 may be a Ni alloy layer; and the protective layer 160 may be a Cr alloy layer.
  • the protective layer 160 is a conductive non-metal protective layer, the protective layer 160 may be a glucose complex layer; the protective layer 160 may also be a potassium dichromate layer.
  • the conductive film formed by the above-mentioned preparation method includes an insulating layer 110, and an adhesive layer 120 and a conductive layer sequentially disposed on the surface of the insulating layer 110, wherein the conductive layer includes the above-mentioned metal process layer 130 and the above-mentioned metal transition layer 140 which are sequentially disposed. , The above-mentioned metal functional layer 150 and the above-mentioned protective layer 160.
  • the metal process layer 130 is attached to the adhesive layer 120.
  • the conductive film may have an adhesive layer 120 or no adhesive layer 120; in addition to the protective layer, the conductive layer may also include a metal process layer 130, a metal transition layer 140, and a metal functional layer 150. One or more of.
  • the metal functional layer 150 mainly plays a conductive role, which has good compactness (density greater than 60%), high purity, good conductivity, and uniform thickness.
  • the bonding force between the layers of the conductive film is better, and the peeling of the layer structure of the conductive film can be reduced or even eliminated.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps:
  • a copper process layer with a thickness of approximately 21 nm is formed on both surfaces of the PP insulating layer with a thickness of approximately 2 ⁇ m and a water content of approximately 2152 ppm by evaporation coating, and two copper process layers are formed on the surface of the two copper process layers by magnetron sputtering.
  • Two copper functional layers with a thickness of about 1031nm are formed on the surface of the two copper transition layers by water electroplating, and two copper functional layers with a thickness of about 1031nm are formed on the surface of the two functional layers by water electroplating.
  • 32nm chromium protective layer 160 is formed on both surfaces of the PP insulating layer with a thickness of approximately 2 ⁇ m and a water content of approximately 2152 ppm by evaporation coating, and two copper process layers are formed on the surface of the two copper process layers by magnetron sputtering.
  • the process parameters of the evaporation coating are: putting the coil material into the vacuum chamber of the vacuum evaporation coating machine, sealing the vacuum chamber, evacuating step by step until the vacuum degree reaches 2 ⁇ 10 -2 Pa, using the crucible high-frequency heating method, or Use resistance heating or electron beam heating as the evaporation source.
  • the evaporation source is metal copper, the purity is ⁇ 99.9%, the winding speed is controlled at 200m/min, and the evaporated atoms or molecules are on the surface of the functional layer. A layer of plating is formed on it.
  • the process parameters of magnetron sputtering are: put the coil material into the vacuum chamber of the vacuum magnetron sputtering coating machine, seal the vacuum chamber, evacuate step by step until the vacuum degree reaches 7 ⁇ 10 -3 Pa, and then pass in Ar gas as Process sputtering gas, Ar flow is controlled at 800SCCM, and magnetron sputtering is used to coat the functional layer on the surface of the film.
  • the target material is nickel, chromium or nickel alloy or chromium alloy.
  • the purity of the target material is ⁇ 99.99%, and the winding speed is controlled at 40m. /min, the sputtered ions form a magnetron sputtering coating on the surface of the functional layer.
  • the process parameters of water electroplating are: place the coil material on the unwinding machine of the water plating line, take the film by pulling the film, and gradually turn on the internal microcirculation to 9 times/hour, the solution temperature is 25 ⁇ 3°C, and the cooling water The temperature is 20 ⁇ 2°C, and the components of the solution are: Copper sulfate concentration is 80g/L, Cl concentration is 45ppm, additive concentration is 300ml/1000Ah, sulfuric acid concentration is 170g/L, and then applied according to the current of each conductive roller applied by the film The total current is 8500A, the coating speed is 5m/min, and the film is negatively charged.
  • the copper ions in the solution accept 2 electrons on the surface of the film and are reduced to copper, thereby forming a layer of copper on the surface of the film.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps:
  • the PP insulating layer with a thickness of about 2 ⁇ m is dried at a temperature of 100° C., so that the moisture content of the insulating layer is about 332.5 ppm.
  • a copper process layer with a thickness of about 20nm is formed on the two surfaces of the OPP insulating layer by evaporation coating, and two copper transition layers with a thickness of about 13nm are formed on the surface of the two copper process layers by magnetron sputtering.
  • Two copper functional layers with a thickness of about 1033 nm are formed on the surfaces of the two copper transition layers by water electroplating, and two chromium protective layers 160 with a thickness of about 30 nm are formed on the surfaces of the two functional layers by water electroplating.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps:
  • a copper process layer with a thickness of about 22nm is formed on both surfaces of the PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by evaporation coating, and two copper process layers are formed on the surface of the two copper process layers by magnetron sputtering.
  • a copper transition layer with a layer thickness of about 11nm, two copper functional layers with a thickness of about 1035nm are formed on the surface of the two copper transition layers by evaporation coating, and two copper functional layers are formed on the surface of the two functional layers by water electroplating. 35nm chromium protective layer 160.
  • This embodiment provides a method for preparing a conductive composite film material, including the following steps: a process of forming copper with a thickness of about 20 nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152 ppm by water electroplating Two copper transition layers with a thickness of about 19nm are formed on the surface of the two copper process layers by magnetron sputtering, and two copper layers with a thickness of about 1034nm are formed on the surface of the two copper transition layers by evaporation coating. Layer, two chromium protective layers 160 with a thickness of about 33 nm are formed on the surface of the two functional layers by means of water electroplating.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps: a process of forming copper with a thickness of about 21 nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152 ppm by evaporation coating Layer, two copper transition layers with a thickness of about 6nm are formed on the surface of the two copper process layers by magnetron sputtering, and two copper layers with a thickness of about 1031nm are formed on the surface of the two copper transition layers by water electroplating. Layer, two chromium protective layers 160 with a thickness of about 34 nm are formed on the surfaces of the two functional layers by means of water electroplating.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps:
  • the PP insulating layer with a thickness of about 2 ⁇ m is dried at a temperature of 100° C., so that the moisture content of the insulating layer is about 332.5 ppm.
  • a nickel bonding layer 120 with a thickness of about 15nm is formed on both surfaces of the OPP insulating layer by magnetron sputtering, and two nickel bonding layers 120 with a thickness of about 24nm are formed on the surfaces of the two nickel bonding layers 120 by evaporation coating.
  • two copper transition layers with a thickness of about 14nm are formed on the surface of the two copper process layers by magnetron sputtering, and two copper transition layers with a thickness of about 1041nm are formed on the surface of the two copper transition layers by water electroplating.
  • two chromium protective layers 160 with a thickness of about 31 nm are formed on the surface of the two functional layers by water electroplating.
  • This embodiment provides a method for preparing a conductive composite film material, which includes the following steps: drying a PP insulating layer with a thickness of about 2 ⁇ m at 100° C., so that the water content of the insulating layer is about 332.5 ppm.
  • the copper bonding layer 120 with a thickness of about 14nm is formed on both surfaces of the OPP insulating layer by magnetron sputtering, and two layers with a thickness of about 23nm are formed on the surface of the two nickel bonding layers 120 by evaporation coating.
  • two copper transition layers with a thickness of about 13nm are formed on the surface of the two copper process layers by magnetron sputtering, and two copper transition layers with a thickness of about 1040nm are formed on the surface of the two copper transition layers by water electroplating.
  • two chromium protective layers 160 with a thickness of about 32 nm are formed on the surfaces of the two functional layers by water electroplating.
  • This embodiment provides a method for preparing a conductive composite film material, including the following steps: forming a thickness of about 13nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by magnetron sputtering.
  • a thickness of about 13nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by magnetron sputtering.
  • two copper process layers with a thickness of about 22nm are formed on the surface of the two nickel bonding layers 120 by evaporation coating, and two copper process layers are formed on the surface of the two copper process layers by magnetron sputtering.
  • the chromium protective layer 160 is
  • This comparative example provides a method for preparing a conductive composite film material, which includes the following steps:
  • a copper process layer with a thickness of about 25nm is formed on both surfaces of the PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by evaporation coating, and two layers of thickness are formed on the surface of the two copper transition layers by water electroplating.
  • a copper functional layer of about 1039 nm two chromium protective layers 160 with a thickness of about 33 nm are formed on the surface of the two functional layers by water electroplating.
  • This comparative example provides a method for preparing a conductive composite film material, which includes the following steps: forming a thickness of about 11nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by magnetron sputtering.
  • a thickness of about 11nm on both surfaces of a PP insulating layer with a thickness of about 2 ⁇ m and a water content of about 2152ppm by magnetron sputtering.
  • two copper functional layers with a thickness of about 1042nm are formed on the surface of the two copper transition layers by water electroplating
  • two chromium protective layers with a thickness of about 34nm are formed on the surface of the two functional layers by water electroplating.
  • Figure 2 is a scanning force microscope image of the composite conductive film material
  • Figure 2 (a) is a scanning force microscope image of the composite conductive film material prepared in Example 4
  • Figure 2 (b) is a scanning force microscope image of the composite conductive film material prepared in Example 1.
  • the scanning force microscope image of the composite conductive film material Figure 2 (c) is the scanning force microscope image of the composite conductive film material prepared in Example 5, and Figure 2 (d) is the composite conductive film prepared in Comparative Example 1. Scanning force microscope image of the material.
  • Figure 3 is a SEM image of the composite conductive film material
  • Figure 3 (a) is a SEM image of the composite conductive film material prepared in Example 4
  • Figure 3 (b) is the composite conductive film prepared in Example 1
  • the scanning electron microscope image of the material
  • FIG. 3(c) is the scanning electron microscope image of the composite conductive film material prepared in Example 5
  • FIG. 3(d) is the scanning electron microscope image of the composite conductive film material prepared in Comparative Example 1. It can be seen from Fig. 2 and Fig. 3 that the conductive films of Examples 1, 4 and 5 have a copper transition layer, the particles of the surface morphology are uniform, the unevenness is basically the same, the arrangement is compact, the density is good, and there is no crack.
  • the thickness of the copper transition layer is between 10-20nm, and its surface morphology is better.
  • the conductive film of Comparative Example 1 has no copper transition layer, and the particles of the surface morphology are not uniform, there are defects such as cracks, uneven unevenness and the like.
  • FIG. 4 is a dark field diagram of the composite conductive film material; the upper left corner of FIG. 4 is the dark field diagram of the composite conductive film material prepared in Example 4, and the upper right corner of FIG. 4 is the composite conductive film prepared in Example 1.
  • the dark field map of the material, the lower left corner of FIG. 4 is the dark field map of the composite conductive film material prepared in Example 5, and the lower right corner of FIG. 4 is the dark field map of the composite conductive film material prepared in Comparative Example 1.
  • Fig. 5 is a bright field diagram of the conductive film; the upper left corner of Fig.
  • FIG. 5 is a bright field diagram of the composite conductive film material prepared in Example 4, and the lower right corner of Fig. 5 is a bright field diagram of the composite conductive film material prepared in Example 1.
  • Fig. 5 the lower left corner of FIG. 5 is a bright field image of the composite conductive film material prepared in Example 5, and the lower right corner of Fig. 5 is a bright field image of the composite conductive film material prepared in Comparative Example 1.
  • the bright field image and the dark field image are both obtained by shooting with a microscope. In the bright field image, the background is bright and the target is dark; in the dark field image, the background is dark and the target is bright.
  • Figure 6 is a finished photo of the composite conductive film material.
  • the conductive film was taken with a flat light of 300 lumens of uniform color and a focal length of 200mm.
  • the upper left corner of FIG. 6 is the finished product photo of the composite conductive film material prepared in Example 4
  • the lower right corner of FIG. 6 is the finished product photo of the composite conductive film material prepared in Example 1
  • the lower left corner of FIG. 6 is the product prepared in Example 5.
  • the lower right corner of FIG. 6 is the finished product photo of the composite conductive film material prepared in Comparative Example 1. It should be noted that the large hole in the lower right corner of Fig. 4 and the lower right corner of Fig. 5 is a defect hole of the film itself, and is not used as an evaluation standard for light transmission and its compactness. Figs.
  • the density test method is: (1), in a fixed test environment, under a backlight light source, use an illuminance meter to test the intensity of light at a fixed position, which is A; (2), the same step (1), with completely opaque Cover the backlight, test the illuminance value, which is B; (3), the test step, place the tested film on the backlight plate, read the illuminance count value, which is C; (4), calculate the density as : 1-(CB)/(AB)
  • the adhesion test method is: (1), 3M fixed type of tape, the fixed pressing wheel is pressed firmly against the surface of the film; (2), on the tensile machine, pull at an anti-parallel 180° angle.
  • different pulling speeds are tested, under the premise that the surface layer is not peeled off, the higher the speed, the better the adhesion; ⁇ means the adhesion is very low and cannot be tested.
  • Example 1 Comparing Example 1 with Example 2, it can be seen that in the case that no adhesive layer is formed, baking the PP film reduces the water content of the PP film, which can effectively increase the adhesive force of the conductive film, and the conductive film Basically, there is no adverse effect on performance.
  • Example 1 shows that in the case of a transition layer formed by magnetron sputtering, no matter whether the functional layer is formed by water electroplating or the functional layer is formed by evaporation coating, the conductivity will not be affected. The density of the film, but the use of evaporation coating to form the functional layer, its adhesion will be increased to a certain extent.
  • Example 1 Comparing Example 1 with Example 4, it can be seen that an increase in the thickness of the transition layer can effectively increase the density of the conductive film, and other properties have little effect.
  • Example 1 Comparing Example 1 with Example 5, it can be seen that the reduction of the thickness of the transition layer not only reduces the density of the conductive layer, but also reduces the conductivity of the conductive film, and on the contrary increases the manufacturing cost of the conductive film.
  • Example 2 shows that baking the PP film to reduce the water content of the PP film and form an adhesive layer can further increase the density of the conductive film and effectively improve its adhesive force.
  • the manufacturing cost will increase to a certain extent, but it can meet the production of some devices with high requirements for conductive films.
  • Example 6 shows that when copper is used as the bonding layer and the materials of the bonding layer are the same as the materials of the process layer, transition layer and functional layer, the composite conductive film material has better compactness, but copper bonding The adhesion of the layer is slightly poor.
  • Example 7 shows that even if a copper bonding layer is used, but the PP film is not baked, the resulting composite conductive film material has poor bonding strength.
  • the influence of the adhesive force is slightly smaller, and the water content of the insulating layer is controlled, and the adhesive layer is provided, which can make the adhesive force of the conductive film better.
  • the density and conductivity of the conductive film are better. It solves the problem that the composite conductive film in the prior art will reduce the density and conductivity when the thickness is guaranteed.
  • the composite conductive film material in this application has been significantly improved in terms of density and conductivity, and has very good industrial applications Value, suitable for promotion and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开提供一种导电膜及其制备方法,属于导电膜技术领域。导电膜的制备方法包括如下步骤:使用蒸发镀膜、水电镀或化学镀的方式在绝缘层的表面均形成金属工艺层,使用磁控溅射的方式在金属工艺层的背离绝缘层的表面形成金属过渡层,在金属过渡层的背离金属工艺层的表面形成金属功能层。此制备方法得到的导电膜,可以在金属导电层的厚度较厚的情况下,导电膜的导电性和致密性均较佳。

Description

一种导电膜及其制备方法
相关申请的交叉引用
本公开要求于2020年04月13日提交中国专利局的申请号为202010287928.8、名称为“一种导电膜及其制备方法”和申请号为2020205428045、名称为“一种导电膜”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及导电膜技术领域,具体而言,涉及一种导电膜及其制备方法。
背景技术
现有技术中,复合导电膜包括绝缘层(高分子基层)以及分别设置于绝缘层的两个表面的第一导电层和第二导电层。为了保证第一导电层和第二导电层的厚度,通常是使用相同的工艺在绝缘层上多次沉积金属,从而获得厚度较厚的第一导电层和第二导电层。但是,形成厚度较厚的第一导电层和第二导电层以后,第一导电层和第二导电层的厚度通常存在致密性或导电性的缺陷。
发明内容
本公开的目的在于提供一种导电膜及其制备方法,在能够保证金属导电层的厚度的情况下,导电膜的致密性和导电性均较佳。
本公开的另一目的在于提供一种复合导电膜材料及其制备方法,旨在提升复合导电膜材料的致密度和导电性。
第一方面,本公开实施例提供一种导电膜的制备方法,包括如下步骤:使用蒸发镀膜、水电镀或化学镀的方式在绝缘层的表面均形成金属工艺层,使用磁控溅射的方式在金属工艺层的背离绝缘层的表面形成金属过渡层,在金属过渡层的背离金属工艺层的表面形成金属功能层。
由于金属工艺层是采用蒸发镀膜、水电镀或化学镀的方式制备得到,可以将金属工艺层快速积累到一定的厚度,效率快,得到的金属工艺层的导电性较好,可以作为形成金属过渡层的沉积基体,然后采用磁控溅射的方式得到金属过渡层,磁控溅射的沉积方式是冷沉积的方式,可以使金属过渡层的分散性更好,金属过渡层的表面更加均匀,致密性更佳,且无裂纹,从而使后续的功能层的致密性更高,均匀性更好,以得到金属导电层的厚度较厚,致密性和导电性均较佳的导电膜。
在一种可能的实施方式中,使用水电镀的方式在金属过渡层的背离金属工艺层的表面形成金属功能层。
采用水电镀的方式形成的金属功能层导电性较好、致密性也较好,然后通过水电镀的方式形成金属功能层的时候,将形成有金属工艺层和金属过渡层的高分子基膜作为水电镀的基材,该基材不仅具有很好的导电性能,而且水电镀的基础为致密性很好的金属过渡层,可以使形成的金属功能层的致密性也很好,以便得到致密性、导电性均更好的金属功能层。
在一种可能的实施方式中,在形成金属工艺层之前,对绝缘层进行预处理以使所述绝缘层的含水量<1000ppm。预处理可以是采用烘烤的方式。通过进一步控制绝缘层的含水量,可以提高绝缘层与金属工艺层之间的粘结性能,可以减小甚至消除金属工艺层被剥离的可能性,提高整个导电膜的结合效果。
第二方面,本公开提供一种导电膜,由上述导电膜的制备方法制备得到。将制备工艺进行优化之后可以使导电膜的致密度>60%,达到显著提升导电膜致密度的效果。
上述方法制备得到的导电膜中,主要起导电作用的为金属功能层,且金属功能层的致密性较高,均匀性较好,以得到致密性和导电性均较佳的导电膜。
金属工艺层、金属过渡层和金属功能层可以不做限定,金属工艺层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种;金属过渡层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种;金属功能层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种。
在一种可能的实施方式中,金属工艺层、金属过渡层和金属功能层均为铜层。可选地,金属工艺层的厚度为2-100nm,金属过渡层的厚度为5-50nm,金属功能层的厚度为30-2500nm。可选地,金属功能层的厚度为300-1500nm。
金属工艺层、金属过渡层和金属功能层均为同一种金属,且使用不同的工艺制备得到,在金属过渡层较薄的情况下,就能够使金属功能层具有很好的致密效果,以提高导电膜的性能。
在一种可能的实施方式中,还包括粘结层,粘结层设置于绝缘层和金属工艺层之间。
粘结层的设置,可以具有一定的粘结效果,且与绝缘层的含水量的控制配合起来,且具有一定的协同作用,可以有效提高金属工艺层与绝缘层的结合力,进一步避免金属工艺层的剥离,以使整个导电膜的结合效果更好。
在一种可能的实施方式中,粘结层的厚度为2-40nm。粘结层为金属材料层,金属材料层包括Ti金属层、W金属层、Cr金属层、Ni金属层、Cu金属层及其合金层中的一种或多种。
可以在保证功能层致密性的条件下使整个导电膜的层与层之间的结合力更好。
在一种可能的实施方式中,还包括保护层,保护层设置于金属功能层的背离金属过渡层的表面。可以保护金属功能层,防止金属功能层被氧化甚至脱落,避免金属功能层遭到 破坏。
在一种可能的实施方式中,保护层的厚度为0.1-100nm。可选地,保护层为可导电的非金属保护层或惰性金属保护层,能够对金属功能层进行很好的保护。
第三方面,本公开实施例提供一种复合导电膜材料,包括绝缘层和在所述绝缘层的表面设置的导电层,导电层为上述导电膜。
可选地,绝缘层的含水量<1000ppm。
现有技术中,复合导电膜通常包括绝缘层(高分子基层)以及分别设置于绝缘层的两个表面的第一导电层和第二导电层。发明人发现,复合导电膜在使用的时候,导电层可能会在绝缘层上起皱,出现剥离等不良问题。发明人研究发现,控制绝缘层的含水量<1000ppm,可以有效提高导电膜的绝缘层与导电层之间的结合力,改善导电层被剥离的问题,使导电膜的性能更加优良。
在一种可能的实施方式中,还包括粘结层,粘结层设置于绝缘层和导电层之间。可选地,粘结层的厚度为2-40nm。可选地,粘结层为金属材料层,金属材料层包括Ti金属层、W金属层、Cr金属层、Ni金属层、Cu金属层及其合金层中的一种或多种。
粘结层的设置,与绝缘层的含水量<1000ppm配合,可以使导电膜的绝缘层和导电层之间的结合力成倍增加,得到粘结效果更好的导电膜。
第四方面,本公开实施例提供一种复合导电膜材料的制备方法,制备形成上述复合导电膜材料。
可选地,在形成金属工艺层之前,对绝缘层进行预处理以使所述绝缘层的含水量<1000ppm。预处理可以是采用烘烤的方式。在控制了含水量的绝缘层上形成导电层以后,得到的导电膜的绝缘层与导电层之间的结合力,改善导电层被剥离的问题,使导电膜的性能更加优良。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图也属于本公开的保护范围。
图1为本公开实施例提供的导电复合膜材料的结构示意图;
图2为导电膜的扫描力显微镜图;
图3为导电膜的扫描电镜图;
图4为导电膜的暗场图;
图5为导电膜的明场图;
图6为导电膜的成品照片。
图标:110-绝缘层;120-粘结层;130-金属工艺层;140-金属过渡层;150-金属功能层;160-保护层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。
发明人发现,现有技术中,通常使用同一种工艺在绝缘层上沉积金属导电层。如果想要得到厚度更厚的金属导电层,则通常使用同一种工艺通过单次或多次沉积的方式得到。例如:如果使用蒸发镀膜的方式在绝缘层的表面形成金属导电层,蒸发镀膜是一种热沉积的方式,能够快速将金属导电层积累到一定的厚度,效率快,且导电性好。但是,蒸发镀膜的方式得到的金属导电层不均匀,韧性差,强度不高,且会导致薄膜一定程度的变形。例如:碱性电镀方式,是一种电化学沉积工艺,能够快速的速将金属导电层积累到一定的厚度,效率快且导电性好,但是,碱性电镀方式得到的导电层的致密性差。
如果使用磁控溅射的方式在绝缘层的表面形成金属导电层,由于磁控溅射是一种冷沉积的方式,在沉积过程中不会产生特别大的热量,形成的金属导电层为片状结构,分散性较好,致密性较好。但是,由于其形成的原理是在等离子体磁场的作用下形成,会引入新的杂质(例如:惰性气体分子),进而导致金属导电层的纯度不高,且导电性差。
如果使用水电镀的方式形成金属导电层,那么,基材必须具有一定的导电性能,例如:在导电高分子层上通过水电镀的方式形成金属导电层,以便得到中间为导电高分子层,两表面为金属导电层的薄膜。但是,导电高分子的导电性能较金属的导电性能差,所以,导电高分子基材的导电性能可能不够,从而使水电镀形成金属导电层的效果不好。
发明人还发现,如果先在绝缘层上通过蒸发镀膜的方式形成金属导电层,然后再通过水电镀的方式在金属导电层上进一步形成加厚的金属导电层。由于蒸发镀膜的方式形成的金属导电层不均匀,韧性差,通过水电镀的方式进一步加厚金属导电层的时候,会造成加厚的金属导电层也具有不均匀、韧性差、致密性差的缺陷。
如果先在金属绝缘层上通过磁控溅射的方式形成金属导电层,然后再通过水电镀的方式在金属导电层上进一步形成加厚的金属导电层。由于磁控溅射的方式形成的金属导电层中含有杂质,纯度不高,导电性差且不均匀,那么,水电镀的过程中,基材的导电性差(导电性不均匀),会造成加厚的金属导电层也不均匀,且不能够得到较厚的金属导电层。
所以,针对上述问题,发明人提供了一种导电膜的制备方法,图1为本公开提供的导电复合膜材料的结构示意图。由下列导电复合膜材料的制备方法制备得到,请参阅图1,图1中的导电复合膜材料的制备方法如下:
S10,选择一种绝缘层110,即选择一种基层,本公开中,基层的材料可以为OPP(邻苯基苯酚,O-phenylphenol)、PET(聚对苯二甲酸乙二醇酯,Polyethylene terephthalate)、PI(聚酰亚胺,Polyimide)、PS(聚苯乙烯,Polystyrene)、PPS(聚苯硫醚,Polyphenylenesulphide)、CPP(流延聚丙烯薄膜,Cast polypropylene)、PEN(聚萘二甲酸乙二醇酯,Polyethylene naphthalate two formic acid glycol ester)、PVC(聚氯乙烯,Polyvinyl chloride)、PEEK(聚醚醚酮,Poly(ether-ether-ketone))、PES(聚醚砜树脂,Polyethersulfone resin)、PPSU(聚亚苯基砜树脂,Polyphenylene sulfone resins))、PE(聚乙烯,Polyethylene)、无纺布的其中一种。
可选地,基层的厚度为1.2-12μm,进一步地,基层的厚度为1.2-6μm。例如:基层的厚度为1.2μm、1.5μm、2μm、4μm、8μm或12μm。
S20,对绝缘层110进行烘烤。烘烤后绝缘层110的含水量降低,绝缘层的含水量<1000ppm,可以提高绝缘层110与后续形成的金属工艺层130之间的粘结性能,可以减小甚至消除金属工艺层130被剥离的可能性,提高整个导电膜的结合性能。
下面以PET膜和PP膜为例说明烘烤前后膜的含水量如表1,表2:
表1 PET膜的含水量
Figure PCTCN2021071607-appb-000001
表2 PP膜的含水量
Figure PCTCN2021071607-appb-000002
从表1和表2可以看出,经过烘烤以后,绝缘层110的含水量可以大大降低,且含水量的降低程度与走膜速度以及烘烤温度均有关。
在其他实施例中,也可以不控制绝缘层110的含水量。
S30,在绝缘层110的表面形成粘结层120。粘结层120的形成,与绝缘层110的含水量的控制(含水量<1000ppm)配合,且具有一定的协同作用,可以有效提高后续形成的金属工艺层130与绝缘层110的结合力,进一步避免金属工艺层130的剥离,以使整个导电膜的结合效果更好。
可选地,粘结层120的厚度为2-40nm。例如:粘结层120的厚度为2nm、10nm、15nm、20nm、30nm或40nm。此处,可以在绝缘层110的一表面形成粘结层120,也可以在绝缘层110的两表面均形成粘结层120,本公开实施例不做限定,可以根据目标导电膜是一面导电还是两面导电来进行控制粘结层120的形成。在其他实施方式中,也可以不设置粘结层120。
粘结层120可以为金属材料层,金属材料层可以是Ti金属层、W金属层、Cr金属层、Ni金属层、Cu金属层及其合金层中的一种或多种。可以在保证功能层致密性的条件下使整个导电膜的层与层之间的结合力更好。
例如:粘结层120可以为Ti金属层,粘结层120可以为W金属层,粘结层120可以为Ni金属层,粘结层120可以为Cu金属层,粘结层120可以为Ti合金层,粘结层120可以为W合金层,粘结层120可以为Ni合金层,粘结层120可以为Cu合金层等。
本公开实施例中,金属材料层可以是一种,也可以是多种,例如:可以是纯金属层;也可以是合金层;还可以先形成一种金属层,再形成另一种金属层;还可以先形成一种金属层,再形成一种合金层等。本公开实施例不做限定。
可选地,形成粘结层120的方式可以是蒸发镀膜的方式,也可以是磁控溅射的方式,本公开实施例不做限定。
S40,使用蒸发镀膜、水电镀或化学镀的方式在绝缘层110的表面均形成金属工艺层130,可以将金属工艺层130快速积累到一定的厚度,效率快,得到的金属工艺层130的导电性较好,可以作为后续形成金属过渡层140的沉积基体。
其中,如果不在绝缘层110的表面上形成粘结层120,则使用蒸发镀膜、水电镀或化学镀的方式在绝缘层110的表面均形成金属工艺层130。可以是一个表面形成金属工艺层130,也可以是两个表面均形成金属工艺层130,本公开实施例不做限定,可以根据目标导电膜是一面导电还是两面导电来进行控制金属工艺层130的形成。
如果在绝缘层110的表面上形成粘结层120,使用蒸发镀膜、水电镀或化学镀的方式在粘结层120的表面均形成金属工艺层130。
金属工艺层130可以是铜金属层、镍金属层、铝金属层、钛金属层、及其合金层等,本公开实施例不做限定。如果金属工艺层130为铜金属层,可以在保证较好的导电性的情况下大大降低导电膜的生产成本。
可选地,金属工艺层130的厚度为2-100nm,进一步地,金属工艺层130的厚度为20-50nm。例如:金属工艺层130的厚度可以是2nm、15nm、20nm、40nm、50nm、60nm或100nm。
S50,使用磁控溅射的方式在金属工艺层130的背离绝缘层110的表面形成金属过渡层 140,可以使金属过渡层140的分散性更好,金属过渡层140的表面更加均匀,致密性更佳,且无裂纹,以便后续形成致密性和导电性均更佳的金属功能层150。
金属过渡层140可以是铜金属层、镍金属层、铝金属层、钛金属层、及其合金层等,本公开实施例不做限定。如果金属过渡层140为铜金属层,可以在保证较好的导电性的情况下大大降低导电膜的生产成本。
可选地,金属过渡层140的厚度为5-50nm,进一步地,金属过渡层140的厚度为8-30nm。例如:金属过渡层140的厚度可以是5nm、8nm、10nm、15nm、20nm或50nm。
S60,在金属过渡层140的背离金属工艺层130的表面形成金属功能层150。由于金属过渡层140的致密性较好,在金属过渡层140的基础上形成金属功能层150,可以使得到的金属功能层150的致密性更高,均匀性更好,以得到性能优良的导电膜。
金属功能层150可以是铜金属层、镍金属层、铝金属层、钛金属层、及其合金层等,本公开实施例不做限定。如果金属功能层150为铜金属层,可以在保证较好的导电性的情况下大大降低导电膜的生产成本。
可选地,金属功能层150的厚度为30-2500nm,进一步地,金属功能层150的厚度为300-1500nm,进一步地,金属功能层150的厚度为500-1000nm。例如:金属功能层150的厚度可以是30nm、100nm、500nm、800nm、1000nm、2000nm或2500nm。
可选地,使用水电镀的方式在金属过渡层140的背离金属工艺层130的表面形成金属功能层150。由于金属工艺层130的导电性好,金属过渡层140的致密性好,然后通过水电镀的方式形成金属功能层150的时候,将形成有金属工艺层130和金属过渡层140的高分子基膜作为水电镀的基材,该基材不仅具有很好的导电性能,而且水电镀的基础为致密性很好的金属过渡层140,可以使形成的金属功能层150的致密性也很好,且水电镀的方式形成的金属功能层150的纯度更高,且可以得到较厚的金属功能层150,以便得到致密性、导电性均更好的,且厚度较厚的金属功能层150。
在其他实施方式中,还可以通过蒸发镀膜、纳米喷涂的方式在金属过渡层140的表面形成金属功能层150。可选地,金属工艺层130、金属过渡层140和金属功能层150均为同一种金属,也可以为不同种类的金属。如果金属工艺层130、金属过渡层140和金属功能层150均为同一种金属,且使用不同的工艺制备得到,在金属过渡层140较薄的情况下,就能够使金属功能层150具有很好的致密效果,且厚度较厚,纯度较佳,以提高导电膜的性能。
S70,在金属功能层150的背离金属过渡层140的表面形成保护层160。可以保护金属功能层150,防止金属功能层150被氧化甚至脱落,避免金属功能层150遭到破坏。
本公开实施例中,保护层160的形成方式不做限定。保护层160为可导电的非金属保 护层或惰性金属保护层。可选地,保护层160的厚度为0.1-100nm,进一步地,保护层160的厚度为10-50nm。例如:保护层160的厚度为0.1nm、2nm、10nm、30nm、50nm、80nm或100nm。
如果保护层160为惰性金属保护层,则惰性金属保护层的金属为Cr、Ni、Ni合金、Cr合金中的一种。例如:保护层160可以为Cr层;保护层160可以为Ni层;保护层160可以为Ni合金层;保护层160可以为Cr合金层。如果保护层160为可导电的非金属保护层,则保护层160可以为葡萄糖络合物层;保护层160也可以为重铬酸钾层。
通过上述制备方法形成的导电膜包括绝缘层110,以及在绝缘层110的表面依次设置的粘结层120和导电层,其中,导电层包括依次设置的上述金属工艺层130、上述金属过渡层140、上述金属功能层150和上述保护层160。金属工艺层130贴合粘结层120。需要说明的是,该导电膜中,可以有粘结层120,也可以没有粘结层120;导电层除了包括保护层以外,还可以包括金属工艺层130、金属过渡层140和金属功能层150中的一种或多种。
上述导电膜中,主要起导电作用的是金属功能层150,其致密性好(致密度大于60%),纯度高,导电性好,厚度均匀。且该导电膜中层与层之间的结合力更好,可以减小甚至消除导电膜中层结构的剥离。
实施例1
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:
通过蒸发镀膜的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为21nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为12nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1031nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为32nm的铬保护层160。
其中,蒸发镀膜的工艺参数是:将卷料置入真空蒸发镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到2×10 -2Pa,采用坩埚高频加热的方式、或采用电阻式加热的方式、或采用电子束加热的方式作为蒸发源,蒸发源蒸镀原料为金属铜,纯度≥99.9%,卷绕速度控制在200m/min,蒸发的原子或分子在功能层表面上形成一层镀层。
磁控溅射的工艺参数是:将卷料置入真空磁控溅射镀膜机真空室内,将真空室密封,逐级抽真空至真空度达到7×10 -3Pa,然后通入Ar气作为工艺溅射气体,Ar流量控制在800SCCM,利用磁控溅射在膜表面功能层上镀膜,靶材为镍、铬或者镍合金、铬合金,靶材纯度≥99.99%,卷绕速度控制在40m/min,溅射的离子在功能层表面上形成一层磁控溅射镀层。
水电镀的工艺参数是:将卷料放置在水镀线放卷机,通过牵引膜进行走带,并逐步将内微循环量开启至9次/小时,溶液温度在25±3℃,冷却水温度为20±2℃,溶液成分为: 硫酸铜浓度为80g/L,Cl浓度为45ppm,添加剂浓度为300ml/1000Ah,硫酸浓度为170g/L,之后根据薄膜的施加每个导电辊电流,施加的总电流8500A,镀膜速度为5m/min,薄膜带有负电荷,溶液的铜离子在薄膜的表面接受2个电子被还原为铜单质,从而在薄膜的表现生成一层铜层。
其他实施例以及对比例的具体工艺参数与上述提供的工艺参数一致。
实施例2
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:
将厚度约为2μm的PP绝缘层在温度为100℃的条件下烘干,使绝缘层的含水量约为332.5ppm。通过蒸发镀膜的方式在OPP绝缘层的两表面上形成厚度约为20nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为13nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1033nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为30nm的铬保护层160。
实施例3
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:
通过蒸发镀膜的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为22nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为11nm的铜过渡层,通过蒸发镀膜的方式在两铜过渡层的表面形成两层厚度约为1035nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为35nm的铬保护层160。
实施例4
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:通过水电镀的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为20nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为19nm的铜过渡层,通过蒸发镀膜的方式在两铜过渡层的表面形成两层厚度约为1034nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为33nm的铬保护层160。
实施例5
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:通过蒸发镀膜的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为21nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为6nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1031nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为34nm的铬保护层160。
实施例6
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:
将厚度约为2μm的PP绝缘层在温度为100℃的条件下烘干,使绝缘层的含水量约为332.5ppm。通过磁控溅射的方式在OPP绝缘层的两表面上形成厚度约为15nm的镍粘结层120,通过蒸发镀膜的方式在两镍粘结层120的表面上形成两层厚度约为24nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为14nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1041nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为31nm的铬保护层160。
实施例7
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:将厚度约为2μm的PP绝缘层在100℃的条件下烘干,使绝缘层的含水量约为332.5ppm。通过磁控溅射的方式在OPP绝缘层的两表面上形成厚度约为14nm的铜粘结层120,通过蒸发镀膜的方式在两镍粘结层120的表面上形成两层厚度约为23nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为13nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1040nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为32nm的铬保护层160。
实施例8
本实施例提供一种导电复合膜材料的制备方法,包括如下步骤:通过磁控溅射的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为13nm的铜粘结层120,通过蒸发镀膜的方式在两镍粘结层120的表面上形成两层厚度约为22nm的铜工艺层,通过磁控溅射的方式在两铜工艺层的表面形成两层厚度约为15nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1046nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为29nm的铬保护层160。
对比例1
本对比例提供一种导电复合膜材料的制备方法,包括如下步骤:
通过蒸发镀膜的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为25nm的铜工艺层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1039nm的铜功能层,通过水电镀的方式在两功能层的表面形成两厚度约为33nm的铬保护层160。
对比例2
本对比例提供一种导电复合膜材料的制备方法,包括如下步骤:通过磁控溅射的方式在厚度约为2μm、含水量约为2152ppm的PP绝缘层的两表面上形成厚度约为11nm的铜过渡层,通过水电镀的方式在两铜过渡层的表面形成两层厚度约为1042nm的铜功能层, 通过水电镀的方式在两功能层的表面形成两厚度约为34nm的铬保护层160。
实验例1
使用扫描力显微镜(SFM)和扫描电镜(SEM)检测实施例1、4和5制备得到的复合导电膜材料以及对比例1制备得到的复合导电膜材料的表面形貌。其中,图2为复合导电膜材料的扫描力显微镜图;图2中(a)为实施例4制备得到的复合导电膜材料的扫描力显微镜图,图2中(b)为实施例1制备得到的复合导电膜材料的扫描力显微镜图,图2中(c)为实施例5制备得到的复合导电膜材料的扫描力显微镜图,图2中(d)为对比例1制备得到的复合导电膜材料的扫描力显微镜图。图3为复合导电膜材料的扫描电镜图;图3中(a)为实施例4制备得到的复合导电膜材料的扫描电镜图,图3中(b)为实施例1制备得到的复合导电膜材料的扫描电镜图,图3中(c)为实施例5制备得到的复合导电膜材料的扫描电镜图,图3中(d)为对比例1制备得到的复合导电膜材料的扫描电镜图。从图2和图3可以看出,实施例1、4和5的导电膜具有铜过渡层,表面形貌的颗粒均匀,凹凸基本一致,排列紧凑,致密好,无裂纹。且铜过渡层的厚度为10-20nm之间,其表面形貌更佳。对比例1的导电膜无铜过渡层,表面形貌的颗粒不均匀,存在裂痕,凹凸不一致等缺陷。
检测实施例1、4和5制备得到的复合导电膜材料以及对比例1制备得到的复合导电膜材料的透光性。其中,图4为复合导电膜材料的暗场图;图4的左上角为实施例4制备得到的复合导电膜材料的暗场图,图4的右上角为实施例1制备得到的复合导电膜材料的暗场图,图4的左下角为实施例5制备得到的复合导电膜材料的暗场图,图4的右下角为对比例1制备得到的复合导电膜材料的暗场图。图5为导电膜的明场图;图5的左上角为实施例4制备得到的复合导电膜材料的明场图,图5的右下角为实施例1制备得到的复合导电膜材料的明场图,图5的左下角为实施例5制备得到的复合导电膜材料的明场图,图5的右下角为对比例1制备得到的复合导电膜材料的明场图。其中,明场图和暗场图均是通过显微镜拍摄得到,明场图中,背景为亮,目标为暗;暗场图中,背景为暗,目标为亮。图6为复合导电膜材料的成品照片,导电膜以300流明的被色均匀平板灯,焦距为200mm的条件下拍摄的照片。图6的左上角为实施例4制备得到的复合导电膜材料的成品照片,图6的右下角为实施例1制备得到的复合导电膜材料的成品照片,图6的左下角为实施例5制备得到的复合导电膜材料的成品照片,图6的右下角为对比例1制备得到的复合导电膜材料的成品照片。需要说明的是图4的右下角的图和图5中右下角的图中的那个大孔为膜本身的一个缺陷孔,不作为是否透光以及其致密性的评价标准,图6与图4和图5选取的样品的位置有一定的差异。通过其他小孔,可以说明图中有光透过,其原因可能是形成的铜层不均匀,比较疏松,致密性不好等问题。从图4、图5和图6可以看出,实施例1、4和5的导电膜具有铜过渡层,其透光的可能性更小,均匀性更好,致密性更佳。且铜过 渡层的厚度为10-20nm之间,致密性更好。对比例1的复合导电膜材料无铜过渡层,其具有较大的透光孔,致密性差。
实验例2
检测实施例1-8以及对比例1-2提供的复合导电膜材料的粘结力以及致密度,以及对比不同种类的复合导电膜材料的生产成本(基础成本为A,其他成本以A系数表示)得到表3。
其中,致密度的测试方式为:(1)、在固定测试环境下,背光光源下,用照度计测试固定位的光照强照度,为A;(2)、同步骤(1),用完全不透明的板子,遮住背光本,测试照度值,为B;(3)、测试步骤,被测薄膜放置在背光板上,读取照度计数值,为C;(4)、计算出致密度即为:1-(C-B)/(A-B)
粘结力的测试方式为:(1)、3M固定型号的胶带,固定的压轮压牢靠薄膜表面;(2)、在拉力机上,以反向平行的180°的角度拉扯。粘接力数据中,测试不同的拉扯速度,表层不被剥离的前提下,速度越大,粘结力越好;×代表粘结力很低,无法测试出来。
表3 导电膜的性能
Figure PCTCN2021071607-appb-000003
从表1可以看出,实施例1-实施例8以及对比例1-对比例2相比较,在不形成工艺层或不形成过渡层的情况下,制备导热膜的成本下降,但得到的导热膜的致密度较低,且导电性不好,不能够满足某些器件对导电膜的需求。
实施例1与实施例2对比可知,在均不形成粘结层的情况下,对PP膜进行烘烤降低PP膜的含水量,可以有效增加导电膜的粘接力,且对导电膜的其他性能基本不会造成不利影响。
实施例1与实施例3对比可知,在具有磁控溅射形成的过渡层的情况下,不管是使用水电镀的方式形成功能层,还是使用蒸发镀膜的方式形成功能层,均不会影响导电膜的致密度,但使用蒸发镀膜的方式形成功能层,其粘接力会有一定程度的增加。
实施例1与实施例4对比可知,过渡层的厚度增加,可以有效增加导电膜的致密度,其他性能影响不大。
实施例1与实施例5对比可知,过渡层的厚度减小,不仅会降低导电层的致密度,还会降低导电膜的导电性,且反而增加了导电膜的制造成本。
实施例2和实施例6对比可知,对PP膜进行烘烤降低PP膜的含水量,并形成粘结层的情况下,可以进一步增加导电膜的致密度,并有效提高其粘接力,相应地,其制造成本会有一定的增加,但可以满足某些对导电膜要求高的器件的生产。
实施例6和实施例7对比可知,使用铜作为粘结层,粘结层的材料和工艺层、过渡层和功能层的材料一致时,复合导电膜材料的致密性更好,但铜粘结层的粘接力稍差。
实施例7和实施例8对比可知,即使使用了铜粘结层,但不对PP膜进行烘烤,得到的复合导电膜材料的粘接力较差,说明仅设置粘结层,对导电膜的粘接力的影响稍小,既控制绝缘层的含水量,又设置粘结层,可以使导电膜的粘接力更好。
以上所述仅为本公开的一部分实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开通过金属工艺层、金属过渡层和金属功能层的设计,在能够保证金属导电层的厚度的情况下,导电膜的致密性和导电性均较佳。解决了现有技术中复合导电膜在保证厚度时会降低致密度和导电性的问题,本申请中的复合导电膜材料在致密度和导电性方面得到非常显著的提升,具有非常好的工业应用价值,适合于推广应用。

Claims (17)

  1. 一种导电膜的制备方法,其特征在于,包括如下步骤:
    使用蒸发镀膜、水电镀或化学镀的方式在绝缘层的表面形成金属工艺层,使用磁控溅射的方式在所述金属工艺层的背离所述绝缘层的表面形成金属过渡层,在所述金属过渡层的背离所述金属工艺层的表面形成金属功能层。
  2. 根据权利要求1所述的制备方法,其特征在于,使用水电镀的方式在所述金属过渡层的背离所述金属工艺层的表面形成所述金属功能层。
  3. 根据权利要求1或2所述的制备方法,其特征在于,在形成所述金属工艺层之前,对所述绝缘层进行预处理以使所述绝缘层的含水量<1000ppm。
  4. 根据权利要求3所述的制备方法,其特征在于,所述预处理是采用烘烤的方式。
  5. 一种导电膜,其特征在于,由权利要求1-4任一项所述的导电膜的制备方法制备得到。
  6. 根据权利要求5所述的导电膜,其特征在于,所述导电膜的致密度>60%。
  7. 根据权利要求5所述的导电膜,其特征在于,所述金属工艺层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种。
  8. 根据权利要求5或7所述的导电膜,其特征在于,所述金属过渡层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种。
  9. 根据权利要求5-8中任一项所述的导电膜,其特征在于,所述金属功能层选自铜金属层、镍金属层、铝金属层、钛金属层和合金层中的至少一种。
  10. 根据权利要求5-9中任一项所述的导电膜,其特征在于,所述金属工艺层、所述金属过渡层和所述金属功能层均为铜层。
  11. 根据权利要求5-10中任一项所述的导电膜,其特征在于,所述金属工艺层的厚度为2-100nm,所述金属过渡层的厚度为5-50nm,所述金属功能层的厚度为30-2500nm;
    可选地,所述金属功能层的厚度为300-1500nm。
  12. 根据权利要求5-11中任一项所述的导电膜,其特征在于,还包括粘结层,所述粘结层设置于所述绝缘层和所述金属工艺层之间;
    可选地,所述粘结层的厚度为2-40nm;
    可选地,所述粘结层为金属材料层,所述金属材料层包括Ti金属层、W金属层、Cr金属层、Ni金属层、Cu金属层及其合金层中的一种或多种。
  13. 根据权利要求5-12中任一项所述的导电膜,其特征在于,还包括保护层,所述 保护层设置于所述金属功能层的背离所述金属过渡层的表面;
    可选地,所述保护层的厚度为0.1-100nm;
    可选地,所述保护层为可导电的非金属保护层或惰性金属保护层。
  14. 一种复合导电膜材料,其特征在于,包括绝缘层和在所述绝缘层的表面设置的导电层,所述导电层为权利要求5-13中任一项所述的导电膜。
  15. 根据权利要求14所述复合导电膜材料,其特征在于,所述绝缘层的含水量<1000ppm。
  16. 一种权利要求14或15中复合导电膜材料的制备方法,其特征在于,在绝缘层表面形成所述导电层。
  17. 根据权利要求16中所述复合导电膜材料的制备方法,其特征在于,对所述绝缘层进行预处理以使所述绝缘层的含水量<1000ppm,再在绝缘层表面形成所述导电层;
    可选地,所述预处理是采用烘烤的方式。
PCT/CN2021/071607 2020-04-13 2021-01-13 一种导电膜及其制备方法 WO2021208541A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180041435.9A CN116195009A (zh) 2020-04-13 2021-01-13 一种导电膜及其制备方法
EP21787972.5A EP4138098A4 (en) 2020-04-13 2021-01-13 CONDUCTIVE FILM AND PREPARATION METHOD THEREFOR
US17/946,057 US20230033304A1 (en) 2020-04-13 2022-09-16 Conductive film and preparation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010287928.8A CN113990580A (zh) 2020-04-13 2020-04-13 一种导电膜及其制备方法
CN202020542804.5 2020-04-13
CN202020542804.5U CN211879035U (zh) 2020-04-13 2020-04-13 一种导电膜
CN202010287928.8 2020-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,057 Continuation US20230033304A1 (en) 2020-04-13 2022-09-16 Conductive film and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2021208541A1 true WO2021208541A1 (zh) 2021-10-21

Family

ID=78083928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071607 WO2021208541A1 (zh) 2020-04-13 2021-01-13 一种导电膜及其制备方法

Country Status (3)

Country Link
US (1) US20230033304A1 (zh)
EP (1) EP4138098A4 (zh)
WO (1) WO2021208541A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992569A (zh) * 2009-08-19 2011-03-30 柏腾科技股份有限公司 具有金属化表面的基材
CN106868462A (zh) * 2017-03-01 2017-06-20 东莞市航晨纳米材料有限公司 一种合金复合材料及其制备方法
CN207678068U (zh) * 2017-12-25 2018-07-31 广东全宝科技股份有限公司 一种超高导热型陶瓷基板
CN210065901U (zh) * 2019-05-31 2020-02-14 成都柔电云科科技有限公司 一种多层钛膜
CN210295930U (zh) * 2019-08-20 2020-04-10 昆山汉品电子有限公司 一种耐高温导电薄膜
CN211879035U (zh) * 2020-04-13 2020-11-06 深圳市海瀚新能源技术有限公司 一种导电膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127764B (zh) * 2011-01-28 2013-03-27 厦门建霖工业有限公司 一种在塑胶基材表面实施半干法电镀的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992569A (zh) * 2009-08-19 2011-03-30 柏腾科技股份有限公司 具有金属化表面的基材
CN106868462A (zh) * 2017-03-01 2017-06-20 东莞市航晨纳米材料有限公司 一种合金复合材料及其制备方法
CN207678068U (zh) * 2017-12-25 2018-07-31 广东全宝科技股份有限公司 一种超高导热型陶瓷基板
CN210065901U (zh) * 2019-05-31 2020-02-14 成都柔电云科科技有限公司 一种多层钛膜
CN210295930U (zh) * 2019-08-20 2020-04-10 昆山汉品电子有限公司 一种耐高温导电薄膜
CN211879035U (zh) * 2020-04-13 2020-11-06 深圳市海瀚新能源技术有限公司 一种导电膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4138098A4 *

Also Published As

Publication number Publication date
US20230033304A1 (en) 2023-02-02
EP4138098A4 (en) 2024-05-22
EP4138098A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
CN107393979B (zh) 一种基于超薄金属膜的透明电极及其制备方法和应用
WO2015159799A1 (ja) 透明導電性フィルム
JP5659807B2 (ja) ロール・トゥ・ロール方式真空両面成膜装置および両面金属ベース層付樹脂フィルム製造装置
CN211879035U (zh) 一种导电膜
JP2016136511A (ja) 透明導電性フィルム
WO2021208541A1 (zh) 一种导电膜及其制备方法
WO2021208542A1 (zh) 导电膜及极片
KR20240023561A (ko) 플렉시블 기판
JP7320862B2 (ja) 膜及び製造プロセス
JP5995145B2 (ja) 樹脂フィルムの表面処理方法、樹脂フィルムの成膜方法ならびに金属化樹脂フィルム基板の製造方法
JP5672299B2 (ja) 2層フレキシブル基板およびその製造方法
CN113990580A (zh) 一种导电膜及其制备方法
JP2006306009A (ja) 2層フィルム、2層フィルムの製造方法およびプリント基板の製造方法
KR101165770B1 (ko) 고투과율 및 저저항 특성을 갖는 인듐-틴 옥사이드 박막의 제조방법
WO2024092882A1 (zh) 复合铜集流体及其制备方法、极片、二次电池和用电装置
CN101065239B (zh) 阻气型透明塑料基板、其制造方法和使用其的柔性显示元件
JP2020193385A (ja) 真空成膜装置と真空成膜方法
Noh et al. Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or Ni–Cr)/PI interfaces in flexible printed circuits
CN114430044B (zh) 一种双极性集流体及其制备方法、电池
WO2020093395A1 (zh) 膜及制备工艺
KR20210012773A (ko) 그래핀-부착 시트 및 그 제조 방법
JP6319116B2 (ja) 長尺基板の表面処理装置と表面処理方法
CN117038156A (zh) 一种导电膜、真空镀膜设备和导电膜生产方法
CN116884671A (zh) 一种高分子导电膜、制备方法和锂离子电芯
JPH04356910A (ja) 金属化フィルムコンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021787972

Country of ref document: EP

Effective date: 20221114