WO2021199679A1 - 撮像素子および撮像素子の製造方法 - Google Patents

撮像素子および撮像素子の製造方法 Download PDF

Info

Publication number
WO2021199679A1
WO2021199679A1 PCT/JP2021/004513 JP2021004513W WO2021199679A1 WO 2021199679 A1 WO2021199679 A1 WO 2021199679A1 JP 2021004513 W JP2021004513 W JP 2021004513W WO 2021199679 A1 WO2021199679 A1 WO 2021199679A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
inspection
image pickup
semiconductor chips
pickup device
Prior art date
Application number
PCT/JP2021/004513
Other languages
English (en)
French (fr)
Inventor
健太 福島
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/911,539 priority Critical patent/US20230139201A1/en
Priority to CN202180018340.5A priority patent/CN115244693A/zh
Publication of WO2021199679A1 publication Critical patent/WO2021199679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence

Definitions

  • the present disclosure relates to an image sensor and a method for manufacturing the image sensor. More specifically, the present invention relates to an image pickup device formed by laminating a plurality of semiconductor chips and a method for manufacturing the image pickup device.
  • a semiconductor element that has been miniaturized by laminating a plurality of semiconductor chips has been used.
  • a method for manufacturing such a semiconductor element a method of laminating wafers to each other is used. This is called WoW (Wafer on Wafer), and semiconductor wafers on which integrated circuits before individualization are formed are bonded together, and the bonded semiconductor chips are electrically connected before dicing.
  • This is a manufacturing method that separates the wafers into individual pieces. It is a manufacturing method with excellent productivity because it is bonded together in the state of wafers.
  • this WoW has a problem that the yield is lowered. Defective chips such as malfunctions occur at a certain ratio in the semiconductor chips formed on the wafer before individualization.
  • the yield of the semiconductor element that has undergone the bonding process is lower than the yield of a single wafer.
  • a manufacturing method in which an individualized semiconductor chip is bonded to a wafer is also used.
  • This method for manufacturing a semiconductor element is called CoW (Chip on Wafer). It is possible to prevent a decrease in yield by inspecting each semiconductor chip region of the semiconductor chip and the wafer before bonding and selecting non-defective chips.
  • a semiconductor element for example, an image pickup device configured by laminating a semiconductor chip on which pixels that generate an image signal based on incident light are arranged and a semiconductor chip on which a processing circuit for processing an image signal is arranged.
  • the image sensor can be miniaturized by laminating and integrating a plurality of semiconductor chips.
  • An image sensor has been proposed in which semiconductor chips are selected by performing an electrical inspection on the semiconductor chips before bonding, and the semiconductor chips confirmed to be non-defective are used for bonding. For example, see Patent Document 1.).
  • the above-mentioned conventional technique has a problem that the image sensor is damaged when the semiconductor chips are bonded after the inspection.
  • the inspection of the semiconductor chip is performed by detecting the electric signal of the inspection pad formed on the surface of the semiconductor chip.
  • the detection of the electric signal can be detected by the inspection probe.
  • a metal needle is arranged on the inspection probe, and the inspection probe is electrically connected to the inspection pad by abutting the tip of the needle against the inspection pad. At this time, the needle of the inspection probe comes into contact with the inspection pad at a relatively high stylus pressure. This is to reduce the electrical resistance between the inspection pad and the inspection pad by penetrating the oxide film on the surface of the inspection pad.
  • the contact of the needles of the inspection probe causes undulations on the surface of the inspection pad. When the semiconductor chips are bonded to each other, the undulating tips may damage the opposing semiconductor chips and damage the image sensor.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to prevent damage to an image pickup device composed of a plurality of semiconductor chips bonded together.
  • the present disclosure has been made in order to solve the above-mentioned problems, and the first aspect thereof includes a semiconductor substrate and a plurality of semiconductor chips provided with wiring regions and bonded to each other, and the plurality of semiconductors.
  • One of the semiconductor chips is provided with a photoelectric conversion unit that performs photoelectric conversion of incident light, and two semiconductor chips of the plurality of semiconductor chips are bonded to each other on the surfaces of the wiring regions.
  • a first pad is provided on the surface of the wiring region and joined to each other at the time of bonding, and at least one of the two semiconductor chips is arranged in the wiring area and is placed on the bonding surface.
  • a second pad on which a convex portion is formed is further provided, and the second pad is an image pickup device having a size different from that of the first pad.
  • the second pad may be configured to have a size larger than that of the first pad.
  • an insulating film arranged between the second pad and the bonding surface may be further provided.
  • the insulating film may have an insulating material made of a silicon compound.
  • a protective metal film arranged on the surface of the second pad may be further provided.
  • At least one of the plurality of semiconductor chips may further include a third pad for connecting to an external circuit.
  • the third pad may be arranged in the same layer as the second pad.
  • the second pad may be made of aluminum.
  • the second pad may have the convex portion formed by the inspection with a stylus.
  • the convex portion may be formed in the concave portion arranged on the surface side of the bonding.
  • the two semiconductor chips out of the plurality of semiconductor chips may each include the second pad arranged so as to face each other.
  • the first pad may be made of copper.
  • the photoelectric conversion unit may perform photoelectric conversion of the incident light irradiated on a surface different from the surface on which the wiring region of the semiconductor chip is arranged.
  • At least one of the plurality of semiconductor chips may be provided with a processing circuit for processing an image signal generated based on the photoelectric conversion. Twice
  • the two semiconductor chips out of the plurality of semiconductor chips may be bonded together with the processing circuits arranged respectively.
  • a second aspect of the present disclosure is a step of arranging a photoelectric conversion unit that arranges a photoelectric conversion unit that performs photoelectric conversion of incident light on a semiconductor substrate, and a case of bonding wiring regions arranged on the two semiconductor substrates to each other.
  • the first pad arrangement step of arranging the first pad having a size different from that of the second pad while being joined to each other, and the wiring regions of the two semiconductor chips on which the first pad is arranged are connected to each other.
  • This is a method for manufacturing an image pickup device, which comprises a bonding step of bonding and joining the first pads to each other.
  • the inspection step of performing the inspection with the arranged second pad and forming the convex portion by the inspection is further provided, and the first pad arrangement step is the inspection.
  • the first pad may be arranged in the wiring area where the second pad is arranged.
  • the insulating film is arranged on the surface of the inspection pad. It is assumed that the inspection pad will be protected after the inspection.
  • FIG. 1 is a diagram showing a configuration example of an image sensor according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing the appearance of the image sensor 1.
  • the image sensor 1 in the figure is composed of a semiconductor chip and is mounted on the substrate 20 as a bare chip.
  • the substrate 20 corresponds to a substrate or the like constituting a semiconductor package, and a pad 21 for transmitting a signal of the image sensor 1 is arranged.
  • the image sensor 1 is adhered to the substrate 20 and connected to the pad 21 by wire bonding. Specifically, the pad 21 arranged on the image pickup device 1 and the pad 21 on the substrate 20 are electrically connected by the bonding wire 30.
  • the wire bonding pad of the image sensor 1 is arranged in the inner layer of the semiconductor chip constituting the image sensor 1, and the bonding wire is connected via the opening 11 formed on the upper surface of the image sensor 1.
  • a pixel array unit 50 which will be described later, is arranged on the upper surface of the image sensor 1.
  • FIG. 2 is a block diagram showing a configuration example of an image sensor according to the embodiment of the present disclosure.
  • the image sensor 1 includes a pixel array unit 50, a vertical drive unit 60, a column signal processing unit 70, and a control unit 80.
  • the pixel array unit 50 is configured by arranging pixels 110 in a two-dimensional grid pattern.
  • the pixel 110 generates an image signal according to the irradiated light.
  • the pixel 110 has a photoelectric conversion unit that generates an electric charge according to the irradiated light.
  • the pixel 110 further has a pixel circuit. This pixel circuit generates an image signal based on the electric charge generated by the photoelectric conversion unit. The generation of the image signal is controlled by the control signal generated by the vertical drive unit 60 described later.
  • the signal lines 51 and 52 are arranged in the pixel array unit 50 in an XY matrix.
  • the signal line 51 is a signal line that transmits a control signal of the pixel circuit in the pixel 110, is arranged for each line of the pixel array unit 50, and is commonly wired to the pixel 110 arranged in each line.
  • the signal line 52 is a signal line for transmitting an image signal generated by the pixel circuit of the pixel 110, is arranged in each row of the pixel array unit 50, and is commonly wired to the pixel 110 arranged in each row.
  • NS These photoelectric conversion units and pixel circuits are formed on a semiconductor substrate.
  • the vertical drive unit 60 generates a control signal for the pixel circuit of the pixel 110.
  • the vertical drive unit 60 transmits the generated control signal to the pixel 110 via the signal line 51 in the figure.
  • the column signal processing unit 70 processes the image signal generated by the pixel 110.
  • the column signal processing unit 70 processes the image signal transmitted from the pixel 110 via the signal line 52 in the figure.
  • the processing in the column signal processing unit 70 corresponds to, for example, analog-to-digital conversion that converts an analog image signal generated in the pixel 110 into a digital image signal.
  • the image signal processed by the column signal processing unit 70 is output as an image signal of the image sensor 1.
  • the control unit 80 controls the entire image sensor 1.
  • the control unit 80 controls the image sensor 1 by generating and outputting a control signal for controlling the vertical drive unit 60 and the column signal processing unit 70.
  • the control signal generated by the control unit 80 is transmitted to the vertical drive unit 60 and the column signal processing unit 70 by the signal lines 81 and 82, respectively.
  • FIG. 3 is a diagram showing a configuration example of an image sensor according to the first embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of the image sensor 1.
  • the image pickup device 1 is configured by laminating a plurality of semiconductor chips. Specifically, the image pickup device 1 in the figure includes an image pickup chip 100 and a logic chip 200, which are laminated to each other. Further, the image pickup device 1 further includes an oxide film 19, oxide film bonding layers 15 and 16, and a support substrate 400.
  • the image pickup chip 100 is a semiconductor chip in which the pixel array unit 50 having the above-mentioned pixels 110 is arranged, and is a semiconductor chip that generates an image signal.
  • the image pickup chip 100 includes a semiconductor substrate 120 and a wiring region 130.
  • the semiconductor substrate 120 is a semiconductor substrate on which the photoelectric conversion unit of the pixel 110 and the element of the pixel circuit are formed.
  • the semiconductor substrate 120 can be made of, for example, silicon (Si).
  • the photoelectric conversion unit is irradiated with incident light from the back surface side of the semiconductor substrate 120.
  • a color filter 111 and an on-chip lens 112 are arranged for each pixel 110 on the back surface side of the semiconductor substrate 120.
  • the image sensor 1 having such a configuration is referred to as a back-illuminated image sensor.
  • the wiring area 130 is an area in which wiring for transmitting a signal to an element arranged on the semiconductor substrate 120 is formed.
  • the wiring region 130 is arranged on the surface side of the semiconductor substrate 120.
  • the wiring area 130 includes an insulating layer 131 and a wiring layer 132.
  • the wiring layer 132 is wiring that transmits a signal to an element arranged on the semiconductor substrate 120.
  • the signal line 51 and the like described with reference to FIG. 2 are composed of the wiring layer 132.
  • the wiring layer 132 can be made of, for example, a metal such as copper (Cu).
  • the insulating layer 131 insulates the wiring layer 132.
  • the insulating layer 131 can be made of, for example, an insulating material such as silicon oxide (SiO 2).
  • the wiring layer 132 and the insulating layer 131 can be configured in multiple layers.
  • the wiring layers 132 arranged in different layers can be connected to each other by a via plug 133 described later.
  • a pad is arranged in the wiring area 130.
  • This pad is an electrode-shaped terminal made of a metal such as aluminum (Al).
  • Pad 141, inspection pad 142 and bonding pad 148 are arranged as such pads.
  • the pad 141 is a pad connected to the wiring layer 132 to transmit a signal.
  • the pad 141 is a pad to which the surface pad 160 described later is connected.
  • the inspection pad 142 is a pad for inspecting the imaging chip 100.
  • the inspection pad 142 is connected to the wiring layer 132 in the same manner as the pad 141, and a signal is transmitted.
  • the signal transmitted by the inspection pad 142 corresponds to a control signal for inspecting the image pickup chip 100 and a signal generated by the image pickup chip 100 during the inspection.
  • the inspection pad 142 is formed with a convex portion (convex portion 144 described later) that faces the bonding surface when the image pickup chip 100 and the logic chip 200 are bonded together.
  • the inspection of the imaging chip 100 can be performed by, for example, a semiconductor test apparatus.
  • the semiconductor test apparatus can input a control signal for inspection to the image pickup chip 100 and detect an output signal such as an image signal from the image pickup chip 100 to determine whether or not the image pickup chip 100 is a good product.
  • an output signal such as an image signal from the image pickup chip 100 to determine whether or not the image pickup chip 100 is a good product.
  • the input of the control signal and the detection of the output signal can be performed by the inspection probe.
  • a metal needle is placed on this inspection probe. By touching the inspection pad 142 with the inspection probe, the needle of the inspection probe and the inspection pad 142 are electrically connected, and a signal for inspection can be transmitted.
  • the tip of the needle comes into contact with the inspection pad 142.
  • a film such as an oxide is formed on the surface of the inspection pad 142.
  • the needle of the inspection probe is brought into contact with the inspection pad 142 by a relatively high pressure in order to penetrate the film and bring it into contact with the metal portion of the inspection pad 142. Therefore, a needle mark remains on the surface of the inspection pad 142 after the inspection. That is, the surface of the inspection pad 142 after the inspection is formed with irregularities as shown in the figure.
  • the bonding pad 148 is a pad to which the bonding wire 30 described in FIG. 1 is connected. On the back surface of the bonding pad 148, an opening 11a penetrating the semiconductor substrate 120 and the wiring region 130 from the back surface side of the imaging chip 100 is arranged. Wire bonding is performed through the opening 11a.
  • the insulating film 170 is a film that insulates the inspection pad 142. Further, the insulating film 170 is arranged between the inspection pad 142 and the bonding surface to protect the inspection pad 142.
  • the insulating film 170 can be made of an insulating material. Specifically, the insulating film 170 can be made of an oxide such as SiO 2. Further, the insulating film 170 may be configured to include a nitride such as silicon nitride (SiN). As described above, unevenness is formed on the surface of the inspection pad 142 after the inspection. If this convex portion interferes with the pad or the like of the opposite logic chip 200, there is a possibility that the semiconductor chip may be damaged or a malfunction may occur due to signal leakage. Therefore, the inspection pad 142 is arranged at a position recessed from the front surface of the image pickup chip 100 and is covered with the insulating film 170. As a result, it is possible to prevent the occurrence of problems such as damage to the logic chip 200
  • the surface pad 160 is a pad that is arranged on the surface of the wiring area 130 and transmits a signal.
  • the surface pad 160 in the figure shows an example in which a signal is transmitted while being arranged on the surface of the wiring region 130 via the pad 141.
  • the surface pad 160 is joined to the surface pad of the logic chip 200 (the surface pad 260 described later) when the imaging chip 100 and the logic chip 200 are attached to each other. Signals can be transmitted between the imaging chip 100 and the logic chip 200 via the bonded surface pads 160 and 260.
  • the surface pad 160 can be made of Cu. As will be described later, the surface pad 160 can be configured to have a size different from that of the inspection pad 142.
  • the pad 141, the inspection pad 142, the bonding pad 148, and the surface pad 160 can also be regarded as a part of the wiring arranged in the wiring area 130. Further, the insulating film 170 can be regarded as a part of the insulating layer arranged in the wiring region 130.
  • the surface pad is an example of the first pad described in the claims.
  • the inspection pad 142 is an example of the second pad described in the claims.
  • Bonding pad 148 is an example of the third pad described in the claims.
  • the logic chip 200 is a semiconductor chip in which a processing circuit for processing an image signal generated by the image pickup chip 100 is arranged. Further, a control circuit for generating a control signal of the image pickup chip 100 can be arranged on the logic chip 200.
  • the vertical drive unit 60, the column signal processing unit 70, and the control unit 80 described in FIG. 2 can be arranged on the logic chip 200.
  • the logic chip 200 includes a semiconductor substrate 220 and a wiring area 230. Twice
  • the semiconductor substrate 220 is a semiconductor substrate, like the semiconductor substrate 120. Elements such as a vertical drive unit 60 and a column signal processing unit 70 can be formed on the semiconductor substrate 220.
  • the wiring area 230 is an area in which wiring for transmitting signals to the elements arranged on the semiconductor substrate 220 is formed, and includes an insulating layer 231 and a wiring layer 232.
  • a pad 241 and an inspection pad 242 and a bonding pad 248 are arranged in the wiring area 230.
  • the pad 241 is a pad through which a signal is transmitted, similarly to the pad 141.
  • the inspection pad 242, like the inspection pad 142, is a pad through which a signal for inspection of the logic chip 200 is transmitted.
  • the bonding pad 248 is a pad to which the bonding wire 30 is connected, similarly to the bonding pad 148.
  • the opening 11b is formed on the surface of the bonding pad 248.
  • the opening 11b is an opening that penetrates the imaging chip 100 and the insulating film 270 described later. Wire bonding of the bonding pad 248 arranged on the logic chip 200 is performed through the opening 11b.
  • the pad 241 and the inspection pad 242 and the bonding pad 248 can be made of Al.
  • the insulating film 270 is a film that insulates and protects the inspection pad 242, like the insulating film 170.
  • the insulating film 270 can be made of an oxide such as SiO 2 or a nitride such as SiN.
  • the surface pad 260 is a pad that is arranged on the surface of the wiring region 230 and transmits a signal, and is a pad that is joined to the surface pad 160.
  • the surface pad 260 can be made of Cu.
  • the pad 241, the inspection pad 242, the bonding pad 248, and the surface pad 260 can also be regarded as a part of the wiring arranged in the wiring area 230. Further, the insulating film 270 can be regarded as a part of the insulating layer arranged in the wiring region 230. Further, the surface pad 260 is an example of the first pad described in the claims. The inspection pad 242 is an example of the second pad described in the claims. Bonding pad 248 is an example of the third pad described in the claims.
  • the oxide film bonding layer 15 is arranged between the imaging chip 100 and the logic chip 200 to bond the imaging chip 100 and the logic chip 200.
  • the oxide film bonding layer 15 is composed of an oxide such as SiO 2 , and the imaging chip 100 and the logic chip 200 are bonded by the oxide film bonding.
  • the surface of an oxide such as SiO 2 is activated by plasma treatment or the like, and the activated oxide films are bonded by heat and pressure contact with each other.
  • the oxide film bonding is performed between the oxide film bonding layer 15 arranged on the surface of the wiring region 230 of the logic chip 200 and the wiring region 130 of the image pickup chip 100.
  • the oxide film bonding layer 15 is omitted and the oxide film is sandwiched between the insulating films 170 and 270. It is also possible to perform joining.
  • the oxide film 19 is an oxide film that surrounds the logic chip 200.
  • the oxide film 19 protects the logic chip 200.
  • the oxide film 19 can be made of SiO 2.
  • the support substrate 400 is a substrate that supports the imaging chip 100 and the logic chip 200.
  • a Si substrate can be used for the support substrate 400.
  • the support substrate 400 is bonded to the logic chip 200 by the oxide film bonding layer 16.
  • the insulating film 170 of the imaging chip 100 and the insulating film 270 of the logic chip 200 are bonded via the oxide film bonding layer 15.
  • the facing surface pads 160 and 260 are joined by being aligned and heat-pressed.
  • the imaging chip 100 and the logic chip 200 can be bonded together.
  • the wiring region 130 and the wiring region 230 are bonded to each other via the oxide film bonding layer 15 and the insulating films 170 and 270.
  • the inspection pads 142 and 242 can be arranged at opposite positions on the bonded imaging chip 100 and the logic chip 200.
  • the inspection pads 142 and 242 on the right side of the figure show the opposite situation. It should be noted that, as in the inspection pad 142 on the left side of the figure, the opposite inspection pads 242 may not be arranged.
  • FIG. 4 is a diagram showing a configuration example of a pad according to the first embodiment of the present disclosure.
  • the figure is a schematic cross-sectional view showing a configuration example of the inspection pad 142 and the like.
  • the pad 141, the inspection pad 142, and the bonding pad 148 can be arranged in the same layer in the wiring region 130. Further, the pad 141, the inspection pad 142, and the bonding pad 148 are each connected to the wiring layer 132.
  • the pad 141 and the like and the wiring layer 132 are connected by a via plug 133.
  • the via plug 133 is made of columnar metal and connects wiring layers 132 of different layers, wiring layers 132, pads 141, and the like.
  • a protective metal film can be arranged on the surfaces of the pad 141, the inspection pad 142, and the bonding pad 148.
  • This protective metal film is a metal film that protects the pad 141 and the like, and can be composed of a laminated titanium (Ti) and titanium nitride (TiN) film. Further, laminated tantalum (Ta) and tantalum nitride (TaN) films can also be used.
  • a protective metal film 151 is arranged on the surface of the pad 141, a protective metal film 152 is arranged on the surface of the inspection pad 142, and a protective metal film 158 is arranged on the surface of the bonding pad 148.
  • a surface pad 160 is arranged on the surface of the pad 141.
  • the surface pad 160 is composed of a pad 161 and a via plug 162.
  • the pad 161 is a pad embedded in the insulating film 170, and is a pad adjacent to the surface of the wiring region 130.
  • the via plug 162 is a via plug that connects between the pads 141 and 161.
  • the figure shows an example in which one via plug 162 is arranged between the pads 141 and 161.
  • a plurality of via plugs 162 may be arranged between the pads 141 and 161.
  • the pad 161 and the via plug 162 can be made of Cu and can be formed at the same time.
  • the pad 161 and the via plug 162 can be formed by Cu plating. Specifically, it can be formed by the following procedure. First, an opening in the shape of the pad 161 and the via plug 162 is formed in the insulating film 170. Next, a protective layer (not shown) for preventing the diffusion of Cu is formed in this opening. Next, a seed layer (not shown) is arranged adjacent to the insulating film to perform plating, and a Cu film is arranged on the surface of the insulating film 170 including the opening. After that, the surface pad 160 can be formed by grinding the Cu film on the surface of the insulating film 170 to remove Cu other than the opening. Grinding of Cu can be performed by chemical mechanical polishing (CMP). When forming this opening, the protective metal film 151 is removed.
  • CMP chemical mechanical polishing
  • the inspection pad 142 is a pad to which the needle of the inspection probe for inspection is abutted.
  • a protrusion 144 is formed on the inspection pad 142 by the contact of the needle of the inspection probe.
  • the inspection pad 142 in the figure shows an example in which a recess 143 is formed in a region where the needle of the inspection probe is in contact.
  • the bonding pad 148 is a pad to which the bonding wire 30 is connected, as described above.
  • An opening 11 is formed on the back side of the bonding pad 148. When forming the opening 11, a part of the bonding pad 148 is removed to form a recess.
  • a simulated pad 149 was placed.
  • the simulated pad 149 is a pad on which no signal is transmitted and is not connected to the wiring layer 132.
  • the simulated pad 149 corresponds to a so-called dummy pad, and is a pad that is arranged in a region where the pad 141 or the like is not arranged and is used to make the film thickness of the insulating film 170 or the like uniform.
  • a protective metal film 159 is arranged on the surface of the simulated pad 149.
  • the simulated pad 149, pad 141, surface pad 160, inspection pad 142 and bonding pad 148 can be configured in different sizes. Since the inspection pad 142 comes into contact with the needle of the inspection probe, it can be configured to have a relatively large size in a plan view. On the other hand, the surface pad 160 is configured to have a relatively small size. This is to reduce the dishing during CMP in the manufacturing process described later. The pad 141 on which the surface pad 160 is arranged is also configured to have a relatively small size. Therefore, the inspection pad 142 can be configured to have a size larger than that of the surface pad 160. Further, the bonding pad 148 is configured to have a relatively large size for wire bonding.
  • the simulated pad 149 can be configured as, for example, a pad having a width of about 3 ⁇ m. Further, the pad 141 and the surface pad 160 can be configured to have a width of, for example, approximately 5 ⁇ m. Further, the inspection pad 142 can be configured to have a width of 50 ⁇ m or less, for example. Further, the bonding pad 148 can be configured to have a width of, for example, 50 to 100 ⁇ m. In this way, the size of each pad can be configured according to the purpose of use.
  • FIG. 5 is a diagram showing an example of an inspection according to the embodiment of the present disclosure.
  • the figure is a diagram showing a state of inspection in the inspection pad 142.
  • the description of the protective metal film 152 is omitted.
  • a in the figure is a diagram showing the inspection pad 142 before the inspection.
  • a recess 143 is formed on the surface of the inspection pad 142.
  • a thin insulating film 170a is arranged on the surface and side surfaces of the inspection pad 142 in the region other than the recess 143.
  • FIG. B in the figure is a diagram showing an inspection pad 142 at the time of inspection.
  • the needle 3 of the inspection probe is brought into contact with the recess 143 of the inspection pad 142.
  • the tip of the needle 3 pierces the surface of the inspection pad 142.
  • Al constituting the inspection pad 142 rises to form the convex portion 144.
  • C in the figure is a diagram showing the inspection pad 142 after the inspection.
  • the needle 3 of the inspection probe is removed, and a recess 145 of the needle mark is formed on the surface of the inspection pad 142.
  • the convex portion 144 is formed on the inspection pad 142.
  • FIGS. 6 to 9 are diagrams showing an example of a method for manufacturing an imaging chip according to the first embodiment of the present disclosure. 6 to 9 are diagrams showing an example of the manufacturing process of the imaging chip 100. Taking the imaging chip 100 as an example, the manufacturing process of the semiconductor chip according to the embodiment of the present disclosure will be described.
  • an element such as a photoelectric conversion unit is formed on the wafer-shaped semiconductor substrate 120 to form an insulating layer 131 and a wiring layer 132 (not shown) in the wiring region 130 (A in FIG. 6).
  • This step is an example of the photoelectric conversion unit arranging step described in the claims.
  • a material film 601 such as a pad 141 is formed on the surface of the insulating layer 131. This can be done, for example, by using sputtering or the like to form an Al film.
  • a material film 602 such as a protective metal film 151 is formed. This can be done, for example, by laminating the Ti and TiN films using sputtering or the like (B in FIG. 6).
  • the pad 141 and the inspection pad 142 are formed. This is done by arranging a resist on the surface of the material film 602 where the pads 141 and the like are arranged, and using this resist as a mask to etch the material films 601 and 602 other than the area where the pads 141 are arranged. Can be done (C in FIG. 6).
  • the step is an example of the second pad placement step described in the claims.
  • a thin insulating film 170a is arranged on the surface of the wiring region 130 including the pad 141 and the like. This can be done, for example, by using CVD (Chemical Vapor Deposition) to form a film of SiO 2 as a material for the insulating film 170a (D in FIG. 6).
  • CVD Chemical Vapor Deposition
  • the insulating film 170a and the protective metal film 152 at the center of the surface of the inspection pad 142 are removed. This can be done by dry etching. During this etching, the recess 143 can be formed (E in FIG. 7).
  • the wafer-shaped imaging chip 100 is inspected.
  • the needle 3 of the inspection probe is brought into contact with the inspection pad 142 to input and output an inspection signal.
  • the convex portion 144 is formed (F in FIG. 7).
  • the process is an example of the inspection process described in the claims.
  • the non-defective imaging chip 100 is selected (G in FIG. 7).
  • the insulating film 170 (insulating film 170b) is arranged on the surface of the insulating layer 131.
  • the insulating film 170b is an insulating film having a thickness that covers the pad 141 and the inspection pad 142 (H in FIG. 8).
  • openings 603 and 604 are formed in the insulating film 170 adjacent to the pad 141.
  • the openings 603 and 604 are openings corresponding to the via plug 162 and the pad 161 respectively. This can be done, for example, by using dry etching to remove the insulating film 170 in the regions of the openings 603 and 604 (I in FIG. 8).
  • the material film 605 of the surface pad 160 is arranged on the surface of the insulating film 170. At this time, the material film 605 is also arranged at the openings 603 and 604. This can be done by forming a Cu film by plating (J in FIG. 9). Next, the material film 605 arranged on the surface of the insulating film 170, excluding the openings 603 and 604, is removed. This can be done by CMP. Thereby, the via plug 162 and the pad 161 can be formed, and the surface pad 160 can be formed (K in FIG. 9).
  • the step is an example of the first pad placement step described in the claims.
  • the wafer-shaped imaging chip 100 can be manufactured.
  • a wafer-shaped logic chip 200 can be formed by the same process. After that, the logic chip 200 can be separated into individual pieces by dicing the wafer-shaped logic chip 200.
  • the imaging chip 100 can be separated into individual pieces after the logic chips 200 are attached to each other.
  • FIGS. 10 to 13 are diagrams showing an example of a method for manufacturing an image sensor according to the first embodiment of the present disclosure. 10 to 13 are diagrams showing an example of a manufacturing process of the image pickup device 1.
  • the logic chip 200 judged to be a non-defective product as a result of inspection is placed on the rearrangement board 606. At this time, a plurality of logic chips 200 are arranged so as to be aligned with the wafer-shaped imaging chip 100.
  • the logic chip 200 can be fixed by the adhesive 607 arranged on the rearranged substrate 606 (A in FIG. 10).
  • the support substrate 608 on which the oxide film bonding layer 15 is arranged is arranged on the surface of the insulating film 270 of the logic chip 200 and bonded. This can be done by oxide film bonding (B in FIG. 10).
  • the top and bottom of the support substrate 608 on which the logic chip 200 is arranged is inverted to remove the rearranged substrate 606 and the adhesive 607 (C in FIG. 10).
  • the back surface side of the semiconductor substrate 220 is ground to make it thinner. This can be done, for example, by CMP (D in FIG. 10).
  • the oxide film 609 is arranged around the logic chip 200. This can be done, for example, by arranging the SiO 2 film using CVD. Next, the surface of the oxide film 609 is ground and flattened (E in FIG. 11).
  • the support substrate 400 in which the oxide film bonding layer 16 is arranged is bonded to the surface of the oxide film 609. This can be done by oxide film bonding (F in FIG. 11).
  • the support board 608 is removed by inverting the top and bottom of the support board 400. This can be done, for example, by etching the support substrate 608 (G in FIG. 11).
  • the surface pad 260 is placed on the logic chip 200. This can be done by the steps represented by I to K in FIG. 8 (H in FIG. 11). Twice
  • the imaging chip 100 is attached to the logic chip 200. This can be done by attaching the wafer-shaped imaging chip 100 described with reference to K in FIG. 9 to the logic chip 200 arranged on the support substrate 400. This bonding is performed by oxide film bonding (I in FIG. 12). The process is an example of the bonding process described in the claims.
  • the back surface side of the semiconductor substrate 120 of the image pickup chip 100 is ground to make it thinner (J in FIG. 12).
  • the color filter 111 and the on-chip lens 112 are arranged for each pixel 110 on the semiconductor substrate 120 of the image pickup chip 100 (K in FIG. 13).
  • an opening 11 (not shown) is formed.
  • the bonded imaging chip 100 and logic chip 200 are separated into individual pieces (L in FIG. 13). Thereby, the image pickup device 1 can be manufactured.
  • FIG. 14 is a diagram showing another configuration example of the image pickup device according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of the image sensor 1 as in FIG. It differs from the image sensor 1 of FIG. 3 in that the sizes of the image pickup chip 100 and the logic chip 200 are different.
  • the logic chip 200 in the figure shows an example in which the size is smaller than that of the imaging chip 100.
  • An inspection pad 242 is arranged on the logic chip 200, and an insulating film 270 is arranged between the inspection pad 142 and the surface on the back side of the logic chip 200.
  • the image pickup chip 100 in the figure can have the inspection pad 142 arranged at a position not facing the logic chip 200.
  • the needle 3 of the inspection probe abuts on the inspection pads 142 and 242 arranged in the wiring regions of the image pickup chip 100 and the logic chip 200, respectively. And the inspection is done.
  • the image pickup chip 100 and the logic chip 200 after this inspection are bonded together to form the image pickup device 1.
  • a surface pad 160 or the like is arranged on the surface of the wiring region to raise the surface of the wiring region. It is possible to prevent the image sensor 1 from being damaged by the protrusions formed on the surfaces of the inspection pads 142 and 242 when they are bonded together.
  • the inspection pads 142 and 242 can be arranged on the bonding surface between the image pickup chip 100 and the logic chip 200.
  • Second Embodiment> In the image sensor 1 of the first embodiment described above, the needle 3 of the inspection probe is in contact with the surface of the inspection pad 142.
  • the image sensor 1 of the second embodiment of the present disclosure is described above in that a protective metal film is arranged on the surface of the inspection pad 142 and the needle 3 of the inspection probe is brought into contact with the protective metal film. Is different from the first embodiment of.
  • FIG. 15 is a diagram showing a configuration example of an inspection pad according to a second embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the inspection pad 142 as in FIG. 4. It differs from the inspection pad 142 described in FIG. 5 in that the protective metal film 152 is also arranged on the surface of the recess 143.
  • the protective metal film 152 in the figure can be formed by leaving the protective metal film 152 in the etching process described with reference to E in FIG. 7. Since the protective metal film 152 is arranged on the surface of the inspection pad 142, the needle 3 of the inspection probe comes into contact with the surface of the protective metal film 152. Since the protective metal film 152 has a hardness higher than that of Al constituting the inspection pad 142, the height of the convex portion 144 can be lowered. As a result, the tip of the convex portion 144 can be separated from the front surface of the imaging chip 100. It is possible to improve the margin of the distance between the tip of the convex portion 144 and the front surface of the imaging chip 100. Further, the thickness of the insulating film 170 can be reduced, and the image sensor 1 can be made thinner.
  • the protective metal film 152 is arranged on the surface of the inspection pad 142 in the region where the needle 3 of the inspection probe is in contact. As a result, the height of the convex portion 144 of the inspection pad 142 can be lowered, and the yield at the time of manufacturing the image pickup device 1 can be improved.
  • the image pickup device 1 of the first embodiment described above is configured by bonding two semiconductor chips, an image pickup chip 100 and a logic chip 200.
  • the image sensor 1 of the third embodiment of the present disclosure is different from the above-described first embodiment in that three or more semiconductor chips are bonded to each other.
  • FIG. 16 is a diagram showing a configuration example of an image sensor according to a third embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of the image sensor 1 as in FIG. It differs from the image sensor 1 of FIG. 3 in that the semiconductor chip 300 is arranged in addition to the image pickup chip 100 and the logic chip 200.
  • the semiconductor chip 300 is a semiconductor chip that is attached to the image pickup chip 100.
  • the semiconductor chip 300 includes a semiconductor substrate 320 and a wiring region 330.
  • An inspection pad 342, a surface pad 360, and an insulating film 370 are arranged in the wiring region 330. The inspection is performed by the inspection pad 342, and the surface pad 360 is joined to the surface pad 160 of the imaging chip 100 at the time of bonding.
  • the vertical drive unit 60 described with reference to FIG. 2 can be arranged.
  • the column signal processing unit 70 and the control unit 80 can be arranged on the logic chip 200.
  • other processing circuits and the like can be arranged on the semiconductor chip 300.
  • a memory circuit for storing image signals and a circuit for performing AI (Artificial Intelligent) processing can be arranged.
  • the surface pad 360 is an example of the first pad described in the claims.
  • the inspection pad 342 is an example of the second pad described in the claims.
  • the image sensor 1 of the third embodiment of the present disclosure is configured by laminating three or more semiconductor chips. As a result, the image sensor 1 can be miniaturized.
  • the image pickup device 1 of the third embodiment described above is configured by bonding a logic chip 200 and a semiconductor chip 300 to an image pickup chip 100.
  • the image sensor 1 of the third embodiment of the present disclosure is different from the above-described third embodiment in that the image pickup chip 100, the logic chip 200, and the semiconductor chip 300 are laminated.
  • FIG. 17 is a diagram showing a configuration example of an image sensor according to a fourth embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of the image sensor 1 as in FIG. It differs from the image sensor 1 of FIG. 16 in that the image pickup chip 100, the logic chip 200, and the semiconductor chip 300 are laminated.
  • the surface pads 260 and the surface pads 360 of the logic chip 200 and the semiconductor chip 300 are joined and bonded to each other.
  • the image pickup chip 100 is attached to the back side of the logic chip 200.
  • Signal transmission between the imaging chip 100 and the logic chip 200 can be performed by a twin contact 12 in which two via plugs are connected.
  • One via plug of the twin contact 12 is connected to the pad 141 of the imaging chip 100, and the other via plug is connected to the pad 241 of the logic chip 200.
  • the two via plugs are connected by a conductor on the surface on the back side of the imaging chip 100. Thereby, the signal can be transmitted between the pad 141 of the image pickup chip 100 and the pad 241 of the logic chip 200.
  • FIG. 18 is a diagram showing another configuration example of the image pickup device according to the fourth embodiment of the present disclosure.
  • FIG. 17 is a schematic cross-sectional view showing a configuration example of the image sensor 1 as in FIG. It differs from the image sensor 1 of FIG. 17 in that the surface pads of the image pickup chip 100 and the logic chip 200 are bonded to each other and the semiconductor chip 300 is bonded to the back side of the logic chip 200.
  • a semiconductor chip 300 is arranged in place of the support substrate 400 of the image pickup device 1 described with reference to FIG.
  • the pad 141 of the imaging chip and the pad 341 of the semiconductor chip 300 are connected by a twin contact 12.
  • the image sensor 1 of the fourth embodiment of the present disclosure is configured by stacking three or more semiconductor chips. Even when semiconductor chips of substantially the same size are arranged on the image sensor 1, they can be bonded to each other.
  • the technology according to the present disclosure can be applied to various products.
  • the present technology may be realized as an image pickup device mounted on an image pickup device such as a camera.
  • FIG. 19 is a block diagram showing a schematic configuration example of a camera which is an example of an imaging device to which the present technology can be applied.
  • the camera 1000 in the figure includes a lens 1001, an image pickup element 1002, an image pickup control unit 1003, a lens drive unit 1004, an image processing unit 1005, an operation input unit 1006, a frame memory 1007, a display unit 1008, and the like.
  • a recording unit 1009 is provided.
  • the lens 1001 is a photographing lens of the camera 1000.
  • the lens 1001 collects light from the subject and causes the light to be incident on the image pickup device 1002 described later to form an image of the subject.
  • the image pickup device 1002 is a semiconductor device that captures light from a subject focused by the lens 1001.
  • the image sensor 1002 generates an analog image signal according to the irradiated light, converts it into a digital image signal, and outputs the signal.
  • the image pickup control unit 1003 controls the image pickup in the image pickup device 1002.
  • the image pickup control unit 1003 controls the image pickup device 1002 by generating a control signal and outputting the control signal to the image pickup device 1002. Further, the image pickup control unit 1003 can perform autofocus on the camera 1000 based on the image signal output from the image pickup device 1002.
  • the autofocus is a system that detects the focal position of the lens 1001 and automatically adjusts it.
  • a method (image plane phase difference autofocus) in which the image plane phase difference is detected by the phase difference pixels arranged in the image sensor 1002 to detect the focal position can be used. It is also possible to apply a method (contrast autofocus) of detecting the position where the contrast of the image is highest as the focal position.
  • the image pickup control unit 1003 adjusts the position of the lens 1001 via the lens drive unit 1004 based on the detected focal position, and performs autofocus.
  • the image pickup control unit 1003 can be configured by, for example, a DSP (Digital Signal Processor) equipped with firmware.
  • DSP Digital Signal Processor
  • the lens driving unit 1004 drives the lens 1001 based on the control of the imaging control unit 1003.
  • the lens driving unit 1004 can drive the lens 1001 by changing the position of the lens 1001 using a built-in motor.
  • the image processing unit 1005 processes the image signal generated by the image sensor 1002. This processing includes, for example, demosaic to generate an image signal of a color that is insufficient among the image signals corresponding to red, green, and blue for each pixel, noise reduction to remove noise of the image signal, and coding of the image signal. Applicable.
  • the image processing unit 1005 can be configured by, for example, a microcomputer equipped with firmware.
  • the operation input unit 1006 receives the operation input from the user of the camera 1000.
  • a push button or a touch panel can be used for the operation input unit 1006.
  • the operation input received by the operation input unit 1006 is transmitted to the image pickup control unit 1003 and the image processing unit 1005. After that, processing according to the operation input, for example, processing such as imaging of the subject is activated.
  • the frame memory 1007 is a memory that stores a frame that is an image signal for one screen.
  • the frame memory 1007 is controlled by the image processing unit 1005 and holds frames in the process of image processing.
  • the display unit 1008 displays the image processed by the image processing unit 1005.
  • a liquid crystal panel can be used.
  • the recording unit 1009 records the image processed by the image processing unit 1005.
  • a memory card or a hard disk can be used for the recording unit 1009.
  • the cameras to which this disclosure can be applied have been described above.
  • the present technology can be applied to the image pickup device 1002 among the configurations described above.
  • the image pickup device 1 described with reference to FIG. 1 can be applied to the image pickup device 1002.
  • the configuration of the inspection pad 142 of the second embodiment can be combined with other embodiments. Specifically, the protective metal film 152 of FIG. 15 can be applied to the inspection pads 142 and the like of FIGS. 16 to 18.
  • the present technology can have the following configurations.
  • a plurality of semiconductor chips having a semiconductor substrate and a wiring area and being bonded to each other are provided.
  • One of the plurality of semiconductor chips is provided with a photoelectric conversion unit that performs photoelectric conversion of incident light.
  • Two of the plurality of semiconductor chips are first pads in which the surfaces of the wiring regions are bonded to each other and are arranged on the surface of the wiring region and joined to each other at the time of bonding.
  • a second pad is further provided such that at least one of the two semiconductor chips is arranged in the wiring region and a convex portion is formed toward the bonding surface.
  • the second pad is an image sensor configured to have a size different from that of the first pad.
  • a method for manufacturing an image sensor comprising a bonding step in which the wiring regions of two semiconductor chips on which the first pad is arranged are bonded to each other and the first pads are bonded to each other. (17) Further comprising an inspection step of performing an inspection with the arranged second pad and forming the convex portion by the inspection.
  • Imaging chip 110 pixels 120, 220, 320 Semiconductor substrate 130, 230, 330 Wiring area 141, 161, 241, 341 Pad 142, 242, 342 Inspection Pad 143 Recess 148, 248 Bonding Pad 149 Simulated Pad 151, 152, 158, 159 Protective Metal Film 160, 260, 360 Surface Pad 162 Via Plug 170, 170a, 170b, 270 Insulation film 200 Logic chip 300 Semiconductor chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

複数の半導体チップが貼り合わされて構成される撮像素子の破損を防止する。 撮像素子は、半導体基板および配線領域を備えて互いに貼り合わされる複数の半導体チップを具備する。その複数の半導体チップのうちの1つの半導体チップは、入射光の光電変換を行う光電変換部が配置される。その複数の半導体チップのうちの2つの半導体チップは、それぞれのその配線領域の表面同士が貼り合わされるとともにその配線領域の表面に配置されてその貼り合わせの際に互いに接合される第1のパッドを備える。その2つの半導体チップの少なくとも1つは、その配線領域に配置されてその貼り合わせの面に向かう凸部が形成される第2のパッドをさらに備える。その第2のパッドは、その第1のパッドとは異なるサイズに構成される。

Description

撮像素子および撮像素子の製造方法
 本開示は、撮像素子および撮像素子の製造方法に関する。詳しくは、複数の半導体チップが貼り合わされて構成される撮像素子および当該撮像素子の製造方法に関する。
 従来、複数の半導体チップが貼り合わされて小型化された半導体素子が使用されている。このような半導体素子の製造方法としてウェハ同士を貼り合わせて製造する方法が使用されている。これは、WoW(Wafer on Wafer)と称され、個片化前の集積回路が形成された半導体ウェハ同士の貼り合わせを行い、貼り合わされた半導体チップ間の電気的な接続を行った後にダイシングして個片化する製造方法である。ウェハの状態において一括して貼り合わせを行うため、生産性に優れる製造方法である。しかし、このWoWでは、歩留まりが低下するという問題がある。ウェハに形成された個片化前の半導体チップには、正常に動作しない等の不良チップが一定の比率において発生する。この不良チップを含むウェハ同士が貼り合わされる結果、少なくとも一方の半導体チップが不良チップであった場合に、個片化された半導体素子全体が不良品となる。このため、貼り合わせ工程を経た半導体素子の歩留まりは、単体のウェハにおける歩留まりより低下する。
 このようなWoWに対して、ウェハに個片化された半導体チップを貼り合わせる製造方法も使用されている。この半導体素子の製造方法は、CoW(Chip on Wafer)と称される。貼り合わせ前の半導体チップおよびウェハのそれぞれの半導体チップ領域の検査を行って良品チップを選別することにより、歩留まりの低下を防ぐことができる。このような半導体素子として、例えば、入射光に基づいて画像信号を生成する画素が配置された半導体チップと画像信号を処理する処理回路が配置された半導体チップとが貼り合わされて構成された撮像素子が使用されている。複数の半導体チップを貼り合わせて一体化することにより、撮像素子を小型化することができる。この貼り合わせ前の半導体チップに対して電気的な検査を行うことにより半導体チップを選別し、良品であることが確認された半導体チップを使用して貼り合わせを行う撮像素子が提案されている(例えば、特許文献1参照。)。
国際公開第2019/087764号
 上述の従来技術では、検査後の半導体チップの貼り合わせを行う際に、撮像素子が破損するという問題がある。半導体チップの検査は、半導体チップの表面に形成された検査用のパッドの電気信号を検出することにより行われる。電気信号の検出は、検査プローブにより検出することができる。検査プローブには金属製の針が配置されており、この針の先端を検査用パッドに当接することにより、検査プローブが検査用パッドに電気的に接続される。この際、検査プローブの針は比較的高い針圧において検査用パッドに当接される。検査用パッドの表面の酸化膜等を貫通して検査用パッドとの間の電気抵抗を小さくするためである。この検査プローブの針の当接により、検査用のパッドの表面に起伏を生じる。半導体チップ同士を貼り合わせる際、この起伏の先端により対向する半導体チップが損傷し、撮像素子が破損する場合がある。
 本開示は、上述した問題点に鑑みてなされたものであり、複数の半導体チップが貼り合わされて構成される撮像素子の破損を防止することを目的としている。
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、半導体基板および配線領域を備えて互いに貼り合わされる複数の半導体チップを具備し、上記複数の半導体チップのうちの1つの半導体チップは、入射光の光電変換を行う光電変換部が配置され、上記複数の半導体チップのうちの2つの半導体チップは、それぞれの上記配線領域の表面同士が貼り合わされるとともに上記配線領域の表面に配置されて上記貼り合わせの際に互いに接合される第1のパッドを備え、当該2つの半導体チップの少なくとも1つは上記配線領域に配置されて上記貼り合わせの面に向かう凸部が形成される第2のパッドをさらに備え、上記第2のパッドは、上記第1のパッドとは異なるサイズに構成される撮像素子である。
 また、この第1の態様において、上記第2のパッドは、上記第1のパッドより大きいサイズに構成されてもよい。
 また、この第1の態様において、上記第2のパッドおよび上記貼り合わせの面の間に配置される絶縁膜をさらに備えてもよい。
 また、この第1の態様において、上記絶縁膜は、シリコン化合物からなる絶縁物を有してもよい。
 また、この第1の態様において、上記第2のパッドの表面に配置される保護金属膜をさらに備えてもよい。
 また、この第1の態様において、上記複数の半導体チップのうちの少なくとも1つは、外部の回路と接続するための第3のパッドをさらに備えてもよい。
 また、この第1の態様において、上記第3のパッドは、上記第2のパッドと同層に配置されてもよい。
 また、この第1の態様において、上記第2のパッドは、アルミニウムにより構成されてもよい。
 また、この第1の態様において、上記第2のパッドは、触針による検査により形成された上記凸部を有してもよい。
 また、この第1の態様において、上記第2のパッドは、上記貼り合わせの面側に配置された凹部に上記凸部が形成されてもよい。
 また、この第1の態様において、上記複数の半導体チップのうちの2つの半導体チップは、相対して配置される上記第2のパッドをそれぞれ備えてもよい。
 また、この第1の態様において、上記第1のパッドは、銅により構成されてもよい。
 また、この第1の態様において、上記光電変換部は、上記半導体チップの上記配線領域が配置される面とは異なる面に照射される上記入射光の光電変換を行ってもよい。
 また、この第1の態様において、上記複数の半導体チップのうちの少なくとも1つは、上記光電変換に基づいて生成される画像信号を処理する処理回路が配置されてもよい。 
 また、この第1の態様において、上記複数の半導体チップのうちの2つの半導体チップは、上記処理回路がそれぞれ配置されるとともに上記貼り合わされてもよい。
 また、本開示の第2の態様は、半導体基板に入射光の光電変換を行う光電変換部を配置する光電変換部配置工程と、2つの半導体基板にそれぞれ配置された配線領域同士を貼り合わせる際の貼り合わせの面に向かう凸部が形成される第2のパッドを配線領域に配置する第2のパッド配置工程と、上記第2のパッドが配置された配線領域の表面に上記貼り合わせの際に互いに接合されるとともに前記第2のパッドとは異なるサイズの第1のパッドを配置する第1のパッド配置工程と、上記第1のパッドが配置された2つの半導体チップの上記配線領域同士が貼り合わされるとともにそれぞれの上記第1のパッド同士が接合される貼合せ工程とを具備する撮像素子の製造方法である。
 また、この第2の態様において、上記配置された第2のパッドにより検査を行って当該検査により上記凸部が形成される検査工程をさらに具備し、上記第1のパッド配置工程は、上記検査が行われた第2のパッドが配置された配線領域に上記第1のパッドを配置してもよい。
 本開示の態様により、検査パッドの表面に絶縁膜が配置されるという作用をもたらす。検査後の検査パッドの保護が想定される。
本開示の実施の形態に係る撮像素子の構成例を示す図である。 本開示の実施の形態に係る撮像素子の構成例を示すブロック図である。 本開示の第1の実施の形態に係る撮像素子の構成例を示す図である。 本開示の第1の実施の形態に係るパッドの構成例を示す図である。 本開示の実施の形態に係る検査の一例を示す図である。 本開示の第1の実施の形態に係る撮像チップの製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像チップの製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像チップの製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像チップの製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像素子の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像素子の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像素子の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像素子の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像素子の他の構成例を示す図である。 本開示の第2の実施の形態に係る検査パッドの構成例を示す図である。 本開示の第3の実施の形態に係る撮像素子の構成例を示す図である。 本開示の第4の実施の形態に係る撮像素子の構成例を示す図である。 本開示の第4の実施の形態に係る撮像素子の他の構成例を示す図である。 本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。
 次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。また、以下の順序で実施の形態の説明を行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.カメラへの応用例
 <1.第1の実施の形態>
 [撮像素子の外観]
 図1は、本開示の実施の形態に係る撮像素子の構成例を示す図である。同図は、撮像素子1の外観を表す図である。同図の撮像素子1は、半導体チップにより構成され、基板20にベアチップ実装される。基板20には、半導体パッケージを構成する基板等が該当し、撮像素子1の信号を伝達するためのパッド21が配置される。撮像素子1は、基板20に接着され、ワイヤボンディングによりパッド21と接続される。具体的には、ボンディングワイヤ30により、撮像素子1に配置されたパッドと基板20のパッド21とが電気的に接続される。撮像素子1のワイヤボンディングのパッドは、撮像素子1を構成する半導体チップの内層に配置され、撮像素子1の上面に形成された開口部11を介してボンディングワイヤが接続される。なお、撮像素子1の上面には、後述する画素アレイ部50が配置される。
 [撮像素子の構成]
 図2は、本開示の実施の形態に係る撮像素子の構成例を示すブロック図である。撮像素子1は、画素アレイ部50と、垂直駆動部60と、カラム信号処理部70と、制御部80とを備える。
 画素アレイ部50は、画素110が2次元格子状に配置されて構成されたものである。ここで、画素110は、照射された光に応じた画像信号を生成するものである。この画素110は、照射された光に応じた電荷を生成する光電変換部を有する。また画素110は、画素回路をさらに有する。この画素回路は、光電変換部により生成された電荷に基づく画像信号を生成する。画像信号の生成は、後述する垂直駆動部60により生成された制御信号により制御される。画素アレイ部50には、信号線51および52がXYマトリクス状に配置される。信号線51は、画素110における画素回路の制御信号を伝達する信号線であり、画素アレイ部50の行毎に配置され、各行に配置される画素110に対して共通に配線される。信号線52は、画素110の画素回路により生成された画像信号を伝達する信号線であり、画素アレイ部50の列毎に配置され、各列に配置される画素110に対して共通に配線される。これら光電変換部および画素回路は、半導体基板に形成される。
 垂直駆動部60は、画素110の画素回路の制御信号を生成するものである。この垂直駆動部60は、生成した制御信号を同図の信号線51を介して画素110に伝達する。カラム信号処理部70は、画素110により生成された画像信号を処理するものである。このカラム信号処理部70は、同図の信号線52を介して画素110から伝達された画像信号の処理を行う。カラム信号処理部70における処理には、例えば、画素110において生成されたアナログの画像信号をデジタルの画像信号に変換するアナログデジタル変換が該当する。カラム信号処理部70により処理された画像信号は、撮像素子1の画像信号として出力される。制御部80は、撮像素子1の全体を制御するものである。この制御部80は、垂直駆動部60およびカラム信号処理部70を制御する制御信号を生成して出力することにより、撮像素子1の制御を行う。制御部80により生成された制御信号は、信号線81および82により垂直駆動部60およびカラム信号処理部70に対してそれぞれ伝達される。
 [撮像素子の断面の構成]
 図3は、本開示の第1の実施の形態に係る撮像素子の構成例を示す図である。同図は、撮像素子1の構成例を表す模式断面図である。撮像素子1は、複数の半導体チップが貼り合わされて構成される。具体的には、同図の撮像素子1は、撮像チップ100と、ロジックチップ200とを備え、これらが貼り合わされて構成される。また、撮像素子1は、酸化膜19と、酸化膜接合層15および16と、支持基板400とをさらに備える。
 撮像チップ100は、上述の画素110を有する画素アレイ部50が配置される半導体チップであり、画像信号を生成する半導体チップである。撮像チップ100は、半導体基板120と、配線領域130とを備える。
 半導体基板120は、画素110の光電変換部や画素回路の素子が形成される半導体の基板である。この半導体基板120は、例えば、シリコン(Si)により構成することができる。光電変換部には、半導体基板120の裏面側から入射光が照射される。この半導体基板120の裏面側には、カラーフィルタ111およびオンチップレンズ112が画素110毎に配置される。このような構成の撮像素子1は、裏面照射型の撮像素子と称される。
 配線領域130は、半導体基板120に配置された素子に信号を伝達する配線が形成される領域である。この配線領域130は、半導体基板120の表面側に配置される。配線領域130は、絶縁層131と、配線層132とを備える。配線層132は、半導体基板120に配置された素子に信号を伝達する配線である。図2において説明した信号線51等は配線層132により構成される。この配線層132は、例えば、銅(Cu)等の金属により構成することができる。絶縁層131は、配線層132を絶縁するものである。この絶縁層131は、例えば、酸化シリコン(SiO)等の絶縁物により構成することができる。なお、配線層132および絶縁層131は、多層に構成することができる。異なる層に配置される配線層132同士は、後述するビアプラグ133により接続することができる。
 また、配線領域130には、パッドが配置される。このパッドは、アルミニウム(Al)等の金属により構成される電極状の端子である。このようなパッドとしてパッド141、検査パッド142およびボンディングパッド148が配置される。
 パッド141は、配線層132に接続されて信号が伝達されるパッドである。このパッド141は、後述する表面パッド160が接続されるパッドである。
 検査パッド142は、撮像チップ100を検査するためのパッドである。この検査パッド142は、パッド141と同様に配線層132に接続され、信号が伝達される。この検査パッド142により伝達される信号には、撮像チップ100を検査するための制御信号や検査の際に撮像チップ100により生成される信号が該当する。なお、検査パッド142には、撮像チップ100およびロジックチップ200を貼り合わせる際の貼り合わせの面に向かう凸部(後述する凸部144)が形成される。
 撮像チップ100の検査は、例えば、半導体試験装置により行うことができる。半導体試験装置は、検査のための制御信号を撮像チップ100に入力するとともに撮像チップ100からの画像信号等の出力信号を検出し、撮像チップ100が良品か否かを判断することができる。良品と判断された撮像チップ100を撮像素子1に適用することにより、撮像素子1の歩留まりを向上させることができる。制御信号の入力や出力信号の検出は、検査プローブにより行うことができる。この検査プローブには金属製の針が配置される。この検査プローブを検査パッド142に触針させることにより、検査プローブの針と検査パッド142とが電気的に接続され、検査のための信号の伝達を行うことができる。この触針の際、針の先端が検査パッド142に当接される。検査パッド142の表面には酸化物等の皮膜が形成されている。この皮膜を貫通して検査パッド142の金属部分と接触させるため、検査プローブの針は比較的高い圧力により検査パッド142に当接される。このため、検査後の検査パッド142の表面には、針跡が残る。すなわち、検査後の検査パッド142の表面には、同図に表したような凹凸が形成される。
 ボンディングパッド148は、図1において説明したボンディングワイヤ30が接続されるパッドである。ボンディングパッド148の裏面には、撮像チップ100の裏面側から半導体基板120および配線領域130を貫通する開口部11aが配置される。この開口部11aを介してワイヤボンディングが行われる。
 絶縁膜170は、検査パッド142を絶縁する膜である。また、絶縁膜170は、検査パッド142および貼り合わせの面の間に配置され、検査パッド142を保護する。この絶縁膜170は、絶縁物により構成することができる。具体的には、絶縁膜170は、SiO等の酸化物により構成することができる。また、絶縁膜170は、窒化シリコン(SiN)等の窒化物を含む構成にすることもできる。上述のように、検査後の検査パッド142の表面には、凹凸が形成される。この凸部が、対向するロジックチップ200のパッド等と干渉すると半導体チップの破損や信号の漏洩による誤動作を生じる可能性がある。そこで、検査パッド142を撮像チップ100の表側の表面から奥まった位置に配置するとともに絶縁膜170により被覆する。これにより、ロジックチップ200の破損等の不具合の発生を防ぐことができる。
 表面パッド160は、配線領域130の表面に配置されて信号を伝達するパッドである。同図の表面パッド160は、パッド141を介して配線領域130の表面に配置されるとともに信号が伝達される例を表したものである。また、表面パッド160は、撮像チップ100およびロジックチップ200が貼り合わされる際に、ロジックチップ200の表面パッド(後述する表面パッド260)と接合される。この接合された表面パッド160および表面パッド260を介して撮像チップ100およびロジックチップ200の間の信号の伝達を行うことができる。表面パッド160は、Cuにより構成することができる。後述するように、表面パッド160は、検査パッド142とは異なるサイズに構成することができる。
 なお、パッド141、検査パッド142、ボンディングパッド148および表面パッド160は、配線領域130に配置される配線の一部と捉えることもできる。また、絶縁膜170は、配線領域130に配置される絶縁層の一部と捉えることもできる。表面パッドは、請求の範囲に記載の第1のパッドの一例である。検査パッド142は、請求の範囲に記載の第2のパッドの一例である。ボンディングパッド148は、請求の範囲に記載の第3のパッドの一例である。
 ロジックチップ200は、撮像チップ100により生成された画像信号を処理する処理回路が配置される半導体チップである。また、撮像チップ100の制御信号を生成する制御回路をロジックチップ200に配置することもできる。図2において説明した垂直駆動部60、カラム信号処理部70および制御部80をロジックチップ200に配置することができる。ロジックチップ200は、半導体基板220と、配線領域230を備える。 
 半導体基板220は、半導体基板120と同様に、半導体の基板である。この半導体基板220には、垂直駆動部60やカラム信号処理部70等の素子を形成することができる。
 配線領域230は、配線領域130と同様に、半導体基板220に配置された素子に信号を伝達する配線が形成される領域であり、絶縁層231および配線層232を備える。
 また、配線領域230には、パッド241、検査パッド242およびボンディングパッド248が配置される。パッド241は、パッド141と同様に、信号が伝達されるパッドである。検査パッド242は、検査パッド142と同様に、ロジックチップ200の検査のための信号が伝達されるパッドである。ボンディングパッド248は、ボンディングパッド148と同様に、ボンディングワイヤ30が接続されるパッドである。ボンディングパッド148とは異なり、ボンディングパッド248の表面に開口部11bが形成される。この開口部11bは、撮像チップ100および後述する絶縁膜270を貫通する開口部である。この開口部11bを介してロジックチップ200に配置されたボンディングパッド248のワイヤボンディングが行われる。パッド241、検査パッド242およびボンディングパッド248は、Alにより構成することができる。
 絶縁膜270は、絶縁膜170と同様に、検査パッド242を絶縁するとともに保護する膜である。この絶縁膜270は、SiO等の酸化物やSiN等の窒化物により構成することができる。
 表面パッド260は、表面パッド160と同様に、配線領域230の表面に配置されて信号を伝達するパッドであり、表面パッド160と接合されるパッドである。表面パッド260は、Cuにより構成することができる。
 なお、パッド241、検査パッド242、ボンディングパッド248および表面パッド260は、配線領域230に配置される配線の一部と捉えることもできる。また、絶縁膜270は、配線領域230に配置される絶縁層の一部と捉えることもできる。また、表面パッド260は、請求の範囲に記載の第1のパッドの一例である。検査パッド242は、請求の範囲に記載の第2のパッドの一例である。ボンディングパッド248は、請求の範囲に記載の第3のパッドの一例である。
 酸化膜接合層15は、撮像チップ100とロジックチップ200との間に配置されて撮像チップ100およびロジックチップ200を接合するものである。この酸化膜接合層15は、SiO等の酸化物により構成され、酸化膜接合により撮像チップ100およびロジックチップ200の接合を行う。この酸化膜接合は、SiO等の酸化物の表面をプラズマ処理等により活性化し、この活性化された酸化膜同士を加熱圧接することにより接合させるものである。同図の撮像素子1においては、ロジックチップ200の配線領域230の表面に配置された酸化膜接合層15と撮像チップ100の配線領域130との間において酸化膜接合が行われる。なお、撮像チップ100の絶縁膜170およびロジックチップ200の絶縁膜270の表面が酸化物により構成される場合には、酸化膜接合層15を省略し、絶縁膜170および270との間において酸化膜接合を行うこともできる。
 酸化膜19は、ロジックチップ200を囲繞する酸化物の膜である。この酸化膜19は、ロジックチップ200を保護する。酸化膜19は、SiOにより構成することができる。
 支持基板400は、撮像チップ100およびロジックチップ200を支持する基板である。この支持基板400には、Siの基板を使用することができる。支持基板400は、酸化膜接合層16によりロジックチップ200に接合される。
 上述のように、酸化膜接合層15を介して撮像チップ100の絶縁膜170およびロジックチップ200の絶縁膜270が接合される。この際、対向する表面パッド160および表面パッド260は、位置合わせされて加熱圧接されることにより接合される。これにより撮像チップ100およびロジックチップ200を貼り合わせることができる。撮像チップ100およびロジックチップ200は、酸化膜接合層15ならびに絶縁膜170および270を介して配線領域130および配線領域230が貼り合わされることとなる。
 検査パッド142および242を撮像チップ100およびロジックチップ200の接合面から奥まった位置に配置するとともに絶縁膜170および270を配置することにより、対向する半導体チップとの接触等を防ぐことができる。このため、貼り合わされた撮像チップ100およびロジックチップ200における相対する位置に検査パッド142および242を配置することができる。同図の右側の検査パッド142および242は、この相対する様子を表したものである。なお、同図の左側の検査パッド142のように、相対する検査パッド242が配置されない構成にすることもできる。
 [パッドの構成]
 図4は、本開示の第1の実施の形態に係るパッドの構成例を示す図である。同図は、検査パッド142等の構成例を表す模式断面図である。同図に表したようにパッド141、検査パッド142およびボンディングパッド148は、配線領域130において同層に配置することができる。また、パッド141、検査パッド142およびボンディングパッド148は、それぞれ配線層132に接続される。パッド141等と配線層132との間は、ビアプラグ133により接続される。このビアプラグ133は、柱状の金属により構成され、異なる層の配線層132同士や配線層132およびパッド141等の接続を行うものである。
 また、パッド141、検査パッド142およびボンディングパッド148の表面には、保護金属膜を配置することができる。この保護金属膜は、パッド141等を保護する金属の膜であり、積層されたチタン(Ti)および窒化チタン(TiN)の膜により構成することができる。また、積層されたタンタル(Ta)および窒化タンタル(TaN)の膜を使用することもできる。パッド141の表面には保護金属膜151が配置され、検査パッド142の表面には保護金属膜152が配置され、ボンディングパッド148の表面には、保護金属膜158が配置される。
 パッド141の表面には、表面パッド160が配置される。この表面パッド160は、パッド161およびビアプラグ162により構成される。パッド161は、絶縁膜170に埋め込まれたパッドであり、配線領域130の表面に隣接するパッドである。ビアプラグ162は、パッド141および161の間を接続するビアプラグである。同図は、1つのビアプラグ162がパッド141および161の間に配置される例を表したものである。複数のビアプラグ162をパッド141および161の間に配置することもできる。
 パッド161およびビアプラグ162は、Cuにより構成することができ、同時に形成することができる。例えば、パッド161およびビアプラグ162は、Cuめっきにより形成することができる。具体的には、次の手順により形成することができる。まず、パッド161およびビアプラグ162の形状の開口部を絶縁膜170に形成する。次に、この開口部にCuの拡散を防止する保護層(不図示)を形成する。次に、絶縁膜に隣接してシード層(不図示)を配置してめっきを行い、開口部を含む絶縁膜170の表面にCu膜を配置する。その後、絶縁膜170の表面のCu膜を研削して開口部以外のCuを除去することにより、表面パッド160を形成することができる。Cuの研削は、化学的機械的研磨(CMP:Chemical Mechanical Polishing)により行うことができる。なお、この開口部を形成する際、保護金属膜151が除去される。
 検査パッド142は、前述のように、検査のための検査プローブの針が当接されるパッドである。検査プローブの針の当接により、検査パッド142には、凸部144が形成される。検査パッド142を表面パッド160の表面より奥まった位置に配置することにより、貼り合わされるロジックチップ200への凸部144の接触を防ぐことができる。また、絶縁膜170を配置することにより、凸部144が形成された検査パッド142を保護することができる。また、絶縁膜170は、検査パッド142の凸部144からロジックチップ200を保護することもできる。
 なお、同図の検査パッド142は、検査プローブの針が当接される領域に凹部143が形成される例を表したものである。凹部143を配置することにより、検査後の凸部144の先端位置を表面パッド160の表面からさらに奥まった位置に配置することができ、マージンを確保することができる。
 ボンディングパッド148は、前述のように、ボンディングワイヤ30が接続されるパッドである。ボンディングパッド148の裏側には、開口部11が形成される。この開口部11の形成の際、ボンディングパッド148の一部が除去されて凹部が形成される。
 なお、同図には、模擬パッド149を配置した。この模擬パッド149は、信号が伝達されないパッドであり、配線層132に接続されないパッドである。この模擬パッド149は、いわゆるダミーパッドに相当し、パッド141等が配置されない領域に配置されて絶縁膜170等の膜厚を均一にするために使用されるパッドである。この模擬パッド149の表面には、保護金属膜159が配置される。
 模擬パッド149、パッド141、表面パッド160、検査パッド142およびボンディングパッド148は、それぞれ異なるサイズに構成することができる。検査パッド142は、検査用のプローブの針を当接させるため、平面視において比較的大きいサイズに構成することができる。一方、表面パッド160は、比較的小さいサイズに構成される。後述する製造工程におけるCMPの際のディシングを低減するためである。この表面パッド160が配置されるパッド141も比較的小さいサイズに構成される。このため、検査パッド142は、表面パッド160より大きいサイズに構成することができる。また、ボンディングパッド148は、ワイヤボンディングのため、比較的大きいサイズに構成される。模擬パッド149は、例えば、略3μmの幅のパッドに構成することができる。また、パッド141および表面パッド160は、例えば、略5μmの幅に構成することができる。また、検査パッド142は、例えば、50μm以下の幅に構成することができる。また、ボンディングパッド148は、例えば、50乃至100μmの幅に構成することができる。このように、それぞれのパッドの使用目的に応じたサイズに構成することができる。
 [検査パッドにおける検査]
 図5は、本開示の実施の形態に係る検査の一例を示す図である。同図は、検査パッド142における検査の様子を表した図である。なお、同図において、保護金属膜152の記載を省略した。
 同図におけるAは、検査前の検査パッド142を表した図である。検査パッド142の表面には、凹部143が形成されている。この凹部143以外の領域の検査パッド142の表面および側面には、薄い絶縁膜170aが配置される。
同図におけるBは、検査時の検査パッド142を表した図である。検査時に、検査パッド142の凹部143に検査プローブの針3が当接される。この際、針3の先端が検査パッド142の表面に突き刺さる。これにより、検査パッド142を構成するAlが盛り上がって凸部144が形成される。
 同図におけるCは、検査後の検査パッド142を表した図である。検査プローブの針3が外され、検査パッド142の表面には針跡の凹部145が形成される。このように、検査を行うことにより、検査パッド142に凸部144が形成される。
 [撮像チップの製造方法]
 図6乃至9は、本開示の第1の実施の形態に係る撮像チップの製造方法の一例を示す図である。図6乃至9は、撮像チップ100の製造工程の一例を表す図である。撮像チップ100を例に挙げて、本開示の実施の形態に係る半導体チップの製造工程について説明する。
 まず、ウェハ状の半導体基板120に光電変換部等の素子を形成し、配線領域130の絶縁層131および配線層132(不図示)を形成する(図6におけるA)。当該工程は、請求の範囲に記載の光電変換部配置工程の一例である。
 次に、絶縁層131の表面にパッド141等の材料膜601を形成する。これは、例えば、スパッタリング等を使用してAlの膜を成膜することに行うことができる。次に、保護金属膜151等の材料膜602を形成する。これは、例えば、スパッタリング等を使用してTiおよびTiNの膜を積層することにより行うことができる(図6におけるB)。
 次に、パッド141や検査パッド142を形成する。これは、材料膜602の表面のパッド141等を配置する領域にレジストを配置し、このレジストをマスクとして使用してパッド141が配置される領域以外の材料膜601および602をエッチングすることにより行うことができる(図6におけるC)。当該工程は、請求の範囲に記載の第2のパッド配置工程の一例である。
 次に、パッド141等を含む配線領域130の表面に薄い絶縁膜170aを配置する。これは、例えば、CVD(Chemical Vapor Deposition)を使用して絶縁膜170aの材料となるSiOの膜を成膜することにより行うことができる(図6におけるD)。
 次に、検査パッド142の表面の中央部の絶縁膜170aおよび保護金属膜152を除去する。これは、ドライエッチングにより行うことができる。このエッチングの際、凹部143を形成することができる(図7おけるE)。
 次に、ウェハ状の撮像チップ100の検査を行う。検査プローブの針3を検査パッド142に当接して検査用の信号の入力および出力を行う。この際凸部144が形成される(図7におけるF)。当該工程は、請求の範囲に記載の検査工程の一例である。
 検査後のウェハ状の撮像チップ100のうちの良品のチップの位置を取得する。これにより、良品の撮像チップ100の選別を行う(図7におけるG)。
 次に、絶縁層131の表面に絶縁膜170(絶縁膜170b)を配置する。この絶縁膜170bは、パッド141および検査パッド142を覆う厚さに構成される絶縁膜である(図8におけるH)。
 次に、パッド141に隣接する絶縁膜170に開口部603および604を形成する。開口部603および604は、それぞれビアプラグ162およびパッド161に対応する開口部である。これは、例えば、ドライエッチングを使用して開口部603および604の領域の絶縁膜170を除去することにより行うことができる(図8におけるI)。
 次に、絶縁膜170の表面に表面パッド160の材料膜605を配置する。この際、開口部603および604にも材料膜605を配置する。これは、Cu膜をめっきにより形成することにより行うことができる(図9におけるJ)。次に、開口部603および604を除く、絶縁膜170の表面に配置された材料膜605を除去する。これは、CMPにより行うことができる。これにより、ビアプラグ162およびパッド161を形成することができ、表面パッド160を形成することができる(図9におけるK)。当該工程は、請求の範囲に記載の第1のパッド配置工程の一例である。
 以上の工程により、ウェハ状の撮像チップ100を製造することができる。同様の工程により、ウェハ状のロジックチップ200を形成することができる。その後、ウェハ状のロジックチップ200にダイシングを行うことにより、ロジックチップ200を個片化することができる。なお、撮像チップ100の個片化は、ロジックチップ200を貼り合わせた後に行うことができる。
 [撮像素子の製造方法]
 図10乃至13は、本開示の第1の実施の形態に係る撮像素子の製造方法の一例を示す図である。図10乃至13は、撮像素子1の製造工程の一例を表す図である。
 まず、検査の結果良品と判断されたロジックチップ200を再配置基板606に配置する。この際、ウェハ状の撮像チップ100に位置合わせして複数のロジックチップ200を配置する。ロジックチップ200は、再配置基板606に配置された粘着剤607により固定することができる(図10におけるA)。
 次に、酸化膜接合層15が配置されたサポート基板608をロジックチップ200の絶縁膜270の表面に配置して接合する。これは、酸化膜接合により行うことができる(図10におけるB)。
 次に、ロジックチップ200が配置されたサポート基板608の天地を反転させて再配置基板606および粘着剤607を除去する(図10におけるC)。
 次に、半導体基板220の裏面側を研削して薄肉化する。これは、例えば、CMPにより行うことができる(図10におけるD)。
 次に、酸化膜609をロジックチップ200の周囲に配置する。これは、例えば、CVDを使用してSiO膜を配置することにより行うことができる。次に、酸化膜609の表面を研削して平坦化する(図11におけるE)。
 次に、酸化膜609の表面に酸化膜接合層16が配置された支持基板400を接合する。これは、酸化膜接合により行うことができる(図11におけるF)。
 次に、支持基板400の天地を反転させてサポート基板608を除去する。これは、例えば、サポート基板608をエッチングすることにより行うことができる(図11におけるG)。
 次に、ロジックチップ200に表面パッド260を配置する。これは、図8におけるI乃至図9におけるKに表した工程により行うことができる(図11におけるH)。 
 次に、ロジックチップ200に撮像チップ100を貼り合わせる。これは、支持基板400に配置されたロジックチップ200に図9におけるKにおいて説明したウェハ状の撮像チップ100を貼り合わせることにより行うことができる。この貼り合わせは、酸化膜接合により行われる(図12におけるI)。当該工程は、請求の範囲に記載の貼合せ工程の一例である。
 次に、撮像チップ100の半導体基板120の裏面側を研削して薄肉化する(図12におけるJ)。
 次に、撮像チップ100の半導体基板120にカラーフィルタ111およびオンチップレンズ112を画素110毎に配置する(図13におけるK)。また、不図示の開口部11を形成する。
 次に、貼り合わされた撮像チップ100およびロジックチップ200を個片化する(図13におけるL)。これにより、撮像素子1を製造することができる。
 [撮像素子の他の構成]
 図14は、本開示の第1の実施の形態に係る撮像素子の他の構成例を示す図である。同図は、図3と同様に撮像素子1の構成例を表す模式断面図である。撮像チップ100およびロジックチップ200のサイズが異なる点で、図3の撮像素子1と異なる。
 同図のロジックチップ200は、撮像チップ100より小さいサイズに構成される例を表したものである。ロジックチップ200には検査パッド242が配置され、検査パッド142とロジックチップ200の裏側の表面との間に絶縁膜270が配置される。
 同図の撮像チップ100は、ロジックチップ200と対向しない位置に検査パッド142を配置することができる。
 以上説明したように、本開示の第1の実施の形態の撮像素子1は、撮像チップ100およびロジックチップ200の配線領域にそれぞれ配置された検査パッド142および242に検査プローブの針3が当接されて検査が行われる。この検査後の撮像チップ100およびロジックチップ200が貼り合わされて撮像素子1が形成される。この貼り合わせの前に、配線領域の表面に表面パッド160等が配置されて配線領域の表面がかさ上げされる。貼り合わせた際の、検査パッド142および242の表面に形成された凸部による撮像素子1の破損を防止することができる。これにより、撮像チップ100とロジックチップ200との貼り合わせ面に検査パッド142および242を配置することが可能となる。
 <2.第2の実施の形態>
 上述の第1の実施の形態の撮像素子1は、検査パッド142の表面に検査プローブの針3が当接されていた。これに対し、本開示の第2の実施の形態の撮像素子1は、検査パッド142の表面に保護金属膜が配置され、保護金属膜に検査プローブの針3が当接される点で、上述の第1の実施の形態と異なる。
 [パッドの構成]
 図15は、本開示の第2の実施の形態に係る検査パッドの構成例を示す図である。同図は、図4と同様に検査パッド142の構成例を表す模式断面図である。凹部143の表面にも保護金属膜152が配置される点で、図5において説明した検査パッド142と異なる。 
 同図の保護金属膜152は、図7におけるEにおいて説明したエッチングの工程において保護金属膜152を残すことにより形成することができる。検査パッド142の表面に保護金属膜152が配置されるため、検査プローブの針3は保護金属膜152の表面に当接される。保護金属膜152は、検査パッド142を構成するAlより高い硬度を有するため、凸部144の高さを低くすることができる。これにより、凸部144の先端を撮像チップ100の表側の表面から離隔することができる。凸部144の先端と撮像チップ100の表側の表面との距離のマージンを向上させることができる。また、絶縁膜170の厚さを薄くすることができ、撮像素子1を薄型化することができる。
 これ以外の撮像素子1の構成は本開示の第1の実施の形態において説明した撮像素子1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第2の実施の形態の撮像素子1は、検査パッド142の表面の検査プローブの針3が当接される領域に保護金属膜152が配置される。これにより、検査パッド142の凸部144の高さを低くすることができ、撮像素子1の製造の際の歩留まりを向上させることができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態の撮像素子1は、撮像チップ100およびロジックチップ200の2つの半導体チップが貼り合わされて構成されていた。これに対し、本開示の第3の実施の形態の撮像素子1は、3つ以上の半導体チップが貼り合わされる点で、上述の第1の実施の形態と異なる。
 [撮像素子の構成]
 図16は、本開示の第3の実施の形態に係る撮像素子の構成例を示す図である。同図は、図3と同様に撮像素子1の構成例を表す模式断面図である。撮像チップ100およびロジックチップ200の他に、半導体チップ300が配置される点で、図3の撮像素子1と異なる。
 半導体チップ300は、撮像チップ100に貼り合わされる半導体チップである。この半導体チップ300は、半導体基板320および配線領域330を備える。この配線領域330には、検査パッド342、表面パッド360および絶縁膜370が配置される。検査パッド342により検査が行われ、貼り合わせの際に表面パッド360が撮像チップ100の表面パッド160に接合される。半導体チップ300は、例えば、図2において説明した垂直駆動部60を配置することができる。この場合には、ロジックチップ200には、カラム信号処理部70および制御部80を配置することができる。また、半導体チップ300には、これ以外の処理回路等を配置することができる。例えば、画像信号の記憶処理を行うメモリ回路やAI(Artificial Intelligent)処理を行う回路を配置することもできる。
 なお、表面パッド360は、請求の範囲に記載の第1のパッドの一例である。検査パッド342は、請求の範囲に記載の第2のパッドの一例である。
 これ以外の撮像素子1の構成は本開示の第1の実施の形態において説明した撮像素子1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第3の実施の形態の撮像素子1は、3つ以上の半導体チップが貼り合わされて構成される。これにより、撮像素子1を小型化することができる。
<4.第4の実施の形態>
 上述の第3の実施の形態の撮像素子1は、撮像チップ100にロジックチップ200および半導体チップ300が貼り合わされて構成されていた。これに対し、本開示の第3の実施の形態の撮像素子1は、撮像チップ100、ロジックチップ200および半導体チップ300が積層される点で、上述の第3の実施の形態と異なる。
 [撮像素子の構成]
 図17は、本開示の第4の実施の形態に係る撮像素子の構成例を示す図である。同図は、図16と同様に撮像素子1の構成例を表す模式断面図である。撮像チップ100、ロジックチップ200および半導体チップ300が積層される点で、図16の撮像素子1と異なる。
 同図の撮像素子1においては、ロジックチップ200および半導体チップ300のそれぞれの表面パッド260および表面パッド360が接合されて貼り合わされる。撮像チップ100は、ロジックチップ200の裏側に貼り合わされる。撮像チップ100およびロジックチップ200の間の信号の伝達は、2つのビアプラグが連結されたツインコンタクト12により行うことができる。このツインコンタクト12の一方のビアプラグが撮像チップ100のパッド141に接続され、他方のビアプラグがロジックチップ200のパッド241に接続される。また、2つのビアプラグは撮像チップ100の裏側の表面において導体により連結される。これにより、撮像チップ100のパッド141およびロジックチップ200のパッド241との間において信号の伝達を行うことができる。
 [撮像素子の他の構成]
 図18は、本開示の第4の実施の形態に係る撮像素子の他の構成例を示す図である。同図は、図17と同様に撮像素子1の構成例を表す模式断面図である。撮像チップ100およびロジックチップ200の表面パッド同士が接合され、半導体チップ300がロジックチップ200の裏側に貼り合わされる点で、図17の撮像素子1と異なる。同図の撮像素子1は、図3において説明した撮像素子1の支持基板400の代わりに半導体チップ300が配置されたものである。撮像チップのパッド141および半導体チップ300のパッド341は、ツインコンタクト12により接続される。
 これ以外の撮像素子1の構成は本開示の第3の実施の形態において説明した撮像素子1の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第4の実施の形態の撮像素子1は、3つ以上の半導体チップが積層されて構成される。撮像素子1にサイズが略等しい半導体チップが配置される場合であってもそれぞれ貼り合わせることができる。
 <5.カメラへの応用例>
 本開示に係る技術(本技術)は、様々な製品に応用することができる。例えば、本技術は、カメラ等の撮像装置に搭載される撮像素子として実現されてもよい。
 図19は、本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。同図のカメラ1000は、レンズ1001と、撮像素子1002と、撮像制御部1003と、レンズ駆動部1004と、画像処理部1005と、操作入力部1006と、フレームメモリ1007と、表示部1008と、記録部1009とを備える。
 レンズ1001は、カメラ1000の撮影レンズである。このレンズ1001は、被写体からの光を集光し、後述する撮像素子1002に入射させて被写体を結像させる。
撮像素子1002は、レンズ1001により集光された被写体からの光を撮像する半導体素子である。この撮像素子1002は、照射された光に応じたアナログの画像信号を生成し、デジタルの画像信号に変換して出力する。
 撮像制御部1003は、撮像素子1002における撮像を制御するものである。この撮像制御部1003は、制御信号を生成して撮像素子1002に対して出力することにより、撮像素子1002の制御を行う。また、撮像制御部1003は、撮像素子1002から出力された画像信号に基づいてカメラ1000におけるオートフォーカスを行うことができる。ここでオートフォーカスとは、レンズ1001の焦点位置を検出して、自動的に調整するシステムである。このオートフォーカスとして、撮像素子1002に配置された位相差画素により像面位相差を検出して焦点位置を検出する方式(像面位相差オートフォーカス)を使用することができる。また、画像のコントラストが最も高くなる位置を焦点位置として検出する方式(コントラストオートフォーカス)を適用することもできる。撮像制御部1003は、検出した焦点位置に基づいてレンズ駆動部1004を介してレンズ1001の位置を調整し、オートフォーカスを行う。なお、撮像制御部1003は、例えば、ファームウェアを搭載したDSP(Digital Signal Processor)により構成することができる。
 レンズ駆動部1004は、撮像制御部1003の制御に基づいて、レンズ1001を駆動するものである。このレンズ駆動部1004は、内蔵するモータを使用してレンズ1001の位置を変更することによりレンズ1001を駆動することができる。
 画像処理部1005は、撮像素子1002により生成された画像信号を処理するものである。この処理には、例えば、画素毎の赤色、緑色および青色に対応する画像信号のうち不足する色の画像信号を生成するデモザイク、画像信号のノイズを除去するノイズリダクションおよび画像信号の符号化等が該当する。画像処理部1005は、例えば、ファームウェアを搭載したマイコンにより構成することができる。
 操作入力部1006は、カメラ1000の使用者からの操作入力を受け付けるものである。この操作入力部1006には、例えば、押しボタンやタッチパネルを使用することができる。操作入力部1006により受け付けられた操作入力は、撮像制御部1003や画像処理部1005に伝達される。その後、操作入力に応じた処理、例えば、被写体の撮像等の処理が起動される。
 フレームメモリ1007は、1画面分の画像信号であるフレームを記憶するメモリである。このフレームメモリ1007は、画像処理部1005により制御され、画像処理の過程におけるフレームの保持を行う。
 表示部1008は、画像処理部1005により処理された画像を表示するものである。この表示部1008には、例えば、液晶パネルを使用することができる。
 記録部1009は、画像処理部1005により処理された画像を記録するものである。この記録部1009には、例えば、メモリカードやハードディスクを使用することができる。
 以上、本開示が適用され得るカメラについて説明した。本技術は以上において説明した構成のうち、撮像素子1002に適用され得る。具体的には、図1において説明した撮像素子1は、撮像素子1002に適用することができる。
 なお、第2の実施の形態の検査パッド142の構成は、他の実施の形態と組み合わせることができる。具体的には、図15の保護金属膜152は、図16乃至18検査パッド142等に適用することができる。
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無い。また、他の効果があってもよい。
 また、上述の実施の形態における図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 なお、本技術は以下のような構成もとることができる。
(1)半導体基板および配線領域を備えて互いに貼り合わされる複数の半導体チップを具備し、
 前記複数の半導体チップのうちの1つの半導体チップは、入射光の光電変換を行う光電変換部が配置され、
 前記複数の半導体チップのうちの2つの半導体チップは、それぞれの前記配線領域の表面同士が貼り合わされるとともに前記配線領域の表面に配置されて前記貼り合わせの際に互いに接合される第1のパッドを備え、当該2つの半導体チップの少なくとも1つは前記配線領域に配置されて前記貼り合わせの面に向かう凸部が形成される第2のパッドをさらに備え、
 前記第2のパッドは、前記第1のパッドとは異なるサイズに構成される
撮像素子。
(2)前記第2のパッドは、前記第1のパッドより大きいサイズに構成される前記(1)に記載の撮像素子。
(3)前記第2のパッドおよび前記貼り合わせの面の間に配置される絶縁膜をさらに備える前記(1)または(2)に記載の撮像素子。
(4)前記絶縁膜は、シリコン化合物からなる絶縁物を有する前記(3)に記載の撮像素子。
(5)前記第2のパッドの表面に配置される保護金属膜をさらに備える前記(1)から(4)の何れかに記載の撮像素子。
(6)前記複数の半導体チップのうちの少なくとも1つは、外部の回路と接続するための第3のパッドをさらに備える前記(1)から(5)の何れかに記載の撮像素子。
(7)前記第3のパッドは、前記第2のパッドと同層に配置される前記(6)に記載の撮像素子。
(8)前記第2のパッドは、アルミニウムにより構成される前記(1)から(7)の何れかに記載の撮像素子。
(9)前記第2のパッドは、触針による検査により形成された前記凸部を有する前記(1)から(8)の何れかに記載の撮像素子。
(10)前記第2のパッドは、前記貼り合わせの面側に配置された凹部に前記凸部が形成される前記(1)から(9)の何れかに記載の撮像素子。
(11)前記複数の半導体チップのうちの2つの半導体チップは、相対して配置される前記第2のパッドをそれぞれ備える前記(1)から(10)の何れかに記載の撮像素子。
(12)前記第1のパッドは、銅により構成される前記(1)から(11)の何れかに記載の撮像素子。
(13)前記光電変換部は、前記半導体チップの前記配線領域が配置される面とは異なる面に照射される前記入射光の光電変換を行う前記(1)から(12)の何れかに記載の撮像素子。
(14)前記複数の半導体チップのうちの少なくとも1つは、前記光電変換に基づいて生成される画像信号を処理する処理回路が配置される前記(1)から(13)の何れかに記載の撮像素子。
(15)前記複数の半導体チップのうちの2つの半導体チップは、前記処理回路がそれぞれ配置されるとともに前記貼り合わされる前記(14)に記載の撮像素子。
(16)半導体基板に入射光の光電変換を行う光電変換部を配置する光電変換部配置工程と、
 2つの半導体基板にそれぞれ配置された配線領域同士を貼り合わせる際の貼り合わせの面に向かう凸部が形成される第2のパッドを配線領域に配置する第2のパッド配置工程と、
 前記第2のパッドが配置された配線領域の表面に前記貼り合わせの際に互いに接合されるとともに前記第2のパッドとは異なるサイズの第1のパッドを配置する第1のパッド配置工程と、
 前記第1のパッドが配置された2つの半導体チップの前記配線領域同士が貼り合わされるとともにそれぞれの前記第1のパッド同士が接合される貼合せ工程と
を具備する撮像素子の製造方法。
(17)前記配置された第2のパッドにより検査を行って当該検査により前記凸部が形成される検査工程をさらに具備し、
 前記第1のパッド配置工程は、前記検査が行われた第2のパッドが配置された配線領域に前記第1のパッドを配置する
前記(16)に記載の撮像素子の製造方法。
 1、1002 撮像素子
 15、16 酸化膜接合層
 19 酸化膜
 50 画素アレイ部
 60 垂直駆動部
 70 カラム信号処理部
 80 制御部
 100 撮像チップ
 110 画素
 120、220、320 半導体基板
 130、230、330 配線領域
 141、161、241、341 パッド
 142、242、342 検査パッド
 143 凹部
 148、248 ボンディングパッド
 149 模擬パッド
 151、152、158、159 保護金属膜
 160、260、360 表面パッド
 162 ビアプラグ
 170、170a、170b、270 絶縁膜
 200 ロジックチップ
 300 半導体チップ

Claims (17)

  1.  半導体基板および配線領域を備えて互いに貼り合わされる複数の半導体チップを具備し、
     前記複数の半導体チップのうちの1つの半導体チップは、入射光の光電変換を行う光電変換部が配置され、
     前記複数の半導体チップのうちの2つの半導体チップは、それぞれの前記配線領域の表面同士が貼り合わされるとともに前記配線領域の表面に配置されて前記貼り合わせの際に互いに接合される第1のパッドを備え、当該2つの半導体チップの少なくとも1つは前記配線領域に配置されて前記貼り合わせの面に向かう凸部が形成される第2のパッドをさらに備え、
     前記第2のパッドは、前記第1のパッドとは異なるサイズに構成される
    撮像素子。
  2.  前記第2のパッドは、前記第1のパッドより大きいサイズに構成される請求項1記載の撮像素子。
  3.  前記第2のパッドおよび前記貼り合わせの面の間に配置される絶縁膜をさらに備える請求項1記載の撮像素子。
  4.  前記絶縁膜は、シリコン化合物からなる絶縁物を有する請求項3記載の撮像素子。
  5.  前記第2のパッドの表面に配置される保護金属膜をさらに備える請求項1記載の撮像素子。
  6.  前記複数の半導体チップのうちの少なくとも1つは、外部の回路と接続するための第3のパッドをさらに備える請求項1記載の撮像素子。
  7.  前記第3のパッドは、前記第2のパッドと同層に配置される請求項6記載の撮像素子。
  8.  前記第2のパッドは、アルミニウムにより構成される請求項1記載の撮像素子。
  9.  前記第2のパッドは、触針による検査により形成された前記凸部を有する請求項1記載の撮像素子。
  10.  前記第2のパッドは、前記貼り合わせの面側に配置された凹部に前記凸部が形成される請求項1記載の撮像素子。
  11.  前記複数の半導体チップのうちの2つの半導体チップは、相対して配置される前記第2のパッドをそれぞれ備える請求項1記載の撮像素子。
  12.  前記第1のパッドは、銅により構成される請求項1記載の撮像素子。
  13.  前記光電変換部は、前記半導体チップの前記配線領域が配置される面とは異なる面に照射される前記入射光の光電変換を行う請求項1記載の撮像素子。
  14.  前記複数の半導体チップのうちの少なくとも1つは、前記光電変換に基づいて生成される画像信号を処理する処理回路が配置される請求項1記載の撮像素子。
  15.  前記複数の半導体チップのうちの2つの半導体チップは、前記処理回路がそれぞれ配置されるとともに前記貼り合わされる請求項14記載の撮像素子。
  16.  半導体基板に入射光の光電変換を行う光電変換部を配置する光電変換部配置工程と、
     2つの半導体基板にそれぞれ配置された配線領域同士を貼り合わせる際の貼り合わせの面に向かう凸部が形成される第2のパッドを配線領域に配置する第2のパッド配置工程と、
     前記第2のパッドが配置された配線領域の表面に前記貼り合わせの際に互いに接合されるとともに前記第2のパッドとは異なるサイズの第1のパッドを配置する第1のパッド配置工程と、
     前記第1のパッドが配置された2つの半導体チップの前記配線領域同士が貼り合わされるとともにそれぞれの前記第1のパッド同士が接合される貼合せ工程と
    を具備する撮像素子の製造方法。
  17.  前記配置された第2のパッドにより検査を行って当該検査により前記凸部が形成される検査工程をさらに具備し、
     前記第1のパッド配置工程は、前記検査が行われた第2のパッドが配置された配線領域に前記第1のパッドを配置する
    請求項16記載の撮像素子の製造方法。
PCT/JP2021/004513 2020-03-31 2021-02-08 撮像素子および撮像素子の製造方法 WO2021199679A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/911,539 US20230139201A1 (en) 2020-03-31 2021-02-08 Imaging element and method for manufacturing imaging element
CN202180018340.5A CN115244693A (zh) 2020-03-31 2021-02-08 摄像元件和摄像元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-062765 2020-03-31
JP2020062765 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199679A1 true WO2021199679A1 (ja) 2021-10-07

Family

ID=77928247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004513 WO2021199679A1 (ja) 2020-03-31 2021-02-08 撮像素子および撮像素子の製造方法

Country Status (3)

Country Link
US (1) US20230139201A1 (ja)
CN (1) CN115244693A (ja)
WO (1) WO2021199679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004876A1 (ja) * 2022-06-30 2024-01-04 ソニーセミコンダクタソリューションズ株式会社 半導体素子および積層構造体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118173531A (zh) * 2022-12-08 2024-06-11 华为技术有限公司 芯片及其制作方法、多芯片堆叠封装及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140819A (ja) * 2006-11-30 2008-06-19 Sony Corp 固体撮像装置
JP2012244100A (ja) * 2011-05-24 2012-12-10 Sony Corp 半導体装置、及び、半導体装置の製造方法
JP2014086596A (ja) * 2012-10-24 2014-05-12 Olympus Corp 半導体装置、撮像装置、半導体基板の検査方法及び半導体装置の製造方法
WO2015050000A1 (ja) * 2013-10-04 2015-04-09 ソニー株式会社 半導体装置および固体撮像素子
WO2015159766A1 (ja) * 2014-04-18 2015-10-22 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器
WO2019087764A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140819A (ja) * 2006-11-30 2008-06-19 Sony Corp 固体撮像装置
JP2012244100A (ja) * 2011-05-24 2012-12-10 Sony Corp 半導体装置、及び、半導体装置の製造方法
JP2014086596A (ja) * 2012-10-24 2014-05-12 Olympus Corp 半導体装置、撮像装置、半導体基板の検査方法及び半導体装置の製造方法
WO2015050000A1 (ja) * 2013-10-04 2015-04-09 ソニー株式会社 半導体装置および固体撮像素子
WO2015159766A1 (ja) * 2014-04-18 2015-10-22 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器
WO2019087764A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004876A1 (ja) * 2022-06-30 2024-01-04 ソニーセミコンダクタソリューションズ株式会社 半導体素子および積層構造体

Also Published As

Publication number Publication date
CN115244693A (zh) 2022-10-25
US20230139201A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US11018175B2 (en) Solid-state imaging device, method for manufacturing same, and electronic device
US20220157873A1 (en) Semiconductor device, method of manufacturing semiconductor device, and electronic apparatus
US10431620B2 (en) Semiconductor device and electronic appliance
JP5568969B2 (ja) 固体撮像装置とその製造方法、及び電子機器
WO2021199679A1 (ja) 撮像素子および撮像素子の製造方法
CN102544034A (zh) 固态摄像器件和半导体器件及其制造方法以及电子装置
TWI757433B (zh) 固態影像感測器,製造固態影像感測器之方法,以及電子器件
KR20140123482A (ko) 반도체 장치의 제조 방법
JP7444850B2 (ja) 半導体装置、撮像装置および半導体装置の製造方法
JP6168366B2 (ja) 半導体装置、半導体装置の製造方法及び電子機器
JP2020047937A (ja) 半導体装置、半導体装置の製造方法、及び電子機器
WO2021199695A1 (ja) 撮像素子および撮像素子の製造方法
JP2010287638A (ja) 固体撮像装置とその製造方法および撮像装置
WO2021090545A1 (ja) 撮像素子および撮像装置
WO2022080248A1 (ja) 半導体素子、半導体装置及び半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP