WO2021204051A1 - 半导体设备中的加热装置及半导体设备 - Google Patents

半导体设备中的加热装置及半导体设备 Download PDF

Info

Publication number
WO2021204051A1
WO2021204051A1 PCT/CN2021/084863 CN2021084863W WO2021204051A1 WO 2021204051 A1 WO2021204051 A1 WO 2021204051A1 CN 2021084863 W CN2021084863 W CN 2021084863W WO 2021204051 A1 WO2021204051 A1 WO 2021204051A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heating
heating body
bellows
process chamber
Prior art date
Application number
PCT/CN2021/084863
Other languages
English (en)
French (fr)
Inventor
李冰
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to EP21785131.0A priority Critical patent/EP4135477A4/en
Priority to US17/916,580 priority patent/US20230143413A1/en
Priority to KR1020227032421A priority patent/KR20220143738A/ko
Publication of WO2021204051A1 publication Critical patent/WO2021204051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the present invention relates to the field of semiconductor equipment, and more specifically, to a heating device and semiconductor equipment in a semiconductor equipment.
  • PVD Physical Vapor Deposition
  • the PVD process deposits the sputtered target material onto the wafer through the sputtering deposition technology. Because the temperature of the sputtered target material is relatively high, it will transfer its own heat through the wafer to the heater carrying the wafer during deposition, so that the surface temperature of the heater rises, and as the process time increases, the heater The surface temperature will get higher and higher.
  • the heater can be cooled by a cooling device arranged below the heater, this will cause the following problems, namely:
  • the temperature of the heater cannot be maintained at a higher temperature; if it is less than the heat added by the heater , The temperature of the heater cannot be maintained at a lower temperature value, which is beneficial to the cooling device. This method limits the temperature range of the heater and cannot meet different temperature requirements.
  • the purpose of the present invention is to provide a heating device and a semiconductor device in a semiconductor device, which are used to expand the use temperature range of the heating device and meet different temperature requirements.
  • an embodiment of the present invention provides a heating device in a semiconductor device, which is provided in a process chamber of the semiconductor device, and includes:
  • a heating body for carrying a wafer, and a heating component for generating heat is provided in the heating body;
  • the cooling structure is arranged below the heating body, and the cooling structure is arranged to selectively exchange heat with the heating body at positions different from the heating body.
  • the cooling structure includes:
  • a cooling body in which a cooling component for generating heat exchange with the heating body is provided.
  • the cooling lifting assembly is connected with the cooling body and is used to drive the cooling body to rise and fall to adjust the vertical distance between the cooling body and the heating body.
  • the heating device further includes a connecting component and a sealing structure, wherein:
  • the connecting member is connected to the heating body, and the connecting member forms an accommodating space with the heating body at the bottom of the heating body, the cooling body is located in the accommodating space, and the cooling lifting assembly Extend through a through hole provided at the bottom of the process chamber to the outside of the process chamber;
  • the upper end of the sealing structure is hermetically connected with the connecting member, and the lower end of the sealing structure is hermetically connected with the bottom of the process chamber to seal the accommodating space and the through hole.
  • the sealing structure includes a bellows and a bellows shaft, wherein:
  • the upper end of the bellows shaft is connected with the connecting member, and the lower end of the bellows shaft extends through the through hole to the outside of the process chamber for connection with a lifting driving source;
  • the bellows is sleeved on the bellows shaft, and the upper end of the bellows is in hermetically connected with the connecting member, and the lower end of the bellows is in hermetically connected with the bottom of the process chamber for sealing The accommodating space and the through hole.
  • the cooling lifting assembly includes a lifting component, at least one screw and at least one elastic member, wherein the bellows shaft is provided with a hollow space communicating with the accommodating space, and the lifting component is located at the In the hollow space, and the upper end of the lifting component is connected with the cooling body;
  • the lower end surface of the lifting component is provided with at least one threaded hole, and at least one mounting hole is provided on the inner surface of the bellows shaft opposite to the lower end surface of the lifting component, and each of the mounting holes corresponds to one to one. Coaxially arranged with each of the threaded holes;
  • Each of the screws is threadedly connected to the corresponding threaded hole through each of the mounting holes from bottom to top from below the bellows shaft;
  • Each of the elastic members is arranged in a one-to-one correspondence with each of the screws, and is located between the lower end surface of the lifting member and the inner surface of the corrugated tube shaft, and is in a compressed state.
  • a lead-out space and two first lead-out through holes communicating with the lead-out space are further provided in the lifting component; and, the bellows shaft is also provided with a lead-out space communicating with the hollow space.
  • Two second lead through holes, the two second lead through holes and the two first lead through holes are arranged coaxially;
  • the cooling component further includes the cooling component including a cooling pipeline, an inlet pipeline, and an outlet pipeline for conveying cooling water, wherein each end of the inlet pipeline and the outlet pipeline is connected to the cooling pipeline.
  • the inlet and outlet of the inlet and outlet are connected, and the other ends of each of the water inlet pipe and the water outlet pipe extend to the outside of the process chamber through the corresponding first and second outlet through holes in sequence.
  • the cooling structure includes a plurality of cooling bodies, and the plurality of cooling bodies are arranged at intervals in a direction away from the lower surface of the heating body;
  • the body produces heat exchange cooling components.
  • the heating device further includes a connecting component and a sealing structure, wherein:
  • the connecting member is connected to the heating body, and the connecting member forms an accommodating space with the heating body at the bottom of the heating body, and a plurality of the cooling bodies are all located in the accommodating space, wherein,
  • Each of the cooling components includes a cooling pipeline for conveying cooling water, as well as a water inlet pipeline and a water outlet pipeline. Connected, the other end of each of the water inlet pipe and the water outlet pipe extends to the outside of the process chamber through a through hole provided at the bottom of the process chamber;
  • the upper end of the sealing structure is hermetically connected with the connecting member, and the lower end of the sealing structure is hermetically connected with the bottom of the process chamber to seal the accommodating space and the through hole.
  • the sealing structure includes a bellows and a bellows shaft, wherein:
  • the upper end of the bellows shaft is connected to the connecting member, and the lower end of the bellows shaft extends through the through hole to the outside of the process chamber for connection with a lifting driving source; and, the bellows
  • the pipe shaft is provided with a hollow space communicating with the accommodating space, and a plurality of pairs of lead-out through holes communicating with the hollow space, and the other end of each of the water inlet pipe and the water outlet pipe passes through a corresponding pair of The lead through hole extends to the outside of the process chamber;
  • the bellows is sleeved on the bellows shaft, and the upper end of the bellows is hermetically connected with the connecting member, and the lower end of the bellows is hermetically connected with the bottom of the process chamber for sealing The accommodating space and the through hole.
  • the upper surface of the cooling body located at the top is attached to the upper surface of the heating body.
  • the lower surface of the heating body and the upper surface of the cooling body are parallel to each other.
  • the heating device further includes a heat exchange gas input pipeline, the outlet end of the heat exchange gas input pipeline communicates with the accommodating space, and the inlet end of the heat exchange gas input pipeline is used for To connect with the heat exchange gas source.
  • an embodiment of the present invention further provides a semiconductor device, including a process chamber, and further includes the above-mentioned heating device provided by the embodiment of the present invention, and the heating device is disposed in the process chamber.
  • the heating device in the semiconductor device provided by the embodiment of the present invention selectively generates heat exchange with the heating body at a different position from the heating body through the cooling structure arranged below the heating body, so that the cooling structure can be heated with different heat.
  • the exchange efficiency cools the heating body, so that the temperature of the heating body can be controlled in a lower temperature range by heat exchange with the heating body at a position closer to the heating body, and the temperature of the heating body can be controlled at a lower temperature range.
  • the semiconductor device provided by the embodiment of the present invention can expand the operating temperature range of the heating device and meet different temperature requirements by adopting the above-mentioned heating device provided by the embodiment of the present invention.
  • Figure 1 shows a schematic structural diagram of a heating device in an example
  • FIG. 2 shows a schematic structural diagram of a heating device in a semiconductor device according to Embodiment 1 of the present invention
  • FIG. 3 shows a schematic structural diagram of a heating device in a semiconductor device provided by Embodiment 2 of the present invention.
  • Figure 1 shows a heating device that can solve the problem of increasing temperature on the surface of the heating device.
  • the heating device is set in a process chamber (not shown in the figure) and includes heating The main body 101, the cooling main body 103, the heating wire 102, the cooling water channel 104, the water inlet pipe 105a, the water outlet pipe 105b, the connecting cylinder 107 and the fixing seat 106.
  • the heating wire 102 is arranged in the heating body 101 to generate heat
  • the cooling water channel 104 is arranged in the cooling body 103 to exchange heat with the cooling body 103 by transmitting cooling water, thereby indirectly cooling the heating body 103.
  • the upper end of the connecting cylinder 107 is in sealed connection with the cooling body 103, and the lower end of the connecting cylinder 107 is in sealed connection with the fixing seat 106, and the fixing seat 106 is used for fixed connection with the bottom of the process chamber.
  • the inlet and outlet of the cooling water channel 104 are respectively connected to one end of the water inlet pipe 105a and the water outlet pipe 105b, and the other ends of the water inlet pipe 105a and the water outlet pipe 105b pass through the internal space 108 of the connecting cylinder 107 and the communication in the fixing seat 106 in turn.
  • the hole 106a and the through hole (not shown in the figure) at the bottom of the process chamber protrude to the outside of the process chamber so as to be able to be connected to a cooling water source.
  • the heating device also includes a temperature measuring device 100, the detection end of which is in contact with the heating body 103, and the lead end is led out to the outside of the process chamber through the same path as the water inlet pipe 105a and the water outlet pipe 105b.
  • the heat generated by the heating wire 102 can be used to maintain the process temperature of the heating body 101, and at the same time, cooling water is introduced into the cooling water channel 104 to reduce the temperature rise of the heating body 101 due to the process.
  • the heating wire 102 works; when the temperature of the heating body 101 is higher than the process temperature, cooling water is passed into the cooling water channel 104 to reduce the temperature of the heating body 101 The temperature is maintained at the process temperature.
  • the above heating device can only maintain the temperature of the heating body 101 in a lower temperature range (for example, less than 100°C).
  • the cooling body 103 It has a high thermal conductivity.
  • the cooling water is passed into the cooling water channel 105, it will quickly take away the heat of the heating body 101. If the heat removal speed is higher than the heat generation speed when the heating wire 102 is fully As a result, the temperature of the heating body 101 cannot reach a higher process temperature, and thus cannot meet the high temperature requirements.
  • heating device similar in structure to the above heating device shown in Figure 1.
  • the difference between the two is that a certain gap is provided between the upper surface of the cooling body and the lower surface of the heating body, thereby reducing the difference between the two.
  • the heat exchange efficiency between the heating body will not lose a large amount of heat of the heating body, so that the temperature of the heating body can reach a higher process temperature.
  • this kind of heating device can only maintain the temperature of the heating body. In a higher temperature range (for example, greater than 80°C), when the required process temperature is lower than this temperature range, because the heat exchange efficiency of the cooling body is lower, the heat removal rate is lower than that of the heating body.
  • the present invention provides a heating device in a semiconductor device.
  • the heating device is arranged in a process chamber of the semiconductor device and includes a heating body and a cooling structure.
  • the heating body is provided with a heating component for generating heat;
  • the cooling structure is arranged below the heating body, and the cooling structure is arranged to selectively exchange heat with the heating body at positions different from the heating body.
  • the cooling structure may exchange heat with the heating body at different positions from the heating body.
  • the overall height of the cooling structure can be adjusted to change the overall distance of the cooling structure from the heating body.
  • the overall height of the above-mentioned cooling structure remains unchanged, and the heat exchange efficiency is changed only by selecting cooling components (components that produce heat exchange with the heating body) at different positions in the cooling structure.
  • the cooling structure selectively exchanges heat with the heating body at different positions from the heating body, so that the cooling structure can cool the heating body with different heat exchange efficiency, so that it can be passed at a position closer to the heating body.
  • the operating temperature range of the heating device can be expanded, which can meet both high temperature requirements and low temperature requirements.
  • Embodiment 1 of the present invention provides a heating device in a semiconductor device.
  • the heating device includes a heating body 301 and a cooling structure.
  • the heating body 301 is, for example, in the shape of a disc. Of course, any other shape can also be adopted according to specific needs.
  • a heating member 302 for generating heat is provided in the heating body 110.
  • the heating component 302 is a heating element capable of generating heat, such as a heating resistance wire, a heating lamp tube, or the like.
  • the heating component 302 shown in FIG. 2 is a heating resistance wire, which is embedded in the heating body 301 from the lower surface of the heating body 301, and is evenly distributed relative to the lower surface of the heating body 301, so as to be evenly distributed.
  • the wafer 110 is heated.
  • the cooling structure is arranged below the heating body 301.
  • the cooling structure includes a cooling body 313 and a cooling lifting assembly.
  • the cooling body 313 is provided with a cooling component 304 for heat exchange with the heating body 301;
  • the body 313 is connected to drive the cooling body 313 to rise and fall to adjust the vertical distance between the cooling body 313 and the heating body 301.
  • the overall height of the cooling body 313 changes, so that the position of the cooling component 304 in the cooling body 313 from the heating body 301 can be adjusted.
  • the cooling part 304 The closer the cooling part 304 is to the heating body 301, the higher the heat exchange efficiency between it and the heating body 301, the easier it is to maintain the temperature of the heating body 301 at a lower temperature value, so as to meet the low temperature requirements; on the contrary, the cooling part 304 The farther away from the heating body 301, the lower the heat exchange efficiency between the heating body 301 and the heating body 301, the easier it is to maintain the temperature of the heating body 301 at a higher temperature value, thereby satisfying high temperature requirements. As a result, the operating temperature range of the heating device can be expanded to meet different temperature requirements. In addition, with the help of the above-mentioned cooling lifting assembly, the overall height of the cooling body 313 can be adjusted freely, so that the flexibility of temperature adjustment can be improved.
  • the heating device further includes a connecting member 307 and a seal.
  • the connecting member 307 is connected to the heating body 301, and the connecting member 307 forms an accommodating space 310 at the bottom of the heating body 301 and the heating body 301, the cooling body 313 is located in the accommodating space 310, the cooling lifting assembly
  • the through hole (not shown in the figure) provided at the bottom of the process chamber 400 extends to the outside of the process chamber 400.
  • the upper end of the above-mentioned sealing structure is hermetically connected with the connecting member 307, and the lower end of the sealing structure is hermetically connected with the bottom of the process chamber 400 to seal the accommodating space 310 and the aforementioned through hole.
  • the inside of the dashed frame in FIG. 2 represents the inside of the process chamber 400, and the outside of the dashed frame represents the outside of the process chamber 400.
  • the connecting member 307 is fixed to the bottom of the heating body 301 through an annular connecting member 306, which is connected to The heating body 301 and the connecting member 307 are connected in a sealed manner.
  • the above-mentioned annular connecting member 306, the connecting member 307 and the heating body 301 constitute the above-mentioned accommodating space 310.
  • the above-mentioned sealing connection such as welding or threaded connection with vacuum sealing treatment.
  • the connecting member 307 can also be directly connected to the heating body 301 directly.
  • the above-mentioned sealing structure can have a variety of structures.
  • the lower end of the pipe shaft 305 extends through the above-mentioned through hole to the outside of the process chamber 400 for connection with a lifting driving source (not shown in the figure).
  • the bellows shaft 305 is used to drive the heating body 301 to rise and fall through the connecting member 307.
  • the heating body 301, the connecting member 307 and the cooling body 313 are all raised and lowered synchronously.
  • the bellows 308 is sleeved on the bellows shaft 305, and the upper end of the bellows 308 is hermetically connected with the connecting member 307, and the lower end of the bellows 308 is hermetically connected with the bottom of the process chamber 400 to seal the accommodating space 310 and the aforementioned communication Hole, so as to ensure the tightness of the process chamber 400.
  • the lower end of the bellows 308 is connected to the bottom wall (not shown in the figure) of the process chamber 400 through a fixing seat 309, and the fixing seat 309 is provided with a fixing seat through hole 309a and a bellows shaft 305
  • the lower end of the rod protrudes to the outside of the process chamber 400 through the through hole 309a of the fixing seat and the through hole at the bottom of the process chamber 400 in sequence.
  • the bellows 308 can also seal the through hole 309a of the fixing seat.
  • the above-mentioned cooling lifting assembly may have various structures.
  • the cooling lifting assembly includes a lifting component 303, at least one screw 401, and at least one elastic member 402, wherein the bellows shaft 305 is provided with the above-mentioned container.
  • the lifting member 303 is located in the hollow space 305a connected to the space 310, and the upper end of the lifting member 303 is connected to the cooling body 313.
  • the connection between the two is, for example, integral molding, welding, and the like.
  • the lower end surface of the lifting member 303 is provided with at least one threaded hole 403, and the inner surface of the bellows shaft 305 opposite to the lower end surface of the lifting member 303 is provided with at least one mounting hole 404, and each mounting hole 404 corresponds to Each threaded hole 403 is arranged coaxially; each screw 401 passes through each mounting hole 404 from below the bellows shaft 305 from bottom to top, and is threadedly connected to the corresponding threaded hole 403; each elastic member 402 is connected to each screw 401 one by one. They are arranged in one correspondence, and are located between the lower end surface of the lifting component 303 and the above-mentioned inner surface of the bellows shaft 305, and are in a compressed state.
  • there may be multiple screws 401 (two screws 401 are shown in FIG. 2), and the multiple screws 401 are symmetrically distributed with respect to the axis of the corrugated tube shaft 305.
  • the multiple screws 401 are symmetrically distributed with respect to the axis of the corrugated tube shaft 305.
  • the screw 401 When the above-mentioned screw 401 is screwed, because it is threadedly connected with the threaded hole 403 on the lifting component 303, the screw 401 is fixed under the action of the threaded fit, and the lifting component 303 rises or falls along the axial direction of the screw 401, thereby Drive the cooling body 313 to move up and down synchronously.
  • the elastic member 402 since the elastic member 402 is in a compressed state, it always applies an upward elastic force to the lifting member 303 to support the lifting member 303 and the cooling body 313.
  • the elastic member 402 is, for example, a compression spring.
  • cooling lift assembly is not limited to the above-mentioned structure provided in this embodiment. In practical applications, the cooling lift assembly may also adopt any other structure that can drive the cooling body 313 to lift.
  • the heating body 301 uses a heating lift assembly to achieve lifting, but the embodiment of the present invention is not limited to this. In actual applications, the heating lift may not be provided according to specific needs.
  • the component, that is, the heating body 301 is fixed relative to the process chamber.
  • the corresponding sealing structure can be used to seal the through hole at the bottom of the process chamber for the cooling lift assembly to pass through, so as to ensure the integrity of the process chamber. Tightness.
  • the above-mentioned cooling lifting assembly can also be arranged inside the process chamber. In this case, an automatic control method can be used to provide lifting power for the cooling lifting assembly.
  • a lead-out space 303a and two first lead-out through holes that communicate with the lead-out space 303a are also provided in the lifting member 303; and the bellows shaft 305 is also provided with a lead-out space 303a communicating with the hollow space 305a.
  • Two second lead through holes, two second lead through holes and two first lead through holes are arranged coaxially.
  • the cooling component 304 includes a cooling pipe 304a, an inlet pipe 304b, and an outlet pipe 304c for conveying cooling water, wherein each end of the inlet pipe 304b and the outlet pipe 304c is connected to the inlet and outlet of the cooling pipe 304a.
  • each of the water inlet pipe 304b and the water outlet pipe 304c extend to the outside of the process chamber 400 through the corresponding first and second lead-out through holes in sequence, so as to be able to communicate with the cooling water supply Water source connection.
  • the above-mentioned cooling pipeline 304a may be an annular water pipe, or may also be a spiral water pipe, which is evenly distributed relative to the upper surface of the cooling body 313 to improve cooling uniformity.
  • the lower surface of the heating body 301 and the upper surface of the cooling body 313 are parallel to each other, so that the heat exchange efficiency between the upper surface of the cooling body 313 and the heating body 301 at different positions can be the same. Therefore, the temperature uniformity of the heating body 301 can be improved.
  • the heating device may further include a heat exchange gas input pipeline (not shown in the figure), and the outlet end of the heat exchange gas input pipeline is The gas inlet end of the gas input pipeline is used to connect with the heat exchange gas source.
  • a heat exchange gas input pipeline (not shown in the figure)
  • the gas inlet end of the gas input pipeline is used to connect with the heat exchange gas source.
  • Embodiment 2 of the present invention provides a heating device in a semiconductor device. Compared with Embodiment 1, it also includes a heating body 301 and a cooling structure, but the difference lies in: the specific structure of the cooling structure is different. .
  • the cooling structure includes a plurality of cooling bodies, the plurality of cooling bodies are arranged at intervals in a direction away from the lower surface of the heating body 301; and each cooling body is provided for generating heat with the heating body 301.
  • Exchanged cooling components Since different cooling components are at different positions from the heating body 301, by selectively controlling the operation of the cooling components in at least one cooling body, the heating body 301 can be cooled with different heat exchange efficiencies to meet different temperature requirements. In other words, the positions of the above-mentioned cooling bodies from the heating body 301 remain unchanged, and the heat exchange efficiency can only be changed by selecting the cooling components at different positions to work.
  • the upper surface of the cooling body at the top is attached to the upper surface of the heating body 301.
  • the heat exchange efficiency between the cooling body at the top and the heating body 301 can be further improved to meet the high cooling rate. Requirements.
  • FIG. 3 shows two cooling bodies, a first cooling body 303A and a second cooling body 303B located thereunder, and the second cooling body 303B is spaced apart from the first cooling body 303A.
  • the first cooling body 303A is provided with a first cooling component 304A; the second cooling body 303B is provided with a second cooling component 304B.
  • the above-mentioned first cooling part 304A and the second cooling part 304B can work alone or at the same time. When the two work at the same time, the heat exchange efficiency is the highest; because the above-mentioned first cooling part 304A is closer to the heating body than the second cooling part 304B 301.
  • the heat exchange efficiency of the first cooling component 304A when working alone is higher than the heat exchange efficiency of the second cooling component 304B when working alone. Therefore, by selecting the first cooling component 304A and the second cooling component 304B At least one job can be switched between three different heat exchange efficiencies to meet different temperature requirements. It is easy to understand that the greater the number of cooling bodies, the more options for heat exchange efficiency and the higher the flexibility of temperature adjustment.
  • the heating device may also include a heating lift assembly for driving the heating body 301 to lift, and the heating lift assembly may adopt a structure similar to that of the above-mentioned embodiment 1 (refer to the relevant part of FIG. 2), but the difference is It is: as shown in FIG. 3, in this embodiment, the upper end of the connecting member 307' is connected to the first cooling body 303A in a sealed manner, and the bottom of the first cooling body 303A forms an accommodation space 310 with the first cooling body 303A. ', the second cooling body 303B is located in the accommodating space 310' and is integrally formed with the above-mentioned connecting member 307'. It can also be said that the above-mentioned connecting member 307' serves as the second cooling body 303B, and the second cooling member 304B is provided In the connecting part 307', the process chamber can be sealed thereby.
  • the other structure of the heating lift assembly is the same as that of the above-mentioned embodiment 1. Since it has been described in detail in the above-mentioned embodiment 1, it will not be repeated here.
  • each cooling component includes a cooling pipe for conveying cooling water, as well as a water inlet pipe and a water outlet pipe.
  • the water inlet pipe and the water outlet pipe can be extended to the outside of the process chamber in the same manner as in the first embodiment.
  • the first cooling component 304A and the second cooling component 304B shown in FIG. 3 as an example, the water inlet pipe A1 and the water outlet pipe A2 in the first cooling component 304A, and the water inlet pipe B1 and the second cooling component 304B
  • the outlet pipes B2 all extend through the hollow space in the bellows shaft (not shown in the figure) to the outside of the process chamber.
  • the other structure of the heating device provided by the second embodiment of the present invention is similar to that of the above-mentioned embodiment 1. Since it has been described in detail in the above-mentioned embodiment 1, it will not be repeated here.
  • the heating device in the semiconductor device selectively generates heat exchange with the heating body at a different position from the heating body through the cooling structure arranged below the heating body, which can make cooling
  • the structure cools the heating body with different heat exchange efficiency, so that the temperature of the heating body can be controlled in a lower temperature range by heat exchange with the heating body at a position close to the heating body, and the temperature of the heating body can be controlled by Heat exchange with the heating body far away from the heating body to control the temperature of the heating body within a higher temperature range, thereby expanding the use temperature range of the heating device to meet different temperature requirements.
  • Another embodiment of the present invention also provides a semiconductor device, such as a physical vapor deposition device, including a process chamber and a heating device provided in the process chamber, and the heating device adopts the heating device provided by the foregoing various embodiments of the present invention.
  • a semiconductor device such as a physical vapor deposition device, including a process chamber and a heating device provided in the process chamber, and the heating device adopts the heating device provided by the foregoing various embodiments of the present invention.
  • the semiconductor device provided by the embodiment of the present invention can expand the operating temperature range of the heating device and meet different temperature requirements by adopting the above-mentioned heating device provided by the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种半导体设备中的加热装置及半导体设备,包括:加热本体,用于承载晶片,且在加热本体中设置有用于产生热量的加热部件;以及,冷却结构,设置于加热本体的下方,且冷却结构被设置为选择性地在距离加热本体不同的位置处与加热本体产生热交换。本发明公开的半导体设备中的加热装置及半导体设备,用于扩大加热装置的使用温度范围,满足不同的温度需求。

Description

半导体设备中的加热装置及半导体设备 技术领域
本发明涉及半导体设备领域,更具体地,涉及一种半导体设备中的加热装置及半导体设备。
背景技术
随着半导体行业的不断发展,半导体制程更加多样化,但是无论是哪种制程,温度都是其中的重要一环,直接影响设备产能和成本。一般情况下,晶片被放置在工艺腔室的加热器上进行工艺,在此过程中,要求加热器温度保持不变,目前通常采用加热和冷却同时控制的方法来实现温度保持不变。
但是,在物理气相沉积(Physical Vapour Deposition,以下简称PVD)工艺中,很难保持温度不变,这是因为PVD工艺是通过溅射(Sputtering)沉积技术将溅射出的靶材材料沉积到晶片上,由于溅射出的靶材材料温度较高,其在沉积时会将自身的热量通过晶片传递到承载晶片的加热器上,使加热器表面温度升高,而且随着工艺时间的增加,加热器表面温度会越来越高。虽然可以通过设置在加热器下方的降温装置来对加热器进行冷却,但是这又会产生下述问题,即:
由于降温装置的热交换效率是固定的,该降温装置带走的热量若多于加热器产生的热量,会导致加热器的温度无法维持在较高的温度值;若少于加热器增加的热量,则会导致加热器的温度无法维持在较低的温度值,从而利于降温装置这种方式限制了加热器的温度使用范围,无法满足不同的温度需求。
发明内容
本发明的目的是提出一种半导体设备中的加热装置及半导体设备,其用于扩大加热装置的使用温度范围,满足不同的温度需求。
为实现上述目的,本发明实施例提出了一种半导体设备中的加热装置,设置在所述半导体设备的工艺腔室中,包括:
加热本体,用于承载晶片,且在所述加热本体中设置有用于产生热量的加热部件;以及,
冷却结构,设置于所述加热本体的下方,且所述冷却结构被设置为选择性地在距离所述加热本体不同的位置处与所述加热本体产生热交换。
可选的,所述冷却结构包括:
冷却本体,在所述冷却本体中设置有用于与所述加热本体产生热交换的冷却部件;以及
冷却升降组件,与所述冷却本体连接,用于带动所述冷却本体升降,以调节所述冷却本体与所述加热本体在竖直方向上的间距。
可选的,所述加热装置还包括连接部件和密封结构,其中,
所述连接部件与所述加热本体连接,且所述连接部件在所述加热本体的底部与所述加热本体构成容置空间,所述冷却本***于所述容置空间中,所述冷却升降组件穿过设置在所述工艺腔室底部的通孔延伸至所述工艺腔室的外部;
所述密封结构的上端与所述连接部件密封连接,所述密封结构的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
可选的,所述密封结构包括波纹管和波纹管轴,其中,
所述波纹管轴的上端与所述连接部件连接,所述波纹管轴的下端穿过所述通孔延伸至所述工艺腔室的外部,用以与升降驱动源连接;
所述波纹管套设在所述波纹管轴上,且所述波纹管的上端与所述连接部件密封连接,所述波纹管的下端与所述工艺腔室的底部密封连接,用以密封 所述容置空间和所述通孔。
可选的,所述冷却升降组件包括升降部件、至少一个螺钉和至少一个弹性件,其中,所述波纹管轴中设置有与所述容置空间相连通的中空空间,所述升降部件位于所述中空空间中,且所述升降部件的上端与所述冷却本体连接;
所述升降部件的下端面设置有至少一个螺纹孔,且在所述波纹管轴的与所述升降部件的下端面相对的内表面设置有至少一个安装孔,各个所述安装孔一一对应地与各个所述螺纹孔同轴设置;
各个所述螺钉自所述波纹管轴的下方由下而上一一对应地穿过各个所述安装孔与对应的所述螺纹孔螺纹连接;
各个所述弹性件与各个所述螺钉一一对应地设置,且位于所述升降部件的下端面与所述波纹管轴的所述内表面之间,并且处于压缩状态。
可选的,在所述升降部件中还设置有引出空间和与所述引出空间连通的两个第一引出通孔;并且,在所述波纹管轴中还设置有与所述中空空间连通的两个第二引出通孔,两个所述第二引出通孔与两个所述第一引出通孔同轴设置;
所述冷却部件还包括所述冷却部件包括用于输送冷却水的冷却管路、进水管路和出水管路,其中,所述进水管路和出水管路各自的一端分别与所述冷却管路的入口和出口连接,所述进水管路和出水管路各自的另一端均依次经由对应的所述第一引出通孔和第二引出通孔延伸至所述工艺腔室的外部。
可选的,所述冷却结构包括多个冷却本体,多个所述冷却本体沿远离所述加热本体的下表面的方向间隔设置;并且每个所述冷却本体中均设置有用于与所述加热本体产生热交换的冷却部件。
可选的,所述加热装置还包括连接部件和密封结构,其中,
所述连接部件与所述加热本体连接,且所述连接部件在所述加热本体的 底部与所述加热本体构成容置空间,多个所述冷却本体均位于所述容置空间中,其中,每个所述冷却部件均包括用于输送冷却水的冷却管路,以及进水管路和出水管路,所述进水管路和出水管路各自的一端分别与所述冷却管路的入口和出口连接,所述进水管路和出水管路各自的另一端穿过设置在所述工艺腔室底部的通孔延伸至所述工艺腔室的外部;
所述密封结构的上端与所述连接部件密封连接,所述密封结构的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
可选的,所述密封结构包括波纹管和波纹管轴,其中,
所述波纹管轴的上端与所述连接部件连接,所述波纹管轴的下端穿过所述通孔延伸至所述工艺腔室的外部,用以与升降驱动源连接;并且,所述波纹管轴中设置有与所述容置空间相连通的中空空间,以及与所述中空空间连通的多对引出通孔,所述进水管路和出水管路各自的另一端经由对应的一对所述引出通孔延伸至所述工艺腔室的外部;
所述波纹管套设在所述波纹管轴上,且所述波纹管的上端与所述连接部件密封连接,所述波纹管的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
可选的,位于最上方的所述冷却本体的上表面与所述加热本体的上表面相贴合。
可选的,所述加热本体的下表面和所述冷却本体的上表面相互平行。
可选的,所述加热装置还包括热交换气体输入管路,所述热交换气体输入管路的出气端与所述容置空间相连通,所述热交换气体输入管路的进气端用于与热交换气体源连接。
作为另一个技术方案,本发明实施例还提供一种半导体设备,包括工艺腔室,还包括本发明实施例提供的上述加热装置,所述加热装置设置在所述工艺腔室中。
本发明的有益效果在于:
本发明实施例提供的半导体设备中的加热装置,其通过设置在加热本体下方的冷却结构,选择性地在距离加热本体不同的位置处与加热本体产生热交换,可以使冷却结构以不同的热交换效率对加热本体进行冷却,从而既可以通过在距离加热本体较近的位置处与加热本体热交换,以将加热本体的温度控制在较低的温度范围内,又可以通过在距离加热本体较远的与加热本体热交换,以将加热本体的温度控制在较高的温度范围内,进而可以扩大加热装置的使用温度范围,满足不同的温度需求。
本发明实施例提供的半导体设备,其通过采用本发明实施例提供的上述加热装置,可以扩大加热装置的使用温度范围,满足不同的温度需求。
本发明具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,在本发明示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了一实例中的一种加热装置的结构示意图;
图2示出了本发明实施例1提供的半导体设备中的加热装置的结构示意图;
图3示出了本发明实施例2提供的半导体设备中的加热装置的结构示意图。
具体实施方式
图1示出了一种加热装置,其可以解决加热装置表面不断升高的温度的问题,如图1所示,该加热装置设置在工艺腔室(图中未示出)中,且包括加热本体101、冷却本体103、加热丝102、冷却水道104、进水管路105a、出水管路105b、连接筒107和固定座106。其中,加热丝102设置在加热本体101中,用于产生热量;冷却水道104设置在冷却本体103中,用于通过传输冷却水来与冷却本体103产生热量交换,从而间接冷却加热本体103。连接筒107的上端与冷却本体103密封连接,连接筒107的下端与固定座106密封连接,固定座106用于与工艺腔室的底部固定连接。
冷却水道104的入口和出口分别与进水管路105a和出水管路105b的一端连接,进水管路105a和出水管路105b的另一端依次通过连接筒107的内部空间108、固定座106中的通孔106a以及工艺腔室底部的通孔(图中未示出)伸出至工艺腔室的外部,以能够与冷却水源连接。另外,加热装置还包括测温装置100,其检测端与加热本体103接触,引线端采用与上述进水管路105a和出水管路105b相同的路径引出至工艺腔室的外部。
在使用上述加热装置时,可以利用加热丝102产生的热量维持加热本体101的工艺温度,同时通过向冷却水道104通入冷却水来降低加热本体101由于工艺制程造成的温升。在这个过程中,当加热本体101的温度不高于工艺温度时,加热丝102工作;当加热本体101的温度高于工艺温度时,冷却水道104中通入冷却水,以将加热本体101的温度维持在工艺温度。
但是,在实际应用中发现,上述加热装置只能将加热本体101的温度维持在较低的温度范围(例如小于100℃)内,当需要的工艺温度高于该温度范围时,由于冷却本体103本身的导热系数较高,当冷却水通入冷却水道105后,会将加热本体101的热量快速带走,若带走热量的速度高于加热丝102满功率输出时产生热量的速度,则会导致加热本体101的温度无法达到较高的工艺温度,从而无法满足高温度需求。
还有一种加热装置与图1所示的上述加热装置的结构相类似,二者的区别在于,冷却本体的上表面与加热本体的下表面之间设有一定的间隙,从而降低了二者之间的热交换效率,使加热本体的热量不会大量散失,以使加热本体的温度能够达到较高的工艺温度,但是,在实际应用中发现,这种加热装置只能将加热本体的温度维持在较高的温度范围(例如大于80℃)内,当需要的工艺温度低于该温度范围时,由于冷却本体的热交换效率较低,其带走热量的速度低于加热本体的增加热量的速度,从而无法将加热本体的温度控制在较低的工艺温度,无法满足低温度需求。此外,当设备需要维护时,需要将加热本体的温度降温到常温状态,以方便人员维护,但是由于冷却本体的热交换效率较低,这会导致加热本体降低至常温的时间过长,造成设备维护时间太长,从而影响设备利用率。
为了解决上述问题,本发明提供一种半导体设备中的加热装置,该加热装置设置在半导体设备的工艺腔室中,且包括加热本体和冷却结构,其中,该加热本体用于承载晶片,且在加热本体中设置有用于产生热量的加热部件;冷却结构设置于加热本体的下方,且该冷却结构被设置为选择性地在距离加热本体不同的位置处与加热本体产生热交换。
上述冷却结构在距离加热本体不同的位置处与加热本体产生热交换的方式可以有多种,例如,上述冷却结构的整体高度是可调的,以改变冷却结构的这一整体距离加热本体的位置;又如,上述冷却结构的整体高度不变,而仅通过选择冷却结构中不同位置处的冷却部件(与加热本体产生热交换作用的部件)工作,来改变热交换效率。
通过冷却结构选择性地在距离加热本体不同的位置处与加热本体产生热交换,可以使冷却结构以不同的热交换效率对加热本体进行冷却,从而既可以通过在距离加热本体较近的位置处与加热本体热交换,以将加热本体的温度控制在较低的温度范围内,又可以通过在距离加热本体较远的与加热本 体热交换,以将加热本体的温度控制在较高的温度范围内,进而可以扩大加热装置的使用温度范围,既能够满足高温度需求,又能够满足低温度需求。
以下结合附图和具体实施例对本发明作进一步详细说明。
实施例1
请参阅图2,本发明实施例1提供了一种半导体设备中的加热装置,该加热装置包括加热本体301和冷却结构,其中,加热本体301用于承载晶片110,例如将晶片110放置于加热本体301的上表面。加热本体301例如呈圆盘状,当然,也可以根据具体需要采用其他任意形状。而且,在该加热本体110中设置有用于产生热量的加热部件302。加热部件302诸如为加热电阻丝、加热灯管等的能够产生热量的加热元件。具体来说,图2中示出的加热部件302为加热电阻丝,其自加热本体301的下表面内嵌在加热本体301中,且相对于加热本体301的下表面均匀分布,以能够均匀地加热晶片110。
冷却结构设置于加热本体301的下方,该冷却结构包括冷却本体313和冷却升降组件,其中,在冷却本体313中设置有用于与加热本体301产生热交换的冷却部件304;上述冷却升降组件与冷却本体313连接,用于带动该冷却本体313升降,以调节冷却本体313与加热本体301在竖直方向上的间距。也就是说,在冷却升降组件的带动下,冷却本体313在整体上的高度产生变化,从而可以调节冷却本体313中的冷却部件304距离加热本体301的位置。冷却部件304距离加热本体301越近,其与加热本体301的热交换效率越高,越容易将加热本体301的温度维持在较低的温度值,从而可以满足低温度需求;反之,冷却部件304距离加热本体301越远,其与加热本体301的热交换效率越低,越容易将加热本体301的温度维持在较高的温度值,从而可以满足高温度需求。由此,可以扩大加热装置的使用温度范围,满足不同的温度需求。此外,借助上述冷却升降组件,可以自由调节冷却本体313的整体高度,从而可以提高温度调节的灵活性。
在一些实施例中,上述冷却升降组件的下端需要伸出至工艺腔室的外部,在此情况下,为了保证工艺腔室的密封性,可选的,上述加热装置还包括连接部件307和密封结构,其中,连接部件307与加热本体301连接,且该连接部件307在加热本体301的底部与加热本体301构成容置空间310,上述冷却本体313位于该容置空间310中,上述冷却升降组件穿过设置在工艺腔室400底部的通孔(图中未示出)延伸至工艺腔室400的外部。上述密封结构的上端与连接部件307密封连接,密封结构的下端与工艺腔室400的底部密封连接,用以密封容置空间310和上述通孔。图2中的虚线框的内部表示为工艺腔室400的内部,虚线框的外部表示为工艺腔室400的外部。
可选的,在本实施例中,为了便于拆装,且保护加热本体301不在拆装过程中损坏,连接部件307通过环形连接件306固定在加热本体301的底部,该环形连接件306分别与加热本体301和连接部件307密封连接,在这种情况下,上述环形连接件306、连接部件307与该加热本体301构成上述容置空间310。上述密封连接的方式有多种,例如为焊接,或者进行真空密封处理的螺纹连接。当然,在实际应用中,连接部件307也可以直接与加热本体301直接连接。
上述密封结构可以有多种结构,例如,如图2所示,在本实施例中,密封结构包括波纹管308和波纹管轴305,其中,波纹管轴305的上端与连接部件307连接,波纹管轴305的下端穿过上述通孔延伸至工艺腔室400的外部,用以与升降驱动源(图中未示出)连接。在升降驱动源的驱动下,波纹管轴305用于通过连接部件307带动加热本体301升降,此时加热本体301、连接部件307和冷却本体313均同步升降。波纹管308套设在波纹管轴305上,且波纹管308的上端与连接部件307密封连接,波纹管308的下端与工艺腔室400的底部密封连接,用以密封容置空间310和上述通孔,从而保证工艺腔室400的密封性。
可选的,上述波纹管308的下端通过固定座309与工艺腔室400的底壁(图中未示出)密封连接,并且该固定座309中设置有固定座通孔309a,波纹管轴305的下端依次通过该固定座通孔309a和工艺腔室400底部的通孔伸出至工艺腔室400的外部。可以理解,上述波纹管308还能够对固定座通孔309a进行密封。
上述冷却升降组件的结构可以有多种,例如,在本实施例中,冷却升降组件包括升降部件303、至少一个螺钉401和至少一个弹性件402,其中,波纹管轴305中设置有与上述容置空间310相连通的中空空间305a,升降部件303位于该中空空间305a中,且升降部件303的上端与上述冷却本体313连接,二者的连接方式例如为一体成型、焊接等。升降部件303的下端面设置有至少一个螺纹孔403,且在波纹管轴305的与该升降部件303的下端面相对的内表面设置有至少一个安装孔404,各个安装孔404一一对应地与各个螺纹孔403同轴设置;各个螺钉401自波纹管轴305的下方由下而上一一对应地穿过各个安装孔404与对应的螺纹孔403螺纹连接;各个弹性件402与各个螺钉401一一对应地设置,且位于升降部件303的下端面与波纹管轴305的上述内表面之间,并且处于压缩状态。
可选的,螺钉401可以为多个(图2示出了两个螺钉401),且多个螺钉401相对于波纹管轴305的轴线对称分布,通过设置多个螺钉401,有助于提高支撑冷却本体313的稳定性。
当旋动上述螺钉401时,由于其与升降部件303上的螺纹孔403螺纹连接,在螺纹配合的作用下,螺钉401固定不动,而升降部件303沿螺钉401的轴向上升或下降,从而带动冷却本体313同步升降。同时,由于弹性件402处于压缩状态,其始终向升降部件303施加向上的弹力,以起到支撑升降部件303以及冷却本体313的作用。弹性件402例如为压缩弹簧。
需要说明的是,冷却升降组件并不局限于本实施例提供的上述结构,在 实际应用中,冷却升降组件还可以采用其他任意可带动冷却本体313升降的结构。
还需要说明的是,在本实施例中,加热本体301利用加热升降组件实现升降,但是,本发明实施例并不局限于此,在实际应用中,根据具体需要,也可以不设置上述加热升降组件,即,加热本体301相对于工艺腔室固定不动。在这种情况下,若冷却升降组件需要伸出工艺腔室,则可以利用相应的密封结构对工艺腔室底部的用于供冷却升降组件穿过的通孔进行密封,以保证工艺腔室的密封性。当然,上述冷却升降组件也可以设置在工艺腔室的内部,在这种情况下,可以采用自动控制的方式为冷却升降组件提供升降动力。
在本实施例中,在升降部件303中还设置有引出空间303a和与该引出空间303a连通的两个第一引出通孔;并且,在波纹管轴305中还设置有与中空空间305a连通的两个第二引出通孔,两个第二引出通孔与两个第一引出通孔同轴设置。上述冷却部件304包括用于输送冷却水的冷却管路304a、进水管路304b和出水管路304c,其中,进水管路304b和出水管路304c各自的一端分别与冷却管路304a的入口和出口连接,进水管路304b和出水管路304c各自的另一端均依次经由对应的上述第一引出通孔和第二引出通孔延伸至工艺腔室400的外部,以能够与用于提供冷却水的水源连接。
可选的,上述冷却管路304a可以为环形水管,或者也可以为螺旋形的水管,其相对于冷却本体313的上表面均匀分布,以提高冷却均匀性。
在本实施例中,可选的,加热本体301的下表面与冷却本体313的上表面相互平行,这样可以使冷却本体313的上表面的不同位置处与加热本体301之间的热交换效率相同,从而可以提高加热本体301的温度均匀性。
在本实施例中,可选的,加热装置还可以包括热交换气体输入管路(图中未示出),该热交换气体输入管路的出气端与上述容置空间310相连通,热 交换气体输入管路的进气端用于与热交换气体源连接。通过向容置空间310通入热交换气体,可以提高容置空间310中的气体压力,从而可以提高热交换效率,提高冷却效率,尤其在设备需要维护时,可以有效缩短加热本体降低至常温的时间,减少设备维护时间,从而提高设备利用率。上述热交换气体例如为压缩气体(例如高压空气)。
实施例2
请参阅图3,本发明实施例2提供了一种半导体设备中的加热装置,其与上述实施例1相比,同样包括加热本体301和冷却结构,而区别在于:该冷却结构的具体结构不同。
具体地,在本实施例中,冷却结构包括多个冷却本体,多个冷却本体沿远离加热本体301的下表面的方向间隔设置;并且每个冷却本体中均设置有用于与加热本体301产生热交换的冷却部件。由于不同的冷却部件距离加热本体301的位置不同,通过选择性地控制至少一个冷却本体中的冷却部件工作,可以实现以不同的热交换效率对加热本体301进行冷却,以满足不同的温度需求。换句话说,上述各个冷却本体距离加热本体301的位置不变,仅通过选择不同位置处的冷却部件工作来改变热交换效率。
可选的,位于最上方的冷却本体的上表面与加热本体301的上表面相贴合,这样,可以进一步提高位于最上方的冷却本体与加热本体301的热交换效率,以能够满足高冷却速度的要求。
例如,图3中示出了两个冷却本体,分别为第一冷却本体303A和位于其下方的第二冷却本体303B,并且第二冷却本体303B与第一冷却本体303A间隔设置。其中,第一冷却本体303A中设置有第一冷却部件304A;第二冷却本体303B中设有第二冷却部件304B。
上述第一冷却部件304A和第二冷却部件304B可以单独工作,也可以同时工作,在二者同时工作时,热交换效率最高;由于上述第一冷却部件304A 比第二冷却部件304B更靠近加热本体301,上述第一冷却部件304A在单独工作时的热交换效率高于第二冷却部件304B在单独工作时的热交换效率,由此,通过选择上述第一冷却部件304A和第二冷却部件304B中的至少一个工作,可以在三种不同的热交换效率之间进行切换,从而满足不同的温度需求。容易理解,冷却本体的数量越多,热交换效率的选择越多,温度调节的灵活性越高。
在本实施例中,加热装置同样可以包括用于驱动加热本体301升降的加热升降组件,该加热升降组件可以采用与上述实施例1相类似的结构(可参照图2的相关部分),而区别在于:如图3所示,在本实施例中,连接部件307’的上端与第一冷却本体303A密封连接,且在第一冷却本体303A的底部与该第一冷却本体303A构成容置空间310’,第二冷却本体303B位于该容置空间310’中,且与上述连接部件307’一体成型,也可以说,上述连接部件307’即用作第二冷却本体303B,第二冷却部件304B设置在该连接部件307’中,由此可以实现对工艺腔室的密封。
加热升降组件的其他结构与上述实施例1相同,由于在上述实施例1中已有了详细描述,在此不再赘述。
在本实施例中,每个冷却部件均包括用于输送冷却水的冷却管路,以及进水管路和出水管路。进水管路和出水管路可以采用与上述实施例1相同的方式延伸至所述工艺腔室的外部。以图3示出的第一冷却部件304A和第二冷却部件304B为例,第一冷却部件304A中的进水管路A1和出水管路A2,和第二冷却部件304B中的进水管路B1和出水管路B2均通过波纹管轴(图中未示出)中的中空空间延伸至工艺腔室的外部。
本发明实施例2提供的加热装置的其他结构与上述实施例1相类似,由于在上述实施例1中已有了详细描述,在此不再赘述。
综上所述,本发明实施例提供的半导体设备中的加热装置,其通过设置 在加热本体下方的冷却结构,选择性地在距离加热本体不同的位置处与加热本体产生热交换,可以使冷却结构以不同的热交换效率对加热本体进行冷却,从而既可以通过在距离加热本体较近的位置处与加热本体热交换,以将加热本体的温度控制在较低的温度范围内,又可以通过在距离加热本体较远的与加热本体热交换,以将加热本体的温度控制在较高的温度范围内,进而可以扩大加热装置的使用温度范围,满足不同的温度需求。
本发明另一实施例还提供一种半导体设备,如物理气相沉积设备,包括工艺腔室和设置在工艺腔室中的加热装置,该加热装置采用本发明上述各个实施例提供的加热装置。
本发明实施例提供的半导体设备,其通过采用本发明实施例提供的上述加热装置,可以扩大加热装置的使用温度范围,满足不同的温度需求。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (13)

  1. 一种半导体设备中的加热装置,设置在所述半导体设备的工艺腔室中,其特征在于,包括:
    加热本体,用于承载晶片,且在所述加热本体中设置有用于产生热量的加热部件;以及,
    冷却结构,设置于所述加热本体的下方,且所述冷却结构被设置为选择性地在距离所述加热本体不同的位置处与所述加热本体产生热交换。
  2. 根据权利要求1所述的加热装置,其特征在于,所述冷却结构包括:
    冷却本体,在所述冷却本体中设置有用于与所述加热本体产生热交换的冷却部件;以及
    冷却升降组件,与所述冷却本体连接,用于带动所述冷却本体升降,以调节所述冷却本体与所述加热本体在竖直方向上的间距。
  3. 根据权利要求2所述的加热装置,其特征在于,所述加热装置还包括连接部件和密封结构,其中,
    所述连接部件与所述加热本体连接,且所述连接部件在所述加热本体的底部与所述加热本体构成容置空间,所述冷却本***于所述容置空间中,所述冷却升降组件穿过设置在所述工艺腔室底部的通孔延伸至所述工艺腔室的外部;
    所述密封结构的上端与所述连接部件密封连接,所述密封结构的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
  4. 根据权利要求3所述的加热装置,其特征在于,所述密封结构包括波纹管和波纹管轴,其中,
    所述波纹管轴的上端与所述连接部件连接,所述波纹管轴的下端穿过所 述通孔延伸至所述工艺腔室的外部,用以与升降驱动源连接;
    所述波纹管套设在所述波纹管轴上,且所述波纹管的上端与所述连接部件密封连接,所述波纹管的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
  5. 根据权利要求4所述的加热装置,其特征在于,所述冷却升降组件包括升降部件、至少一个螺钉和至少一个弹性件,其中,所述波纹管轴中设置有与所述容置空间相连通的中空空间,所述升降部件位于所述中空空间中,且所述升降部件的上端与所述冷却本体连接;
    所述升降部件的下端面设置有至少一个螺纹孔,且在所述波纹管轴的与所述升降部件的下端面相对的内表面设置有至少一个安装孔,各个所述安装孔一一对应地与各个所述螺纹孔同轴设置;
    各个所述螺钉自所述波纹管轴的下方由下而上一一对应地穿过各个所述安装孔与对应的所述螺纹孔螺纹连接;
    各个所述弹性件与各个所述螺钉一一对应地设置,且位于所述升降部件的下端面与所述波纹管轴的所述内表面之间,并且处于压缩状态。
  6. 根据权利要求5所述的加热装置,其特征在于,在所述升降部件中还设置有引出空间和与所述引出空间连通的两个第一引出通孔;并且,在所述波纹管轴中还设置有与所述中空空间连通的两个第二引出通孔,两个所述第二引出通孔与两个所述第一引出通孔同轴设置;
    所述冷却部件还包括所述冷却部件包括用于输送冷却水的冷却管路、进水管路和出水管路,其中,所述进水管路和出水管路各自的一端分别与所述冷却管路的入口和出口连接,所述进水管路和出水管路各自的另一端均依次经由对应的所述第一引出通孔和第二引出通孔延伸至所述工艺腔室的外部。
  7. 根据权利要求1所述的加热装置,其特征在于,所述冷却结构包括 多个冷却本体,多个所述冷却本体沿远离所述加热本体的下表面的方向间隔设置;并且每个所述冷却本体中均设置有用于与所述加热本体产生热交换的冷却部件。
  8. 根据权利要求7所述的加热装置,其特征在于,所述加热装置还包括连接部件和密封结构,其中,
    所述连接部件与所述加热本体连接,且所述连接部件在所述加热本体的底部与所述加热本体构成容置空间,多个所述冷却本体均位于所述容置空间中,其中,每个所述冷却部件均包括用于输送冷却水的冷却管路,以及进水管路和出水管路,所述进水管路和出水管路各自的一端分别与所述冷却管路的入口和出口连接,所述进水管路和出水管路各自的另一端穿过设置在所述工艺腔室底部的通孔延伸至所述工艺腔室的外部;
    所述密封结构的上端与所述连接部件密封连接,所述密封结构的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
  9. 根据权利要求8所述的加热装置,其特征在于,所述密封结构包括波纹管和波纹管轴,其中,
    所述波纹管轴的上端与所述连接部件连接,所述波纹管轴的下端穿过所述通孔延伸至所述工艺腔室的外部,用以与升降驱动源连接;并且,所述波纹管轴中设置有与所述容置空间相连通的中空空间,以及与所述中空空间连通的多对引出通孔,所述进水管路和出水管路各自的另一端经由对应的一对所述引出通孔延伸至所述工艺腔室的外部;
    所述波纹管套设在所述波纹管轴上,且所述波纹管的上端与所述连接部件密封连接,所述波纹管的下端与所述工艺腔室的底部密封连接,用以密封所述容置空间和所述通孔。
  10. 根据权利要求7所述的加热装置,其特征在于,位于最上方的所述 冷却本体的上表面与所述加热本体的上表面相贴合。
  11. 根据权利要求2或7任一所述的加热装置,其特征在于,所述加热本体的下表面和所述冷却本体的上表面相互平行。
  12. 根据权利要求3或8所述的加热装置,其特征在于,所述加热装置还包括热交换气体输入管路,所述热交换气体输入管路的出气端与所述容置空间相连通,所述热交换气体输入管路的进气端用于与热交换气体源连接。
  13. 一种半导体设备,包括工艺腔室,其特征在于,还包括如权利要求1-12任一项所述的加热装置,所述加热装置设置在所述工艺腔室中。
PCT/CN2021/084863 2020-04-10 2021-04-01 半导体设备中的加热装置及半导体设备 WO2021204051A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21785131.0A EP4135477A4 (en) 2020-04-10 2021-04-01 HEATING DEVICE IN A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE
US17/916,580 US20230143413A1 (en) 2020-04-10 2021-04-01 Semiconductor apparatus and heating device in semiconductor apparatus
KR1020227032421A KR20220143738A (ko) 2020-04-10 2021-04-01 반도체 디바이스 중의 가열 장치 및 반도체 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281032.9A CN111477569B (zh) 2020-04-10 2020-04-10 一种半导体设备中的加热装置及半导体设备
CN202010281032.9 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021204051A1 true WO2021204051A1 (zh) 2021-10-14

Family

ID=71751544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084863 WO2021204051A1 (zh) 2020-04-10 2021-04-01 半导体设备中的加热装置及半导体设备

Country Status (6)

Country Link
US (1) US20230143413A1 (zh)
EP (1) EP4135477A4 (zh)
KR (1) KR20220143738A (zh)
CN (1) CN111477569B (zh)
TW (1) TWI821648B (zh)
WO (1) WO2021204051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807906A (zh) * 2022-06-27 2022-07-29 江苏邑文微电子科技有限公司 一种原子层沉积设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477569B (zh) * 2020-04-10 2024-02-27 北京北方华创微电子装备有限公司 一种半导体设备中的加热装置及半导体设备
CN112144033B (zh) * 2020-09-09 2022-12-09 北京北方华创微电子装备有限公司 基座组件及半导体加工设备
CN213951334U (zh) * 2020-10-26 2021-08-13 北京北方华创微电子装备有限公司 一种晶片承载机构及半导体工艺设备
CN112509954B (zh) * 2021-02-04 2021-06-08 北京中硅泰克精密技术有限公司 半导体工艺设备及其承载装置
CN115142045B (zh) * 2021-03-29 2023-12-19 鑫天虹(厦门)科技有限公司 可准确调整温度的承载盘及薄膜沉积装置
CN113136568B (zh) * 2021-04-07 2022-10-11 拓荆科技股份有限公司 一种节能型主动控温喷淋头
CN113604786B (zh) * 2021-07-06 2024-05-17 北京北方华创微电子装备有限公司 半导体设备的加热器及半导体设备
CN114121590B (zh) * 2021-11-19 2024-05-17 北京北方华创微电子装备有限公司 工艺腔室
CN114446833B (zh) * 2022-01-25 2023-03-24 北京北方华创微电子装备有限公司 承载装置及半导体工艺设备
CN114635122B (zh) * 2022-05-20 2022-11-18 拓荆科技(北京)有限公司 化学气相沉积加热装置
CN115376976B (zh) * 2022-10-25 2023-03-24 无锡邑文电子科技有限公司 用于半导体加工设备的加热冷却复合盘及其控制方法
CN116978825B (zh) * 2023-07-31 2024-03-22 宇弘研科技(苏州)有限公司 一种半导体复合冷却盘结构及半导体轨道

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297670A (zh) * 1998-03-05 2001-05-30 Fsi国际公司 包含低热质量导热烘烤盘的合成烘烤/冷却装置
JP2005015820A (ja) * 2003-06-24 2005-01-20 Nec Kansai Ltd スパッタ装置
JP2005150506A (ja) * 2003-11-18 2005-06-09 Sumitomo Electric Ind Ltd 半導体製造装置
CN106567042A (zh) * 2015-10-09 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热模块、物理气相沉积腔室以及沉积设备
JP2019075219A (ja) * 2017-10-13 2019-05-16 住友電気工業株式会社 ヒータモジュール
CN110875167A (zh) * 2018-08-31 2020-03-10 北京北方华创微电子装备有限公司 冷却腔室及半导体加工设备
CN111477569A (zh) * 2020-04-10 2020-07-31 北京北方华创微电子装备有限公司 一种半导体设备中的加热装置及半导体设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9412918D0 (en) * 1994-06-28 1994-08-17 Baxendine Alar R Apparatus for uniformly heating a substrate
TWI424541B (zh) * 2011-07-15 2014-01-21 Sokudo Co Ltd 溫度變更系統
US9668373B2 (en) * 2013-03-15 2017-05-30 Applied Materials, Inc. Substrate support chuck cooling for deposition chamber
US10431435B2 (en) * 2014-08-01 2019-10-01 Applied Materials, Inc. Wafer carrier with independent isolated heater zones
KR102163938B1 (ko) * 2016-06-23 2020-10-12 가부시키가이샤 알박 유지 장치
JP6982394B2 (ja) * 2017-02-02 2021-12-17 東京エレクトロン株式会社 被加工物の処理装置、及び載置台
CN108987323B (zh) * 2017-06-05 2020-03-31 北京北方华创微电子装备有限公司 一种承载装置及半导体加工设备
JP6392961B2 (ja) * 2017-09-13 2018-09-19 日本特殊陶業株式会社 静電チャック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297670A (zh) * 1998-03-05 2001-05-30 Fsi国际公司 包含低热质量导热烘烤盘的合成烘烤/冷却装置
JP2005015820A (ja) * 2003-06-24 2005-01-20 Nec Kansai Ltd スパッタ装置
JP2005150506A (ja) * 2003-11-18 2005-06-09 Sumitomo Electric Ind Ltd 半導体製造装置
CN106567042A (zh) * 2015-10-09 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热模块、物理气相沉积腔室以及沉积设备
JP2019075219A (ja) * 2017-10-13 2019-05-16 住友電気工業株式会社 ヒータモジュール
CN110875167A (zh) * 2018-08-31 2020-03-10 北京北方华创微电子装备有限公司 冷却腔室及半导体加工设备
CN111477569A (zh) * 2020-04-10 2020-07-31 北京北方华创微电子装备有限公司 一种半导体设备中的加热装置及半导体设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135477A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807906A (zh) * 2022-06-27 2022-07-29 江苏邑文微电子科技有限公司 一种原子层沉积设备
CN114807906B (zh) * 2022-06-27 2022-09-16 江苏邑文微电子科技有限公司 一种原子层沉积设备

Also Published As

Publication number Publication date
CN111477569A (zh) 2020-07-31
EP4135477A4 (en) 2024-05-08
US20230143413A1 (en) 2023-05-11
CN111477569B (zh) 2024-02-27
EP4135477A1 (en) 2023-02-15
TW202139331A (zh) 2021-10-16
KR20220143738A (ko) 2022-10-25
TWI821648B (zh) 2023-11-11

Similar Documents

Publication Publication Date Title
WO2021204051A1 (zh) 半导体设备中的加热装置及半导体设备
US11574831B2 (en) Method and apparatus for substrate transfer and radical confinement
US8061949B2 (en) Multiple slot load lock chamber and method of operation
CN100382276C (zh) 基板载放台、基板处理装置以及基板处理方法
TW202105650A (zh) 基板處理裝置
US8741065B2 (en) Substrate processing apparatus
TWI759414B (zh) 被加工物之處理裝置
US7822324B2 (en) Load lock chamber with heater in tube
US8124907B2 (en) Load lock chamber with decoupled slit valve door seal compartment
JPH07176601A (ja) 準無限な熱源/熱シンク
TWI725549B (zh) 靜電卡盤及反應腔室
CN102262999A (zh) 等离子体处理装置
CN104988472A (zh) 半导体镀膜设备控温***
TWI805287B (zh) 半導體熱處理設備
CN105489527A (zh) 承载装置以及半导体加工设备
TWM630904U (zh) 晶圓承載機構及半導體製程設備
CN105514016A (zh) 承载装置及半导体加工设备
TW201947684A (zh) 基底處理系統
KR20190114869A (ko) 냉각 시스템
CN102760680B (zh) 用于半导体基片处理设备的卡盘组件
CN111336843B (zh) 一种圆形结构的水冷板式换热器
KR102037922B1 (ko) 기판 처리 장치
TWI817732B (zh) 安裝底座、噴淋頭組件、噴淋頭的控溫方法及等離子體處理裝置
WO2024139778A1 (zh) 反应腔室及晶圆刻蚀装置
RU2193258C2 (ru) Устройство охлаждения полупроводниковых пластин

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032421

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021785131

Country of ref document: EP

Effective date: 20221110

NENP Non-entry into the national phase

Ref country code: DE