WO2021201122A1 - 溶接構造体及び貯蔵タンク - Google Patents

溶接構造体及び貯蔵タンク Download PDF

Info

Publication number
WO2021201122A1
WO2021201122A1 PCT/JP2021/013907 JP2021013907W WO2021201122A1 WO 2021201122 A1 WO2021201122 A1 WO 2021201122A1 JP 2021013907 W JP2021013907 W JP 2021013907W WO 2021201122 A1 WO2021201122 A1 WO 2021201122A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
welded
welded structure
storage tank
Prior art date
Application number
PCT/JP2021/013907
Other languages
English (en)
French (fr)
Inventor
石丸 詠一朗
拓也 櫻庭
加賀 祐司
柿原 豊彦
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to JP2022512637A priority Critical patent/JP7246568B2/ja
Priority to CN202180006909.6A priority patent/CN114829653A/zh
Priority to US17/780,264 priority patent/US11946126B2/en
Priority to KR1020227018006A priority patent/KR102592758B1/ko
Priority to EP21778711.8A priority patent/EP4130321A1/en
Publication of WO2021201122A1 publication Critical patent/WO2021201122A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2588/00Large container
    • B65D2588/02Large container rigid

Definitions

  • the present invention relates to a welded structure, particularly a welded structure and a storage tank that are suitably applicable to a hot water storage tank for storing hot water and a beverage storage tank for storing beverages.
  • the present application claims priority based on Japanese Patent Application No. 2020-064501 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
  • Stainless steel is used as a material for hot water storage tanks that store hot water and beverage storage tanks that store beverages because of its excellent corrosion resistance in the water environment.
  • the hot water to be stored includes, for example, tap water, well water, hot spring water, and the like, and the temperature ranges from room temperature to a little less than 100 ° C.
  • Examples of the beverage to be stored include beverages containing fruit juice, various electrolytes, weak acids and the like, and having a relatively low pH.
  • ferritic stainless steel and austenitic stainless steel have been used as stainless steels applicable to such applications.
  • Patent Document 1 below describes a hot water container made of ferritic stainless steel.
  • Patent Document 2 below describes a container for hot water in which the container wall is made of ferritic stainless steel and the material to be welded to the container is made of austenitic stainless steel.
  • ferritic stainless steel and austenitic stainless steel have lower durability than two-phase stainless steel. Therefore, it is necessary to increase the wall thickness in order to have a predetermined strength, and there is a problem that the demand for thin wall weight reduction cannot be sufficiently met. Further, since austenitic stainless steel contains a large amount of relatively expensive alloy components, there is a problem that it is disadvantageous in terms of cost. On the other hand, duplex stainless steel has a relatively high proof stress, so that it can meet the demand for thin wall weight reduction, and since the content of expensive alloy components is relatively small, it is also advantageous in terms of cost.
  • the ratio of the ferrite phase to the austenite phase is controlled to be approximately 1: 1 by heat treatment in order to ensure excellent corrosion resistance.
  • the fraction of the ferrite phase in the weld metal becomes higher than that of the base metal when the weld metal is cooled from the molten state in a short time.
  • the austenite phase having a large solid solution amount of N is reduced, and N is concentrated in the ferrite phase.
  • the solid solution amount of N in the ferrite phase is very small, excess N exceeding the solid solution limit is bonded to Cr to precipitate Cr nitride.
  • duplex stainless steel there is a problem that a Cr-deficient layer is formed in the weld metal, and as a result, the corrosion resistance of the weld metal and the weld heat-affected zone is lowered.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a welded structure made of duplex stainless steel, which has excellent proof stress and also excellent corrosion resistance at a welded portion. Another object of the present invention is to provide a storage tank having such a welded structure.
  • the welded structure according to one aspect of the present invention has the following requirements.
  • the welded structure is a welded structure including a base material made of duplex stainless steel and a welded portion in which the base materials are welded to each other.
  • the chemical components of the base material are, in mass%, C: 0.050% or less, Si: 0.03 to 5.00%, Mn: 0.01 to 8.00%, P: 0.070% or less, S: 0.0500% or less, Ni: 1.0 to 30.0%, Cr: 15.0 to 30.0%, Mo: 0.010 to 8.000%, Cu: 0.010 to 5.000 %, N: 0.050 to 0.800%, Al: 0 to 1.00%, Ti: 0 to 0.400%, Nb: 0 to 0.40%, V: 0 to 0.50%, W : 0 to 1.0%, Zr: 0 to 0.200%, Ta: 0 to 0.100%, Sn: 0 to 0.50%, Sb: 0 to 0.50%, Ga: 0 to 0.
  • the base material may contain one or more selected from the following first group and second group.
  • Group 1 By mass%, Al: 1.00% or less, Ti: 0.010 to 0.400%, Nb: 0.01-0.40%, V: 0.01-0.50%, W: 0.01-1.0%, Zr: 0.001 to 0.200%, Ta: 0.001 to 0.100%, Sn: 0.001 to 0.50%, Sb: 0.001 to 0.50%, and Ga: 0.001 to 0.50%.
  • Group 2 By mass%, B: 0.0002 to 0.0050%, Ca: 0.0002 to 0.0050%, Mg: 0.0002 to 0.0050%, and REM: 0.001 to 0.10%.
  • the proof stress of the base metal may be 500 MPa or more, and the proof stress of the welded portion may be 440 MPa or more.
  • the welded structure according to any one of the above [1] to [3] may be used for a storage tank for hot water.
  • the welded structure according to any one of the above [1] to [3] may be used for a storage tank for beverages.
  • the storage tank according to another aspect of the present invention is a storage tank for liquids, and has the welded structure according to any one of [1] to [3].
  • the liquid may be any one or more of water, beverages, hot water, and dairy products.
  • the welded structure of the present embodiment includes a base material made of duplex stainless steel and a welded portion in which the base materials are welded to each other.
  • the base material is, for example, a duplex stainless steel plate.
  • the base material and the welded portion will be described.
  • C 0.050% or less If C is contained in excess of 0.050%, Cr carbides are generated and the corrosion resistance is deteriorated. Therefore, in order to ensure the corrosion resistance of the base material, the C content is limited to 0.050% or less.
  • the C content is preferably 0.030% or less.
  • C is an element that forms austenite that constitutes a two-phase structure. Therefore, the C content is preferably 0.005% or more, more preferably 0.010% or more.
  • Si 0.03 to 5.00% Si is contained in an amount of 0.03% or more for deoxidation.
  • the Si content is preferably 0.10% or more, more preferably 0.30% or more. However, if Si is contained in excess of 5.00%, precipitation of the ⁇ phase is promoted. Therefore, the Si content is limited to 5.00% or less.
  • the Si content is preferably 2.00% or less, more preferably 0.60% or less.
  • Mn 0.01-8.00% Mn is contained in an amount of 0.01% or more as a deoxidizing material and an austenite stabilizing element for forming a two-phase structure.
  • the Mn content is preferably 0.10% or more, more preferably 1.50% or more. However, if Mn is contained in excess of 8.00%, the corrosion resistance deteriorates. Therefore, the Mn content is limited to 8.00% or less.
  • the Mn content is preferably 5.00% or less, more preferably 4.00% or less.
  • the P content is limited to 0.070% or less.
  • the P content is preferably 0.050% or less, more preferably 0.035% or less.
  • the P content is preferably 0.005% or more.
  • the S content is limited to 0.0500% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0010% or less.
  • the S content is preferably 0.0003% or more.
  • Ni 1.0 to 30.0% Since Ni is contained in the passivation film of stainless steel, it has an effect of suppressing the occurrence of pitting corrosion when the Fe concentration of the passivation film is high and an effect of suppressing the progress of corrosion when corrosion occurs. .. If the Ni content is less than 1.0%, sufficient corrosion resistance cannot be obtained. Therefore, the Ni content is set to 1.0% or more. The Ni content is preferably 2.0% or more, more preferably 4.0% or more. On the other hand, if the Ni content exceeds 30.0%, the Cr concentration of the film is too low, and sufficient corrosion resistance cannot be obtained. Therefore, it is necessary to reduce the Ni content to 30.0% or less. The Ni content is preferably 15.0% or less, more preferably 10.0% or less, still more preferably 7.0% or less.
  • the Cr content is preferably 18.0% or more, more preferably 20.0% or more, still more preferably 21.0% or more.
  • the Cr content exceeds 30.0%, the Cr concentration in the passive film becomes high, and sufficient corrosion resistance cannot be obtained in an environment where the natural potential of the stainless steel is high.
  • the precipitation of the ⁇ phase increases, and the corrosion resistance and hot manufacturability deteriorate. Therefore, it is necessary to reduce the Cr content to 30.0% or less.
  • the Cr content is preferably 28.0% or less, more preferably 25.0% or less.
  • Mo 0.010 to 8,000% Mo is an element that improves the corrosion resistance of the base material, and its effect is exhibited when it is contained in an amount of 0.010% or more. Therefore, the Mo content is 0.010% or more.
  • the Mo content is preferably 0.050% or more, more preferably 1.000% or more.
  • Mo content is 8,000% or less, preferably 4.000% or less, and more preferably 1.500% or less.
  • the Cu content is 0.010% or more.
  • the Cu content is preferably 0.050% or more, more preferably 0.200% or more.
  • the Cu content is 5.000% or less, preferably 3.000% or less, and more preferably 0.500% or less.
  • N 0.050 to 0.800% N is an effective element for enhancing corrosion resistance, and when N of 0.050% or more is contained, corrosion resistance is improved. Therefore, the N content is 0.050% or more.
  • the N content is preferably 0.100% or more, more preferably 0.120% or more.
  • the N content is 0.800% or less.
  • the N content is preferably 0.300% or less, more preferably 0.180% or less.
  • the base material contains any one or more alloying elements selected from the following first group and second group for the purpose of adjusting various properties of steel. You may be. However, since these elements do not have to be contained, the lower limit is 0%.
  • Group 1 Mass%, Al: 1.00% or less, Ti: 0.010 to 0.400%, Nb: 0.01 to 0.40%, V: 0.01 to 0.50%, W : 0.01 to 1.0%, Zr: 0.001 to 0.200%, Ta: 0.001 to 0.100%, Sn: 0.001 to 0.50%, Sb: 0.001 to 0 .50% and Ga: 0.001 to 0.50%.
  • Group 2 Mass%, B: 0.0002 to 0.0050%, Ca: 0.0002 to 0.0050%, Mg: 0.0002 to 0.0050%, and REM: 0.001 to 0. 10%.
  • Al is useful as a deoxidizing element, but it should not be contained in a large amount because it deteriorates processability.
  • the Al content should be limited to 1.00% or less.
  • the preferred range of Al content is 0.50% or less.
  • the Al content may be 0.01% or more.
  • Ti, Nb, V, W, Zr, Ta, Sn, Sb, and Ga are elements that improve corrosion resistance, and may be contained alone or in combination of two or more in the following range.
  • Ti and Nb have an action of fixing C and N as carbonitride to improve corrosion resistance, particularly an action of suppressing intergranular corrosion. Therefore, one or both of Ti and Nb may be contained. The effect is exhibited when the Ti content is 0.010% or more and the Nb content is 0.01% or more at least one of them. On the other hand, the effect is saturated even if it is contained excessively. Therefore, the Ti content is 0.400% or less, and the Nb content is 0.40% or less.
  • the total content of Ti and Nb is preferably 5 times or more and 30 times or less of the total content of C and N. More preferably, the total content of Ti and Nb is 10 times or more and 25 times or less the total content of C and N.
  • V and W are elements that improve corrosion resistance, particularly crevice corrosion resistance, and may be contained as necessary.
  • the content of each of V and W is preferably 0.01% or more.
  • the V content and W content are preferably 0.04% or more.
  • the inclusion of an excessive amount of V or W saturates the effect of lowering the workability and improving the corrosion resistance. Therefore, the V content is set to 0.50% or less, and the W content is set to 1.0% or less.
  • the V content is preferably 0.30% or less.
  • the W content is preferably 0.6% or less, more preferably 0.5% or less.
  • Zr 0 to 0.200%
  • Ta 0 to 0.100%
  • Zr and Ta are elements that improve corrosion resistance by modifying inclusions, and may be contained if necessary. Further, since Zr is stably present as an oxide in the passive film, it functions to strengthen the passive film. Since the effect is exhibited by the Zr content of 0.001% or more, the Zr content is preferably 0.001% or more. The Zr content is preferably 0.010% or more. On the other hand, when the Zr content exceeds 0.200%, defects due to agglutination of oxides frequently occur. Therefore, the Zr content is set to 0.200% or less. The Zr content is preferably 0.100% or less.
  • the lower limit of the Ta content is preferably 0.001% or more.
  • the Ta content is preferably 0.100% or less, more preferably 0.050% or less.
  • the Ta content is preferably 0.020% or less.
  • Sn and Sb are elements useful for improving corrosion resistance, and may be contained within a range that does not impair low cost. If the Sn or Sb content is less than 0.001%, the effect of improving the corrosion resistance is not exhibited. Therefore, it is preferable that the Sn and Sb contents are 0.001% or more.
  • the respective contents of Sn and Sb are preferably 0.01% or more.
  • the respective contents of Sn and Sb are set to 0.50% or less.
  • the respective contents of Sn and Sb are preferably 0.30% or less.
  • Ga 0 to 0.50% Ga is an element that contributes to the improvement of corrosion resistance and processability, and may be contained.
  • the Ga content is preferably 0.001% or more.
  • the Ga content is preferably 0.01% or more, more preferably 0.015% or more.
  • the Ga content is set to 0.50% or less.
  • the Ga content is preferably 0.30% or less.
  • B, Ca, Mg, and REM are elements that improve hot workability, and one or more of them may be contained for that purpose. Since the effects of B, Ca, and Mg are exhibited at a content of 0.0002% or more, it is preferable that the contents of each of B, Ca, and Mg are 0.0002% or more. In the case of REM, the content is preferably 0.001% or more. The content of each of B, Ca and Mg is more preferably 0.0005% or more. The REM content is more preferably 0.005% or more.
  • the content of each of B, Ca, and Mg is 0.0050% or less, and the REM content is 0.10% or less.
  • the content of each of B, Ca and Mg is preferably 0.0015% or less.
  • the REM content is preferably 0.03% or less.
  • REM rare earth element
  • Sc scandium
  • Y yttrium
  • Lu lutetium
  • the REM content is the total amount of these elements.
  • the balance other than the above-mentioned elements is Fe and impurities, but in addition to the above-described elements, the effect of the present embodiment is not impaired. Can be contained in.
  • the ferrite phase fraction in the weld metal is in the range of 45 to 75% by volume.
  • the weld metal begins to solidify in the ferrite phase and transforms into the austenite phase after it becomes a complete solid phase.
  • the cooling rate is relatively high as in welding, a sufficient time for solid phase transformation cannot be obtained, so that the ratio of the austenite phase decreases and the ratio of the ferrite phase inevitably increases.
  • it is difficult to obtain sufficient time for solid phase transformation during welding. It cures when there are many austenite phases.
  • a ferrite phase having a volume fraction of 45% or more is required in the weld metal in order to maintain sufficient workability in the welded portion.
  • the volume fraction of the ferrite phase is set to 75% or less.
  • the amount of precipitate is important in addition to the ferrite phase volume fraction.
  • Precipitates are the starting point for rust in duplex stainless steel welds. Therefore, when welding duplex stainless steel, welding conditions that suppress precipitation are often set, but in the welded structure of the present embodiment, Cr carbonitide is difficult to precipitate, and Cr carbonitide is difficult to precipitate. Even if a substance is precipitated, Cr diffusion proceeds and the Cr-deficient layer is detoxified at a time during which solid-phase transformation to the austenite phase is possible. Therefore, if the precipitate is less than 10%, it does not become a starting point of rust. Therefore, the amount of precipitates formed in the ferrite phase is set to less than 10% in terms of area ratio. Examples of the precipitate include Cr carbonitride.
  • the hardness of the weld metal has a great influence on the strength of the welded structure.
  • the weld metal generally contains minute defects and is difficult to detect, but when it affects the strength of the structure, the weld metal itself shows a large change in hardness as compared with the base metal. Therefore, the hardness of an arbitrary portion of the weld metal is measured, and the ratio of the hardness of the weld metal to the hardness of the base metal (hardness of the weld metal / hardness of the base metal) is set in the range of 0.8 to 1.2.
  • the hardness ratio is preferably in the range of 0.9 to 1.1.
  • the welded structure of the present embodiment preferably has a proof stress of a base material of 500 MPa or more.
  • the proof stress of the welded portion (the proof stress of the welded joint containing the weld metal) is preferably 440 MPa or more.
  • the yield strength of the base metal and the yield strength of the weld are measured by a tensile test.
  • the tensile test is carried out under the conditions in accordance with JIS Z 2241: 2011.
  • the welded structure of the present embodiment can be suitably used as a storage tank for hot water. Further, the welded structure of the present embodiment can be suitably used as a storage tank for beverages.
  • Duplex stainless steel is easily assumed to have high yield strength and is hard to deform.
  • the structure of the welded portion once melts and changes to a solidified structure, so that it becomes coarse and soft. That is, it is necessary to consider the deformation of the welded structure with the welded portion as a reference.
  • Increasing the plate thickness is a countermeasure to increase the strength against deformation, but the increase in plate thickness is accompanied by an increase in weight. If the weight increases, the laying work cost and the transportation cost will increase, which will cause an economic disadvantage. Therefore, it is desirable to reduce the weight if possible. Therefore, the welded structure of the present embodiment in which the decrease in strength of the welded portion is small has excellent characteristics as a welded structure. Further, since the decrease in strength is suppressed by the structure control, the decrease in corrosion resistance can also be suppressed in duplex stainless steel.
  • a storage tank from the welded structure of the present embodiment, for example, a end plate as a base material is manufactured by a molding process such as press working, and a tank body as a base material is manufactured and these are welded.
  • This welded structure is used to manufacture a storage tank.
  • the strength of the base material is high, so that the springback of the end plate is strong. Therefore, it becomes difficult to form a gap structure in the vicinity of the welded portion between the tank body and the end plate.
  • the end of the end plate is overlapped with the end of the tank body to form a welded portion at the overlapped portion, but if the strength of the end plate is high, in the vicinity of the welded portion, The gap structure is less likely to be formed. Therefore, when a storage tank is manufactured using the welded structure of the present embodiment, crevice corrosion is less likely to occur, and corrosion resistance can be further improved.
  • the storage tank of the present embodiment is a storage tank for liquids and has the welded structure of the present embodiment described above. It may consist of the welded structure of the present embodiment. It is exemplified that the storage tank of the present embodiment has a end plate and a body portion, and the end plate and the cylindrical body portion are joined by welding. The end plate and the body may be made of one stainless steel plate or two or more stainless steel plates joined by welding.
  • the welded structure of the present embodiment can be manufactured by welding duplex stainless steel having the above-mentioned chemical composition according to predetermined welding conditions.
  • arc welding such as TIG welding, MIG welding, MAG welding, and shielded metal arc welding can be applied.
  • the welding material may or may not be used.
  • a welding material is used, a commonly used duplex stainless steel welding material can be used.
  • the chemical component of the welding material for example, Type2209, which is a two-phase stainless steel welding material manufactured by Nippon Steel Stainless Steel Corporation, can be used, but the welding material is not limited to this.
  • the welding material may be a welding rod, a solid wire, or a flux-cored wire.
  • Shield gas is used for welding.
  • the shield gas any one of N 2 , Ar, Ar + O 2 , and He will be used.
  • the hardness ratio of the weld metal and the amount of precipitates on the welded portion can be set in a preferable range.
  • the shield gas is H 2 , it causes hydrogen embrittlement.
  • the present embodiment shows an embodiment of the present invention, and the present invention is not limited to the following configurations.
  • the present invention may adopt various conditions as long as it does not deviate from the requirements of the present invention and achieves the object of the present invention.
  • the underline in the table indicates that it is out of the scope of the present invention.
  • Stainless steel having the chemical components shown in Tables 1 and 2 was melted and cast in a vacuum induction melting furnace. Then, the heat was equalized to 1200 ° C., and then hot forging was performed. It was hot rolled to a thickness of 6.0 mm and annealed and pickled. Then, it was cold-rolled to a thickness of 0.6 to 4.0 mm, further subjected to annealing, pickling, and electrolytic treatment. From the above, a stainless steel plate as a base material was manufactured.
  • TIG welding or MIG welding was performed using the obtained stainless steel plate as a base material.
  • Welding material was supplied by welding wire as needed.
  • two stainless steel plates as a base material are prepared, and as the end face treatment of each, if the plate thickness is less than 1.5 mm, it remains cut, and if the plate thickness is 1.5 mm or more, V A welded joint was manufactured by providing a groove and performing associative welding by supplying a welding material with a welding wire as needed.
  • the shield gas was as shown in Table 3, and the flow rate of the shield gas was adjusted so that the outside air did not come into contact with the welded portion.
  • the weld metal shown here indicates a portion that has been melted and resolidified during welding, and indicates a region in which a continuous layered structure from the base metal portion is discontinuous when the etching treatment shown below is performed.
  • the method for measuring the ferrite phase volume fraction in the weld metal, the hardness ratio, and the amount of precipitates in the weld metal was as follows.
  • the weld metal was oxalic acid etched in accordance with JIS G 0571: 2003.
  • the electrolytic current was 0.1 A per 1 cm 2.
  • the hardness at any 10 points was carried out with a load of 100 gf using the Vickers hardness test, and the average value of 8 points excluding the minimum value and the maximum value was obtained.
  • the yield strength of the base metal and the yield strength of the welded joint containing the weld metal were measured.
  • the proof stress of the base metal and the proof stress of the welded part were measured by a tensile test and carried out under the conditions in accordance with JIS Z 2241: 2011.
  • the yield strength of the welded part a JIS No. 13B test piece in which the welded part is arranged in the center of the parallel part of the test piece is prepared, and if the welded part is thicker than the base metal and is in a built-up state, it is ground.
  • the cross-sectional area shape was made to match the parallel portion of the base metal.
  • the proof stress of the base metal was 500 MPa or more, and the proof stress of the tensile test piece containing the weld metal was 440 MPa or more.
  • the present invention example No. In 1 to 15 no rust was generated in the weld metal, and the proof stress of the base metal and the proof stress of the welded portion were also satisfactory values.
  • Comparative Example No. In 16 to 36 rust was generated in the weld metal, and the proof stress of the welded portion was not a satisfactory value for some samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この溶接構造体は、二相ステンレス鋼からなる母材と、前記母材同士が溶接されてなる溶接部と、を備えた溶接構造体であって、前記母材が所定の化学成分を有し、前記溶接部の溶接金属の金属組織におけるフェライト相の体積率が45~75%であり、前記母材の硬度に対する前記溶接金属の硬度の比が0.8~1.2であり、前記溶接金属の前記フェライト相内に生成する析出物量が面積率で10%未満である。

Description

溶接構造体及び貯蔵タンク
 本発明は、溶接構造体、特に、温水を貯蔵する温水貯蔵タンクや飲料を貯蔵する飲料貯蔵タンクに好適に適用可能な溶接構造体、及び、貯蔵タンクに関する。
 本願は、2020年03月31日に、日本に出願された特願2020-064501号に基づき優先権を主張し、その内容をここに援用する。
 ステンレス鋼は、その水環境における優れた耐食性から、温水を貯蔵する温水貯蔵タンクや飲料を貯蔵する飲料貯蔵タンクの素材に利用されている。貯蔵される温水としては例えば、水道水、井戸水、温泉水等があり、温度は常温から100℃弱までと広範囲である。また、貯蔵される飲料としては、果汁、各種の電解質、弱酸等を含み、比較的pHが低い飲料が挙げられる。従来、このような用途に適用可能なステンレス鋼として、フェライト系ステンレス鋼やオーステナイト系ステンレス鋼が利用されている。例えば、下記特許文献1には、フェライト系ステンレス鋼からなる温水容器が記載されている。また、下記特許文献2には、容器壁がフェライト系ステンレス鋼から構成され、これに溶接される材料がオーステナイト系ステンレス鋼から構成された温水用容器が記載されている。
 しかし、フェライト系ステンレス鋼やオーステナイト系ステンレス鋼は、二相ステンレス鋼に比べて耐力が低い。そのため、所定の強度を持たせるために肉厚を大きくする必要があり、薄肉軽量化の要求に十分に応えられない問題がある。また、オーステナイト系ステンレス鋼は、比較的高価な合金成分を多く含有するため、コスト面で不利になる問題がある。一方、二相ステンレス鋼は、耐力が比較的高いので薄肉軽量化の要望に応えることかでき、また、高価な合金成分の含有量が比較的少ないので、コスト面でも有利になる。
 しかし、二相ステンレス鋼の母材では、優れた耐食性を確保するために、熱処理によってフェライト相とオーステナイト相との比率が概ね1:1となるように制御されている。しかしながら、二相ステンレス鋼に溶接施工を行った場合、溶接金属が溶融状態から短時間で冷却される際に、溶接金属中のフェライト相の分率が母材よりも高くなる。溶接金属のフェライト相の分率が高くなると、Nの固溶量が多いオーステナイト相が少なくなり、フェライト相中にNが濃化する。しかしながら、フェライト相においてNの固溶量は非常に小さいので、固溶限界を超える過剰のNがCrと結合してCr窒化物を析出させる。これにより、二相ステンレス鋼では、溶接金属中にCr欠乏層が形成され、結果として溶接金属や溶接熱影響部の耐食性が低下してしまう問題がある。
日本国特許第5010323号公報 日本国特許第3179194号公報
 本発明は上記事情に鑑みてなされたものであり、耐力に優れ、また、溶接部における耐食性にも優れた二相ステンレス鋼からなる溶接構造体を提供することを課題とする。また、本発明は、そのような溶接構造体を有する貯蔵タンクを提供することを課題とする。
 上記課題を解決するため、本発明の一態様に係る溶接構造体は、下記の要件を有する。
[1]本発明の一態様に係る溶接構造体は、二相ステンレス鋼からなる母材と、前記母材同士が溶接されてなる溶接部と、を備えた溶接構造体であって、
 前記母材の化学成分が、質量%で、C:0.050%以下、Si:0.03~5.00%、Mn:0.01~8.00%、P:0.070%以下、S:0.0500%以下、Ni:1.0~30.0%、Cr:15.0~30.0%、Mo:0.010~8.000%、Cu:0.010~5.000%、N:0.050~0.800%、Al:0~1.00%、Ti:0~0.400%、Nb:0~0.40%、V:0~0.50%、W:0~1.0%、Zr:0~0.200%、Ta:0~0.100%、Sn:0~0.50%、Sb:0~0.50%、Ga:0~0.50%、B:0~0.0050%、Ca:0~0.0050%、Mg:0~0.0050%、及びREM:0~0.10%、を含有し、残部はFeおよび不純物であり、
 前記溶接部の溶接金属の金属組織におけるフェライト相の体積率が45~75%であり、
 前記母材の硬度に対する前記溶接金属の硬度の比が0.80~1.20であり、
 前記溶接金属の前記フェライト相内に生成する析出物量が面積率で10%未満である。
[2]上記[1]に記載の溶接構造体は、前記母材が、以下の第1群及び第2群より選択される1種以上を含有してもよい。
 第1群:質量%で、
Al:1.00%以下、
Ti:0.010~0.400%、
Nb:0.01~0.40%、
V:0.01~0.50%、
W:0.01~1.0%、
Zr:0.001~0.200%、
Ta:0.001~0.100%、
Sn:0.001~0.50%、
Sb:0.001~0.50%、及び
Ga:0.001~0.50%。
 第2群:質量%で、
B:0.0002~0.0050%、
Ca:0.0002~0.0050%、
Mg:0.0002~0.0050%、及び
REM:0.001~0.10%。
[3]上記[1]または[2]に記載の溶接構造体は、前記母材の耐力が500MPa以上であり、前記溶接部の耐力が440MPa以上であってもよい。
[4]上記[1]~[3]のいずれか一項に記載の溶接構造体は、温水用の貯蔵タンク用であってもよい。
[5]上記[1]~[3]のいずれか一項に記載の溶接構造体は、飲料用の貯蔵タンク用であってもよい。
[6]本発明の別の態様に係る貯蔵タンクは、液体用の貯蔵タンクであって、[1]~[3]のいずれか一項に記載の溶接構造体を有する。
[7]上記[6]に記載の貯蔵タンクでは、前記液体が水、飲料、温水、及び乳製品のいずれか1つ以上であってもよい。
 本発明の上記態様によれば、耐力に優れ、また、溶接部における耐食性にも優れた二相ステンレス鋼からなる溶接構造体、及びこの溶接構造体を有する貯蔵タンクを提供できる。
溶接金属のフェライト相中の析出物面積率と腐食試験後のさび有無との関係を示すグラフである。
 以下、本実施形態の溶接構造体の一実施形態、及び本実施形態の貯蔵タンクの一実施形態についてそれぞれ詳述する。
<溶接構造体>
 本実施形態の溶接構造体は、二相ステンレス鋼からなる母材と、母材同士が溶接された溶接部と、を備える。母材は例えば二相ステンレス鋼板である。
 以下、母材及び溶接部について説明する。
(母材)
 二相ステンレス鋼の化学成分の含有量の限定範囲とその理由について説明する。鋼の成分を示す%については、特に断らない限り質量%を意味する。
C:0.050%以下
 0.050%を超えてCを含有させると、Cr炭化物が生成して、耐食性が劣化する。したがって、母材の耐食性を確保するため、C含有量を0.050%以下に制限する。C含有量は、好ましくは0.030%以下である。
 一方で、Cは、二相組織を構成するオーステナイトを形成する元素である。このため、C含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。
Si:0.03~5.00%
 Siは脱酸のため0.03%以上含有させる。Si含有量は、好ましくは0.10%以上であり、より好ましくは0.30%以上である。しかしながら、5.00%を超えてSiを含有させると、σ相の析出が促進される。そのため、Si含有量を5.00%以下に限定する。Si含有量は、好ましくは2.00%以下であり、より好ましくは0.60%以下である。
Mn:0.01~8.00%
 Mnは、脱酸材および二相組織にするためのオーステナイト安定化元素として、0.01%以上含有させる。Mn含有量は、好ましくは0.10%以上であり、より好ましくは1.50%以上である。しかしながら、8.00%を超えてMnを含有させると耐食性が劣化する。そのため、Mn含有量を8.00%以下に限定する。Mn含有量は、好ましくは5.00%以下であり、より好ましくは4.00%以下である。
P:0.070%以下
 Pは熱間加工性および靭性を劣化させるため、P含有量を0.070%以下に制限する。P含有量は、好ましくは0.050%以下であり、より好ましくは0.035%以下である。一方、P含有量は低い方が好ましいものの、過度にP含有量を低減させると精錬コストが高くなる。そのため、コストの観点では、P含有量は、好ましくは0.005%以上である。
S:0.0500%以下
 Sは熱間加工性、靭性および耐食性を劣化させるため、S含有量を0.0500%以下に制限する。S含有量は、好ましくは0.0100%以下であり、より好ましくは0.0010%以下である。一方、S含有量は低い方が好ましいものの、過度にS含有量を低減させると原料コストと精錬コストが高くなる。そのため、コストの観点では、S含有量は、好ましくは0.0003%以上である。
Ni:1.0~30.0%
 Niは、ステンレス鋼の不働態皮膜に含有されることで、不働態皮膜のFe濃度が高い場合に孔食発生を抑制する効果と、腐食が生じた際の腐食進展を抑制する効果とを有する。Ni含有量が1.0%未満では、十分な耐食性を得ることが出来ない。そのため、Ni含有量を1.0%以上とする。Ni含有量は、好ましくは2.0%以上であり、より好ましくは4.0%以上である。
 一方、Ni含有量が30.0%を超えると、皮膜のCr濃度が低下しすぎるため十分な耐食性を得ることが出来ない。よって、Ni含有量を30.0%以下にする必要がある。Ni含有量は、好ましくは15.0%以下であり、より好ましくは10.0%以下であり、更に好ましくは7.0%以下である。
Cr:15.0~30.0%
 Cr含有量が15.0%未満の場合、十分な耐食性を得ることが出来ない。従ってCr含有量を15.0%以上にする必要がある。Cr含有量は、好ましくは18.0%以上であり、より好ましくは20.0%以上であり、更に好ましくは21.0%以上である。
 一方、Cr含有量が30.0%を超えると、不働態皮膜中のCr濃度が高くなりステンレス鋼の自然電位が高い環境で十分な耐食性を得ることが出来ない。またσ相の析出が多くなり、耐食性、熱間製造性が劣化する。従ってCr含有量を30.0%以下にする必要がある。Cr含有量は、好ましくは28.0%以下であり、より好ましくは25.0%以下である。
Mo:0.010~8.000%
 Moは、母材の耐食性を向上させる元素であり、0.010%以上の含有で効果が発揮される。このため、Mo含有量は、0.010%以上である。Mo含有量は、好ましくは0.050%以上であり、より好ましくは1.000%以上である。
 一方、8.000%以下であればMoを含有してもよいが、Mo含有量が4.000%を超えると、熱間加工時にσ相が析出し易くなる。そのため、Mo含有量は、8.000%以下であり、好ましくは4.000%以下であり、より好ましくは1.500%以下である。
Cu:0.010~5.000%
 0.010%以上のCuを含有させると、腐食が生じた際の腐食進展を抑制する効果が得られる。このため、Cu含有量は、0.010%以上である。Cu含有量は、好ましくは0.050%以上であり、より好ましくは0.200%以上である。
 一方、5.000%以下の量であればCuを含有してもよいが、Cu含有量が3.000%を超えると、鋳造時に割れが発生し易くなる。そのため、Cu含有量は、5.000%以下であり、好ましくは3.000%以下であり、より好ましくは0.500%以下である。
N:0.050~0.800%
 Nは耐食性を高める有効な元素であり、0.050%以上のNを含有させると、耐食性が向上する。このため、N含有量は、0.050%以上である。N含有量は、好ましくは0.100%以上であり、より好ましくは0.120%以上である。
 一方、0.800%超のNを含有させると、鋳造時に気泡が発生し易くなる。そのため、N含有量は、0.800%以下である。N含有量は、好ましくは0.300%以下であり、より好ましくは0.180%以下である。
 本実施形態においては、前述の元素に加えて、鋼の諸特性を調整する目的で、母材に以下の第1群及び第2群から選択されるいずれか1種以上の合金元素が含有されていてもよい。ただし、これらの元素は含有されなくてもよいので、下限は0%である。
 第1群:質量%で、Al:1.00%以下、Ti:0.010~0.400%、Nb:0.01~0.40%、V:0.01~0.50%、W:0.01~1.0%、Zr:0.001~0.200%、Ta:0.001~0.100%、Sn:0.001~0.50%、Sb:0.001~0.50%、及びGa:0.001~0.50%。
 第2群:質量%で、B:0.0002~0.0050%、Ca:0.0002~0.0050%、Mg:0.0002~0.0050%、及びREM:0.001~0.10%。
 第1群:Al、Ti、Nb、V、W、Zr、Ta、Sn、Sb、Ga
 Al:Alは脱酸元素として有用であるが、加工性を劣化させるため多量に含有させるべきではない。Al含有量を1.00%以下に制限するのがよい。Al含有量の好ましい範囲は、0.50%以下である。Al含有量は0.01%以上であってもよい。
 Ti、Nb、V、W、Zr、Ta、Sn、Sb、Gaは、耐食性を向上する元素であり、以下の範囲で1種または2種以上含有してもよい。
 Ti:0.010~0.400%、Nb:0.01~0.40%、V:0.01~0.50%、W:0.01~1.0%、Zr:0.001~0.200%、Ta:0.001~0.100%、Sn:0.001~0.50%、Sb:0.001~0.50%、Ga:0.001~0.50%。
Ti:0.010~0.400%
Nb:0.01~0.40%
 TiおよびNbは、C、Nを炭窒化物として固定して耐食性を向上させる作用、特に粒界腐食を抑制する作用を有する。このため、TiとNbの一方又は両方を含有させてもよい。Ti含有量が0.010%以上、Nb含有量が0.01%以上の少なくとも一方であれば、効果が発揮される。
 一方、過剰に含有させても効果は飽和する。そのため、Ti含有量は0.400%以下、Nb含有量は0.40%以下とする。
 Ti、Nbの適正な含有量としては、TiとNbとの合計含有量がCとNとの合計含有量の5倍以上かつ30倍以下がよい。より好ましくは、TiとNbとの合計含有量が、CとNとの合計含有量の10倍以上、25倍以下であるのがよい。
V:0~0.50%、W:0~1.0%
 V、Wは、耐食性、特に耐すき間腐食性を改善する元素であり、必要に応じて含有してもよい。この効果を得る場合、V、Wのそれぞれの含有量を0.01%以上とすることが好ましい。V含有量、W含有量は、好ましくは0.04%以上である。
 一方、VやWの過度の量の含有は、加工性を低下させ、かつ耐食性を向上させる効果も飽和する。そのため、V含有量を0.50%以下とし、W含有量を1.0%以下とする。V含有量は、好ましくは0.30%以下である。W含有量は、好ましくは0.6%以下、より好ましくは0.5%以下である。
Zr:0~0.200%
Ta:0~0.100%
 Zr、Taは、介在物の改質により耐食性を向上させる元素であり、必要に応じて含有してもよい。
 また、Zrは不働態皮膜中に酸化物として安定して存在するため、不働態皮膜の強化に機能する。0.001%以上のZr含有によって効果が発揮されるため、Zr含有量を0.001%以上とすることが好ましい。Zr含有量は、好ましくは0.010%以上である。
 一方、Zr含有量が0.200%超の場合、酸化物の凝集合体による疵が多発する。そのためZr含有量を0.200%以下とする。Zr含有量は、好ましくは、0.100%以下である。
 また、Taは、0.001%以上の含有によって、効果が発揮されるので、Ta含有量の下限を0.001%以上とすることが好ましい。
 一方、Ta含有量が0.100%超の場合、常温延性の低下や靭性の低下を招く。そのため、Ta含有量は、好ましくは0.100%以下であり、より好ましくは0.050%以下である。少量のTa含有量で効果を発現させる場合には、Ta含有量を0.020%以下とすることが好ましい。
Sn:0~0.50%
Sb:0~0.50%
 微量のSn又はSbを含有させると、耐食性が向上する。このため、Sn、Sbは、耐食性を向上させるのに有用な元素であり、廉価性を損なわない範囲で含有させてもよい。Sn又はSbの含有量が0.001%未満では、耐食性を向上させる効果は発現されないので、Sn、Sbのそれぞれの含有量を0.001%以上とすることが好ましい。Sn、Sbのそれぞれの含有量は、好ましくは0.01%以上である。
 一方、Sn又はSbの含有量が0.50%を超えると、コスト増が顕在化すると共に加工性も低下する。そのため、Sn、Sbのそれぞれの含有量を0.50%以下とする。Sn、Sbのそれぞれの含有量は、好ましくは0.30%以下である。
Ga:0~0.50%
 Gaは、耐食性および加工性向上に寄与する元素であり、含有させてもよい。効果を得る場合、Ga含有量は、0.001%以上が好ましい。Ga含有量は、好ましくは0.01%以上、より好ましくは0.015%以上である。
 一方、Ga含有量が0.50%を超えると、靭性が低下し製造性が著しく低下する。そのため、Ga含有量を0.50%以下とする。Ga含有量は、好ましくは0.30%以下である。
 第2群:B、Ca、Mg、REM
B:0~0.0050%
Ca:0~0.0050%
Mg:0~0.0050%
REM:0~0.10%
 B、Ca、Mg、REMは、熱間加工性を改善する元素であり、その目的で1種または2種以上を含有させてもよい。B、Ca、Mgの効果は0.0002%以上の含有量で発現することから、B、Ca、Mgのそれぞれの含有量を0.0002%以上とすることが好ましい。REMの場合は、含有を0.001%以上とすることが好ましい。B、Ca、Mgのそれぞれの含有量は、より好ましくは0.0005%以上である。REM含有量は、より好ましくは0.005%以上である。
 一方、いずれも過剰な量の含有は、逆に熱間加工性を低下させる。そのため、その含有量を次のように設定することが好ましい。すなわち、B、Ca、Mgのそれぞれの含有量は0.0050%以下であり、REM含有量は0.10%以下である。
B、Ca、Mgのそれぞれの含有量は、好ましくは0.0015%以下である。REM含有量は、好ましくは0.03%以下である。
 ここで、REM(希土類元素)は一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)との総称を指す。単独で含有させてもよいし、混合物であってもよい。REM含有量は、これら元素の合計量である。
 本実施形態の母材を構成する二相ステンレス鋼は、上述してきた元素以外の残部は、Fe及び不純物であるが、以上説明した各元素の他にも、本実施形態の効果を損なわない範囲で含有させることができる。
(溶接部)
 次に、溶接部について説明する。溶接部には、溶融し再凝固した溶接金属と、溶融はしなかったものの、溶接時に熱影響を受けた熱影響部が形成される。以下、溶接部が含む溶接金属の組織について説明する。
 溶接金属におけるフェライト相の分率は、体積%で45~75%の範囲とする。
 溶接金属は、フェライト相にて凝固が始まり、完全に固相になってからオーステナイト相へ変態する。溶接のような比較的冷却速度が大きい場合には、固相変態に十分な時間が得られないことから、オーステナイト相の比率が低下しフェライト相の比率が必然的に高くなる。しかしながら、溶接中に固相変態の時間を十分に稼ぐことは難しい。オーステナイト相が多いと硬化する。本実施形態の溶接構造体では、溶接部に十分な加工性を保たせるために、溶接金属において体積率で45%以上のフェライト相が必要である。一方で、フェライト相中のC,Nの固溶限界濃度は低いので、フェライト相が多くなると炭窒化物が生成する。この場合、Cr炭窒化物が生成するとCr欠乏層が形成されるが、Cr欠乏層はさびの起点となるので問題となる。したがって、フェライト相の体積率は75%以下とする。
 また、溶接金属においては、フェライト相体積率に加え、析出物の量も重要である。二相ステンレス鋼の溶接部において析出物はさびの起点となる。そのため、二相ステンレス鋼の溶接に際しては、析出物を抑制するような溶接条件を設定することが多いが、本実施形態の溶接構造体においては、Cr炭窒化物が析出し難く、Cr炭窒化物が析出していてもオーステナイト相への固相変態が可能な時間においてCrの拡散が進みCr欠乏層が無害化されるので、析出物が10%未満であればさびの起点とはならない。そのため、フェライト相内に生成する析出物量を面積率で10%未満とする。析出物としてはCr炭窒化物が挙げられる。
 さらに、溶接金属の硬度は溶接構造体の強度に多大な影響を及ぼす。溶接金属には微小欠陥を含むことが一般的であり検出することが難しいが、構造体の強度に影響するような場合では、溶接金属そのものが母材に比べ大きな硬度変化を示す。したがって、溶接金属の任意箇所の硬度を測定し、母材の硬度に対する溶接金属の硬度の比(溶接金属の硬度/母材の硬度)を0.8~1.2の範囲とする。硬度の比は、望ましくは0.9~1.1の範囲である。
 また、本実施形態の溶接構造体は、母材の耐力が500MPa以上であることが好ましい。また、溶接部の耐力(溶接金属を含む溶接継手の耐力)が440MPa以上であることが好ましい。母材の耐力を500MPa以上、また、溶接部の耐力を440MPa以上とすることで、溶接構造体の薄肉軽量化を図ることができる。更に、溶接構造体全体の強度を高めることができ、温水タンクや飲料タンクの大容量化を図ることができる。
 母材の耐力及び溶接部の耐力は、引張試験により測定する。引張試験は、JIS Z 2241:2011に準拠した条件にて実施する。
 母材の耐力は、JIS 13号B試験片を作製し、n=2の試験を実施し、低い方の値を採用する。
 溶接部の耐力は、試験片平行部の中心に溶接部を配置したJIS 13号B試験片を作製し、溶接部が母材よりも厚く肉盛り状態となっている場合は、研削して断面積形状を母材平行部と一致させる。n=2の試験を実施し、低い方の値を採用する。
 本実施形態の溶接構造体は、温水用の貯蔵タンクとして好適に用いることができる。
 また、本実施形態の溶接構造体は、飲料用の貯蔵タンクとして好適に用いることができる。
 二相ステンレス鋼は、高耐力で変形し難いことが容易に想定される。一方で、溶接部の組織は一度溶解し凝固組織へ変化することから、粗大化し軟化することも知られている。つまり、溶接構造体の変形は、溶接部を基準として考える必要がある。変形に対する強度を上昇させるためには板厚を増加することが対策となるが、板厚の増加は重量の増加を伴う。重量が増加すると敷設工事費用や運搬費用の上昇を招き、経済的不利益を生じることから可能であれば軽量化が望ましい。したがって、溶接部の強度低下が小さい本実施形態の溶接構造体は、溶接構造体として優れた特性を有している。さらに、強度低下の抑制を組織制御によって達成しているため、二相ステンレス鋼で耐食性の低下も抑制可能となる。
 本実施形態の溶接構造体から、貯蔵タンクを製造する際には、例えばプレス加工等の成形加工により母材である鏡板を製造するとともに、母材としてのタンク胴部を製造し、これらを溶接して溶接構造体とし、この溶接構造体を用いて、貯蔵タンクを製造する。
 本実施形態の溶接構造体は、母材の強度が高いので、鏡板のスプリングバックが強くなっている。このため、タンク胴部と鏡板との間の溶接部近傍では、すき間構造が形成されにくくなる。すなわち、通常、タンクの製造する際は、タンク胴部の端部に、鏡板の端部を重ね合わせ、重なった部分において溶接部を形成するが、鏡板の強度が高いと、溶接部近傍において、すき間構造が形成されにくくなる。
 従って、本実施形態の溶接構造体を用いて、貯蔵タンクを製造した場合、すきま腐食が発生しにくくなり、耐食性をより高めることができる。
<貯蔵タンク>
 本実施形態の貯蔵タンクは、液体用の貯蔵タンクであって、上述した本実施形態の溶接構造体を有する。本実施形態の溶接構造体からなっていてもよい。
 本実施形態の貯蔵タンクは、鏡板と、胴部とを有し、鏡板と円筒状の胴部とが溶接により接合されてなることが例示される。鏡板、及び胴部は、それぞれ、1枚のステンレス鋼板からなる場合、2枚以上のステンレス鋼板が溶接により接合されてなる場合のいずれでもよい。
 次に、本実施形態の溶接構造体の製造方法について説明する。
 本実施形態の溶接構造体は、上述した化学成分を有する二相ステンレス鋼を、所定の溶接条件に従って溶接することで、製造することができる。
 溶接方法としては、TIG溶接、MIG溶接、MAG溶接、被覆アーク溶接等のアーク溶接を適用できる。溶接材料は、使用してもよく、使用しなくてもよい。溶接材料を使用する場合は、二相ステンレス鋼溶接材料として一般に使用されているものを用いることができる。好ましくは、母材の化学成分に近い化学組成を有する溶接材料を選択するとよい。溶接材料の化学成分としては、例えば、日鉄ステンレス株式会社製の二相ステンレス鋼の溶接材料であるType2209といったものを用いることができるが、溶接材料はこれに限定されない。
 溶接材料としては、溶接棒、ソリッドワイヤ、フラックス入りワイヤのいずれであってもよい。
 溶接に際しては、シールドガスを用いる。シールドガスは、N、Ar、Ar+O、Heのいずれかのシールドガスを用いることとする。
 これらのいずれかのシールドガスを用いることで、大気中の酸素を溶接時の溶融金属に懸濁することが抑制され微細分散した酸化物の生成を回避することが可能となり、母材の硬度に対する溶接金属の硬度比、溶接部の析出物量を好ましい範囲とすることができる。
 これら以外のシールドガスを用いた場合には、母材の硬度に対する溶接金属の硬度比、溶接金属のフェライト相内の析出物量を好ましい範囲とすることができない。また、例えば、シールドガスをH2とした場合には、水素脆化の原因となる。
 以下に、本発明の効果を確認するため、以下の実施例を行った。本実施例は本発明の一実施例を示すものであり、本発明は、以下の構成に限定されない。本発明は、本発明の要件を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 表中の下線は本発明の範囲から外れていることを示す。
 表1及び表2に示す化学成分を有するステンレス鋼を真空誘導溶解炉にて溶製し、鋳造した。その後、1200℃に均熱し、次いで熱間鍛造した。厚さ6.0mmまで熱間圧延し、焼鈍・酸洗を施した。その後、厚さ0.6~4.0mmまで冷間圧延し、更に焼鈍・酸洗、電解処理を施した。以上により、母材としてのステンレス鋼板を製造した。
 次に、得られたステンレス鋼板を母材として、TIG溶接またはMIG溶接を行った。必要に応じて溶接ワイヤにより溶接材料を供給した。具体的には、母材となるステンレス鋼板を2枚用意し、それぞれの端面処理として、1.5mm未満の板厚の場合には切断まま、1.5mm以上の板厚の場合には、V開先を設け、必要に応じて溶接ワイヤにより溶接材料を供給することにより付き合わせ溶接を行い、溶接継手を製造した。シールドガスは表3に記載の通りとし、溶接部に外気が触れないようにシールドガスの流量を調整した。
 得られた溶接継手におけるフェライト相の体積率、母材の硬度に対する前記溶接金属の硬度の比(硬度比)、溶接金属におけるフェライト相内の析出物量を測定した。結果を表4に示す。
 ここで示す溶接金属とは溶接施工時に溶融し再凝固した部分を示し、以下に示すエッチング処理を行った際に、母材部から連続した層状組織が不連続となった領域を示している。溶接金属におけるフェライト相体積率、硬度比、溶接金属における析出物量の測定方法は次の通りとした。溶接金属に対して、JIS G 0571:2003に準拠しシュウ酸エッチングを行った。電解電流を1cmあたり0.1Aとした。エッチング後のエッチング処理面に対して、光学顕微鏡により500倍の倍率で撮影した写真を用い、200μm×200μmの範囲の測定領域を10視野撮影し、各撮影視野に対して、ASTM E 562に規定するポイントカウント法により測定した。すなわち、写真上に10mm格子を描き、格子点数を100とした際に、格子点上にフェライトもしくは析出物が存在した数の割合を、フェライト相分率(体積%)または溶接金属における析出物量(面積%)とした。
 母材の硬度及び溶接金属の硬度は、ビッカース硬さ試験を用い任意の10箇所における硬度を荷重100gfにて実施し、最小値と最大値とを除外した8点の平均値を求めた。
 更に、母材の耐力及び溶接金属を含む溶接継手の耐力を測定した。母材の耐力及び溶接部の耐力は、引張試験により測定し、JIS Z 2241:2011に準拠した条件にて実施した。母材の耐力は、JIS 13号B試験片を作製し、n=2の試験を実施し、低い方の値を採用した。また、溶接部の耐力は、試験片平行部の中心に溶接部を配置したJIS 13号B試験片を作製し、溶接部が母材よりも厚く肉盛り状態となっている場合は、研削して断面積形状を母材平行部と一致させた。n=2の試験を実施し、低い方の値を採用した。母材の耐力が500MPa以上、溶接金属を含む引張試験片の耐力が440MPa以上を合格とした。
 また、JIS G 0597:2017に準じて、乾湿繰返し促進腐食試験を行った。試験期間は20サイクルとした。試験後の溶接金属の外観を観察し、さびの有無を目視で確認した。
 表4及び図1に示すように、本発明例No.1~15では、溶接金属におけるさびの発生がなく、母材の耐力及び溶接部の耐力も満足できる値であった。一方、比較例No.16~36では、溶接金属においてさびが発生し、一部の試料については溶接部の耐力が満足できる値ではなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の上記態様によれば、耐力に優れ、また、溶接部における耐食性にも優れた二相ステンレス鋼からなる溶接構造体、及びこの溶接構造体を有する貯蔵タンクを提供できる。

Claims (7)

  1.  二相ステンレス鋼からなる母材と、前記母材同士が溶接されてなる溶接部と、を備えた溶接構造体であって、
     前記母材の化学成分が、質量%で、
    C:0.050%以下、
    Si:0.03~5.00%、
    Mn:0.01~8.00%、
    P:0.070%以下、
    S:0.0500%以下、
    Ni:1.0~30.0%、
    Cr:15.0~30.0%、
    Mo:0.010~8.000%、
    Cu:0.010~5.000%、
    N :0.050~0.800%、
    Al:0~1.00%、
    Ti:0~0.400%、
    Nb:0~0.40%、
    V:0~0.50%、
    W:0~1.0%、
    Zr:0~0.200%、
    Ta:0~0.100%、
    Sn:0~0.50%、
    Sb:0~0.50%、
    Ga:0~0.50%、
    B:0~0.0050%、
    Ca:0~0.0050%、
    Mg:0~0.0050%、及び
    REM:0~0.10%、
    を含有し、残部はFeおよび不純物であり、
     前記溶接部の溶接金属の金属組織におけるフェライト相の体積率が45~75%であり、
     前記母材の硬度に対する前記溶接金属の硬度の比が0.80~1.20であり、
     前記溶接金属の前記フェライト相内に生成する析出物量が面積率で10%未満である、
    溶接構造体。
  2.  前記母材が、以下の第1群及び第2群より選択される1種以上を含有する、
    請求項1に記載の溶接構造体。
     第1群:質量%で、
    Al:1.00%以下、
    Ti:0.010~0.400%、
    Nb:0.01~0.40%、
    V:0.01~0.50%、
    W:0.01~1.0%、
    Zr:0.001~0.200%、
    Ta:0.001~0.100%、
    Sn:0.001~0.50%、
    Sb:0.001~0.50%、及び
    Ga:0.001~0.50%。
     第2群:質量%で、
    B:0.0002~0.0050%、
    Ca:0.0002~0.0050%、
    Mg:0.0002~0.0050%、及び
    REM:0.001~0.10%。
  3.  前記母材の耐力が500MPa以上であり、前記溶接部の耐力が440MPa以上である、
    請求項1または請求項2に記載の溶接構造体。
  4.  温水用の貯蔵タンク用である、請求項1~請求項3のいずれか一項に記載の溶接構造体。
  5.  飲料用の貯蔵タンク用である、請求項1~請求項3のいずれか一項に記載の溶接構造体。
  6.  液体用の貯蔵タンクであって、請求項1~請求項3のいずれか一項に記載の溶接構造体を有する、貯蔵タンク。
  7.  前記液体が水、飲料、温水、及び、乳製品のいずれか1つ以上である、
    請求項6に記載の貯蔵タンク。
PCT/JP2021/013907 2020-03-31 2021-03-31 溶接構造体及び貯蔵タンク WO2021201122A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022512637A JP7246568B2 (ja) 2020-03-31 2021-03-31 溶接構造体及び貯蔵タンク
CN202180006909.6A CN114829653A (zh) 2020-03-31 2021-03-31 焊接结构体及贮藏罐
US17/780,264 US11946126B2 (en) 2020-03-31 2021-03-31 Welded structure and storage tank
KR1020227018006A KR102592758B1 (ko) 2020-03-31 2021-03-31 용접 구조체 및 저장 탱크
EP21778711.8A EP4130321A1 (en) 2020-03-31 2021-03-31 Welded structure and storage tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064501 2020-03-31
JP2020-064501 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201122A1 true WO2021201122A1 (ja) 2021-10-07

Family

ID=77929526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013907 WO2021201122A1 (ja) 2020-03-31 2021-03-31 溶接構造体及び貯蔵タンク

Country Status (6)

Country Link
US (1) US11946126B2 (ja)
EP (1) EP4130321A1 (ja)
JP (1) JP7246568B2 (ja)
KR (1) KR102592758B1 (ja)
CN (1) CN114829653A (ja)
WO (1) WO2021201122A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010323B1 (ja) 1969-08-25 1975-04-21
JP3179194B2 (ja) 1992-06-29 2001-06-25 日新製鋼株式会社 ステンレス鋼製の温水用容器
WO2008062650A1 (fr) * 2006-11-21 2008-05-29 Nippon Steel & Sumikin Stainless Steel Corporation Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée
JP2010065279A (ja) * 2008-09-10 2010-03-25 Nisshin Steel Co Ltd 温水容器用ステンレス鋼板およびその製造方法並びに温水容器
JP2011173124A (ja) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd フェライト系ステンレス鋼の溶接方法
JP2014084493A (ja) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
JP2020064501A (ja) 2018-10-18 2020-04-23 ヤフー株式会社 決定装置、決定方法及び決定プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649233B2 (ja) * 1985-01-14 1994-06-29 日新製鋼株式会社 ステンレス鋼の溶接方法
JP5010323B2 (ja) 2006-04-10 2012-08-29 日新製鋼株式会社 溶接構造温水容器用フェライト系ステンレス鋼および温水容器並びにその製造法
JP3179194U (ja) 2012-08-08 2012-10-18 有限会社新潟有線テレビサービス 指向性アンテナの仰角設定取付け装置
JP6782660B2 (ja) * 2017-03-30 2020-11-11 日鉄ステンレス株式会社 酸化性流体環境用の二相ステンレス鋼溶接構造体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010323B1 (ja) 1969-08-25 1975-04-21
JP3179194B2 (ja) 1992-06-29 2001-06-25 日新製鋼株式会社 ステンレス鋼製の温水用容器
WO2008062650A1 (fr) * 2006-11-21 2008-05-29 Nippon Steel & Sumikin Stainless Steel Corporation Feuillet d'acier inoxydable traité en surface présentant une excellente résistance aux dommages dus au sel / à la corrosion et une excellente fiabilité de soudure destinée à un réservoir de carburant d'automobile et à une conduite de carburant d'automobile, et conduite soudée
JP2010065279A (ja) * 2008-09-10 2010-03-25 Nisshin Steel Co Ltd 温水容器用ステンレス鋼板およびその製造方法並びに温水容器
JP2011173124A (ja) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd フェライト系ステンレス鋼の溶接方法
JP2014084493A (ja) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
JP2020064501A (ja) 2018-10-18 2020-04-23 ヤフー株式会社 決定装置、決定方法及び決定プログラム

Also Published As

Publication number Publication date
CN114829653A (zh) 2022-07-29
US11946126B2 (en) 2024-04-02
KR102592758B1 (ko) 2023-10-25
US20220411909A1 (en) 2022-12-29
KR20220090560A (ko) 2022-06-29
JP7246568B2 (ja) 2023-03-27
EP4130321A1 (en) 2023-02-08
JPWO2021201122A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7059357B2 (ja) 二相ステンレスクラッド鋼板およびその製造方法
CN106222539B (zh) 一种高强高塑性不锈钢复合板及其制造方法
WO2015064128A1 (ja) 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法
WO2012018074A1 (ja) フェライト系ステンレス鋼
JP4687531B2 (ja) 原油タンク用鋼およびその製造方法
WO2008084838A1 (ja) 溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板
WO2014148540A1 (ja) 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
WO2018139513A1 (ja) 二相ステンレスクラッド鋼およびその製造方法
JP5949057B2 (ja) 溶接部の耐食性および低温靭性に優れたフェライト系ステンレス鋼
JP2009185382A (ja) 溶接隙間酸化皮膜の耐食性に優れるフェライト系ステンレス鋼板
CN113227409B (zh) 焊接结构物及其制造方法
CN115210400B (zh) 钢材及其制造方法、以及罐
CN102933732B (zh) 焊接部耐腐蚀性优异的结构用不锈钢板及其制造方法
WO2021201122A1 (ja) 溶接構造体及び貯蔵タンク
JP2019218613A (ja) フェライト・オーステナイト二相ステンレス鋼板および溶接構造物、ならびにそれらの製造方法
JP5012194B2 (ja) 溶接継手強度が高い温水器用フェライト系ステンレス鋼板およびその製造方法
JP2021143387A (ja) クラッド鋼板およびその製造方法
JP2007146246A (ja) スポット溶接性と成形性に優れた高強度溶融亜鉛めっき鋼板
JP7054079B2 (ja) 二相ステンレスクラッド鋼およびその製造方法
JP7054078B2 (ja) 二相ステンレスクラッド鋼およびその製造方法
WO2021182525A1 (ja) クラッド鋼板およびその製造方法ならびに溶接構造物
JP2018199867A (ja) フェライト系ステンレス鋼
EP4365326A1 (en) Submerged arc welding method
JP2022023289A (ja) 締結部品用フェライト・オーステナイト2相ステンレス鋼板およびこれを用いた締結部品ならびにスポット溶接方法
WO2024111595A1 (ja) 鋼材、ソリッドワイヤ、及び鋼製外皮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512637

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018006

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778711

Country of ref document: EP

Effective date: 20221031