WO2021196880A1 - 一种harq反馈方法、终端及基站 - Google Patents

一种harq反馈方法、终端及基站 Download PDF

Info

Publication number
WO2021196880A1
WO2021196880A1 PCT/CN2021/075074 CN2021075074W WO2021196880A1 WO 2021196880 A1 WO2021196880 A1 WO 2021196880A1 CN 2021075074 W CN2021075074 W CN 2021075074W WO 2021196880 A1 WO2021196880 A1 WO 2021196880A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
target
terminal
sequence
pdsch
Prior art date
Application number
PCT/CN2021/075074
Other languages
English (en)
French (fr)
Inventor
王俊伟
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to JP2022559702A priority Critical patent/JP7319476B2/ja
Priority to EP21779376.9A priority patent/EP4131815A4/en
Priority to US17/911,140 priority patent/US20230107562A1/en
Priority to KR1020227036781A priority patent/KR20220158263A/ko
Priority to BR112022019031A priority patent/BR112022019031A2/pt
Publication of WO2021196880A1 publication Critical patent/WO2021196880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to a HARQ feedback method, terminal and base station.
  • FR1 and FR2 frequency bands
  • SCS sub-carrier spacing
  • the base station When the base station sends downlink data to the terminal, it needs to instruct the terminal to feed back the timing parameters of Hybrid Automatic Repeat request-Acknowledge (HARQ-ACK), and use k1 for indication, where the value of k1 must be greater than or equal to The processing capacity of the terminal N1 value.
  • HARQ-ACK Hybrid Automatic Repeat request-Acknowledge
  • the range of k1 gradually increases, and the original statically configured default parameters k1 (1,2,3,4,5,6,7,8) no longer meet the indication requirements.
  • the embodiments of the present application provide a HARQ feedback method, terminal, and base station to realize the HARQ-ACK feedback when the SCS is greater than 120KHz.
  • the embodiment of the present application provides a HARQ feedback method, which is applied to a terminal, and includes:
  • the target timing parameter value indicating the time for the terminal to feedback the hybrid automatic repeat request-acknowledgement HARQ-ACK; wherein a target timing parameter sequence is predefined between the terminal and the base station, and multiple target timing parameter sequences are set A one-to-one correspondence between a sequence index value and multiple timing parameter values; the timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates The time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot; the target timing parameter value is one of the multiple timing parameter values, and the corresponding time of the target timing parameter value The corresponding time that is greater than or equal to the receiving processing capability parameter value of the physical downlink shared channel PDSCH of the terminal;
  • the HARQ-ACK is fed back to the base station in the time slot corresponding to the target timing parameter value.
  • the embodiment of the present application provides a HARQ feedback method, which is applied to a base station, and includes:
  • the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to HARQ-ACK feedback Time slot; the corresponding time for at least one timing parameter value in the target timing parameter sequence is greater than or equal to the corresponding time for the PDSCH receiving processing capability parameter value of the terminal;
  • the embodiment of the application provides a HARQ feedback device, which is applied to a terminal, and includes:
  • the obtaining module is used to obtain the target timing parameter value indicating the time for the terminal to feedback the hybrid automatic repeat request-acknowledgement HARQ-ACK; wherein a target timing parameter sequence is predefined between the terminal and the base station, and the target timing parameter sequence There is a one-to-one correspondence between multiple sequence index values and multiple timing parameter values; the timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or The timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot; the target timing parameter value is one of the multiple timing parameter values, and the target timing The corresponding time of the parameter value is greater than or equal to the corresponding time of the terminal's physical downlink shared channel PDSCH receiving and processing capability parameter value;
  • the sending module is used to feed back HARQ-ACK to the base station in the time slot corresponding to the target timing parameter value.
  • the embodiment of the present application provides a HARQ feedback device, which is applied to a base station, and includes:
  • An obtaining module which is used to obtain the parameter value of the receiving and processing capability of the physical downlink shared channel PDSCH of the terminal;
  • the determining module is used to determine the target timing parameter sequence of the hybrid automatic repeat request-acknowledgement HARQ-ACK that the terminal feedbacks, wherein the target timing parameter sequence is set with one between multiple sequence index values and multiple timing parameter values A correspondence relationship; the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located Corresponding to the HARQ-ACK feedback time slot; the corresponding time for at least one timing parameter value in the target timing parameter sequence is greater than or equal to the corresponding time for the PDSCH receiving processing capability parameter value of the terminal;
  • the sending module is configured to send HARQ-ACK feedback indication information to the terminal to indicate the target sequence index value corresponding to the target timing parameter value to the terminal, wherein the target sequence index value is the multiple sequence index values One of them.
  • An embodiment of the present application provides a terminal including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor implements the steps of the foregoing method when the program is executed by the processor.
  • An embodiment of the present application provides a base station, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the steps of the foregoing method when the program is executed by the processor.
  • the embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method are realized.
  • the HARQ feedback method, terminal, and base station provided in the embodiments of the application obtain the target timing parameter value indicating the time for the terminal to feed back HARQ-ACK, and perform HARQ-ACK feedback according to the target timing parameter value.
  • the corresponding time is greater than or equal to the corresponding time of the terminal's PDSCH receiving processing capability parameter value, so that in the case of the corresponding terminal capability, the terminal can complete the downlink data receiving process and be able to receive the downlink data before the time unit length corresponding to the receiving processing capability parameter value
  • the HARQ-ACK information is fed back to realize the effective indication of the HARQ-ACK feedback time when the SCS is greater than 120KHz.
  • Fig. 1 is a flow chart of the steps of the HARQ-ACK feedback method applied to the terminal in an embodiment of the application;
  • Figure 2 is a flowchart of the steps of the HARQ-ACK feedback method applied to the base station in an embodiment of the application;
  • Figure 3 is one of the schematic diagrams in the first embodiment of the embodiments of the application.
  • Figure 4 is the second schematic diagram in the first embodiment of the embodiments of the application.
  • FIG. 5 is a schematic diagram in the third embodiment of the embodiments of the application.
  • Fig. 6 is a block diagram of a HARQ-ACK feedback device applied to a terminal in an embodiment of the application
  • Fig. 7 is a block diagram of a HARQ-ACK feedback device applied to a base station in an embodiment of the application
  • FIG. 8 is one of the schematic structural diagrams of the terminal in an embodiment of the application.
  • FIG. 9 is the second structural diagram of the terminal in an embodiment of the application.
  • Fig. 10 is a schematic structural diagram of a base station in an embodiment of the application.
  • the PDSCH in this embodiment refers to a downlink physical data shared channel, and can generally refer to a data channel.
  • the standard adopts the HARQ process (namely hybrid automatic retransmission), that is, the receiving end decodes the received data and feeds back the decoding result to the sending end. When the decoding result is correct, it feeds back ACK, and when the decoding error is wrong. NACK.
  • the data sending end determines whether to retransmit the data according to the received decoding feedback information. Generally, data retransmission is performed when the feedback information received by the data sender is NACK, and data retransmission is not performed when the received feedback information is ACK, and this data transmission ends.
  • the sender sends data scheduling information on the Physical Downlink Control Channel (PDCCH).
  • the receiving end detects the PDCCH and receives PDSCH data according to the data scheduling information transmitted on the PDCCH, then demodulates and decodes the data, and feeds back the decoding result to the base station in the designated time slot.
  • the actions that need to be performed include: detecting the PDCCH channel, analyzing the content of the PDCCH, performing channel estimation, demodulation and channel decoding on the PDSCH, and feeding back HARQ-ACK.
  • the time required for terminals with different capabilities (indicated by N1) to receive PDSCH is different, that is, the PDSCH receiving and processing capability parameter values of the terminal are different.
  • the terminal's The PDSCH receive processing capability parameter value is 10 or 13 symbols
  • the value of N1 refers to the number of symbols from the last symbol of the PDSCH to the first symbol of the HARQ-ACK feedback, that is, the base station is scheduling terminal data and indicating HARQ -When ACK feedback time, the HARQ-ACK feedback time and the PDSCH time interval k1 must be greater than or equal to the value of N1.
  • the information of k1 is indicated in the control channel information when it is indicated.
  • the content of the field is: PDSCH-to-HARQ_feedback timing indicator, which uses 3 bits to indicate 8 situations, divided into two scenarios, direct indication and indirect indication.
  • the direct indication scene is a default scene determined by the standard, the value set is ⁇ 1,2,3,4,5,67,8 ⁇ , which is directly indicated by 3bit, for example, 000 corresponds to 1, 001 corresponds to 2, and so on; indirect;
  • the indicated value is not limited to the maximum value of 8 in the default scenario.
  • the specific indicated value is configured by high-level signaling. For example, it can be configured to ⁇ 2,4,5,7,8,9,10,11 ⁇ through high-level signaling. Indicated by 3bit, for example, 000 corresponds to 2, 001 corresponds to 4, and so on.
  • 3bit for example, 000 corresponds to 2
  • 001 corresponds to 4, and so on.
  • direct instructions before configuring indirect instructions, only direct instructions can be used, and the configuration information is required to perform actions after the terminal is connected.
  • the existing standard only specifies the terminal processing capability indication (the maximum 120KHz SCS) in the case of FR1 and FR2, that is, the corresponding N1 value.
  • SCS the terminal processing capability indication
  • 120KHz such as 240KHz, 480KHz, 960KHz. How to define the relevant N1 value and how to indicate it has not been clearly stated.
  • SCS greater than 120KHz such as 240KHz, 480KHz, 960KHz
  • the default value set of k1 originally defined ⁇ 1,2,3,4,5,6,7,8 ⁇ The reason is as follows: As the SCS increases, the required N1 value continues to increase.
  • the selection range of k1 is 1-8, data scheduling that requires HARQ-ACK feedback can only be scheduled within a limited time slot range (for example, when it contains 20 time slots, it can only be scheduled in time slot 2. To time slot 9), which limits the flexibility of the base station to schedule data.
  • FIG. 1 it is a flowchart of the steps of the HARQ feedback method applied to the terminal in the embodiment of this application.
  • the method includes the following steps:
  • Step 101 Obtain a target timing parameter value indicating the time for the terminal to feed back the hybrid automatic repeat request-acknowledgement HARQ-ACK.
  • the terminal needs to obtain the target timing parameter value that the base station indicates the time for the terminal to feed back HARQ-ACK.
  • a target timing parameter sequence is predefined between the terminal and the base station, and the target timing parameter sequence is provided with a one-to-one correspondence between multiple sequence index values and multiple timing parameter values.
  • the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot.
  • the target timing parameter value is one of multiple timing parameter values, and the corresponding time of the target timing parameter value is greater than or equal to the corresponding time of the PDSCH receiving processing capability parameter value of the terminal. That is, it can be guaranteed that the indicated feedback HARQ-ACK time is after the terminal receives the PDSCH, so that the terminal can perform HARQ-ACK feedback after the PDSCH is completely received.
  • the PDSCH receiving processing capability parameter value may be the PDSCH receiving processing capability parameter value (indicated by N1) under the new SCS parameter, and the new SCS parameter includes one or more of 240KHz, 480KHz, 960KHz and 1920KHz . This enables the terminal to complete the downlink data reception process and feedback HARQ-ACK information before the N1 time unit length under the corresponding terminal capability.
  • the unit of N1 may be a symbol or a time slot. Unless otherwise specified, the unit of N1 in this embodiment is a symbol, and the actual application may not be limited.
  • Step 102 Feed back HARQ-ACK to the base station on the time slot corresponding to the target timing parameter value.
  • the terminal may directly feed back HARQ-ACK to the base station on the time slot corresponding to the target timing parameter value.
  • the terminal can complete the downlink data receiving process and can feed back HARQ-ACK information, which realizes the effective indication of the HARQ-ACK feedback time when the SCS is greater than 120KHz.
  • the terminal may obtain the target timing parameter value indicating the time for the terminal to feedback HARQ-ACK by any one of the following methods:
  • the target timing parameter sequence is the first default timing parameter sequence or the second default timing parameter sequence
  • the first control signaling sent by the base station is received.
  • the target timing parameter value can be obtained by directly receiving the first control signaling sent by the base station.
  • the first control signaling carries a first target sequence index value
  • the first target sequence index value is one of a plurality of sequence index values in the target timing parameter sequence
  • the first target sequence index value corresponds to
  • the timing parameter value of is the target timing parameter value, which enables the terminal to analyze the target timing parameter value based on the first target sequence index value, thereby obtaining the HARQ-ACK feedback time slot.
  • each timing parameter value in the target timing parameter sequence indicates the i-th time slot with PUCCH resources after the terminal receives the PDSCH, and i is The corresponding timing parameter value; when the target timing parameter sequence is the second default timing parameter sequence, each timing parameter value in the target timing parameter sequence indicates the time between the HARQ-ACK feedback slot and the last symbol of the PDSCH Gap interval.
  • the target timing parameter sequence may be the first default timing parameter sequence or the second default timing parameter sequence.
  • the second default timing parameter sequence can be passed through the base station and the terminal
  • the time corresponding to the k1 value in all the second default timing parameter sequences broadcast by the higher-layer message is greater than the reception processing time of the PDSCH of the reference SCS (for example, the value is greater than or equal to (N1/14) time slots, N1 represents the reception processing time of the PDSCH)
  • the reference SCS can be 120KHz, or the SCS for scheduling PDSCH.
  • the second default timing parameter sequence and the first default timing parameter sequence are configured, when the SCS for scheduling the PDSCH is greater than a certain SCS (for example, 120KHz), the second default timing parameter sequence is adopted. Otherwise, the first default timing parameter sequence is adopted.
  • the second default timing parameter sequence is configured.
  • the original first default timing parameter sequence k1 ⁇ 1,2,3,4,5,6,7,8 ⁇
  • the terminal can use the target timing parameter value to calculate the corresponding time slot containing the PUCCH resource , This time slot corresponds to HARQ-ACK feedback time.
  • the HARQ-ACK feedback time information indication is included, such as the timing parameter value indicated by the PDSCH-to-HARQ_feedback timing indicator (indicated by the k1 value).
  • the parameter value definition interprets this field.
  • the time slots with PUCCH resources are slot(n+4), slot(n+7), slot(n+10), etc.
  • HARQ-ACK is fed back on the second time slot with PUCCH resources
  • HARQ-ACK is in the third time slot with PUCCH resources Feedback.
  • the time slot of the PUCCH resource corresponding to the target timing parameter value is greater than the corresponding time of the terminal's PDSCH receiving and processing capability parameter value.
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset value
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset value, that is, the timing parameter value includes the default parameter value and the timing offset value
  • the indirect acquisition method of the shift value is to obtain the target timing parameter value; that is, the target default parameter value can be obtained by receiving the second control signaling sent by the base station, and at the same time by receiving the high-level signaling sent by the base station or obtaining the protocol predefined
  • the timing offset value is obtained by obtaining the timing offset value.
  • the second control signaling carries a second target sequence index value
  • the higher layer signaling carries a timing offset value
  • the second target sequence index value is one of a plurality of sequence index values
  • the second The sum of the target default parameter value and the timing offset value corresponding to the target sequence index value is the target timing parameter value
  • the target default parameter value is one of the first default timing parameter sequence.
  • each timing parameter value in the target timing parameter sequence indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH.
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset value, that is, the timing parameter value includes the default parameter value and the timing offset value, then the timing parameter value and composition
  • the default parameter value of the sequence parameter value corresponds to the same sequence index value.
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset factor
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset factor, that is, the timing parameter value includes the default parameter value and the timing offset factor
  • the indirect method of obtaining the shift factor is to obtain the target timing parameter value; that is, the target default parameter value can be obtained by receiving the second control signaling sent by the base station, and at the same time by receiving the high-level signaling sent by the base station or obtaining the protocol predefined
  • the timing offset factor is obtained by obtaining the timing offset factor.
  • the second control signaling carries a third target sequence index value
  • the high-level signaling carries a timing offset factor
  • the third target sequence index value is one of multiple sequence index values
  • the third target The product of the target default parameter value corresponding to the sequence index value and the timing offset factor is the target timing parameter value
  • the target default parameter value is one of the first default timing parameter sequence.
  • the sequence index value of each timing parameter value corresponds to a default parameter value in the first default timing parameter sequence.
  • the terminal needs to report the PDSCH reception processing capability parameter value of the terminal to the base station before obtaining the target timing parameter value indicating the time for the terminal to feedback HARQ-ACK, so that the base station can refer to the PDSCH of the terminal
  • the receiving processing capability parameter sets the target timing parameter sequence.
  • the PDSCH receiving and processing capability parameters of the terminal can also be written into the protocol, so that the base station can obtain the PDSCH receiving and processing capability parameter values of the terminal by obtaining the parameters written in the protocol.
  • the PDSCH receiving and processing capability parameter N1 value of the terminal can be divided into multiple terminal capabilities, that is, different terminal capabilities can be set with different N1 values, and the factors considered in the determination process can include one or more of the following: The maximum bandwidth of PDSCH transmission or the number of physical resources in the frequency domain, the position of the phase tracking reference signal, the maximum transmission block length, the maximum number of transmission layers, etc., and the types of supported services.
  • the PDSCH receiving and processing capability parameter value of the terminal can be any of the following:
  • the time length corresponding to the PDSCH receiving processing capability parameter value of the terminal is the same as the preset first reference time length, and the first reference time length is the time length corresponding to the PDSCH receiving processing capability parameter value under the reference SCS value.
  • the PDSCH receiving processing capability parameter value may be the reference SCS value PDSCH reception processing at 2 X as the ability parameter value, X represents an integer greater than or equal to 0.
  • the PDSCH reception processing capability parameter value of the terminal can be expressed by the following formula:
  • N1 u N1 m ⁇ 2 um ;
  • N1 u represents the PDSCH receiving processing capability parameter value of the terminal
  • N1 m represents the PDSCH receiving processing capability parameter value corresponding to the reference SCS value
  • u represents the index value of the target SCS value adopted by the PDSCH of the terminal
  • m represents the reference SCS value The index value of.
  • the reference SCS value can be 120KHz.
  • the PDSCH receiving and processing capability parameter values can be as shown in Table 1 below:
  • the time length corresponding to the PDSCH receiving processing capability parameter value of the terminal is the same as the second reference time length, and the second reference time length is the difference between the first reference time length and the preset time offset length.
  • said parameter value PDSCH reception processing capability of the target 2 X is the difference between the PDSCH receiving processing capability parameter value and the preset time offset value under the reference SCS value, and X represents an integer greater than or equal to 0.
  • the PDSCH reception processing capability parameter value of the terminal can be expressed by the following formula:
  • N1 u (N1 m -D) ⁇ 2 um ;
  • N1 u represents the PDSCH receiving processing capability parameter value of the terminal
  • N1 m represents the PDSCH receiving processing capability parameter value corresponding to the reference SCS value
  • D represents the preset time offset value
  • u represents the target SCS value adopted by the PDSCH of the terminal
  • the index value of m represents the index value of the reference SCS value.
  • D can be a uniform value.
  • the PDSCH receiving processing capability parameter value of the terminal can be associated with the PDSCH receiving processing capability parameter value corresponding to the reference SCS value.
  • the reference SCS value is 120KHz, which is the time for the terminal’s PDSCH receiving processing capability parameter value.
  • the preset time offset value is a negative value, it is essentially the addition of a preset time offset value.
  • the PDSCH receiving and processing capability parameter values can be shown in Table 2 below:
  • the terminal's PDSCH receiving and processing capability parameter value is associated with the target SCS value adopted by the terminal's PDSCH,
  • the PDSCH receiving and processing capability parameter value of the terminal is expressed by the following formula:
  • N1 u represents the PDSCH reception processing capability parameter value
  • N1 u-1 represents the PDSCH reception processing capability parameter value of the terminal corresponding to the adjacent index value.
  • the PDSCH receiving and processing capability parameter value of the terminal can be as shown in Table 3 below:
  • the terminal in this embodiment obtains the target timing parameter value indicating the time for the terminal to feedback HARQ-ACK, and the corresponding time of the target timing parameter value is greater than the corresponding time of the PDSCH receiving processing capability parameter value of the terminal, and the target timing parameter value is
  • the HARQ-ACK is fed back to the base station on the time slot corresponding to the timing parameter value, so that the terminal can complete the downlink data reception process before the time unit length corresponding to the PDSCH receiving processing capability parameter value of the terminal under the corresponding terminal capability. And it can feed back HARQ-ACK information, realizing an effective indication of HARQ-ACK feedback time when the SCS is greater than 120KHz.
  • FIG. 2 it is a flowchart of the steps of the HARQ feedback method applied to the base station in the embodiment of this application, and the method includes the following steps:
  • Step 201 Obtain the PDSCH receiving and processing capability parameter value of the terminal.
  • the base station obtains the PDSCH receiving and processing capability parameter value of the terminal.
  • the base station may receive the PDSCH receiving processing capability parameter value of the terminal reported by the terminal; or acquiring the PDSCH receiving processing capability parameter value of the terminal predefined by the protocol.
  • the base station may receive the PDSCH receiving processing capability parameter value of the terminal reported by the terminal; or acquiring the PDSCH receiving processing capability parameter value of the terminal predefined by the protocol.
  • Step 202 Determine the target timing parameter sequence for the terminal to feed back the HARQ-ACK.
  • the base station may determine the target timing parameter sequence for the terminal to feed back HARQ-ACK.
  • the target timing parameter sequence is provided with a one-to-one correspondence between multiple sequence index values and multiple timing parameter values;
  • the timing parameter value indicates the time slot between the HARQ-ACK feedback time slot and the last symbol of the PDSCH
  • the interval or timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot.
  • the corresponding time for at least one timing parameter value in the target timing parameter sequence is greater than or equal to the corresponding time for the PDSCH receiving processing capability parameter value of the terminal. This enables the terminal to complete the downlink data reception process and to feed back HARQ-ACK information before the time unit length corresponding to the PDSCH receiving processing capability parameter value of the terminal under the corresponding terminal capability. Effective indication of HARQ-ACK feedback time.
  • the numerical unit of the target timing parameter value is related to the PDSCH receiving and processing capability of the terminal
  • the numerical unit of the parameter value is different, it needs to be converted to the same unit.
  • the terminal's PDSCH receiving processing capability parameter value (indicated by N1) is in symbols
  • the unit of the target timing parameter value (indicated by k1) is time slot
  • N is the number of symbols included in a time slot
  • Step 203 Send HARQ-ACK feedback indication information to the terminal to indicate the target sequence index value corresponding to the target timing parameter value to the terminal.
  • the target sequence index value is one of multiple sequence index values. This enables the base station to send HARQ-ACK feedback indication information to the terminal, and the terminal can feed back HARQ-ACK based on the target timing parameter value, so that in the case of the corresponding terminal capability, the time unit corresponding to the PDSCH receiving processing capability parameter value of the terminal Before the length, the terminal can complete the downlink data receiving process and can feed back HARQ-ACK information, which realizes an effective indication of the HARQ-ACK feedback time when the SCS is greater than 120KHz.
  • the base station when it determines the terminal to feed back the HARQ-ACK target timing parameter sequence, it may include any one of the following, and the target timing parameter sequence may be the first target timing parameter sequence and the first target timing parameter sequence described below.
  • the terminal obtains the HARQ-ACK timing offset value fed back, and determines the first target timing parameter sequence according to the first default timing parameter sequence and the timing offset value of the HARQ-ACK.
  • the first target timing parameter sequence may be determined as the target timing parameter sequence, and each timing parameter value in the first target timing parameter sequence indicates the HARQ-ACK feedback slot and the last symbol of the PDSCH The time slot interval between.
  • the sum of the timing offset value and the first default timing parameter sequence may be determined as the first target Sequence of timing parameters. For example, if the value range of the timing parameter in the first default timing parameter sequence is ⁇ 1,2,3,4,5,6,7,8 ⁇ , you can add a timing offset value on this basis to reach the extended default The range of technical effects.
  • any one of the following may be included when acquiring the HARQ-ACK timing offset value fed back by the terminal:
  • the timing offset value can be set corresponding to the target SCS; or, based on the index value of the reference SCS value and the index value of the target SCS value, the timing offset value can be calculated by the following formula:
  • k_d u represents the timing offset value
  • z represents a positive integer
  • u represents the index value of the target SCS value
  • m represents the index value of the reference SCS value.
  • the timing offset value can be calculated by the following formula:
  • k_d u represents the timing offset value
  • N1 represents the PDSCH receiving and processing capability parameter value of the terminal corresponding to the target SCS value
  • the PDSCH receiving and processing capability parameter value of the terminal is expressed in the number of symbols
  • L represents the inclusion of each time slot The number of symbols.
  • the timing offset value may be a relative value, which is used to indicate the effective time slot.
  • the effective time slot may refer to a time slot containing an uplink symbol.
  • the terminal obtains the HARQ-ACK timing offset factor fed back, and determines the second target timing parameter sequence according to the HARQ-ACK first default timing parameter sequence and the timing offset factor.
  • the second target timing reference sequence may be determined as the target timing reference sequence, and each timing parameter value in the second target timing parameter sequence indicates the HARQ-ACK feedback slot and the last symbol of the PDSCH The time slot interval between.
  • the product of the timing offset factor and the first default timing parameter sequence may be determined as the second target timing Parameter sequence.
  • the timing offset factor can be multiplied on this basis to reach the extended default The range of technical effects.
  • a preset value may be determined as the timing offset factor; or, the timing offset factor may be determined based on the target SCS value adopted by the PDSCH of the terminal.
  • the timing offset factor when the timing offset factor is determined based on the target SCS value adopted by the PDSCH of the terminal, the timing offset factor may be set corresponding to the target SCS value; or, based on the index value of the reference SCS value and the index of the target SCS value Value, the timing offset factor is calculated by the following formula:
  • k_c u a timing offset factor
  • u denotes an index value shown SCS target values
  • m indicates the index value of the reference SCS value.
  • the first default timing parameter sequence of HARQ-ACK is determined as the third target timing parameter sequence.
  • the third target timing parameter sequence can be used as the target timing parameter sequence, and each timing parameter value in the third target timing parameter sequence indicates the i-th time slot with PUCCH resources after the terminal receives the PDSCH, i Is the corresponding timing parameter value.
  • the range of the time series parameter value in the first default time series parameter sequence is ⁇ 1,2,3,4,5,6,7,8 ⁇ , when the time series parameter value is 1 (corresponding to the sequence index value 000), it means HARQ-ACK is fed back on the first time slot with PUCCH resources.
  • the HARQ-ACK feedback time slot is indicated by the method of indicating the PUCCH time slot, which increases the flexibility of system scheduling.
  • the second default timing parameter sequence of HARQ-ACK is determined as the fourth target timing parameter sequence, and each timing parameter value in the fourth target timing parameter sequence indicates the HARQ-ACK feedback slot and the last of the PDSCH The time slot interval between a symbol.
  • the fourth target timing parameter sequence may be used as the target timing parameter sequence.
  • the fourth target timing parameter sequence of may be the second default timing parameter sequence.
  • the second default timing parameter sequence can be formulated through the interface protocol between the base station and the terminal.
  • the time corresponding to all k1 values broadcast by higher-layer messages is greater than the reception processing time of the PDSCH of the reference SCS (for example, the value is greater than or equal to (N1/14) time slots, N1 represents the reception processing time of the PDSCH), and the reference SCS can be 120KHz, Or schedule the SCS of PDSCH.
  • the second default timing parameter sequence and the first default timing parameter sequence are configured, when the SCS for scheduling the PDSCH is greater than a certain SCS (for example, 120KHz), the second default timing parameter sequence is adopted. Otherwise, the first default timing parameter sequence is adopted.
  • the second default timing parameter sequence is configured.
  • the original first default timing parameter sequence k1 ⁇ 1,2,3,4,5,6,7,8 ⁇
  • the target timing parameter sequence is the first target timing parameter sequence, the second target timing parameter sequence, the third target timing parameter sequence, or the fourth target timing parameter sequence, that is, the target timing parameter sequence is achieved through any one of the above.
  • the base station more effectively indicates the HARQ-ACK feedback time, that is, in the case of minimizing the overhead, it indicates the HARQ-ACK feedback time with a large range, which increases the flexibility of the base station scheduling, can adapt to the needs of different services, and improves User business perception.
  • the HARQ-ACK time indication is in a larger range, multiple HARQ-ACKs can be multiplexed and sent together, which reduces the power consumption of the terminal.
  • the base station may use the following methods when sending HARQ-ACK feedback indication information to the terminal:
  • the first control signaling is sent to the terminal, where the first control signaling carries the first target sequence index value, and the first control signaling carries the first target sequence index value.
  • a target sequence index value is one of a plurality of sequence index values, and the time sequence parameter value corresponding to the first target sequence index value is the target time sequence parameter value.
  • the base station can indicate the target sequence index value corresponding to the target timing parameter value to the terminal by means of direct indication, so that the terminal is directly based on The target timing index value obtains the target timing parameter value.
  • the second control signaling is sent to the terminal and the higher layer signaling is sent to the terminal, where the second control signaling carries the second target sequence index value, and the higher layer
  • the signaling carries a timing offset value; the second target sequence index value is one of multiple sequence index values.
  • the target timing parameter value can be indicated to the terminal through the indirect indication manner.
  • the specific process please refer to the related content on the terminal side, which will not be repeated here.
  • the second control signaling is sent to the terminal and the higher layer signaling is sent to the terminal, where the second control signaling carries the third target sequence index value, and the higher layer
  • the signaling carries a timing offset factor; the third target sequence index value is one of multiple sequence index values.
  • the target timing parameter value can be indicated to the terminal through this indirect indication manner.
  • the specific process please refer to the related content on the terminal side, which will not be repeated here.
  • Step 1 Define the PDSCH receiving and processing time, that is, the terminal's PDSCH receiving and processing capability parameter value N1.
  • the reference SCS value in this embodiment is 120KHz.
  • the determined value can be determined in the interface protocol, and the terminal can also be instructed by reporting the capability parameter, that is, the terminal receives the PDSCH of the terminal
  • the processing capability parameter value N1 is reported to the base station.
  • the unit of the PDSCH receiving processing capability parameter value of the terminal may be a symbol or a time slot, which is not limited here.
  • Step 2 The base station determines the value range of the target time sequence parameter sequence k1, so that the time corresponding to at least one value in the k1 value sequence is greater than the time corresponding to N1.
  • a timing offset value may be added to the first default timing parameter sequence to obtain the target timing parameter sequence k1.
  • the following takes the timing offset value k_d u 5 as an example for description.
  • the timing parameter value in the target timing parameter sequence represents the interval between the HARQ-ACK feedback symbol and the last symbol of the PDSCH.
  • the terminal receives scheduling signaling and the number of PDSCHs at slot 0.
  • k_d u ⁇ z ⁇ 2 um u is the index value of the target SCS
  • This setting makes that when the SCS is greater than 120KHz, the timing offset is related to the SCS, which improves the effective range of the indication.
  • N1 is the PDSCH receiving and processing capability parameter value of the terminal corresponding to the target SCS value
  • the PDSCH receiving and processing capability parameter value of the terminal is represented by the number of symbols
  • L represents the number of symbols included in each slot.
  • the above-mentioned N1 value is the value when the DMRS is configured.
  • Step 3 The base station sends HARQ-ACK feedback time indication information for scheduling downlink data:
  • the base station When scheduling downlink data, the base station simultaneously sends indication information of HARQ-ACK feedback time, and the indication information indicates one of the k1 values.
  • the indicated HARQ-ACK feedback time interval of the k1 data is not less than the value corresponding to N1.
  • the timing offset value k_d u is determined by higher layer signaling or protocol, and k1 is indicated by control signaling by default (for example, PDSCH-to-HARQ_feedback timing indicator indicating HARQ-ACK feedback time).
  • k_d u can be an absolute value
  • k1 can be a relative value.
  • the absolute value here refers to counting according to the time slot number, regardless of whether it is an uplink time slot or a downlink time slot.
  • the relative value is calculated only for valid time slots, for example, only for time slots containing uplink symbols.
  • time slots 0-9 are downlink time slots
  • 10-19 are uplink time slots
  • k_d u is assumed to be 3.
  • k1 indicates 4
  • k_d u corresponds to time slot 3
  • the processing capability of the terminal is reflected by setting k_d u , thereby reducing the invalid indication range; in addition, k1 only calculates the effective uplink time slot, so that the uplink and downlink time slots can be configured more flexibly.
  • Step 1 Define the PDSCH receiving and processing time, that is, the PDSCH receiving and processing capability parameter value N1.
  • Table 2 For the PDSCH receiving and processing capability parameter value of the specific terminal, see Table 2 above.
  • the reference SCS value in this embodiment is 120KHz.
  • the determined value can be determined in the interface protocol, and the terminal can also be instructed by reporting the capability parameter, that is, the terminal receives the PDSCH of the terminal
  • the processing capability parameter value N1 is reported to the base station.
  • the value of D can be N1 m /3.
  • the process of receiving PDSCH by the terminal is divided into 4 parts: control channel reception (channel estimation and blind channel detection), data channel estimation, data demodulation, data channel decoding, HARQ-ACK group packet feedback (the Part of the time is relatively small, which is ignored here), its calculation amount and channel bandwidth (the number of scheduled PRBs), the number of MIMO layers, and the size of the transmission data block.
  • the number of MIMO layers will be relatively small, such as not more than 2 layers, and when the communication frequency is less than 52.6GHz, the probability that the number of MIMO layers will reach 4 will increase, and when it exceeds 52.6GHz, its The modulation order may be limited, so the overall decoding time will be reduced.
  • D can be 1/3 times of N1.
  • the PDSCH receiving and processing capability parameter value of the terminal may be as shown in Table 2 above.
  • the preset time offset value can be a negative value, which is equivalent to adding one The value of the offset.
  • Step 2 The base station determines the value range of the target time sequence parameter sequence k1, so that the time corresponding to at least one value in the k1 value sequence is greater than the time corresponding to N1.
  • the target timing parameter sequence k1 can be obtained by multiplying a timing offset factor on the basis of the first default timing parameter sequence.
  • timing offset factor k_c u 2 as an example.
  • k_c u 2 um
  • k_c u represents the timing offset factor
  • u is the index value of the target SCS
  • m represents the index value of the reference SCS value.
  • the value of the timing offset factor in this step can also be configured by a higher-level protocol.
  • This setting makes that when the SCS is greater than 120KHz, the timing offset factor is related to the SCS, which improves the effective range of the indication.
  • Step 3 The base station sends HARQ-ACK feedback time indication information for scheduling downlink data:
  • the base station When scheduling downlink data, the base station simultaneously sends indication information of HARQ-ACK feedback time, and the indication information indicates one of the k1 values.
  • the indicated HARQ-ACK feedback time interval of the k1 data is not less than the value corresponding to N1.
  • the HARQ-ACK feedback time determined in step 2 is the product of the timing offset factor and the first default timing parameter sequence, it can be indicated in the following two ways:
  • the protocol defines the value range of k1
  • the specific value can be directly defined, and the terminal directly indexes the corresponding HARQ-ACK feedback time according to the indication of the control signaling.
  • the timing offset factor is determined by high-level signaling or protocol.
  • k1 is indicated by control signaling (for example, PDSCH-to-HARQ_feedback timing indicator representing HARQ-ACK feedback time).
  • High-level signaling configuration k_c u is assumed that a value of 2, and the application of a default value k1 is indicated in the control signaling may be as follows in Table 7:
  • the sequence parameter value in the first default sequence parameter sequence is ⁇ 1,2,3,4,5,6,7,8 ⁇
  • the terminal directly follows the instructions of the control signaling Index out the corresponding value, use this value to multiply the timing offset factor, and the final value is the HARQ-ACK feedback time.
  • This setting method makes the timing offset factor based on the terminal length reflected in the time slot of the reference SCS value. That is, on a 0.125ms, there is only one HARQ-ACK feedback point, and the timer setting of R15 is reused to reduce the sending processor.
  • the timing complexity is, on a 0.125ms, there is only one HARQ-ACK feedback point, and the timer setting of R15 is reused to reduce the sending processor.
  • Step 1 Define the PDSCH receiving and processing time, that is, the PDSCH receiving and processing capability parameter value N1.
  • the PDSCH receiving processing time parameters are defined separately for each SCS, that is, the terminal's PDSCH receiving processing capability parameters Value, divided into the following situations:
  • the range is N1 3 ⁇ N1 4 ⁇ 2N1 3 ;
  • the PDSCH receiving and processing capability parameter value of the corresponding terminal is shown in Table 3 above.
  • Step 2 The base station determines the value range of the target time sequence parameter sequence k1, so that the time corresponding to at least one value in the k1 value sequence is greater than the time corresponding to N1.
  • HARQ-ACK feeds back indication information, indexing the k1th slot with PUCCH resources after the terminal receives the PDSCH, that is, the latest k1th PUCCH resource.
  • the indexed PUCCH resources there is at least one time slot in which the PUCCH resource is located, which is greater than the time corresponding to N1.
  • PUCCH configuration contains cycle time information, and the configuration information field includes the following content: Field 1: PUCCH format: indicates which format of PUCCH is used; Field 2: PUCCH symbol number; Field 3: PUCCH first The position of the symbol; Field 4: Frequency domain information occupied by the PUCCH (number of PRBs and offset position); Field 5: Period information of the PUCCH (period T, offset offset).
  • Field 1 PUCCH format: indicates which format of PUCCH is used
  • Field 2 PUCCH symbol number
  • Field 3 PUCCH first The position of the symbol
  • Field 4 Frequency domain information occupied by the PUCCH (number of PRBs and offset position)
  • Field 5 Period information of the PUCCH (period T, offset offset).
  • the unit of period T in field 5 can be the number of time slots, and the offset can also be the number of time slots.
  • the period information of the PUCCH is carried, including the period T and the offset.
  • Step 3 The base station sends HARQ-ACK feedback time indication information for scheduling downlink data:
  • the base station When scheduling downlink data, the base station simultaneously sends indication information of HARQ-ACK feedback time, and the indication information indicates one of the k1 values.
  • the terminal uses this value to calculate the time slot corresponding to the PUCCH resource, and the time slot corresponds to the HARQ-ACK feedback time. as follows:
  • the terminal When the terminal receives the PDSCH data scheduled by the base station, it includes the HARQ-ACK feedback time information indicator, such as the k1 value indicated by the PDSCH-to-HARQ_feedback timing indicator.
  • the HARQ-ACK feedback time information indicator such as the k1 value indicated by the PDSCH-to-HARQ_feedback timing indicator.
  • bit information for example, bit information is 000
  • HARQ-ACK is in Feedback on the second time slot with PUCCH resources
  • HARQ-ACK is fed back on the third time slot with PUCCH resources. And so on.
  • the base station instructs the terminal to feed back the position of the time slot of HARQ-ACK.
  • the configured PUCCH period T is 4 and the offset is 1, referring to FIG. 5, there is PUCCH configuration information on time slots 1, 5, 9...
  • the PDSCH data is sent in the time slot 318 of the previous radio frame. If the HARQ-ACK feedback time indicates k1, it is counted according to the time slot configured with PUCCH resources. If k1 is 1, HARQ-ACK is fed back in time slot 1; if k1 is 2, HARQ-ACK is fed back in time slot 5; if k1 is 3, HARQ-ACK is fed back in time slot 9.
  • a non-periodic configuration method can be used, such as using bitmap to indicate which subframes have PUCCH resources within a certain period of time (such as 10ms), and also when indicating the position of HARQ-ACK feedback slot
  • the time slot indication method of PUCCH effective resources can be used for the time division duplex configuration.
  • the time slot of the effective PUCCH resource can remove the time slot number containing the downlink symbol.
  • the effective PUCCH time slot here may refer to a time slot in which PUCCH resources are configured according to the configured PUCCH information, or a time slot that is only an uplink time slot and contains PUCCH configuration information.
  • this embodiment can also be applied to uplink PUSCH scheduling, that is, when scheduling the uplink PUSCH, the minimum time for accurate PUSCH transmission can be determined, and then when scheduling PUSCH transmission, use the control signaling in the control signaling.
  • this embodiment effectively solves the indication problem of SCS greater than 120KHz HARQ scheduling through the above process, so that the base station scheduling data is more flexible, and the K1 indication is more effective.
  • this is a block diagram of a HARQ feedback device applied to a terminal in an embodiment of the application, and the device includes:
  • the obtaining module 601 is configured to obtain a target timing parameter value indicating the time for the terminal to feedback the hybrid automatic repeat request-acknowledgement HARQ-ACK; wherein a target timing parameter sequence is predefined between the terminal and the base station, and the target timing parameter A one-to-one correspondence between multiple sequence index values and multiple timing parameter values is set in the sequence; the timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or The timing parameter value indicates the time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot; the target timing parameter value is one of the multiple timing parameter values, and the target The corresponding time of the timing parameter value is greater than or equal to the corresponding time of the terminal's physical downlink shared channel PDSCH receiving and processing capability parameter value;
  • the sending module 602 is configured to feed back HARQ-ACK to the base station in the time slot corresponding to the target timing parameter value.
  • the device can implement all the method steps of the terminal-side method embodiment, and can achieve the same technical effect, which will not be repeated here.
  • FIG. 7 it is a block diagram of a HARQ feedback device applied to a base station in an embodiment of the application, and the device includes:
  • the obtaining module 701 is configured to obtain the physical downlink shared channel PDSCH receiving and processing capability parameter value of the terminal;
  • the determining module 702 is configured to determine the target timing parameter sequence of the hybrid automatic repeat request-acknowledgement HARQ-ACK that the terminal feedbacks, wherein the target timing parameter sequence is set with multiple sequence index values and multiple timing parameter values.
  • the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates the time slot where the PUCCH resource is located and the time when the PUCCH resource is located
  • the slot corresponds to the HARQ-ACK feedback slot; the corresponding time for at least one timing parameter value in the target timing parameter sequence is greater than or equal to the corresponding time for the PDSCH receiving processing capability parameter value of the terminal;
  • the sending module 703 is configured to send HARQ-ACK feedback indication information to the terminal to indicate the target sequence index value corresponding to the target timing parameter value to the terminal, where the target sequence index value is the multiple sequence indexes One of the values.
  • the device can implement all the method steps of the method embodiment on the base station side, and can achieve the same technical effect, which will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • the terminal 800 may include: at least one processor 801, a memory 802, at least one network interface 804, and other user interfaces 803.
  • the various components in the terminal 800 are coupled together through the bus system 805.
  • the bus system 805 is used to implement connection and communication between these components.
  • the bus system 805 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 805 in FIG. 8.
  • the user interface 803 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • a pointing device such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 802 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 802 of the system and method described in the various embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 802 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them, for example: operating system 8021 and application 8022.
  • the operating system 8021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 8022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present application may be included in the application 8022.
  • the processor 801 by calling a computer program or instruction stored in the memory 802, specifically, a computer program or instruction stored in the application program 8022, the processor 801 is used to:
  • the target timing parameter value indicating the time for the terminal to feedback the hybrid automatic repeat request-acknowledgement HARQ-ACK; wherein a target timing parameter sequence is predefined between the terminal and the base station, and multiple target timing parameter sequences are set A one-to-one correspondence between a sequence index value and multiple timing parameter values; the timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates The time slot where the PUCCH resource is located and the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot; the target timing parameter value is one of the multiple timing parameter values, and the corresponding time of the target timing parameter value It is greater than or equal to the time corresponding to the receiving processing capability parameter value of the physical downlink shared channel PDSCH of the terminal; and the HARQ-ACK is fed back to the base station in the time slot corresponding to the target timing parameter value.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 801 or implemented by the processor 801.
  • the processor 801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 801 or instructions in the form of software.
  • the aforementioned processor 801 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 802, and the processor 801 reads the information in the memory 802, and completes the steps of the above method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 801 is further configured to perform any one of the following: when the target timing parameter sequence is the first default timing parameter sequence or the second default timing parameter sequence, receiving the base station The first control signaling sent, wherein the first control signaling carries a first target sequence index value, the first target sequence index value is one of the multiple sequence index values, and the The timing parameter value corresponding to the first target sequence index value is the target timing parameter value; when the target timing parameter sequence is the first default timing parameter sequence, each timing parameter value in the target timing parameter sequence is equal to Instruct the terminal to receive the PDSCH for the i-th time slot with PUCCH resources, where i is the corresponding timing parameter value; when the target timing parameter sequence is the second default timing parameter sequence, each timing in the target timing parameter sequence
  • the parameter values all indicate the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH;
  • the target timing parameter sequence is composed of the first default timing parameter sequence and the timing offset value
  • the second control signaling carries a second target sequence index value
  • the high-layer signaling carries a timing offset value
  • the second target sequence index value Is one of the multiple sequence index values
  • the sum of the target default parameter value corresponding to the second target sequence index value and the timing offset value is the target timing parameter value
  • the target The default parameter value is one of the first default timing parameter sequence
  • each timing parameter value in the target timing parameter sequence indicates the time slot between the HARQ-ACK feedback time slot and the last symbol of the PDSCH Interval
  • the processor 801 is further configured to report the PDSCH reception processing capability parameter value of the terminal to the base station.
  • the PDSCH reception processing capability parameter value of the terminal is any one of the following:
  • the time length corresponding to the PDSCH receiving processing capability parameter value of the terminal is the same as the preset first reference time length, and the first reference time length is the value corresponding to the PDSCH receiving processing capability parameter value under the reference subcarrier interval SCS value Time length; the time length corresponding to the PDSCH receiving and processing capability parameter value of the terminal is the same as the second reference time length, and the second reference time length is between the first reference time length and the preset time offset length
  • the difference value of the PDSCH receiving processing capability parameter value of the terminal is associated with the target SCS value adopted by the PDSCH of the terminal.
  • the PDSCH reception processing capability parameter value is the reference SCS value PDSCH reception processing at 2 X as the ability parameter value, X represents an integer greater than or equal to 0.
  • 2 X times the length of time when the parameter values PDSCH reception processing capacity of the terminal with a second reference corresponding to the same length of time, said parameter value PDSCH reception processing capacity target value ,
  • the target value is the difference between the PDSCH receiving processing capability parameter value and the preset time offset value under the reference SCS value, and X represents an integer greater than or equal to 0.
  • the PDSCH receiving processing capability parameter value of the terminal passes as follows The formula is expressed:
  • N1 u N1 m ⁇ 2 um ;
  • N1 u represents the PDSCH receiving processing capability parameter value of the terminal
  • N1 m represents the PDSCH receiving processing capability parameter value corresponding to the reference SCS value
  • u represents the index value of the target SCS value adopted by the PDSCH of the terminal
  • m represents the value of the target SCS value used by the PDSCH of the terminal.
  • the PDSCH receiving processing capability parameter value of the terminal is expressed by the following formula :
  • N1 u (N1 m -D) ⁇ 2 um ;
  • N1 u represents the PDSCH receiving processing capability parameter value of the terminal
  • N1 m represents the PDSCH receiving processing capability parameter value corresponding to the reference SCS value
  • D represents the preset time offset value
  • u represents the target used by the PDSCH of the terminal
  • m represents the index value of the reference SCS value.
  • the PDSCH receive processing capability parameter value of the terminal is determined by the following formula To show:
  • N1 u represents the PDSCH reception processing capability parameter value of the terminal
  • N1 u-1 represents the PDSCH reception processing capability parameter value corresponding to the neighboring SCS value of the target SCS value.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a terminal provided by another embodiment of the application.
  • the terminal in FIG. 9 can be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an e-reader, a handheld game console, or a salesperson. Terminals (Point of Sales, POS), in-vehicle electronic equipment (in-vehicle computers), etc.
  • the terminal includes a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a processor 960, an audio circuit 970, a WiFi (Wireless Fidelity) module 980, and a power supply 990.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 9 does not constitute a limitation on the mobile phone, and may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the input unit 930 can be used to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the terminal.
  • the input unit 930 may include a touch panel 9301.
  • the touch panel 9301 also called a touch screen, can collect the user's touch operations on or near it (for example, the user's operations on the touch panel 9301 with fingers, stylus, or any other suitable object or accessory), and set it according to the preset
  • the specified program drives the corresponding connection device.
  • the touch panel 9301 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 960, and can receive and execute the commands sent by the processor 960.
  • the touch panel 9301 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 930 may also include other input devices 9302, and the other input devices 9302 may be used to receive inputted numeric or character information and generate key signal inputs related to user settings and function control of the terminal.
  • other input devices 9302 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch sensitive that do not display visual output).
  • function keys such as volume control buttons, switch buttons, etc.
  • trackballs such as volume control buttons, switch buttons, etc.
  • mice such as joysticks
  • optical mice optical mice are touch sensitive that do not display visual output.
  • the display unit 940 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal.
  • the display unit 940 may include a display panel 9401.
  • the display panel 9401 can be configured with the display panel 9401 in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • the touch panel 9301 can cover the display panel 9401 to form a touch screen.
  • the touch screen detects a touch operation on or near it, it is transmitted to the processor 960 to determine the type of touch event, and then the processor 960 provides corresponding visual output on the touch screen according to the type of touch event.
  • the touch screen includes an application program interface display area and a common control display area.
  • the arrangement of the display area of the application program interface and the display area of the commonly used controls is not limited, and can be arranged up and down, left and right, etc., which can distinguish the two display areas.
  • the application program interface display area can be used to display the application program interface. Each interface may include at least one application icon and/or widget desktop control and other interface elements.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display controls with a higher usage rate, such as application icons such as setting buttons, interface numbers, scroll bars, and phonebook icons.
  • the RF circuit 910 can be used for receiving and sending signals during the process of sending and receiving information or talking. In particular, after receiving the downlink information on the network side, it is processed by the processor 960; in addition, the designed uplink data is sent to the network side.
  • the RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 910 can also communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 920 is used to store software programs and modules, and the processor 960 executes various functional applications and data processing of the terminal by running the software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of the terminal, etc.
  • the memory 920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 960 is the control center of the terminal. It uses various interfaces and lines to connect to the various parts of the entire mobile phone, runs or executes the software programs and/or modules stored in the first memory 9201, and calls the software programs and/or modules stored in the second memory 9202.
  • the data in the terminal performs various functions of the terminal and processes the data, so as to monitor the terminal as a whole.
  • the processor 960 may include one or more processing units.
  • the processor 960 by calling and storing the software program and/or module in the first memory 9201 and/or the data in the second memory 9202, the processor 960 is used to obtain a hybrid automatic repeat request for feedback to the terminal. Confirm the target timing parameter value indicated by the time to answer the HARQ-ACK; wherein a target timing parameter sequence is predefined between the terminal and the base station, and the target timing parameter sequence is set with multiple sequence index values and multiple timing parameter values.
  • the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates the time slot where the PUCCH resource is located and the PUCCH resource
  • the time slot corresponds to the HARQ-ACK feedback time slot;
  • the target timing parameter value is one of the multiple timing parameter values, and the corresponding time of the target timing parameter value is greater than or equal to the physical downlink shared channel PDSCH of the terminal Receiving the corresponding time of the processing capability parameter value; feeding back HARQ-ACK to the base station on the time slot corresponding to the target timing parameter value.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a base station provided by an embodiment of the application.
  • the base station 1000 may include at least one processor 1001, a memory 1002, at least one other user interface 1003, and a transceiver 1004.
  • the various components in the base station 1000 are coupled together through the bus system 1005.
  • the bus system 1005 is used to implement connection and communication between these components.
  • the bus system 1005 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 1005 in FIG. 10.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1001 and the memory 1002
  • the various circuits of the representative memory are linked together.
  • the bus system can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are all known in the art, therefore, the embodiments of this application will not further describe them.
  • the bus interface provides the interface.
  • the transceiver 1004 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 1003 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the memory 1002 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 1002 of the system and method described in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the processor 1001 is responsible for managing the bus system and general processing.
  • the memory 1002 can store computer programs or instructions used by the processor 1001 when performing operations. Specifically, the processor 1001 can be used for:
  • the target timing parameter sequence of the terminal feedback hybrid automatic repeat request-acknowledgement HARQ-ACK wherein the target timing parameter sequence is set with multiple sequence index values and One-to-one correspondence between multiple timing parameter values; the timing parameter value indicates the time slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH, or the timing parameter value indicates when the PUCCH resource is located
  • the time slot where the PUCCH resource is located corresponds to the HARQ-ACK feedback time slot; the corresponding time for at least one timing parameter value in the target timing parameter sequence is greater than or equal to the corresponding time for the PDSCH receiving processing capability parameter value of the terminal;
  • the terminal sends HARQ-ACK feedback indication information to indicate to the terminal a target sequence index value corresponding to a target timing parameter value, where the target sequence index value is one of the multiple sequence index values.
  • the processor 1001 is further configured to: receive the PDSCH reception processing capability parameter value of the terminal reported by the terminal; or obtain the PDSCH reception processing capability parameter value of the terminal predefined by the protocol.
  • processor 1001 is further configured to execute any one of the following:
  • Each timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH;
  • Each timing parameter value indicates the slot interval between the HARQ-ACK feedback slot and the last symbol of the PDSCH;
  • the HARQ-ACK first default timing parameter sequence is determined as the third target timing parameter sequence, and each timing parameter value in the third target timing parameter sequence indicates the i-th time when the terminal has PUCCH resources after receiving the PDSCH.
  • Gap, i is the corresponding timing parameter value;
  • the second default timing parameter sequence of HARQ-ACK is determined as the fourth target timing parameter sequence, and each timing parameter value in the fourth target timing parameter sequence indicates the HARQ-ACK feedback slot and the last one of the PDSCH Time slot interval between symbols;
  • the target timing parameter sequence is a first target timing parameter sequence, a second target timing parameter sequence, a third target timing parameter sequence, or a fourth target timing parameter sequence.
  • processor 1001 is further configured to execute any one of the following:
  • the obtaining of the HARQ-ACK timing offset value fed back by the terminal includes any one of the following:
  • the timing offset value is determined based on the PDSCH reception processing capability parameter value of the terminal corresponding to the target SCS value adopted by the PDSCH of the terminal.
  • the processor 1001 is further configured to set the timing offset value corresponding to the target SCS value; or,
  • the timing offset value is calculated by the following formula:
  • k_d u represents the timing offset value
  • z represents a positive integer
  • u represents the index value of the target SCS value
  • m represents the index value of the reference SCS value.
  • the processor 1001 is further configured to: based on the PDSCH reception processing capability parameter value of the terminal corresponding to the target SCS value, calculate the timing offset value through the following formula:
  • k_d u represents the timing offset value
  • N1 represents the PDSCH receiving processing capability parameter value of the terminal corresponding to the target SCS value
  • the PDSCH receiving processing capability parameter value of the terminal is expressed in the number of symbols
  • L represents The number of symbols contained in each slot.
  • the processor 1001 is further configured to determine the sum of the timing offset value and the first default timing parameter sequence as the first target timing parameter sequence.
  • the processor 1001 is further configured to: determine a preset value as the timing offset factor; or, determine the timing offset factor based on the target SCS value adopted by the PDSCH of the terminal .
  • the processor 1001 is further configured to: correspondingly set the timing offset factor for the target SCS value; or,
  • the timing offset factor is calculated by the following formula:
  • k_c u represents the timing offset factor
  • u denotes an index value representing said target value SCS
  • m represents an index value of the reference SCS value.
  • the processor 1001 is further configured to: determine the product of the timing offset factor and the first default timing parameter sequence as the second target timing parameter sequence.
  • the processor 1001 is further configured to: when the target timing parameter sequence is a third target timing parameter sequence or a fourth target timing parameter sequence, send first control signaling to the terminal , wherein the first control signaling carries a first target sequence index value, the first target sequence index value is one of the plurality of sequence index values, and the first target sequence index value is The corresponding timing parameter value is the target timing parameter value; when the target timing parameter sequence is the first target timing parameter sequence, the second control signaling is sent to the terminal and the higher layer signaling is sent to the terminal, where The second control signaling carries a second target sequence index value, and the high-layer signaling carries a timing offset value; the second target sequence index value is one of the multiple sequence index values When the target timing parameter sequence is the second target timing parameter sequence, send second control signaling to the terminal and send high-level signaling to the terminal, wherein the second control signaling carries a third A target sequence index value, the high-level signaling carries a timing offset factor; the third target sequence index
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the above-mentioned processor 1001 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the base station provided in the embodiment of the present application can implement each process implemented by the base station in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the electronic device provided in the embodiments of the present application includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can be a personal computer, a server, Or a network device, etc.) or a processor executes all or part of the steps of the method described in each embodiment of the present application.
  • the computer storage medium is a non-transitory (English: nontransitory) medium, including: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is executed by a processor, the method provided in the foregoing embodiments can be implemented and the same technology can be achieved. The effect will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例提供一种HARQ反馈方法、终端及基站,方法包括获取对终端反馈HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或时序参数值指示PUCCH资源所在时隙且PUCCH资源所在时隙对应HARQ-ACK反馈时隙;目标时序参数值为多个时序参数值中的其中一个,目标时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;在目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。本申请实施例实现了SCS大于120KHz情况下的反馈HARQ-ACK指示。

Description

一种HARQ反馈方法、终端及基站
相关申请的交叉引用
本申请要求于2020年03月30日提交的申请号为2020102391804,申请名称为“一种HARQ反馈方法、终端及基站”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信技术领域,尤其涉及一种HARQ反馈方法、终端及基站。
背景技术
随着无线通信的发展,人们对移动通信的需求越来越高,特别是通信带宽和通信速率上,期望能够达到G比特量级的速率,为满足人们对通信高速率的要求,需要开发更大带宽的频谱。在当前5G的新空口(New Radio,NR)技术中,已经支持终端和基站在频率范围(Frequency Range,FR)为FR1和FR2两个频段上进行通信。其中FR1的范围未410MHz到7.125GHz;FR2的范围为24.25GHz到52.6GHz。
当前3GPP标准开始研究在52.6GHz—71GHz的频段上进行移动无线通信,更高的通信频率虽然能够带来更大的带宽优势,但对无线通信设计却带来更大的挑战,主要是更高的频率有更大的多普勒频偏,同时也有更大的相位噪声产生。此时为解决高频带来的多普勒和相位噪声的影响,则会采用更高的子载波间隔(sub-carrier spacing,SCS),例如SCS=240KHz,SCS=480KHz,SCS=960KHz等。
当基站发送下行数据给终端时,需要指示终端反馈混合自动重传请求-确认回答(Hybrid Automatic Repeat request-Acknowledge,HARQ-ACK)的时序参数,并采用k1进行指示,其中k1的数值要大于等于终端的处理能力N1值。但是随着SCS的增加,k1的范围逐渐增大,原来静态配置的默认参数k1(1,2,3,4,5,6,7,8)已经不满足指示要求。
发明内容
本申请实施例提供一种HARQ反馈方法、终端及基站,以实现SCS大于120KHz情况下的反馈HARQ-ACK指示。
本申请实施例提供一种HARQ反馈方法,应用于终端,包括:
获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;
在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
本申请实施例提供一种HARQ反馈方法,应用于基站,包括:
获取终端的物理下行共享信道PDSCH接收处理能力参数值;
确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
本申请实施例提供一种HARQ反馈装置,应用于终端,包括:
获取模块,用于获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义 有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;
发送模块,用于在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
本申请实施例提供一种HARQ反馈装置,应用于基站,包括:
获取模块,用于获取终端的物理下行共享信道PDSCH接收处理能力参数值;
确定模块,用于确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
发送模块,用于向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
本申请实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。
本申请实施例提供一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。
本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述的方法的步骤。
本申请实施例提供的HARQ反馈方法、终端及基站,通过获取对终端反馈HARQ-ACK的时间进行指示的目标时序参数值,并根据目标时序参数值进行HARQ-ACK反馈,由于目标时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间,使得在相应的终端能力情况下,终端能够在接收处理能力参数值相对应的时间单位长度之前,完成下行数据的接收过程且能够反馈HARQ-ACK信息,实现了SCS大于120KHz时对HARQ-ACK的反馈时间的有效指示。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中应用于终端的HARQ-ACK反馈方法的步骤流程图;
图2为本申请实施例中应用于基站的HARQ-ACK反馈方法的步骤流程图;
图3为本申请实施例中第一实施例中的示意图之一;
图4为本申请实施例中第一实施例中的示意图之二;
图5为本申请实施例中第三实施例中的示意图;
图6为本申请实施例中应用于终端的HARQ-ACK反馈装置的模块框图;
图7为本申请实施例中应用于基站的HARQ-ACK反馈装置的模块框图;
图8为本申请实施例中终端的结构示意图之一;
图9为本申请实施例中终端的结构示意图之二;
图10为本申请实施例中基站的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于清楚描述本申请实施例的技术方案,在本申请的各实施例中,若采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
还需要说明的是,本实施例中的PDSCH,指下行物理数据共享信道,可以泛指数据信道。
在无线通信的环境中,由于信道质量是快速变化的,即数据的传输有可能发生错误,为提高数据传输的可靠性,满足不同业务不同传输质量的要求。标准采用HARQ过程(即混合自动重传),也就是接收端对接收到的数据进行译码,并将译码结果反馈给发送端,当译码结果正确时反馈ACK,当译码错误时反馈NACK。数据发送端根据接收到的译码反馈信息,确定是否进行数据重新传输。一般的,当数据发送端收到的反馈信息是NACK时进行数据重传,当接收到的反馈信息是ACK时不进行数据重传,本次数据传输结束。
此外,发送端在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上发送数据调度信息,调度信息包括如下内容:数据信道的时域和频域位置;数据信道的调制和编码格式:表示物理下行共享信道(Physical Downlink Shared Channel,PDSCH)采用的调制阶数以及信道编码速率;反馈HARQ-ACK的时域信息k1,表示HARQ-ACK的反馈时隙距离PDSCH的位置,当k1=0时表示HARQ-ACK与PDSCH在同一个时隙内反馈。接收端检测PDCCH并根据PDCCH上传输的数据调度信息接收PDSCH数据,然后进行数据的解调和译码,并将译码结果在指定的时隙上反馈给基站。
另外,当接收端(终端)在执行HARQ过程中需要执行的行为有:检测PDCCH信道,解析PDCCH内容,对PDSCH进行信道估计、解调和信道译码,反馈HARQ-ACK。在整个执行的过程中,不同能力(用N1表示)的终端在接收PDSCH的过程需要的时间长度不同,即终端的PDSCH接收处理能力参数值不同,例如当SCS的索引值为1时,终端的PDSCH接收处理能力参数值为10或13个符号,且N1的数值是指PDSCH的最后一个符号到反馈HARQ-ACK的第一个符号的之间的符号数,即基站在调度终端数据、指示HARQ-ACK反馈时间时,其HARQ-ACK的反馈时间和PDSCH的时间间隔k1要大于等于N1数值。当前标准中k1的信息指示时在控制信道信息中指示,字段内容为:PDSCH-to-HARQ_feedback timing indicator,使用3bits,表示8中情况,分为直接指示和间接指示两种情景。直接指示场景是标准确定的一种默认场景,数值集合为{1,2,3,4,5,67,8},通过3bit直接指示,例如000对应1,001对应2,以此类推;间接指示其指示的数值不限制于默认场景的最大数值8,具体指示数值由高层信令配置,如可以通过高层信令配置成{2,4,5,7,8,9,10,11},通过3bit指示,例如000对应2,001对应4,以此类推。在现有技术标准中,在配置间接指示之前,只能采用直接指示,且配置信息是需要在终端进行连接态以后的执行动作。
但是,现有标准中只确定了FR1和FR2的情况下的终端处理能力指示(最大120KHz的SCS),即对应的N1数值。而对于52.6GHz及以上,可能会出现大于120KHz的SCS,比如:240KHz,480KHz,960KHz,相关的N1数值如何定义,如何指示还未有明确说明。此外,对于52.6GHz及以上,可能会出现大于120KHz的SCS,比如:240KHz,480KHz,960KHz,原来定义的k1的默认的数值集合{1,2,3,4,5,6,7,8}已经不能很好应用,原因如下:随着SCS的增大,其需要的N1数值继续增大,如当SCS=960KHz时,其N1的数值可能会定义到24*8=192符号,相当于13(192/14=13.7时隙)个时隙,超出k1指示的1-8的范围;此外,随着SCS的增大,配置***上/下行时隙时,一定的周期内(如当前配置最小周期是0.625毫秒),在8个时隙内,可能找不到上行时隙,例如当SCS=480KHz时,1slot时间长度为1/32ms,则0.625ms包含20个时隙;当 SCS=960KHz时,1slot时间长度为1/64ms,则0.625ms包含40个时隙;假设上下行的时隙配比相等,则某些时隙的PDSCH调度无法在8个时隙内找到上行时隙进行HARQ-ACK反馈,此时由于k1的选择范围为1-8,则对于需看反馈HARQ-ACK的数据调度,只能在有限时隙范围内调度(例如包含20个时隙时只能在时隙2到时隙9上调度),这限制了基站调度数据的灵活性。
针对上述描述,当SCS大于120KHz时如何确定PDSCH接收处理能力参数值N1需要给出明确方案,且由于N1数值变化,导致现有k1的数值范围无法满足指示HARQ-ACK,当k1的数值范围扩大时,指示k1的头开销就会变大,这会增加***的开销,此时如何在指示头开销不变的情况下,更大范围的指示HARQ-ACK反馈时间同样需要给出明确方案。针对此,本实施例提供如下方案:
如图1所示,为本申请实施例中应用于终端的HARQ反馈方法的步骤流程图,该方法包括如下步骤:
步骤101:获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值。
具体的,在本步骤中,终端需要获取基站对终端反馈HARQ-ACK的时间进行指示的目标时序参数值。
其中,终端与基站之间预定义有目标时序参数序列,该目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系。
此外,时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或时序参数值指示PUCCH资源所在时隙且PUCCH资源所在时隙对应HARQ-ACK反馈时隙。
此外,目标时序参数值为多个时序参数值中的其中一个,且目标时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间。即能够保证指示的反馈HARQ-ACK时间是在终端对PDSCH的接收之后,从而使得终端能够在完整接收PDSCH后再进行HARQ-ACK反馈。
此外,需要说明的是,PDSCH接收处理能力参数值可以为新的SCS参数下PDSCH接收处理能力参数值(用N1表示),新的SCS参数包括240KHz, 480KHz,960KHz和1920KHz中的一个或者多个。这使得在相应的终端能力情况下,能够在N1个时间单位长度之前,终端能够完成下行数据的接收过程,且能够反馈HARQ-ACK信息。
另外需要说明的是,N1的单位可以为符号,还可以为时隙,在没有特殊说明的情况下,本实施例中的N1单位为符号,实际应用可不做限定。
步骤102:在目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
在本步骤中,具体的,终端在获取目标时序参数值之后,可以直接在目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
此时,由于目标时序参数值的对应时间大于终端的PDSCH接收处理能力参数值的对应时间,使得在相应的终端能力情况下,能够在终端的PDSCH接收处理能力参数值相对应的时间单位长度之前,终端能够完成下行数据的接收过程且能够反馈HARQ-ACK信息,实现了SCS大于120KHz时对HARQ-ACK的反馈时间的有效指示。
此外,进一步地,在本实施例中,终端可以通过下述任意一项方式,获取对终端反馈HARQ-ACK的时间进行指示的目标时序参数值:
其一,当目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,接收基站发送的第一控制信令。
在该种情况下,可以通过直接接收基站发送的第一控制信令的方式获取得到目标时序参数值。
具体的,第一控制信令中携带有第一目标序列索引值,该第一目标序列索引值为目标时序参数序列中多个序列索引值中的其中一个,且第一目标序列索引值所对应的时序参数值为目标时序参数值,这使得终端能够基于该第一目标序列索引值解析得到目标时序参数值,从而得到HARQ-ACK的反馈时隙。
此外,需要说明的是,当目标时序参数序列为第一默认时序参数序列时,目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;当目标时序参数序列为第二默认 时序参数序列时,目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
即在该种情况下,目标时序参数序列可以为第一默认时序参数序列也可以为第二默认时序参数序列。此外,可以将现有标准中默认时序参数序列k1={1,2,3,4,5,6,7,8}作为第一默认时序参数序列,第二默认时序参数序列可以通过基站和终端的接口协议制定,如第二默认时序参数序列k1={4,5,6,7,8,9,10,11};也可以通过高层消息广播给终端,如k1={n4,n5,n6,n7,n8,n9,n10,n11}。其中高层消息广播的所有第二默认时序参数序列中的k1数值对应的时间大于参考SCS的PDSCH的接收处理时间(如数值大于等于(N1/14)个时隙,N1表示PDSCH的接收处理时间),其参考SCS可以为120KHz,或者调度PDSCH的SCS。此外,当配置有第二默认时序参数序列和第一默认时序参数序列时,当调度PDSCH的SCS大于某一SCS时(如120KHz),则采用第二默认时序参数序列。否则采用第一默认时序参数序列。
需要说明的是,在现有第一默认时序参数序列的基础上增加新的元素,映射序列值时,起始位置不同,则也可以认为是配置了第二默认时序参数序列。如:原有第一默认时序参数序列k1={1,2,3,4,5,6,7,8},将第一默认时序参数序列扩展为第二默认时序参数序列:k1={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}。当调度SCS小于等于SCS1时(如:SCS1=120KHz),序列索引值从1开始(000对应1,001对应2,以此类推),当调度SCS大于SCS1小于等于SCS2时(如:SCS1=120KHz,SCS2=480KHz),序列索引值从2开始(000对应2,001对应3,以此类推)。
此外,具体的,当目标时序参数值指示终端接收PDSCH后第i个有PUCCH资源的时隙,即指示第i个PUCCH资源时,终端可以利用该目标时序参数值计算对应含有PUCCH资源的时隙,该时隙对应HARQ-ACK反馈时间。例如,终端接收到基站调度PDSCH数据时,包含HARQ-ACK的反馈时间信息指示,如PDSCH-to-HARQ_feedback timing indicator指示的时序参数值(采用k1值表示),此时通过本实施例中对时序参数值的定义对该字段进行解读,比如在调度的PDSCH后(slotn),有PUCCH资源的时隙分别为slot(n+4)、slot(n+7) 和slot(n+10)等,此时当k1=1时(如bit信息为000),表示HARQ-ACK在第1个有PUCCH资源的时隙上反馈,即在slot(n+4)上反馈;当k1=2时(如bit信息为001),表示HARQ-ACK在第2个有PUCCH资源的时隙上反馈;当k1=3时(如bit信息为010),表示HARQ-ACK在第3个有PUCCH资源的时隙上反馈。当然在此需要说明的是,目标时序参数值所对应的PUCCH资源所在时隙大于终端的PDSCH接收处理能力参数值的对应时间。
其二,当目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移值。
在该种方式下,若目标时序参数序列由第一默认时序参数序列和时序偏移值组成,即时序参数值包含默认参数值和时序偏移值,则可以通过分别获取默认参数值和时序偏移值的间接获取方式,获取得到目标时序参数值;即可以通过接收基站发送的第二控制信令的方式得到目标默认参数值,同时通过接收基站发送的高层信令的方式或获取协议预定义的时序偏移值的方式获取得到时序偏移值。
具体的,第二控制信令中携带有第二目标序列索引值,高层信令中携带有时序偏移值;该第二目标序列索引值为多个序列索引值中的其中一个,且第二目标序列索引值所对应的目标默认参数值与时序偏移值的和值为目标时序参数值,目标默认参数值为第一默认时序参数序列中的其中一个。当然,此种情况下,目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
当然,在此需要说明的是,由于目标时序参数序列由第一默认时序参数序列和时序偏移值组成,即时序参数值包含默认参数值和时序偏移值两部分,则时序参数值和组成该时序参数值的默认参数值对应同一序列索引值。即每一个时序参数值的序列索引值对应一默认时序参数序列中的默认参数值,例如,若第一默认时序参数序列k1={1,2,3,4,5,6,7,8},时序偏移值为5,即目标时序参数序列为{1,2,3,4,5,6,7,8}+5;若在第一默认时序参数序列中数值1对应序列索引值000,则在目标时序参数序列中数值6同样对应序列索引值000。
还需要说明的是,序列索引值所对应的默认参数值可以为现有标准中默认时序参数序列中的值,如为第一默认时序参数序列k1={1,2,3,4,5,6,7,8}中的值。
其三,当目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移因子。
在该种方式下,若目标时序参数序列由第一默认时序参数序列和时序偏移因子组成,即时序参数值包含默认参数值和时序偏移因子,则可以通过分别获取默认参数值和时序偏移因子的间接获取方式,获取得到目标时序参数值;即可以通过接收基站发送的第二控制信令的方式得到目标默认参数值,同时通过接收基站发送的高层信令的方式或获取协议预定义的时序偏移因子的方式获取得到时序偏移因子。
具体的,第二控制信令中携带有第三目标序列索引值,高层信令中携带有时序偏移因子;第三目标序列索引值为多个序列索引值中的其中一个,且第三目标序列索引值所对应的目标默认参数值与时序偏移因子的乘积为目标时序参数值,目标默认参数值为第一默认时序参数序列中的其中一个。
当然,基于默认参数值为时序参数值的组成部分,则每一个时序参数值的序列索引值对应第一默认时序参数序列中的一默认参数值。
另外,在本实施例中,终端在获取对终端反馈HARQ-ACK的时间进行指示的目标时序参数值之前,还需要向基站上报终端的PDSCH接收处理能力参数值,从而使得基站能够参考终端的PDSCH接收处理能力参数设定目标时序参数序列。
当然,在此需要说明的是,还可以将终端的PDSCH接收处理能力参数写入协议中,使得基站能够通过获取协议中写入参数的方式获取到该终端的PDSCH接收处理能力参数值。
此外,具体的,终端的PDSCH接收处理能力参数N1值可以分成多个终端能力,即不同的终端能力可以设定不同N1值,确定过程考虑的因素可以包括下述中的一项或多项:PDSCH传输最大带宽或者频域物理资源个数,相 位跟踪参考信号位置,最大传输块长度,最大传输层数等和支持业务类型等。
此外,终端的PDSCH接收处理能力参数值可以为下述中的任意一项:
其一,终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同,第一参考时间长度为参考SCS值下PDSCH接收处理能力参数值所对应的时间长度。
可选地,在该种方式下,即当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,PDSCH接收处理能力参数值可以为参考SCS值下PDSCH接收处理能力参数值的2 X倍,X表示大于等于0的整数。
此外,可选地,在该种方式下,终端的PDSCH接收处理能力参数值可以通过如下公式进行表示:
N1 u=N1 m×2 u-m
其中,N1 u表示终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示参考SCS值的索引值。
在此需要说明的是,参考SCS值可以为120KHz。
此外,还需要说明的是,SCS值的索引值u与SCS值的对应关系为SCS=15KHz×2 u
即可以将终端的PDSCH接收处理能力参数值与SCS=120KHz时所对应的PDSCH接收处理能力参数值相关联,时间长度保持与SCS=120KHz定义的时间长度相同,即通过SCS之间的关系,进行符号间折算。例如,若PDSCH所采用的目标SCS值为240KHz,u=4,则此时符号长度为SCS=120KHz的符号长度的1/2倍,即N1 4=2N1 3;若PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=120KHz的符号长度的1/4倍,即N1 5=4N1 3;若PDSCH所采用的目标SCS值为240KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/8倍,即N1 6=8N1 3
此时对应不同的SCS,PDSCH接收处理能力参数值可以如下表1所示:
表1
Figure PCTCN2021075074-appb-000001
需要说明的是,SCS的索引值u=4及后续内容为本实施例新增内容。
其二,终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同,第二参考时间长度为第一参考时间长度与预设时间偏移长度之间的差值。
可选地,在该种方式下,即当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述PDSCH接收处理能力参数值为目标值的2 X倍,所述目标值为参考SCS值下PDSCH接收处理能力参数值与预设时间偏移值之间的差值,X表示大于等于0的整数。
此外,可选地,在该种方式下,终端的PDSCH接收处理能力参数值可以通过如下公式进行表示:
N1 u=(N1 m-D)×2 u-m
其中,N1 u表示终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示参考SCS值的索引值。
需要说明的是,不同的目标SCS值可以对应不同的D值,在本实施例中为了使得协议制定简单,D可以为统一值。
即在该方式中,可以将终端的PDSCH接收处理能力参数值与参考SCS值所对应的PDSCH接收处理能力参数值相关联,假设参考SCS值为120KHz,即终端的PDSCH接收处理能力参数值的时间长度保持与SCS=120KHz定义 的时间长度减去一个预设时间偏移长度相同,当然若预设时间偏移值为负值,则实质为加上一个预设时间偏移值。例如,若PDSCH所采用的目标SCS值为240KHz,u=4,则此时符号长度为SCS=120KHz的符号长度的1/2倍,即N1 4=(N1 3-D)×2;若PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=120KHz的符号长度的1/4倍,即N1 5=(N1 3-D)×4;若PDSCH所采用的目标SCS值为240KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/8倍,即N1 6=(N1 3-D)×8。
此时对应不同的SCS,PDSCH接收处理能力参数值可以如下表2所示:
表2
Figure PCTCN2021075074-appb-000002
在此需要需要的是,上述表格中u=4及后续数据为本实施例新增内容。
其三,终端的PDSCH接收处理能力参数值与终端的PDSCH所采用的目标SCS值相关联,
在该种方式中,终端的PDSCH接收处理能力参数值通过如下公式进行表示:
N1 u-1≤N1 u≤2N1 u-1
其中,N1 u表示PDSCH接收处理能力参数值,N1 u-1表示相邻索引值所对应的终端的PDSCH接收处理能力参数值。
例如PDSCH所采用的目标SCS值为240KHz,u=4,则此时符号长度为SCS=120KHz的符号长度的1/2倍,终端的PDSCH接收处理能力参数值(以N1 进行表示)的范围为N1 3≤N1 4≤2N1 3。即对应SCS=120KHz的N1对应数值为20个符号以及24个符号,则20≤N1 4≤40,或24≤N1 4≤48。此外,若PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=20KHz的符号长度的1/2倍,N1的范围为N1 4≤N1 5≤2N1 4;若PDSCH所采用的目标SCS值为960KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/2倍,N1的范围为N1 5≤N1 6≤2N1 5
此时对应不同的SCS,终端的PDSCH接收处理能力参数值可以如下表3所示:
表3
Figure PCTCN2021075074-appb-000003
在此需要说明的是,上述表格中u=4及后续数据为本实施例新增内容。
这样,本实施例中的终端通过获取对终端反馈HARQ-ACK的时间进行指示的目标时序参数值,且目标时序参数值的对应时间大于终端的PDSCH接收处理能力参数值的对应时间,并在目标时序参数值所对应的时隙上向基站反馈HARQ-ACK,使得在相应的终端能力情况下,在终端的PDSCH接收处理能力参数值相对应的时间单位长度之前终端能够完成下行数据的接收过程,且能够反馈HARQ-ACK信息,实现了SCS大于120KHz时对HARQ-ACK的反馈时间的有效指示。
此外,如图2所示,为本申请实施例中应用于基站的HARQ反馈方法的步骤流程图,该方法包括如下步骤:
步骤201:获取终端的PDSCH接收处理能力参数值。
在本步骤中,具体的,基站获取终端的PDSCH接收处理能力参数值。
此外,具体的,基站在获取终端的PDSCH接收处理能力参数值时,可以接收终端上报的终端的PDSCH接收处理能力参数值;或者,获取协议预定义的终端的PDSCH接收处理能力参数值。在此不进行具体限定。
步骤202:确定终端反馈HARQ-ACK的目标时序参数序列。
在本步骤中,具体的,基站在获取终端的PDSCH接收处理能力参数值之后,可以确定终端反馈HARQ-ACK的目标时序参数序列。
其中,目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或时序参数值指示PUCCH资源所在时隙且PUCCH资源所在时隙对应HARQ-ACK反馈时隙。
此外,目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间。这使得在相应的终端能力情况下,在终端的PDSCH接收处理能力参数值相对应的时间单位长度之前终端能够完成下行数据的接收过程,且能够反馈HARQ-ACK信息,实现了SCS大于120KHz时对HARQ-ACK的反馈时间的有效指示。
当然,在此需要说明的是,当目标时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔时,目标时序参数值的数值单位与终端的PDSCH接收处理能力参数值的数值单位不一样时,需要转换为相同的单位,例如当终端的PDSCH接收处理能力参数值(采用N1表示)的单位为符号,目标时序参数值(采用k1表示)的单位为时隙时,需要将k1乘以一个因子N(N是一个时隙包含的符号数),以实现对目标时序参数值的对应时间与终端的PDSCH接收处理能力参数值的对应时间之间的对比。
步骤203:向终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端。
具体的,目标序列索引值为多个序列索引值中的其中一个。这使得基站在向终端发送HARQ-ACK反馈指示信息时,终端能够基于目标时序参数值反馈HARQ-ACK,使得在相应的终端能力情况下,在终端的PDSCH接收处理能力参数值相对应的时间单位长度之前终端能够完成下行数据的接收过程,且能够反馈HARQ-ACK信息,实现了SCS大于120KHz时对HARQ-ACK的反馈时间的有效指示。
此外,在本实施例中,基站在确定终端反馈HARQ-ACK的目标时序参数序列时,可以包括下述任意一项,且目标时序参数序列可以为下述中的第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列:
其一,获取终端反馈HARQ-ACK的时序偏移值,并根据HARQ-ACK的第一默认时序参数序列和时序偏移值确定第一目标时序参数序列。
在该种方式中,可以将第一目标时序参数序列确定为目标时序参数序列,且第一目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
具体的,在根据HARQ-ACK的第一默认时序参数序列和时序偏移值确定第一目标时序参数序列时,可以将时序偏移值与第一默认时序参数序列的和值确定为第一目标时序参数序列。例如,若第一默认时序参数序列中的时序参数值范围为{1,2,3,4,5,6,7,8},则可以在该基础上增加一个时序偏移值,达到扩展默认范围的技术效果。
此外,具体的,在获取终端反馈HARQ-ACK的时序偏移值时可以包括下述任意一项:
1,将一预设值确定为所述时序偏移值。
具体的,可以通过协议设置一个固定的数值。例如设置时序偏移值k_d u=5或者k_d u=8;或者通过高层消息(广播消息)进行设定。这样通过统一时序偏移值,简化了协议制定和实现过程。
2,基于终端的PDSCH所采用的目标SCS值确定时序偏移值。
在该种方式中,可以针对目标SCS对应设置时序偏移值;或者,基于参 考SCS值的索引值和目标SCS值的索引值,通过下述公式计算得到时序偏移值:
k_d u≥z×2 u-m
其中,k_d u表示时序偏移值,z表示正整数,u表示目标SCS值的索引值,m表示所述参考SCS值的索引值。
3,基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定时序偏移值。
在该种方式中,可以基于目标SCS值所对应的终端的PDSCH接收处理能力参数值,通过下述公式计算得到时序偏移值:
Figure PCTCN2021075074-appb-000004
或者
Figure PCTCN2021075074-appb-000005
其中,k_d u表示时序偏移值,N1表示目标SCS值所对应的终端的PDSCH接收处理能力参数值,且终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。
在此还需要说明的是,时序偏移值可以为相对值,用于对有效时隙进行指示,例如有效时隙可以指包含有上行符号的时隙。
其二,获取终端反馈HARQ-ACK的时序偏移因子,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列。
在该种方式中,可以将第二目标时序参考序列确定为目标时序参考序列,且第二目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
具体的,在根据HARQ-ACK的第一默认时序参数序列和时序偏移因子确定第二目标时序参数序列时,可以将时序偏移因子与第一默认时序参数序列的乘积确定为第二目标时序参数序列。例如若第一默认时序参数序列中的时序参数值范围为{1,2,3,4,5,6,7,8},则可以在该基础上倍乘一时序偏移因子,达到扩展默认范围的技术效果。
此外,具体的,在获取终端反馈HARQ-ACK的时序偏移因子时,可以将一预设值确定为时序偏移因子;或者,基于终端的PDSCH所采用的目标SCS值确定时序偏移因子。
具体的,在基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子时,可以针对目标SCS值对应设置时序偏移因子;或者,基于参考SCS值的索引值和目标SCS值的索引值,通过下述公式计算得到时序偏移因子:
k_c u=2 u-m
其中,k_c u表示时序偏移因子,u表示示目标SCS值的索引值,m表示参考SCS值的索引值。
其三,将HARQ-ACK的第一默认时序参数序列确定为第三目标时序参数序列。
在该种方式中可以将第三目标时序参数序列作为目标时序参数序列,且第三目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值。
例如第一默认时序参数序列中的时序参数值范围为{1,2,3,4,5,6,7,8},则可以当时序参数值为1(对应序列索引值000)时,表示HARQ-ACK在第1个有PUCCH资源的时隙上反馈。这样,通过指示PUCCH时隙的方法对HARQ-ACK的反馈时隙进行指示,增加了***调度的灵活性。
其四,将HARQ-ACK的第二默认时序参数序列确定为第四目标时序参数序列,且第四目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
在该种方式中,可以将第四目标时序参数序列作为目标时序参数序列。
具体的,在该种情况下,当将现有标准中默认时序参数序列k1={1,2,3,4,5,6,7,8}作为第一默认时序参数序列时,该情况下的第四目标时序参数序列可以为第二默认时序参数序列。该第二默认时序参数序列可以通过基站和终端的接口协议制定,如第二默认时序参数序列可以为k1={4,5,6,7,8,9,10,11};也可以通过高层消息广播给终端,如k1={n4,n5,n6,n7,n8,n9,n10,n11}。其中高层消息广播的所有k1数值对应的时间大于参考SCS的PDSCH的接收处理时间(如数值大于等于(N1/14)个时隙,N1表示PDSCH的接收处理时间),其参考SCS可以为120KHz,或者调度PDSCH的SCS。此外,当配置有第二默认时序参数序列和第一默认时序参数 序列时,当调度PDSCH的SCS大于某一SCS时(如120KHz),则采用第二默认时序参数序列。否则采用第一默认时序参数序列。
需要说明的是,在现有第一默认时序参数序列的基础上增加新的元素,映射序列值时,起始位置不同,则也可以认为是配置了第二默认时序参数序列。如:原有第一默认时序参数序列k1={1,2,3,4,5,6,7,8},将第一默认时序参数序列扩展为第二默认时序参数序列:k1={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}。当调度SCS小于等于SCS1时(如:SCS1=120KHz),序列索引值从1开始(000对应1,001对应2,以此类推),当调度SCS大于SCS1小于等于SCS2时(如:SCS1=120KHz,SCS2=480KHz),序列索引值从2开始(000对应2,001对应3,以此类推)。
这样,目标时序参数序列为第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列,即通过上述任意一项均实现了对目标时序参数序列的确定过程,且采用和参考SCS值所对应的PDSCH接收处理能力参数值相关联,和参考SCS相关联,通过指示增加时序偏移值、时序偏移因子和PUCCH时间资源指示等技术手段,能够使得基站更加有效的指示HARQ-ACK的反馈时间,即在开销最小的化的情况下,指示范围大的HARQ-ACK的反馈时间,增加了基站调度的灵活性,能够适应不同业务的需求,提升了用户业务感知。此外,在更大范围的HARQ-ACK时间指示的同时,也能够使得多个HARQ-ACK复用在一起发送,减少了终端的电力消耗。
另外,在上述实施例的基础上,基站在向终端发送HARQ-ACK反馈指示信息时,可以通过如下方式:
其一,当目标时序参数序列为第三目标时序参数序列或第四目标时序参数序列时,向终端发送第一控制信令,其中第一控制信令中携带有第一目标序列索引值,第一目标序列索引值为多个序列索引值中的其中一个,且第一目标序列索引值所对应的时序参数值为目标时序参数值。
即当目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,基站可以通过直接指示的方式将目标时序参数值所对应的目标序列索 引值指示给终端,以使终端直接基于该目标时序索引值得到目标时序参数值。
其二,当目标时序参数序列为第一目标时序参数序列时,向终端发送第二控制信令并向终端发送高层信令,其中第二控制信令中携带有第二目标序列索引值,高层信令中携带有时序偏移值;第二目标序列索引值为多个序列索引值中的其中一个。
即当目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,可以通过该间接指示方式将目标时序参数值指示给终端。具体过程可以参见终端侧相关内容,在此不再进行赘述。
其三,当目标时序参数序列为第二目标时序参数序列时,向终端发送第二控制信令并向终端发送高层信令,其中第二控制信令中携带有第三目标序列索引值,高层信令中携带有时序偏移因子;第三目标序列索引值为多个序列索引值中的其中一个。
即当目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,可以通过该间接指示方式将目标时序参数值指示给终端。具体过程可以参见终端侧相关内容,在此不再进行赘述。
下面通过具体实施例对本申请实施例进行具体介绍。
第一实施例:
步骤1,定义PDSCH接收处理时间,即终端的PDSCH接收处理能力参数值N1。
u=3的情况下对应SCS=120KHz,其N1对应数值为20符号以及24符号,当SCS大于120KHz时存在以下情况:
若终端的PDSCH所采用的目标SCS为240KHz,u=4,N1符号长度为SCS=120KHz的符号长度的1/2倍,即N1 4=2N1 3;若PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=120KHz的符号长度的1/4倍,即N1 5=4N1 3;若PDSCH所采用的目标SCS值为240KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/8倍,即N1 6=2N1 3。具体终端的PDSCH接收处理能力参数值可以参见上述表1所示。
即终端的PDSCH接收处理能力参数值为N1 u=N1 m×2 u-m;其中,N1 u 表示终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示PDSCH所采用的目标SCS值的索引值,m表示参考SCS值的索引值。本实施例中参考SCS值为120KHz。
此外,在本步骤中在对终端的PDSCH接收处理能力参数值进行指示时,可以以确定的数值在接口协议中确定,还可以通过终端上报能力参数的方式进行指示,即终端将终端的PDSCH接收处理能力参数值N1上报给基站。
需要说明的是,上述终端的PDSCH接收处理能力参数值的单位可以为符号,还可以为时隙,在此不做限定。
步骤2,基站确定目标时序参数序列k1的数值范围,使得k1数值序列中存在至少一个值的对应时间大于N1对应的时间。
具体的,可以在第一默认时序参数序列的基础上增加一个时序偏移值得到目标时序参数序列k1。下面以时序偏移值k_d u=5为例进行说明。
具体的,目标时序参数序列中的时序参数值表示HARQ-ACK的反馈符号和PDSCH最后一个符号之间的间隔。假设SCS=960KHz,终端的PDSCH接收处理能力参数值N1=160符号的情况下,终端在slot 0处接收到调度信令和PDSCH数,对于该能力终端,需要在11.2(N1/14=11.2)个时隙才能给完成PDSCH的接收,也就是说只有在11.2个时隙后才能够反馈HARQ-ACK,这样基站指示HARQ-ACK时间时,需要大于11,这样至少k1=12或k1=13可以做有效指示。
下面对时序偏移值的确定方式进行说明。
A:通过协议设置一个固定的数值。例如设定k_d u=5或者k_d u=8;或者通过高层消息(广播消息)进行设定。这样通过统一时序偏移值,简化了协议制定和实现过程。
B:通过协议设定一个固定的数值作为时序偏移值,和PDSCH所采用的目标SCS的具体数值相关联。
例如,k_d u≥z×2 u-m,u为目标SCS的索引值,z表示正整数,如z=1或z=2,则SCS=240KHz时,时序偏移量为2,SCS=480KHz时,时序偏移量为4,SCS=960KHz时,时序偏移量为8。
再例如,直接针对目标SCS对应设置时序偏移值,如SCS=240KHz时,时序偏移量为2,SCS=480KHz时,时序偏移量为4,SCS=960KHz时,时序偏移量为7,SCS=1920KHz时,时序偏移量为10。
这样设置使得当SCS大于120KHz时,时序偏移量和SCS相关,提高了指示的有效范围。
C:通过设置一个固定的值,与SCS的PDSCH接收处理能力参数值N1相关联。
例如,
Figure PCTCN2021075074-appb-000006
N1为目标SCS值所对应的终端的PDSCH接收处理能力参数值,且终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。该方式考虑到了接收PDSCH的接收时延,使得k1的有效指示范围进一步合理化。
例如,当SCS=240KHz,假设N1=34符号,则
Figure PCTCN2021075074-appb-000007
时隙(N1除以14,并向下取整);再例如,当SCS=480KHz,假设N1=44符号,则
Figure PCTCN2021075074-appb-000008
Figure PCTCN2021075074-appb-000009
时隙;再例如,当SCS=960KHz,假设N1=56符号,则
Figure PCTCN2021075074-appb-000010
Figure PCTCN2021075074-appb-000011
时隙。
在此需要说明的是,为了简化协议制定,上述N1数值取配置了DMRS时的数值。
步骤3,基站发送调度下行数据的HARQ-ACK反馈时间指示信息:
基站在调度下行数据时,同时发送HARQ-ACK反馈时间的指示信息,该指示信息指示k1数值中的一个数值。k1数据的指示HARQ-ACK反馈时间间隔不小于对应N1的数值。
此外,若在步骤2中确定的HARQ-ACK反馈时间为时序偏移值与第一默认时序参数序列的和值,即k1=默认k1+k_d u,则可以通过如下两种方式进行指示:
1,直接定义k1数值,如当SCS大于960KHz时,k1={5,6,7,8,9,10,11,12},其数值由控制信令指示(如表示HARQ-ACK反馈时间的PDSCH-to-HARQ_feedback timing indicator)。
如:PDSCH-to-HARQ_feedback timing的具体内容可以参见下述表4所示:
表4
Figure PCTCN2021075074-appb-000012
2,时序偏移值k_d u由高层信令或协议确定,默认k1由控制信令指示(如表示HARQ-ACK反馈时间的PDSCH-to-HARQ_feedback timing indicator)。
假设高层信令配置k_d u数值为4,则在控制信令中指示的默认k1数值以及应用可以如下表5表示:
表5
Figure PCTCN2021075074-appb-000013
即指示HARQ-ACK反馈时间由两段指示时,即默认k1由调度信令指示,k_d u由高层信令或者协议配置时,HARQ-ACK的反馈时间,由k1和k_d u联合指示。k_d u可以为绝对数值,k1可以为相对数值。这里的绝对数值,是指按照时隙号进行计数,不管是上行时隙还是下行时隙都计算在内。相对数值是只对有效的时隙进行计算,如只对包含有上行符号的时隙进行计算。
例如,假设20个时隙中,时隙0-9是下行时隙,10-19为上行时隙,假设k_d u为3。此时,如图3所示,在时隙0有下行数据调度,k1指示为4,则k_d u对应时隙3,从时隙3开始,计数k1=4个有效的上行的时隙到时隙13,则实际HARQ-ACK的反馈发生在上行时隙13。再例如,如图4所示,在时隙7有下行数据调度,目标时序参数值k1指示为4,则时序偏移值k_d u对应时隙10,从时隙10开始,计数k1=4个有效的上行时隙到时隙14,则实际HARQ-ACK的反馈发生在上行时隙14。
这样通过设置k_d u的方式体现了终端的处理能力,从而减少了无效的指示范围;此外,k1通过仅仅计算有效上行时隙的方法,使得能够对上下行时隙做更灵活的配置。
第二实施例:
步骤1,定义PDSCH接收处理时间,即PDSCH接收处理能力参数值N1。
u=3的情况下对应SCS=120KHz,其N1对应数值为20符号以及24符号,当SCS大于120KHz时存在以下情况:
若终端的PDSCH所采用的目标SCS为240KHz,u=4,N1符号长度为SCS=120KHz的符号长度的1/2倍,即N1 4=(N1 3-D)×2;若PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=120KHz的符号长度的1/4倍,即(N1 3-D)×4;若PDSCH所采用的目标SCS值为240KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/8倍,即N1 6=(N1 3-D)×8。具体终端的PDSCH接收处理能力参数值可以参见上述表2所示。
即终端的PDSCH接收处理能力参数值为N1 u=(N1 m-D)×2 u-m;其中,N1 u表示终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对 应的终端的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示PDSCH所采用的目标SCS值的索引值,m表示参考SCS值的索引值。本实施例中参考SCS值为120KHz。
此外,在本步骤中在对终端的PDSCH接收处理能力参数值进行指示时,可以以确定的数值在接口协议中确定,还可以通过终端上报能力参数的方式进行指示,即终端将终端的PDSCH接收处理能力参数值N1上报给基站。
此外,D的数值可以为N1 m/3。具体的,一般来讲,终端接收PDSCH的处理过程分为4部分:控制信道接收(信道估计和信道盲检)数据信道估计,数据解调,数据信道译码,HARQ-ACK组包反馈(该部分用时间比较少,在此忽略不计),其运算量和信道带宽(调度PRB个数),MIMO层数以及传输数据块大小。当通信频率超过52.6GHz时,MIMO层数会比较小,如不大于2层,而当通信频率小于52.6GHz时,MIMO层数会大达到4的概率增加,再加上超过52.6GHz时,其调制阶数可能会受到限制,因此总体译码时间会降低。为简化计算,D可取N1的1/3倍。此时终端的PDSCH接收处理能力参数值可以如上述表2所示。
需要说明的是,当调度数据的MIMO层数,PRB数,传输块大小等参数,和SCS=120KHz保持相同或者不考虑差异性时,预设时间偏移值为可负值,相当于增加一个偏移量的数值。
步骤2,基站确定目标时序参数序列k1的数值范围,使得k1数值序列中存在至少一个值的对应时间大于N1对应的时间。
具体的,可以在第一默认时序参数序列的基础上倍乘一个时序偏移因子得到目标时序参数序列k1。下面以时序偏移因子k_c u=2为例进行说明。
例如,SCS=960KHz时,PDSCH的解调时间为N1/14=12.14个时隙,假设PDSCH是在slot=0接收,则当k1倍乘时序偏移因子之后,k1=14,k1=16是有效指示。
下面描述时序偏移因子k_c u的确定方式:
A:通过协议设置一个固定的数值。例如设置k_c u=2或者k_d c=4;或者通过高层消息(广播消息)进行设定。这样通过统一时序偏移值,简化了协 议制定和实现过程。
B:通过协议设定一个固定的数值作为时序偏移因子,和PDSCH所采用的目标SCS的具体数值相关联。
例如,k_c u=2 u-m,k_c u表示时序偏移因子,u为目标SCS的索引值,m表示参考SCS值的索引值,则SCS=240KHz时,时序偏移因子为2,SCS=480KHz时,时序偏移因子为4,SCS=960KHz时,时序偏移因子为8。
再例如,直接针对目标SCS对应设置时序偏移因子,如SCS=240KHz时,时序偏移因子为2,SCS=480KHz时,时序偏移因子为2.5,SCS=960KHz时,时序偏移因子为3,SCS=1920KHz时,时序偏移因子为3.5。
当然该步骤中的时序偏移因子的值也可以由高层协议进行配置。
这样设置使得当SCS大于120KHz时,时序偏移因子和SCS相关,提高了指示的有效范围。
步骤3,基站发送调度下行数据的HARQ-ACK反馈时间指示信息:
基站在调度下行数据时,同时发送HARQ-ACK反馈时间的指示信息,该指示信息指示k1数值中的一个数值。k1数据的指示HARQ-ACK反馈时间间隔不小于对应N1的数值。
此外,若在步骤2中确定的HARQ-ACK反馈时间为时序偏移因子与第一默认时序参数序列的乘积,则可以通过如下两种方式进行指示:
1,直接定义k1数值,如当SCS大于960KHz时,k1={2,4,6,8,10,12,14,16},其数值由控制信令指示(如表示HARQ-ACK反馈时间的PDSCH-to-HARQ_feedback timing indicator)。
如:PDSCH-to-HARQ_feedback timing的具体内容可以参见下述表6所示:
表6
Figure PCTCN2021075074-appb-000014
Figure PCTCN2021075074-appb-000015
上表中,协议在定义k1数值范围时,可以直接定义具体的数值,终端根据控制信令的指示直接索引出对应的HARQ-ACK反馈时间。
2,时序偏移因子由高层信令或协议确定,默认k1由控制信令指示(如表示HARQ-ACK反馈时间的PDSCH-to-HARQ_feedback timing indicator)。
假设高层信令配置k_c u数值为2,则在控制信令中指示的默认k1数值以及应用可以如下表7所示:
表7
Figure PCTCN2021075074-appb-000016
上表中,协议在定义k1数值范围时,第一默认时序参数序列中的时序参数值为{1,2,3,4,5,6,7,8},终端根据控制信令的指示直接索引出对应数值,使用该数值倍乘时序偏移因子,最终数值是HARQ-ACK反馈时间。
该种设置方式使得时序偏移因子以参考SCS值的时隙体现终端长度为单元基础,即在一个0.125ms上,只有一个HARQ-ACK的反馈点,重用R15的定时器设置,减少发送处理器的定时复杂度。
第三实施例:
步骤1,定义PDSCH接收处理时间,即PDSCH接收处理能力参数值N1。
u=3的情况下对应SCS=120KHz,其N1对应数值为20符号以及24符号,当SCS大于120KHz时,每种SCS的情况下分别定义PDSCH接收处理时间参数,即终端的PDSCH接收处理能力参数值,分以下情况:
若终端的PDSCH所采用的目标SCS值为240KHz,u=4,则此时符号长度为SCS=120KHz的符号长度的1/2倍,终端的PDSCH接收处理能力参数值(以N1进行表示)的范围为N1 3≤N1 4≤2N1 3
若终端的PDSCH所采用的目标SCS值为480KHz,u=5,则此时符号长度为SCS=20KHz的符号长度的1/2倍,终端的PDSCH接收处理能力参数值的范围为N1 4≤N1 5≤2N1 4
若终端的PDSCH所采用的目标SCS值为960KHz,u=6,则此时符号长度为SCS=120KHz的符号长度的1/2倍,终端的PDSCH接收处理能力参数值的范围为N1 5≤N1 6≤2N1 5。此时对应的终端的PDSCH接收处理能力参数值如上述表3所示。
步骤2,基站确定目标时序参数序列k1的数值范围,使得k1数值序列中存在至少一个值的对应时间大于N1对应的时间。
通过间接的方式,配置k1数值。即配置上行反馈信道时,增加时间信息,即在配置上行控制信道(physical uplink control channel,PUCCH)时,增加周期信息。在数据调度时,HARQ-ACK反馈指示信息,索引终端接收PDSCH后第k1个有PUCCH资源的时隙,即最近第k1个PUCCH资源。在索引的PUCCH资源中,至少有一个PUCCH资源所在的时隙,大于N1所对应的时间。
相关设计如下:PUCCH配置包含周期时间信息,配置信息字段包括如下内容:字段1:PUCCH格式:表明使用PUCCH的哪一种格式;字段2:PUCCH的符号个数;字段3:PUCCH的第1个符号所在的位置;字段4:PUCCH占用 的频域信息(PRB个数,以及偏移位置);字段5:PUCCH的周期信息(周期T,偏移量offset)。
需要说明的是,字段4中,当某些PUCCH格式的PRB个数是1时,可以不用配置PRB个数。字段5中周期T的单位可以是时隙数,偏移量也可以是时隙数。
例如,在配置PUCCH资源时,携带PUCCH的周期信息,包含周期T和偏移量offset。T=4,offset=1;即可以有PUCCH资源的时隙为:1,5,9,14…等,时隙号满足(s-offset)%4=0的条件上,配置有PUCCH资源。
步骤3,基站发送调度下行数据的HARQ-ACK反馈时间指示信息:
基站在调度下行数据时,同时发送HARQ-ACK反馈时间的指示信息,该指示信息指示k1数值中的一个数值。终端利用该数值计算对应含有PUCCH资源的时隙,该时隙对应HARQ-ACK反馈的时间。如下:
终端接收到基站调度PDSCH数据时,包含HARQ-ACK的反馈时间信息指示,如PDSCH-to-HARQ_feedback timing indicator指示的k1值。这里重新对定义对该字段的解读。
例如,当k1=1时(如bit信息为000),表示HARQ-ACK在第1个有PUCCH资源的时隙上反馈;当k1=2时(如bit信息为001),表示HARQ-ACK在第2个有PUCCH资源的时隙上反馈;当k1=3时(如bit信息为010),表示HARQ-ACK在第3个有PUCCH资源的时隙上反馈。以此类推。
下面以k1=1/2/3为例,说明本实施例的技术效果。
如图5所示,在PDSCH数据调度中,基站指示终端反馈HARQ-ACK的时隙位置。假设配置的PUCCH周期T为4,偏移量为1,参见图5,在时隙1,5,9…上有PUCCH配置信息。PDSCH数据是在上一无线帧的时隙318上发送,如果HARQ-ACK反馈时间指示的k1按照有配置PUCCH资源的时隙进行计数。如k1为1,则HARQ-ACK在时隙1上反馈;如k1为2,则HARQ-ACK在时隙5上反馈;如k1为3,则HARQ-ACK在时隙9上反馈。
当然,配置PUCCH资源时,可以采用非周期的配置方法,如利用bitmap指示在一定的时间段内(如10ms)哪些子帧有PUCCH资源,此外指示 HARQ-ACK反馈时隙位置时,仍然采用有PUCCH有效资源的时隙指示方法。另外,对于时分双工的配置,有效PUCCH资源的时隙可以去除包含下行符号的时隙号。
这样本方式通过配置周期或者非周期的PUCCH在资源,信令指示的HARQ-ACK反馈时间,按照指示有效PUCCH时隙的方法,增加了***调度的灵活性,可以很好满足任何SCS以及任何PDSCH接收处理能力的HARQ-ACK反馈。此外,这里的有效PUCCH时隙可以指:根据配置PUCCH信息,配置了PUCCH资源的时隙,也可以指仅仅是上行时隙且含有PUCCH配置信息的时隙。
另外,还需要说明的是,还可以将本实施例应用于上行PUSCH的调度,即在对上行PUSCH调度时,可以确定准确PUSCH发送的最小时间,然后在调度PUSCH发送时,在控制信令中指示PUSCH发送时隙的信息,协议用k2表示,相关k2的指示分为两种类型:一种是协议配置的默认数值。一种是通过高层配置的参数,具体调度过程可以参见本实施例。
这样,本实施例通过上述过程有效解决SCS大于120KHz HARQ调度的指示问题,使得基站调度数据更灵活,K1指示更有效。
如图6所示,为本申请实施例中应用于终端的HARQ反馈装置的模块框图,该装置包括:
获取模块601,用于获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;
发送模块602,用于在所述目标时序参数值所对应的时隙上向基站反馈 HARQ-ACK。
在此需要说明的,该装置能够实现终端侧方法实施例的所有方法步骤,并能够达到相同的技术效果,在此不再进行赘述。
如图7所示,为本申请实施例中应用于基站的HARQ反馈装置的模块框图,该装置包括:
获取模块701,用于获取终端的物理下行共享信道PDSCH接收处理能力参数值;
确定模块702,用于确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
发送模块703,用于向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
在此需要说明的,该装置能够实现基站侧方法实施例的所有方法步骤,并能够达到相同的技术效果,在此不再进行赘述。
图8为本申请一实施例提供的终端的结构示意图,如图8所示,该终端800可以包括:至少一个处理器801、存储器802、至少一个网络接口804和其他的用户接口803。终端800中的各个组件通过总线***805耦合在一起。可理解,总线***805用于实现这些组件之间的连接通信。总线***805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线***805。
其中,用户接口803可以包括显示器、键盘或者点击设备,例如鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本申请实施例中的存储器802可以是易失性存储器或非易失 性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的***和方法的存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器802存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作***8021和应用程序8022。
其中,操作***8021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本申请实施例方法的程序可以包含在应用程序8022中。
在本申请实施例中,通过调用存储器802存储的计算机程序或指令,具体的,可以是应用程序8022中存储的计算机程序或指令,处理器801用于:
获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一 个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
上述本申请实施例揭示的方法可以应用于处理器801中,或者由处理器801实现。处理器801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器801可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。 存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器801还用于执行下述中的任意一项:当所述目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,接收基站发送的第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;当所述目标时序参数序列为第一默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;当所述目标时序参数序列为第二默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
当所述目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移值;其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个,且所述第二目标序列索引值所对应的目标默认参数值与所述时序偏移值的和值为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;当所述目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移因子;其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个,且所述第三目标序列索引值所对应的目标默认参数值与所述时序偏移因子的乘积为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符 号之间的时隙间隔。
可选地,作为另一个实施例,处理器801还用于:向基站上报终端的PDSCH接收处理能力参数值。
可选地,作为另一个实施例,所述终端的PDSCH接收处理能力参数值为下述中的任意一项:
所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同,所述第一参考时间长度为参考子载波间隔SCS值下PDSCH接收处理能力参数值所对应的时间长度;所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同,所述第二参考时间长度为所述第一参考时间长度与预设时间偏移长度之间的差值;所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联。
可选地,作为另一个实施例,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述PDSCH接收处理能力参数值为参考SCS值下PDSCH接收处理能力参数值的2 X倍,X表示大于等于0的整数。
可选地,作为另一个实施例,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述PDSCH接收处理能力参数值为目标值的2 X倍,所述目标值为参考SCS值下PDSCH接收处理能力参数值与预设时间偏移值之间的差值,X表示大于等于0的整数。
可选地,作为另一个实施例,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
N1 u=N1 m×2 u-m
其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值
可选地,作为另一个实施例,当所述终端的PDSCH接收处理能力参数 值所对应的时间长度与第二参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
N1 u=(N1 m-D)×2 u-m
其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
可选地,作为另一个实施例,当所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
N1 u-1≤N1 u≤2N1 u-1
其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 u-1表示所述目标SCS值的相邻SCS值所对应的PDSCH接收处理能力参数值。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
图9为本申请另一实施例提供的终端的结构示意图,图9中的终端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图9所示,该终端包括射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、处理器960、音频电路970、WiFi(Wireless Fidelity)模块980和电源990。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元930可用于接收用户输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的信号输入。具体地,本申请实施例中,该输入单元930可以包括触控面板9301。触控面板9301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9301上的操作),并根据预先设定的程式驱动相应的 连接装置。可选的,触控面板9301可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器960,并能接收处理器960发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9301。除了触控面板9301,输入单元930还可以包括其他输入设备9302,其他输入设备9302可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备9302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元940可用于显示由用户输入的信息或提供给用户的信息以及终端的各种菜单界面。显示单元940可包括显示面板9401。其中显示面板9401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(OrganicLight-Emitting Diode,OLED)等形式来配置显示面板9401。
应注意,触控面板9301可以覆盖显示面板9401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器960以确定触摸事件的类型,随后处理器960根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器960处理;另外,将设计上行的数据 发送给网络侧。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(Global System of Mobilecommunication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920用于存储软件程序以及模块,处理器960通过运行存储在存储器920的软件程序以及模块,从而执行终端的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器960是终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器9201内的软件程序和/或模块,以及调用存储在第二存储器9202内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器960可包括一个或多个处理单元。
在本申请实施例中,通过调用存储该第一存储器9201内的软件程序和/或模块和/或该第二存储器9202内的数据,处理器960用于获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔, 或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
图10为本申请一实施例提供的基站的结构示意图,如图10所示,该基站1000可以包括至少一个处理器1001、存储器1002、至少一个其他的用户接口1003,以及收发机1004。基站1000中的各个组件通过总线***1005耦合在一起。可理解,总线***1005用于实现这些组件之间的连接通信。总线***1005除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线***1005,总线***可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线***还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请实施例不再对其进行进一步描述。总线接口提供接口。收发机1004可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1003还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本申请实施例中的存储器1002可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可 用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的***和方法的存储器1002旨在包括但不限于这些和任意其它适合类型的存储器。
处理器1001负责管理总线***和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的计算机程序或指令,具体地,处理器1001可以用于:
获取终端的物理下行共享信道PDSCH接收处理能力参数值;确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
可选地,作为另一个实施例,处理器1001还用于:接收终端上报的终端的PDSCH接收处理能力参数值;或者,获取协议预定义的终端的PDSCH接收处理能力参数值。
可选地,作为另一个实施例,处理器1001还用于执行下述任意一项:
获取终端反馈HARQ-ACK的时序偏移值,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,其中所述第一目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与 PDSCH的最后一个符号之间的时隙间隔;
获取终端反馈HARQ-ACK的时序偏移因子,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,其中所述第二目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
将HARQ-ACK的第一默认时序参数序列确定为第三目标时序参数序列,且所述第三目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;
将HARQ-ACK的第二默认时序参数序列确定为第四目标时序参数序列,且所述第四目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
所述目标时序参数序列为第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列。
可选地,作为另一个实施例,处理器1001还用于执行下述任意一项:
所述获取终端反馈HARQ-ACK的时序偏移值,包括下述任意一项:
将一预设值确定为所述时序偏移值;
基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值;
基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值。
可选地,作为另一个实施例,处理器1001还用于针对所述目标SCS值对应设置所述时序偏移值;或者,
基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移值:
k_d u≥z×2 u-m
其中,k_d u表示所述时序偏移值,z表示正整数,u表示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
可选地,作为另一个实施例,处理器1001还用于:基于所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,通过下述公式计算得到所 述时序偏移值:
Figure PCTCN2021075074-appb-000017
或者
Figure PCTCN2021075074-appb-000018
其中,k_d u表示所述时序偏移值,N1表示所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,且所述终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。
可选地,作为另一个实施例,处理器1001还用于:将所述时序偏移值与所述第一默认时序参数序列的和值确定为所述第一目标时序参数序列。
可选地,作为另一个实施例,处理器1001还用于:将一预设值确定为所述时序偏移因子;或者,基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子。
可选地,作为另一个实施例,处理器1001还用于:针对所述目标SCS值对应设置所述时序偏移因子;或者,
基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移因子:
k_c u=2 u-m
其中,k_c u表示所述时序偏移因子,u表示示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
可选地,作为另一个实施例,处理器1001还用于:将所述时序偏移因子与所述第一默认时序参数序列的乘积确定为所述第二目标时序参数序列。
可选地,作为另一个实施例,处理器1001还用于:当所述目标时序参数序列为第三目标时序参数序列或第四目标时序参数序列时,向所述终端发送第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;当所述目标时序参数序列为第一目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个;当所述目标时序参数序列为第二目标时序参数序列 时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个。
上述本申请实施例揭示的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本申请实施例提供的基站能够实现前述实施例中基站实现的各个过程, 为避免重复,此处不再赘述。
上述主要从电子设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,本申请实施例提供的电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的方法并能够达到相同的技术效果,在此不再进行赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (61)

  1. 一种HARQ反馈方法,应用于终端,其特征在于,包括:
    获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与物理下行共享信道PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
    在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
  2. 根据权利要求1所述的HARQ反馈方法,其特征在于,所述获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值,包括下述中的任意一项:
    当所述目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,接收基站发送的第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;当所述目标时序参数序列为第一默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;当所述目标时序参数序列为第二默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移值;其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第 二目标序列索引值为所述多个序列索引值中的其中一个,且所述第二目标序列索引值所对应的目标默认参数值与所述时序偏移值的和值为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移因子;其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个,且所述第三目标序列索引值所对应的目标默认参数值与所述时序偏移因子的乘积为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
  3. 根据权利要求1所述的HARQ反馈方法,其特征在于,所述获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值之前,还包括:
    向基站上报终端的PDSCH接收处理能力参数值。
  4. 根据权利要求3所述的HARQ反馈方法,其特征在于,所述终端的PDSCH接收处理能力参数值为下述中的任意一项:
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同,所述第一参考时间长度为参考子载波间隔SCS值下PDSCH接收处理能力参数值所对应的时间长度;
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同,所述第二参考时间长度为所述第一参考时间长度与预设时间偏移长度之间的差值;
    所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联。
  5. 根据权利要求4所述的HARQ反馈方法,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述PDSCH接收处理能力参数值为参考SCS值下PDSCH接收处理能力参数值的2 X倍,X表示大于等于0的整数。
  6. 根据权利要求4所述的HARQ反馈方法,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述PDSCH接收处理能力参数值为目标值的2 X倍,所述目标值为参考SCS值下PDSCH接收处理能力参数值与预设时间偏移值之间的差值,X表示大于等于0的整数。
  7. 根据权利要求4所述的HARQ反馈方法,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=N1 m×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  8. 根据权利要求4所述的HARQ反馈方法,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=(N1 m-D)×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  9. 根据权利要求4所述的HARQ反馈方法,其特征在于,当所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u-1≤N1 u≤2N1 u-1
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 u-1表示所述目标SCS值的相邻SCS值所对应的PDSCH接收处理能力参数值。
  10. 一种HARQ反馈方法,其特征在于,包括:
    获取终端的物理下行共享信道PDSCH接收处理能力参数值;
    确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
    向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
  11. 根据权利要求10所述的HARQ反馈方法,其特征在于,所述获取终端的物理下行共享信道PDSCH接收处理能力参数值,包括:
    接收终端上报的终端的PDSCH接收处理能力参数值;或者,
    获取协议预定义的终端的PDSCH接收处理能力参数值。
  12. 根据权利要求10所述的HARQ反馈方法,其特征在于,所述确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,包括下述任意一项:
    获取终端反馈HARQ-ACK的时序偏移值,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,其中所述第一目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    获取终端反馈HARQ-ACK的时序偏移因子,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,其中所 述第二目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    将HARQ-ACK的第一默认时序参数序列确定为第三目标时序参数序列,且所述第三目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;
    将HARQ-ACK的第二默认时序参数序列确定为第四目标时序参数序列,且所述第四目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    所述目标时序参数序列为第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列。
  13. 根据权利要求12所述的HARQ反馈方法,其特征在于,所述获取终端反馈HARQ-ACK的时序偏移值,包括下述任意一项:
    将一预设值确定为所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值。
  14. 根据权利要求13所述的HARQ反馈方法,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值,包括:
    针对所述目标SCS值对应设置所述时序偏移值;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移值:
    k_d u≥z×2 u-m
    其中,k_d u表示所述时序偏移值,z表示正整数,u表示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  15. 根据权利要求13所述的HARQ反馈方法,其特征在于,所述基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值,包括:
    基于所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,通 过下述公式计算得到所述时序偏移值:
    Figure PCTCN2021075074-appb-100001
    或者
    Figure PCTCN2021075074-appb-100002
    其中,k_d u表示所述时序偏移值,N1表示所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,且所述终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。
  16. 根据权利要求12至15任一项所述的HARQ反馈方法,其特征在于,所述根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,包括:
    将所述时序偏移值与所述第一默认时序参数序列的和值确定为所述第一目标时序参数序列。
  17. 根据权利要求12所述的HARQ反馈方法,其特征在于,所述获取终端反馈HARQ-ACK的时序偏移因子,包括:
    将一预设值确定为所述时序偏移因子;或者,
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子。
  18. 根据权利要求17所述的HARQ反馈方法,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子,包括:
    针对所述目标SCS值对应设置所述时序偏移因子;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移因子:
    k_c u=2 u-m
    其中,k_c u表示所述时序偏移因子,u表示示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  19. 根据权利要求12所述的HARQ反馈方法,其特征在于,所述根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,包括:
    将所述时序偏移因子与所述第一默认时序参数序列的乘积确定为所述第二目标时序参数序列。
  20. 根据权利要求12所述的HARQ反馈方法,其特征在于,所述向所 述终端发送HARQ-ACK反馈指示信息,包括:
    当所述目标时序参数序列为第三目标时序参数序列或第四目标时序参数序列时,向所述终端发送第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;
    当所述目标时序参数序列为第一目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个;
    当所述目标时序参数序列为第二目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个。
  21. 一种HARQ反馈装置,应用于终端,其特征在于,包括:
    获取模块,用于获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;
    发送模块,用于在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
  22. 根据权利要求21所述的HARQ反馈装置,其特征在于,所述获取模块包括下述中的任意一项:
    当所述目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,接收基站发送的第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;当所述目标时序参数序列为第一默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;当所述目标时序参数序列为第二默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移值;其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个,且所述第二目标序列索引值所对应的目标默认参数值与所述时序偏移值的和值为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移因子;其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个,且所述第三目标序列索引值所对应的目标默认参数值与所述时序偏移因子的乘积为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
  23. 根据权利要求21所述的HARQ反馈装置,其特征在于,还包括:
    上报模块,用于向基站上报终端的PDSCH接收处理能力参数值。
  24. 根据权利要求23所述的HARQ反馈装置,其特征在于,所述终端的PDSCH接收处理能力参数值为下述中的任意一项:
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同,所述第一参考时间长度为参考子载波间隔SCS值下PDSCH接收处理能力参数值所对应的时间长度;
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同,所述第二参考时间长度为所述第一参考时间长度与预设时间偏移长度之间的差值;
    所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联。
  25. 根据权利要求24所述的HARQ反馈装置,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述PDSCH接收处理能力参数值为参考SCS值下PDSCH接收处理能力参数值的2 X倍,X表示大于等于0的整数。
  26. 根据权利要求24所述的HARQ反馈装置,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述PDSCH接收处理能力参数值为目标值的2 X倍,所述目标值为参考SCS值下PDSCH接收处理能力参数值与预设时间偏移值之间的差值,X表示大于等于0的整数。
  27. 根据权利要求24所述的HARQ反馈装置,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=N1 m×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  28. 根据权利要求24所述的HARQ反馈装置,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=(N1 m-D)×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  29. 根据权利要求24所述的HARQ反馈装置,其特征在于,当所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u-1≤N1 u≤2N1 u-1
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 u-1表示所述目标SCS值的相邻SCS值所对应的PDSCH接收处理能力参数值。
  30. 一种HARQ反馈装置,应用于基站,其特征在于,包括:
    获取模块,用于获取终端的物理下行共享信道PDSCH接收处理能力参数值;
    确定模块,用于确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
    发送模块,用于向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
  31. 根据权利要求30所述的HARQ反馈装置,其特征在于,所述获取模块包括:
    第一获取单元,用于接收终端上报的终端的PDSCH接收处理能力参数值;或者,
    第二获取单元,用于获取协议预定义的终端的PDSCH接收处理能力参数值。
  32. 根据权利要求30所述的HARQ反馈装置,其特征在于,所述确定模块包括下述任意一项:
    第一确定单元,用于获取终端反馈HARQ-ACK的时序偏移值,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,其中所述第一目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    第二确定单元,用于获取终端反馈HARQ-ACK的时序偏移因子,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,其中所述第二目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    第三确定单元,用于将HARQ-ACK的第一默认时序参数序列确定为第三目标时序参数序列,且所述第三目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;
    第四确定单元,用于将HARQ-ACK的第二默认时序参数序列确定为第四目标时序参数序列,且所述第四目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    所述目标时序参数序列为第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列。
  33. 根据权利要求32所述的HARQ反馈装置,其特征在于,所述第一确定单元用于执行下述任意一项:
    将一预设值确定为所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值。
  34. 根据权利要求33所述的HARQ反馈装置,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值,包括:
    针对所述目标SCS值对应设置所述时序偏移值;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移值:
    k_d u≥z×2 u-m
    其中,k_d u表示所述时序偏移值,z表示正整数,u表示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  35. 根据权利要求33所述的HARQ反馈装置,其特征在于,所述基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值,包括:
    基于所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,通过下述公式计算得到所述时序偏移值:
    Figure PCTCN2021075074-appb-100003
    或者
    Figure PCTCN2021075074-appb-100004
    其中,k_d u表示所述时序偏移值,N1表示所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,且所述终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。
  36. 根据权利要求32至35任一项所述的HARQ反馈装置,其特征在于,所述第一确定单元具体用于:
    将所述时序偏移值与所述第一默认时序参数序列的和值确定为所述第一目标时序参数序列。
  37. 根据权利要求32所述的HARQ反馈装置,其特征在于,所述第二确定单元具体用于:
    将一预设值确定为所述时序偏移因子;或者,
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子。
  38. 根据权利要求37所述的HARQ反馈装置,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子,包括:
    针对所述目标SCS值对应设置所述时序偏移因子;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移因子:
    k_c u=2 u-m
    其中,k_c u表示所述时序偏移因子,u表示示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  39. 根据权利要求32所述的HARQ反馈装置,其特征在于,所述第二确定单元具体用于:
    将所述时序偏移因子与所述第一默认时序参数序列的乘积确定为所述第二目标时序参数序列。
  40. 根据权利要求32所述的HARQ反馈装置,其特征在于,所述发送模块具体用于:
    当所述目标时序参数序列为第三目标时序参数序列或第四目标时序参数序列时,向所述终端发送第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;
    当所述目标时序参数序列为第一目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个;
    当所述目标时序参数序列为第二目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个。
  41. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上 运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值;其中终端与基站之间预定义有目标时序参数序列,所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数值为所述多个时序参数值中的其中一个,且所述目标时序参数值的对应时间大于或等于终端的物理下行共享信道PDSCH接收处理能力参数值的对应时间;
    在所述目标时序参数值所对应的时隙上向基站反馈HARQ-ACK。
  42. 根据权利要求41所述的终端,其特征在于,所述获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值,包括下述中的任意一项:
    当所述目标时序参数序列为第一默认时序参数序列或第二默认时序参数序列时,接收基站发送的第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;当所述目标时序参数序列为第一默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;当所述目标时序参数序列为第二默认时序参数序列时,所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移值组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移值;其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第 二目标序列索引值为所述多个序列索引值中的其中一个,且所述第二目标序列索引值所对应的目标默认参数值与所述时序偏移值的和值为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    当所述目标时序参数序列由第一默认时序参数序列和时序偏移因子组成时,接收基站发送的第二控制信令并接收基站发送的高层信令,或者接收基站发送的第二控制信令并获取协议预定义的时序偏移因子;其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个,且所述第三目标序列索引值所对应的目标默认参数值与所述时序偏移因子的乘积为所述目标时序参数值,所述目标默认参数值为所述第一默认时序参数序列中的其中一个;所述目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔。
  43. 根据权利要求41所述的终端,其特征在于,所述获取对终端反馈混合自动重传请求-确认回答HARQ-ACK的时间进行指示的目标时序参数值之前,还包括:
    向基站上报终端的PDSCH接收处理能力参数值。
  44. 根据权利要求43所述的终端,其特征在于,所述终端的PDSCH接收处理能力参数值为下述中的任意一项:
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同,所述第一参考时间长度为参考子载波间隔SCS值下PDSCH接收处理能力参数值所对应的时间长度;
    所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同,所述第二参考时间长度为所述第一参考时间长度与预设时间偏移长度之间的差值;
    所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联。
  45. 根据权利要求44所述的终端,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述PDSCH接收处理能力参数值为参考SCS值下PDSCH接收处理能力参数值的2 X倍,X表示大于等于0的整数。
  46. 根据权利要求44所述的终端,其特征在于,
    当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述PDSCH接收处理能力参数值为目标值的2 X倍,所述目标值为参考SCS值下PDSCH接收处理能力参数值与预设时间偏移值之间的差值,X表示大于等于0的整数。
  47. 根据权利要求44所述的终端,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与预设置的第一参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=N1 m×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  48. 根据权利要求44所述的终端,其特征在于,当所述终端的PDSCH接收处理能力参数值所对应的时间长度与第二参考时间长度相同时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u=(N1 m-D)×2 u-m
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 m表示参考SCS值所对应的PDSCH接收处理能力参数值,D表示预设时间偏移值,u表示终端的PDSCH所采用的目标SCS值的索引值,m表示所述参考SCS值的索引值。
  49. 根据权利要求44所述的终端,其特征在于,当所述终端的PDSCH接收处理能力参数值与所述终端的PDSCH所采用的目标SCS值相关联时,所述终端的PDSCH接收处理能力参数值通过如下公式进行表示:
    N1 u-1≤N1 u≤2N1 u-1
    其中,N1 u表示所述终端的PDSCH接收处理能力参数值,N1 u-1表示所述目标SCS值的相邻SCS值所对应的PDSCH接收处理能力参数值。
  50. 一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    获取终端的物理下行共享信道PDSCH接收处理能力参数值;
    确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,其中所述目标时序参数序列中设置有多个序列索引值与多个时序参数值之间的一一对应关系;所述时序参数值指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔,或所述时序参数值指示物理上行控制信道PUCCH资源所在时隙且所述PUCCH资源所在时隙对应HARQ-ACK反馈时隙;所述目标时序参数序列中存在至少一个时序参数值的对应时间大于或等于终端的PDSCH接收处理能力参数值的对应时间;
    向所述终端发送HARQ-ACK反馈指示信息,以将目标时序参数值所对应的的目标序列索引值指示给终端,其中所述目标序列索引值为所述多个序列索引值中的其中一个。
  51. 根据权利要求50所述的基站,其特征在于,所述获取终端的物理下行共享信道PDSCH接收处理能力参数值,包括:
    接收终端上报的终端的PDSCH接收处理能力参数值;或者,
    获取协议预定义的终端的PDSCH接收处理能力参数值。
  52. 根据权利要求50所述的基站,其特征在于,所述确定终端反馈混合自动重传请求-确认回答HARQ-ACK的目标时序参数序列,包括下述任意一项:
    获取终端反馈HARQ-ACK的时序偏移值,并根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,其中所述第一目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    获取终端反馈HARQ-ACK的时序偏移因子,并根据HARQ-ACK的第一 默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,其中所述第二目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    将HARQ-ACK的第一默认时序参数序列确定为第三目标时序参数序列,且所述第三目标时序参数序列中的每个时序参数值均指示终端接收PDSCH后第i个有PUCCH资源的时隙,i为对应的时序参数值;
    将HARQ-ACK的第二默认时序参数序列确定为第四目标时序参数序列,且所述第四目标时序参数序列中的每个时序参数值均指示HARQ-ACK的反馈时隙与PDSCH的最后一个符号之间的时隙间隔;
    所述目标时序参数序列为第一目标时序参数序列、第二目标时序参数序列、第三目标时序参数序列或第四目标时序参数序列。
  53. 根据权利要求52所述的基站,其特征在于,所述获取终端反馈HARQ-ACK的时序偏移值,包括下述任意一项:
    将一预设值确定为所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值;
    基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值。
  54. 根据权利要求53所述的基站,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移值,包括:
    针对所述目标SCS值对应设置所述时序偏移值;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移值:
    k_d u≥z×2 u-m
    其中,k_d u表示所述时序偏移值,z表示正整数,u表示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  55. 根据权利要求53所述的基站,其特征在于,所述基于终端的PDSCH所采用的目标SCS值所对应的终端的PDSCH接收处理能力参数值确定所述时序偏移值,包括:
    基于所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,通过下述公式计算得到所述时序偏移值:
    Figure PCTCN2021075074-appb-100005
    或者
    Figure PCTCN2021075074-appb-100006
    其中,k_d u表示所述时序偏移值,N1表示所述目标SCS值所对应的终端的PDSCH接收处理能力参数值,且所述终端的PDSCH接收处理能力参数值以符号数进行表示,L表示每个时隙所包含的符号数。
  56. 根据权利要求52至55任一项所述的基站,其特征在于,所述根据HARQ-ACK的第一默认时序参数序列和所述时序偏移值确定第一目标时序参数序列,包括:
    将所述时序偏移值与所述第一默认时序参数序列的和值确定为所述第一目标时序参数序列。
  57. 根据权利要求52所述的基站,其特征在于,所述获取终端反馈HARQ-ACK的时序偏移因子,包括:
    将一预设值确定为所述时序偏移因子;或者,
    基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子。
  58. 根据权利要求57所述的基站,其特征在于,所述基于终端的PDSCH所采用的目标SCS值确定所述时序偏移因子,包括:
    针对所述目标SCS值对应设置所述时序偏移因子;或者,
    基于参考SCS值的索引值和所述目标SCS值的索引值,通过下述公式计算得到所述时序偏移因子:
    k_c u=2 u-m
    其中,k_c u表示所述时序偏移因子,u表示示所述目标SCS值的索引值,m表示所述参考SCS值的索引值。
  59. 根据权利要求52所述的基站,其特征在于,所述根据HARQ-ACK的第一默认时序参数序列和所述时序偏移因子确定第二目标时序参数序列,包括:
    将所述时序偏移因子与所述第一默认时序参数序列的乘积确定为所述第二目标时序参数序列。
  60. 根据权利要求52所述的基站,其特征在于,所述向所述终端发送HARQ-ACK反馈指示信息,包括:
    当所述目标时序参数序列为第三目标时序参数序列或第四目标时序参数序列时,向所述终端发送第一控制信令,其中所述第一控制信令中携带有第一目标序列索引值,所述第一目标序列索引值为所述多个序列索引值中的其中一个,且所述第一目标序列索引值所对应的时序参数值为所述目标时序参数值;
    当所述目标时序参数序列为第一目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第二目标序列索引值,所述高层信令中携带有时序偏移值;所述第二目标序列索引值为所述多个序列索引值中的其中一个;
    当所述目标时序参数序列为第二目标时序参数序列时,向所述终端发送第二控制信令并向所述终端发送高层信令,其中所述第二控制信令中携带有第三目标序列索引值,所述高层信令中携带有时序偏移因子;所述第三目标序列索引值为所述多个序列索引值中的其中一个。
  61. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至9任一项所述的HARQ反馈方法的步骤或执行如权利要求10至20任一项所述的HARQ反馈方法的步骤。
PCT/CN2021/075074 2020-03-30 2021-02-03 一种harq反馈方法、终端及基站 WO2021196880A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022559702A JP7319476B2 (ja) 2020-03-30 2021-02-03 Harqフィードバック方法、端末、及び基地局
EP21779376.9A EP4131815A4 (en) 2020-03-30 2021-02-03 HARQ FEEDBACK METHOD, TERMINAL DEVICE AND BASE STATION
US17/911,140 US20230107562A1 (en) 2020-03-30 2021-02-03 Harq feedback method, terminal and base station
KR1020227036781A KR20220158263A (ko) 2020-03-30 2021-02-03 Harq 피드백 방법, 단말 및 기지국
BR112022019031A BR112022019031A2 (pt) 2020-03-30 2021-02-03 Método de retroalimentação de harq, terminal e estação-base.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010239180.4 2020-03-30
CN202010239180.4A CN113472485B (zh) 2020-03-30 2020-03-30 一种harq反馈方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2021196880A1 true WO2021196880A1 (zh) 2021-10-07

Family

ID=77865071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075074 WO2021196880A1 (zh) 2020-03-30 2021-02-03 一种harq反馈方法、终端及基站

Country Status (7)

Country Link
US (1) US20230107562A1 (zh)
EP (1) EP4131815A4 (zh)
JP (1) JP7319476B2 (zh)
KR (1) KR20220158263A (zh)
CN (1) CN113472485B (zh)
BR (1) BR112022019031A2 (zh)
WO (1) WO2021196880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220294667A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Processing time for joint channel estimation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792824B2 (en) * 2020-03-30 2023-10-17 Qualcomm Incorporated Multicast feedback and retransmission for transport block grouping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880630A (zh) * 2017-05-12 2018-11-23 索尼公司 电子设备和通信方法
US20190349941A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Signaling for sub-slot time-domain resource allocation
CN110831055A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种辅小区的控制方法及装置
CN111565093A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 信息传输方法、终端设备及网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152053B (zh) * 2017-06-16 2023-05-09 ***通信有限公司研究院 传输时序确定及指示方法、通信设备及存储介质
CN111769928B (zh) * 2018-03-21 2023-05-23 荣耀终端有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880630A (zh) * 2017-05-12 2018-11-23 索尼公司 电子设备和通信方法
US20190349941A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Signaling for sub-slot time-domain resource allocation
CN110831055A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种辅小区的控制方法及装置
CN111565093A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 信息传输方法、终端设备及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Summary#1 on UCI enhancements for R16 URLLC", 3GPP DRAFT; R1-2001016, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 17 February 2020 (2020-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051853637 *
See also references of EP4131815A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220294667A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Processing time for joint channel estimation
US11894950B2 (en) * 2021-03-10 2024-02-06 Qualcomm Incorporated Processing time for joint channel estimation

Also Published As

Publication number Publication date
EP4131815A4 (en) 2024-04-10
JP7319476B2 (ja) 2023-08-01
CN113472485A (zh) 2021-10-01
BR112022019031A2 (pt) 2022-11-01
CN113472485B (zh) 2022-12-02
KR20220158263A (ko) 2022-11-30
US20230107562A1 (en) 2023-04-06
JP2023520443A (ja) 2023-05-17
EP4131815A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US11800387B2 (en) Method for detecting downlink control channel, method for indicating downlink control channel, terminal and network side device
WO2019029383A1 (zh) Pdcch的搜索空间的配置、监听方法及设备
US11647482B2 (en) Method and device for selecting grant-free and grant-based uplink transmission
US11595964B2 (en) Method and device for determining information domain value in DCI
EP3961957A1 (en) Scheduling switching method and apparatus
US20220225353A1 (en) Sidelink data transmission method and device
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
WO2021175146A1 (zh) 频率补偿方法、装置、网络侧设备、终端及存储介质
US11265102B2 (en) Downlink control channel detection method, downlink control channel transmission method, network side device and user equipment
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
EP4132061A1 (en) Control channel detection method and device, and terminal, base station and storage medium
CN113328831B (zh) Harq-ack反馈方法终端、基站和存储介质
EP3664339A1 (en) Data transmission method, and data detection method and device
US20240215037A1 (en) Control channel monitoring method and device, terminal, base station and storage medium
WO2022001946A1 (zh) 一种信号传输方法、装置、设备及存储介质
TWI840662B (zh) 控制通道檢測方法、終端及基站
WO2022022135A1 (zh) 一种数据传输方法、装置及存储介质
EP4145871A1 (en) Signal sending method and apparatus, signal receiving method and apparatus, and storage medium
CN113473607A (zh) Pucch传输方法、装置、终端、网络侧和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559702

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019031

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227036781

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022019031

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220922

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779376

Country of ref document: EP

Effective date: 20221031