WO2021197478A1 - 车辆及其电池包的加热方法、装置 - Google Patents

车辆及其电池包的加热方法、装置 Download PDF

Info

Publication number
WO2021197478A1
WO2021197478A1 PCT/CN2021/085316 CN2021085316W WO2021197478A1 WO 2021197478 A1 WO2021197478 A1 WO 2021197478A1 CN 2021085316 W CN2021085316 W CN 2021085316W WO 2021197478 A1 WO2021197478 A1 WO 2021197478A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
motor
vehicle
heating
microcontroller
Prior art date
Application number
PCT/CN2021/085316
Other languages
English (en)
French (fr)
Inventor
熊亮
高泽霖
张拥乱
董欣然
蒋哲
刘猛
王亚东
骆平原
李玉山
宋国伟
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2021197478A1 publication Critical patent/WO2021197478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular to a method for heating a battery pack of a vehicle, a heating device for a battery pack of a vehicle, and a vehicle.
  • the present disclosure aims to solve one of the technical problems in the above-mentioned technology at least to a certain extent.
  • the first purpose of the present disclosure is to propose a method for heating the battery pack of a vehicle, which can use the heat generated by the motor to heat the battery before the vehicle starts, and avoid the occurrence of the battery pack being unable to operate due to low temperature. , To ensure the normal start of the vehicle, without other components, and low cost.
  • the second objective of the present disclosure is to provide a heating device for a battery pack.
  • the third purpose of the present disclosure is to propose a vehicle.
  • an embodiment of the first aspect of the present disclosure proposes a method for heating a battery pack of a vehicle, which includes the following steps: after the vehicle is started, the temperature of the battery pack is obtained and judged; if the temperature of the battery pack is If the temperature is lower than the preset temperature, the heating instruction is generated; the heating instruction is sent to the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating instruction, so that the rotor of the motor remains stationary And the motor winding generates heat to heat the battery pack.
  • the temperature of the battery pack is obtained and judged. If the temperature of the battery pack is lower than the preset temperature, a heating instruction is generated, and the heating instruction is sent to the micro
  • the controller enables the microcontroller to output current to the motor of the vehicle according to the heating command, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack. Therefore, the method can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to operate due to too low temperature, and ensure the normal start of the vehicle, without other components, and low cost.
  • the method for heating a battery pack of a vehicle may also have the following additional technical features:
  • the above method further includes: if the temperature of the battery pack reaches a preset temperature, stopping generating the heating instruction.
  • the microcontroller outputting current to the motor so that the rotor of the motor remains stationary and the motor windings generate heat includes: the microcontroller recognizes the stator position of the motor, and outputs current to the motor according to the stator position , A magnetic field is formed inside the motor that is the same or opposite to the direction of the magnetic poles of the motor rotor, so that the motor rotor remains stationary and the motor windings generate heat.
  • the above heating method further includes: detecting whether the charging and discharging function of the battery pack, the function status of the microcontroller, and the function status of the motor are normal; if the charging and discharging function of the battery pack is normal; If at least one of the discharge function, the function state of the microcontroller, and the function state of the motor is abnormal, the generation of the heating command is stopped and the vehicle is controlled to enter a safe state.
  • an embodiment of the second aspect of the present disclosure proposes a heating device for a battery pack of a vehicle, including: an acquisition module, which is used to acquire the temperature of the battery pack and make a judgment after the vehicle is started; Generating module, the generating module is used to generate the heating instruction when the temperature of the battery pack is lower than the preset temperature; the sending module, the transmitting module is used to send the heating instruction to the microcontroller, The microcontroller is made to output current to the motor of the vehicle according to the heating instruction, so that the rotor of the motor remains stationary and the motor winding generates heat, so as to heat the battery pack.
  • the temperature of the battery pack of the vehicle is obtained and judged by the obtaining module after the vehicle is started.
  • the generating module generates a heating instruction and sends The module sends the heating command to the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating command, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack.
  • the device can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to operate due to low temperature, ensure the normal start of the vehicle, and require no other components and low cost.
  • heating device of the battery pack according to the above-mentioned embodiment of the present disclosure may also have the following additional technical features:
  • the generating module is further configured to stop generating the heating instruction when the temperature of the battery pack reaches a preset temperature.
  • the microcontroller is specifically used to identify the stator position of the motor, and output current to the motor according to the stator position, and form a magnetic field in the motor that is the same or opposite to the direction of the rotor magnetic poles, so that the motor The rotor remains stationary and the motor winding heats up.
  • the above-mentioned heating device further includes: a detection module configured to detect whether the charging and discharging function of the battery pack, the function status of the microcontroller, and the function status of the motor are Normal; the generating module is also used to stop generating the heating command and control when there is an abnormality in at least one of the charge and discharge function of the battery pack, the function state of the microcontroller, and the function state of the motor The vehicle enters a safe state.
  • an embodiment of the third aspect of the present disclosure proposes a vehicle including the heating device of the battery pack of the vehicle according to the embodiment of the second aspect of the present disclosure.
  • the heat produced by the motor can be used to heat the battery before the vehicle starts, so as to avoid the battery pack from being unable to run due to too low temperature, and to ensure the normal start of the vehicle. And no other components are needed, and the cost is low.
  • Fig. 1 is a flowchart of a method for heating a battery pack of a vehicle according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of torque and torque angle curves of a motor according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a magnetic pole position in a motor according to an embodiment of the present disclosure
  • FIG. 4 is a schematic block diagram of a heating device for a battery pack of a vehicle according to an embodiment of the present disclosure
  • FIG. 5 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 6 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 is a flowchart of a method for heating a battery pack of a vehicle according to an embodiment of the present disclosure. As shown in Figure 1, the method includes the following steps:
  • the temperature of the battery pack can be obtained by setting a temperature sensor inside the battery pack.
  • the preset temperature can be set according to the operating temperature of the battery pack, for example, 0°C.
  • S3 Send a heating instruction to the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating instruction, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack.
  • the vehicle in the present disclosure is a new energy vehicle or a hybrid vehicle.
  • the temperature of the battery pack can be obtained by identifying the temperature detected by the internal temperature sensor of the battery pack. If the temperature is in the normal operation of the battery pack Within the range, control the vehicle to start normally. If the temperature is lower than the preset temperature, the battery pack cannot work normally. If the vehicle can start normally, the battery pack needs to be heated. At this time, a heating command is generated and sent to the microcontroller. After receiving the heating command, the microcontroller outputs current to the motor. While keeping the motor rotor stationary, the motor windings generate heat and transfer the heat to the battery pack through the coolant to heat the battery pack. Therefore, the method can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to operate due to too low temperature, and ensure the normal start of the vehicle, without other components, and low cost.
  • the above-mentioned method for heating a battery pack of a vehicle further includes: S4, if the temperature of the battery pack reaches a preset temperature, stop generating a heating instruction.
  • the microcontroller stops generating a heating instruction, stops sending the heating instruction to the microcontroller, the microcontroller stops outputting current to the motor, the heating is terminated, and the vehicle is controlled to start normally.
  • the microcontroller outputs current to the motor, so that the motor rotor remains stationary and the motor windings generate heat, including: the microcontroller recognizes the stator position of the motor, and outputs current to the motor according to the stator position, forming a and The magnetic field with the same or opposite direction of the magnetic poles of the motor rotor keeps the motor rotor stationary and the motor windings generate heat.
  • the electromagnetic force between the magnetic field generated by the motor winding and the magnetic field generated by the motor rotor is in a relatively balanced state, that is, between the motor stator and the rotor The torque is 0.
  • the electrical included angle between the magnetic field poles generated by the motor windings and the magnetic field poles generated by the motor rotor is 180° (here the included angle is considering the skew of the motor stator Or the integrated electrical angle of the rotor's oblique pole).
  • a synchronous motor in normal operation, three sinusoidal alternating currents with a phase angle interval of 120 degrees are passed into the motor windings to generate a rotating magnetic field in the motor, which in turn drives the motor rotor with a fixed magnetic field to rotate, and finally drives the vehicle forward or fall back.
  • the motor controller detects the position of the motor rotor (that is, the direction of the motor rotor magnetic pole), modulates the output current of the motor controller, keeps the three currents input to the motor in a DC state, and generates a magnetic pole symmetrical to the motor rotor inside the motor. Magnetic fields in opposite directions. As shown in Figure 3, the outer side is the magnetic poles generated by the windings, and the inner side is the magnetic poles of the motor rotor. It will realize the motor windings are energized and heat up while keeping the motor rotor in a static state.
  • S and N represent the magnetic pole directions.
  • the method for heating the battery pack of the vehicle may further include: detecting whether the charge and discharge function of the battery pack, the function state of the microcontroller, and the function state of the motor are normal; if the charge and discharge function of the battery pack, the micro If there is an abnormality in at least one of the functional state of the controller and the functional state of the motor, the generation of the heating command is stopped and the vehicle is controlled to enter a safe state.
  • the microcontroller before starting the vehicle after starting the vehicle, real-time detection of the battery pack’s charging and discharging functions, the microcontroller’s functional status, and the motor’s functions. If any one of them is abnormal, stop generating heating instructions, and prohibit battery charging and discharging, and disconnect power supply to the microcontroller and motor, so that the vehicle can be in a safe state, avoiding the vehicle from running under abnormal conditions, and improving safety.
  • control method of the present disclosure is generally applicable to vehicle-mounted permanent magnet synchronous motors, electrically excited synchronous motors, asynchronous motors, and switched reluctance motors.
  • the method for heating the battery pack of the vehicle after the vehicle is started, the temperature of the battery pack is obtained and judged. If the temperature of the battery pack is lower than the preset temperature, a heating instruction is generated, and the The heating command is sent to the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating command, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack. Therefore, the method can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to operate due to too low temperature, and ensure the normal start of the vehicle, without other components, and low cost.
  • the present disclosure also proposes a heating device for a battery pack of a vehicle.
  • a heating device for a battery pack of a vehicle.
  • Fig. 4 is a schematic block diagram of a heating device for a battery pack of a vehicle according to an embodiment of the present disclosure. As shown in Figure 4, the device includes: an acquiring module 1, a generating module 2, and a sending module 3.
  • the obtaining module 1 is used to obtain the temperature of the battery pack and make a judgment after the vehicle is started; the generating module 2 is used to generate a heating instruction when the temperature of the battery pack is lower than the preset temperature; the sending module 3 is used to send the heating instruction To the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating instruction, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack.
  • the acquisition module 1 can acquire the temperature of the battery pack by identifying the temperature detected by the internal temperature sensor of the battery pack. If the temperature is within the normal working range of the battery pack, the relevant device controls the vehicle to start normally. Can. If the temperature is lower than the preset temperature, the battery pack cannot work normally. If the vehicle can start normally, the battery pack needs to be heated. At this time, the generating module 2 generates a heating command, and the sending module 3 sends the heating command to the microcontroller. . After receiving the heating command, the microcontroller outputs current to the motor. While keeping the motor rotor stationary, the motor windings generate heat and transfer the heat to the battery pack through the coolant to heat the battery pack. Thus, the device can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to run due to too low temperature, and ensure the normal start of the vehicle, without other components, and low cost.
  • the generating module 2 may also be used to stop generating the heating instruction when the temperature of the battery pack reaches the preset temperature.
  • the microcontroller is specifically used to identify the position of the motor stator, and output current to the motor according to the stator position, and form a magnetic field in the motor that is the same or opposite to the direction of the motor rotor magnetic poles, so that the motor rotor remains stationary and The motor winding heats up.
  • the above-mentioned heating device further includes: a detection module, which is used to detect whether the charging and discharging functions of the battery pack, the function status of the microcontroller, and the function status of the motor are normal; the generation module 2 is also used for When there is an abnormality in at least one of the charging and discharging function of the battery pack, the function state of the microcontroller, and the function state of the motor, the generation of the heating command is stopped and the vehicle is controlled to enter a safe state.
  • a detection module which is used to detect whether the charging and discharging functions of the battery pack, the function status of the microcontroller, and the function status of the motor are normal
  • the generation module 2 is also used for When there is an abnormality in at least one of the charging and discharging function of the battery pack, the function state of the microcontroller, and the function state of the motor, the generation of the heating command is stopped and the vehicle is controlled to enter a safe state.
  • the temperature of the battery pack is obtained and judged by the obtaining module after the vehicle is started.
  • the generating module generates a heating instruction and sends The module sends the heating command to the microcontroller, so that the microcontroller outputs current to the motor of the vehicle according to the heating command, so that the motor rotor remains stationary and the motor winding generates heat to heat the battery pack.
  • the device can use the heat generated by the motor to heat the battery before the vehicle starts, avoid the battery pack being unable to run due to too low temperature, and ensure the normal start of the vehicle, without other components, and low cost.
  • the present disclosure also proposes a vehicle including the heating device for the battery pack of the vehicle proposed in the present disclosure.
  • the heat produced by the motor can be used to heat the battery before the vehicle starts, so as to avoid the battery pack from being unable to run due to too low temperature, and to ensure the normal start of the vehicle. And no other components are needed, and the cost is low.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 5 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 6.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 5.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

本公开公开了一种车辆及其电池包的加热方法、装置,其中,加热方法包括以下步骤:车辆启动后,获取电池包的温度并进行判断;如果电池包的温度低于预设温度,则生成加热指令;将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。该方法可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。

Description

车辆及其电池包的加热方法、装置
相关申请的交叉引用
本公开要求在2020年04月03日提交中国专利局、申请号为202010257961.6、名称为“车辆及其电池包的加热方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,特别涉及一种车辆的电池包的加热方法、一种车辆的电池包的加热装置和一种车辆。
背景技术
目前为了解决全球石油资源紧缺以及城市空气污染的问题,包括混动、纯电动技术在内的新能源汽车蓬勃发展,但是目前的新能源车辆在冬季低温环境下启动时,如果电池的温度过低,可能导致电池无法正常运行,进而导致车辆无法正常起步。
因此,电池包在低温环境下运行时加热功能的开发势在必行。
公开内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本公开的第一个目的在于提出一种车辆的电池包的加热方法,该方法可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
本公开的第二个目的在于提出一种电池包的加热装置。
本公开的第三个目的在于提出一种车辆。
达到为上述目的,本公开第一方面实施例提出了一种车辆的电池包的加热方法,包括以下步骤:车辆启动后,获取所述电池包的温度并进行判断;如果所述电池包的温度低于预设温度,则生成所述加热指令;将所述加热指令发送至微控制器,以使所述微控制器根据所述加热指令输出电流到所述车辆的电机,使电机转子保持静止且电机绕组发热,以加热所述电池包。
根据本公开实施例的车辆的电池包的加热方法,在车辆启动后,获取电池包的温度并进行判断,如果电池包的温度低于预设温度,则生成加热指令,将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。由此,该方法可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
另外,根据本公开上述实施例的车辆的电池包的加热方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,上述的方法还包括:如果所述电池包的温度达到预设温度,则停止生成所述加热指令。
根据本公开的一个实施例,所述微控制器输出电流到电机,使电机转子保持静止且电机绕组发热,包括:所述微控制器识别电机定子位置,并根据所述定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
根据本公开的一个实施例,上述的加热方法还包括:检测所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态是否正常;如果所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态中的至少一个存在异常,则停止生成所述加热指令并控制所述车辆进入安全状态。
为达到上述目的,本公开第二方面实施例提出了一种车辆的电池包的加热装置,包括:获取模块,所述获取模块用于车辆启动后,获取所述电池包的温度并进行判断;生成模块,所述生成模块用于在所述电池包的温度低于预设温度时,生成所述加热指令;发送模块,所述发送模块用于将所述加热指令发送至微控制器,以使所述微控制器根据所述加热指令输出电流到所述车辆的电机,使电机转子保持静止且电机绕组发热,以加热所述电池包。
根据本公开实施例的车辆的电池包的加热装置,通过获取模块在车辆启动后,获取电池包的温度并进行判断,生成模块在电池包的温度低于预设温度时,生成加热指令,发送模块将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。由此,该装置可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它 元器件,成本低。
另外,根据本公开上述实施例的电池包的加热装置还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述生成模块还用于:在所述电池包的温度达到预设温度时,停止生成所述加热指令。
根据本公开的一个实施例,所述微控制器具体用于:识别电机定子位置,并根据所述定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
根据本公开的一个实施例,上述的加热装置还包括:检测模块,所述检测模块用于检测所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态是否正常;所述生成模块还用于在所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态中的至少一个存在异常时,停止生成所述加热指令并控制所述车辆进入安全状态。
为达到上述目的,本公开第三方面实施例提出了一种车辆,包括本公开第二方面实施例所述的车辆的电池包的加热装置。
根据本公开实施例的车辆,通过上述的电池包的加热装置,可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本公开一个实施例的车辆的电池包的加热方法的流程图;
图2是根据本公开一个实施例的电机的转矩和转矩角曲线示意图;
图3是根据本公开一个实施例的电机内磁极位置示意图;
图4是根据本公开一个实施例的车辆的电池包的加热装置的方框示意图;
图5示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图6示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图来描述本公开实施例提出的洗衣机的清洁提醒方法和洗衣机的清洁提醒***。
图1是根据本公开一个实施例的车辆的电池包的加热方法的流程图。如图1所示,该方法包括以下步骤:
S1,车辆启动后,获取电池包的温度并进行判断。
可以通过在电池包内部设置温度传感器以获取电池包的温度。
S2,如果电池包的温度低于预设温度,则生成加热指令。
其中,预设温度可以根据电池包的工作温度进行设定,例如0℃。
S3,将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。
具体地,本公开中的车辆为新能源车辆或者混合动力车辆,在车辆启动(点火)后,可以通过识别电池包内部温度传感器检测的温度获取电池包的温 度,如果温度在电池包的正常工作范围内,控制车辆正常起步即可。如温度低于预设温度,则电池包无法正常工作,若要使车辆可以正常起步,需要对电池包进行加热,此时生成加热指令,并将加热指令发送至微控制器。微控制器在接收到加热指令后,输出电流到电机,在保持电机转子静止的同时,电机绕组发热,并将热量通过冷却液传递到电池包,以加热电池包。由此,该方法可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
根据本公开的一个实施例,如图1所示,上述的车辆的电池包的加热方法还包括:S4,如果电池包的温度达到预设温度,则停止生成加热指令。
具体地,当电池包的温度达到预设温度时,则停止生成加热指令,停止发送加热指令到微控制器,微控制器停止对电机输出电流,加热终止,控制车辆正常起步。
下面结合具体地实施例描述如何使电机转子保持静止且电机绕组发热。
根据本公开的一个实施例,微控制器输出电流到电机,使电机转子保持静止且电机绕组发热,包括:微控制器识别电机定子位置,并根据定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
具体地,如要实现在通电状态下,电机转子保持静止状态,必须满足电机绕组通电情况下产生的磁场与电机转子产生的磁场之间的电磁力处于相对平衡状态,即电机定子与转子之间的转矩为0,如图2中①点去磁位处,此处电机绕组产生的磁场磁极与电机转子产生的磁场磁极的电气夹角为180°(此处夹角为考虑电机定子斜槽或转子斜极的综合电角度)。
在正常运行的同步电机中,会在电机绕组中通入相位角间隔120度的三项正弦交流电,在电机内产生旋转的磁场,进而带动具有固定磁场的电机转子转动,最终驱动整车前进或倒退。本申请是通电机控制器检测电机转子的位置(即电机转子磁极方向),调制电机控制器的输出电流,使输入电机的三项电流保持直流状态,并在电机内部产生与电机转子磁极对称且方向相反的磁场。如图3所示,其中外侧为绕组产生的磁极示意,内侧为电机转子磁极示意,将会实现在电机绕组通电发热的同时,保持电机转子保持静止状态,图3中S、N代表磁极方向。
根据本公开的一个实施例,车辆的电池包的加热方法还可以包括:检测电池包的充放电功能、微控制器的功能状态、电机的功能状态是否正常;如果电池包的充放电功能、微控制器的功能状态、电机的功能状态中的至少一个存在异常,则停止生成加热指令并控制车辆进入安全状态。
也就是说,在车辆启动后起步前,实时检测电池包的充放电功能、微控制器的功能状态、电机的功能,如果电池包的充放电功能、微控制器的功能状态、电机的功能中的任一个存在异常,则停止生成加热指令,并禁止电池进行充放电、断开对微控制器、电机的供电,以使车辆进行安全状态,避免车辆在异常情况下运行,提高安全性。
需要说明的是,本公开的控制方法普遍适用于车载永磁同步电机、电励磁同步、异步电机、开关磁阻电机。
综上所述,根据本公开实施例的车辆的电池包的加热方法,在车辆启动后,获取电池包的温度并进行判断,如果电池包的温度低于预设温度,则生成加热指令,将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。由此,该方法可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
与上述的车辆的电池包的控制方法相对应,本公开还提出一种车辆的电池包的加热装置,对于装置实施例中未披露的细节可参照上述的方法实施例,为避免冗余,本公开中不再进行赘述。
图4是根据本公开一个实施例的车辆的电池包的加热装置的方框示意图。如图4所示,该装置包括:获取模块1、生成模块2和发送模块3。
其中,获取模块1用于车辆启动后,获取电池包的温度并进行判断;生成模块2用于在电池包的温度低于预设温度时,生成加热指令;发送模块3用于将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。
具体地,在车辆启动(点火)后,获取模块1可以通过识别电池包内部温度传感器检测的温度获取电池包的温度,如果温度在电池包的正常工作范围内,相关的装置控制车辆正常起步即可。如温度低于预设温度,则电池包无法 正常工作,若要使车辆可以正常起步,需要对电池包进行加热,此时生成模块2生成加热指令,发送模块3将加热指令发送至微控制器。微控制器在接收到加热指令后,输出电流到电机,在保持电机转子静止的同时,电机绕组发热,并将热量通过冷却液传递到电池包,以加热电池包。由此,该装置可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
根据本公开的一个实施例,生成模块2还可以用于:在电池包的温度达到预设温度时,停止生成加热指令。
根据本公开的一个实施例,微控制器具体用于:识别电机定子位置,并根据定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
根据本公开的一个实施例,上述的加热装置还包括:检测模块,检测模块用于检测电池包的充放电功能、微控制器的功能状态、电机的功能状态是否正常;生成模块2还用于在电池包的充放电功能、微控制器的功能状态、电机的功能状态中的至少一个存在异常时,停止生成加热指令并控制车辆进入安全状态。
根据本公开实施例的车辆的电池包的加热装置,通过获取模块在车辆启动后,获取电池包的温度并进行判断,生成模块在电池包的温度低于预设温度时,生成加热指令,发送模块将加热指令发送至微控制器,以使微控制器根据加热指令输出电流到车辆的电机,使电机转子保持静止且电机绕组发热,以加热电池包。由此,该装置可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
此外,本公开还提出一种车辆,包括本公开上述提出的车辆的电池包的加热装置。
根据本公开实施例的车辆,通过上述的电池包的加热装置,可以在车辆起步前利用电机的产热实现电池的加热,避免发生电池包由于温度过低而无法运行,保证车辆的正常起步,且无需其它元器件,成本低。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种车辆的电池包的加热方法,其特征在于,包括以下步骤:
    车辆启动后,获取所述电池包的温度并进行判断;
    如果所述电池包的温度低于预设温度,则生成所述加热指令;
    将所述加热指令发送至微控制器,以使所述微控制器根据所述加热指令输出电流到所述车辆的电机,使电机转子保持静止且电机绕组发热,以加热所述电池包。
  2. 根据权利要求1所述的车辆的电池包的加热方法,其特征在于,还包括:
    如果所述电池包的温度达到预设温度,则停止生成所述加热指令。
  3. 根据权利要求1所述的车辆的电池包的加热方法,其特征在于,所述微控制器输出电流到电机,使电机转子保持静止且电机绕组发热,包括:
    所述微控制器识别电机定子位置,并根据所述定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
  4. 根据权利要求1-3中任一项所述的车辆的电池包的加热方法,其特征在于,还包括:
    检测所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态是否正常;
    如果所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态中的至少一个存在异常,则停止生成所述加热指令并控制所述车辆进入安全状态。
  5. 一种车辆的电池包的加热装置,其特征在于,包括:
    获取模块,所述获取模块用于车辆启动后,获取所述电池包的温度并进行判断;
    生成模块,所述生成模块用于在所述电池包的温度低于预设温度时,生成所述加热指令;
    发送模块,所述发送模块用于将所述加热指令发送至微控制器,以使所述微控制器根据所述加热指令输出电流到所述车辆的电机,使电机转子保持静 止且电机绕组发热,以加热所述电池包。
  6. 如权利要求5所述的车辆的电池包的加热装置,其特征在于,所述生成模块还用于:
    在所述电池包的温度达到预设温度时,停止生成所述加热指令。
  7. 如权利要求5所述的车辆的电池包的加热装置,其特征在于,所述微控制器具体用于:识别电机定子位置,并根据所述定子位置输出电流到电机,在电机内部形成与电机转子磁极方向一致或相反的磁场,使电机转子保持静止且电机绕组发热。
  8. 如权利要求5-7中任一项所述的车辆的电池包的加热装置,其特征在于,还包括:
    检测模块,所述检测模块用于检测所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态是否正常;
    所述生成模块还用于在所述电池包的充放电功能、所述微控制器的功能状态、所述电机的功能状态中的至少一个存在异常时,停止生成所述加热指令并控制所述车辆进入安全状态。
  9. 一种车辆,其特征在于,包括如权利要求5-7中的任一项所述的电池包的加热装置。
  10. 如权利要求9所述的车辆,其特征在于,所述车辆为新能源车辆。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-4中任一项所述的车辆的电池包的加热方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-4中任一项所述的车辆的电池包的加热方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2021/085316 2020-04-03 2021-04-02 车辆及其电池包的加热方法、装置 WO2021197478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010257961.6 2020-04-03
CN202010257961.6A CN112670620A (zh) 2020-04-03 2020-04-03 车辆及其电池包的加热方法、装置

Publications (1)

Publication Number Publication Date
WO2021197478A1 true WO2021197478A1 (zh) 2021-10-07

Family

ID=75402750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085316 WO2021197478A1 (zh) 2020-04-03 2021-04-02 车辆及其电池包的加热方法、装置

Country Status (2)

Country Link
CN (1) CN112670620A (zh)
WO (1) WO2021197478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094901A (zh) * 2021-11-30 2022-02-25 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热过程中的电机转子位置控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744124B (zh) * 2020-04-22 2022-03-22 长城汽车股份有限公司 电池包加热的控制方法、装置及整车控制器
DE102022106506A1 (de) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Ansteuerung eines Inverters eines Fahrzeugs und Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151983A (zh) * 2013-01-08 2013-06-12 科比传动技术(上海)有限公司 永磁伺服电机的加热方法及***
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力***有限公司 动力电池加热***及方法
CN109962320A (zh) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 一种动力电池加热***及其控制方法
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置
US20190351776A1 (en) * 2018-05-17 2019-11-21 GM Global Technology Operations LLC Vehicle start under cold temperatures using self-heating battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881991B2 (ja) * 2009-10-26 2012-02-22 本田技研工業株式会社 電気自動車の油温上昇制御方法及びその装置、並びに電気自動車
DE102011004624A1 (de) * 2011-02-24 2012-08-30 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Erwärmen einer Fahrbatterie eines Fahrzeugs
US20140300232A1 (en) * 2013-03-08 2014-10-09 Gerald K. Langreck High acceleration rotary actuator
CN205509777U (zh) * 2016-03-15 2016-08-24 江门市甜的电器有限公司 一种电机冷却***及电动汽车热管理***
HUE063837T2 (hu) * 2016-06-07 2024-02-28 Tesla Inc Elektromos motor hulladékhõ üzemmódban akkumulátor melegítésére
CN109150063A (zh) * 2017-06-27 2019-01-04 创科(澳门离岸商业服务)有限公司 具有能量回收功能的电动工具
CN109552058B (zh) * 2018-12-21 2021-04-16 北京工业大学 一种电动汽车用集成缓速制热的一体式电机***
CN110048192A (zh) * 2019-03-20 2019-07-23 石不凡 一种动力电池预加热方法
CN110323520A (zh) * 2019-07-10 2019-10-11 海汇新能源汽车有限公司 一种纯电动汽车电池包预加热***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151983A (zh) * 2013-01-08 2013-06-12 科比传动技术(上海)有限公司 永磁伺服电机的加热方法及***
CN109962320A (zh) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 一种动力电池加热***及其控制方法
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力***有限公司 动力电池加热***及方法
US20190351776A1 (en) * 2018-05-17 2019-11-21 GM Global Technology Operations LLC Vehicle start under cold temperatures using self-heating battery
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094901A (zh) * 2021-11-30 2022-02-25 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热过程中的电机转子位置控制方法
CN114094901B (zh) * 2021-11-30 2023-05-02 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热过程中的电机转子位置控制方法

Also Published As

Publication number Publication date
CN112670620A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2021197478A1 (zh) 车辆及其电池包的加热方法、装置
US7279862B1 (en) Fault handling of inverter driven PM motor drives
CN103715946B (zh) 电动机启动方法、电动机启动装置和电动机
WO2023284785A1 (zh) 电池包加热方法、电机控制器、电动汽车及***
CN102866367B (zh) 退磁检测装置及其退磁检测方法
JP2008049811A (ja) ハイブリッド鉄道車両
GB2517523A (en) Flywheel control scheme
WO2021213472A1 (zh) 电池包加热的控制方法、装置及整车控制器
WO2019193749A1 (ja) 交流回転機装置
JP5428234B2 (ja) 回転電機制御システム
JP7309274B2 (ja) 磁石温度推定方法
JP2017112680A (ja) インバータ制御装置
JP2015126608A (ja) 車両の電力制御装置
Kumar et al. A low‐cost fault‐tolerant permanent magnet brush‐less direct current motor drive for low‐power electric vehicle applications
JP2020038076A (ja) 蓄電システム
JP2023047854A (ja) 電動機制御装置
JP2016052158A (ja) バッテリパックの放電装置
JP2016054603A (ja) 電動車両
US20220345069A1 (en) Method for managing overcurrent protection in a self-controlled synchronous machine with permanent magnets of a motor vehicle
KR102195805B1 (ko) 모터, 모터 제어 장치 및 그 방법
JP2018085844A (ja) キャリブレーション装置
US8975848B2 (en) Methods and systems for starting an electric motor
JP6825544B2 (ja) 電動車両
JP5478333B2 (ja) モータ制御装置およびモータ制御方法
JP2009033838A (ja) 回転電機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781235

Country of ref document: EP

Kind code of ref document: A1