WO2022022135A1 - 一种数据传输方法、装置及存储介质 - Google Patents

一种数据传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2022022135A1
WO2022022135A1 PCT/CN2021/100337 CN2021100337W WO2022022135A1 WO 2022022135 A1 WO2022022135 A1 WO 2022022135A1 CN 2021100337 W CN2021100337 W CN 2021100337W WO 2022022135 A1 WO2022022135 A1 WO 2022022135A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
group
resource blocks
data
transmitted
Prior art date
Application number
PCT/CN2021/100337
Other languages
English (en)
French (fr)
Inventor
周雷
邢艳萍
曾二林
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022022135A1 publication Critical patent/WO2022022135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a data transmission method, device, and storage medium.
  • the terminal device can have three states, namely idle (idle) state, inactive (inactive) state and active (active) state.
  • the base station may instruct the terminal device to enter the inactive state.
  • the terminal device When the terminal device is in the inactive state or idle, the terminal device does not need to monitor the Physical Downlink Control Channel (PDCCH), and can only perform reference signal detection, cell reselection, and monitoring paging (in English can be called as paging) or listening for system messages, etc.
  • PDCCH Physical Downlink Control Channel
  • the base station and the terminal device can save the context of the terminal device, and when there is data to be sent and received, the terminal device can quickly restore the radio resource control through the random access process ( Radio Resource Control, RRC) connection, enter the active state, do not need to re-activate the security mode, capability reporting, information configuration and other processes, which can reduce the signaling interaction process, reduce signaling overhead, and reduce the power consumption of terminal equipment.
  • RRC Radio Resource Control
  • the Release 16 version does not support the terminal equipment to transmit user plane data in the inactive state. If the terminal equipment has user plane data to transmit, it must first enter the active state through random access, and then transmit data in the active state. On the one hand, the random access process initiated by the terminal device will increase the power consumption of the terminal device, and on the other hand, it will also increase the data transmission delay. In an application scenario where the terminal device needs to upload data frequently, since the terminal device needs to initiate a random access process frequently, the power consumption of the terminal device will become more serious.
  • the embodiments of the present disclosure provide a data transmission method, an apparatus, and a storage medium.
  • an embodiment of the present disclosure provides a data transmission method, including:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group satisfies the to-be-transmitted data the amount of data;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • target preamble sequence and target PO also includes:
  • the resource configuration information includes RO, preamble sequence, PO, and a preset mapping rule, and the mapping rule includes indication information for indicating the number of resource blocks included in a PO group;
  • the mapping relationship is generated according to the resource configuration information.
  • the one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group;
  • the target PO group includes one or more target POs;
  • the transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs;
  • target preamble sequence and target PO group also include:
  • mapping relationship of RO, preamble sequence, PO and DMRS sequence determine the target PO and target DMRS sequence corresponding to the target RO and the target preamble sequence
  • Transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to the preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • the transmitting the target preamble sequence on the target RO, after transmitting the data to be transmitted on the target PO group further includes:
  • the transmitting the target preamble sequence on the target RO and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • a target MCS is selected from a plurality of preset coding and modulation levels MCS; wherein, the target PO group uses The number of bits carrying data satisfies: the data volume of the data obtained after encoding and modulating the data to be transmitted by the target MCS;
  • the target preamble sequence is transmitted on the target RO, and the target preamble sequence is transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the data to be transmitted by the target MCS.
  • an embodiment of the present disclosure further provides another data transmission method, including:
  • the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the preset between the RO, the preamble sequence and the PO group
  • the mapping rule; the mapping rule includes the indication information for indicating the number of resource blocks included in a PO group
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the method further includes:
  • the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble sequence is transmitted through the target RO, so The data to be transmitted is transmitted through resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the method further includes:
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group and the number of resource blocks included in the second PO group different; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs.
  • the preset mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to the preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • an embodiment of the present disclosure further provides a data transmission device, including:
  • the first determination module is used to determine the target according to the amount of data to be transmitted and the mapping relationship between the time-frequency resources RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO group of the physical uplink shared channel PUSCH RO, target leader sequence and target PO group;
  • a processing module configured to transmit the target preamble sequence on the target RO, and transmit the data to be transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group Satisfy the data volume of the data to be transmitted;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the device further includes:
  • the first receiving module is used for receiving resource configuration information;
  • the resource configuration information includes RO, preamble sequence, PO, and a preset mapping rule, and the mapping rule includes an indication for indicating the number of resource blocks included in a PO group information;
  • a generating module configured to generate the mapping relationship according to the resource configuration information.
  • the one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group;
  • the target PO group includes one or more target POs;
  • the processing module is used for:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs;
  • the first determining module is also used for:
  • mapping relationship of RO, preamble sequence, PO and DMRS sequence determine the target PO and target DMRS sequence corresponding to the target RO and the target preamble sequence
  • the processing module is used for:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • the device further includes:
  • the monitoring module is used for monitoring the random access response message MsgB in the random access response window.
  • processing module is used for:
  • a target MCS is selected from a plurality of preset coding and modulation levels MCS; wherein, the target PO group uses The number of bits carrying data satisfies: the data volume of the data obtained after encoding and modulating the data to be transmitted by the target MCS;
  • the target preamble sequence is transmitted on the target RO, and the target preamble sequence is transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the data to be transmitted by the target MCS.
  • an embodiment of the present disclosure further provides another data transmission device, including:
  • the second determining module is used to determine resource configuration information; the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the RO, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel.
  • a sending module configured to send the resource configuration information
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the device further includes:
  • the second receiving module is configured to receive a random access request MsgA, the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble sequence
  • the data to be transmitted is transmitted through the target RO, and the data to be transmitted is transmitted through the resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the sending module is also used for:
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group and the number of resource blocks included in the second PO group different; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs.
  • the preset mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • an embodiment of the present disclosure further provides an electronic device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the program:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group satisfies the to-be-transmitted data the amount of data;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • target preamble sequence and target PO also includes:
  • the resource configuration information includes RO, preamble sequence, PO, and a preset mapping rule, and the mapping rule includes indication information for indicating the number of resource blocks included in a PO group;
  • the mapping relationship is generated according to the resource configuration information.
  • the one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group;
  • the target PO group includes one or more target POs;
  • the transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs;
  • target preamble sequence and target PO group also include:
  • mapping relationship of RO, preamble sequence, PO and DMRS sequence determine the target PO and target DMRS sequence corresponding to the target RO and the target preamble sequence
  • Transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • the transmitting the target preamble sequence on the target RO, after transmitting the data to be transmitted on the target PO group further includes:
  • the transmitting the target preamble sequence on the target RO and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • a target MCS is selected from a plurality of preset coding and modulation levels MCS; wherein, the target PO group uses The number of bits carrying data satisfies: the data volume of the data obtained after encoding and modulating the data to be transmitted by the target MCS;
  • the target preamble sequence is transmitted on the target RO, and the target preamble sequence is transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the data to be transmitted by the target MCS.
  • an embodiment of the present disclosure further provides another electronic device, including a memory, a processor, and a computer program stored on the memory and running on the processor, where the processor implements the following steps when executing the program:
  • the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the preset between the RO, the preamble sequence and the PO group
  • the mapping rule; the mapping rule includes the indication information for indicating the number of resource blocks included in a PO group
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the method further includes:
  • the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble sequence is transmitted through the target RO, so The data to be transmitted is transmitted through resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the method further includes:
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group and the number of resource blocks included in the second PO group different; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs.
  • the preset mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • an embodiment of the present disclosure further provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the data transmission method provided in the second aspect.
  • embodiments of the present disclosure further provide another non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the data transmission method provided in the first aspect above .
  • network equipment can support multiple transmission blocks in a random access process while being in a disconnected state, and a terminal can flexibly select MSGA according to its own data service size and channel conditions Middle and uplink transmission resources; provide more flexibility for the allocation of random access resources of network devices, and improve the utilization efficiency of network resources.
  • a terminal in the non-connected state, it supports various data transmission volumes of terminal devices (from tens of bits to thousands of bits). ) to meet the different business needs of the terminal.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of the present disclosure is applicable;
  • FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a data transmission method provided by another embodiment of the present disclosure.
  • FIG. 4 exemplarily shows a schematic diagram of a possible correspondence between aggregation factors and PUSCH time slots
  • Fig. 5 exemplarily shows a schematic diagram of the corresponding relationship between RO and PO
  • Fig. 6 exemplarily shows another schematic diagram of the corresponding relationship between RO and PO
  • Fig. 7 exemplarily shows another schematic diagram of the corresponding relationship between RO and PO
  • Fig. 8 exemplarily shows the corresponding relationship diagram of RO and PO group shown in Table 5;
  • Fig. 9 exemplarily shows the corresponding relationship diagram of RO and PO group shown in Table 6;
  • Figure 10 exemplarily shows a schematic diagram of the corresponding relationship between RO and PO groups shown in Table 7;
  • Figure 11 exemplarily shows a schematic diagram of the corresponding relationship between RO and PO groups shown in Table 8.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a mobile terminal according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of an electronic device according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of the present disclosure is applicable.
  • the system 100 shown in FIG. 1 includes a network device 101 and a terminal device 102 .
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminal devices in the system architecture, and the system architecture to which the embodiments of the present disclosure are applicable may include, in addition to network devices and terminal devices, other devices, such as Core network equipment, wireless relay equipment, wireless backhaul equipment, etc., are also not limited in this embodiment of the present disclosure.
  • the network device in the embodiment of the present disclosure may integrate all functions in an independent physical device, or may distribute functions on multiple independent physical devices, which is not limited by the embodiment of the present disclosure.
  • the terminal device in the embodiment of the present disclosure may be connected with the network device in a wireless manner.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service, GPRS
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Terminal devices include devices that provide voice and/or data connectivity to users, and may include, for example, handheld devices with wireless connectivity, or processing devices connected to a wireless modem.
  • the terminal equipment may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine /machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device
  • V2X terminal equipment machine-to-machine/machine-type communication
  • M2M/MTC machine-to-machine/machine-type communications
  • M2M/MTC Internet of things
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber
  • these may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device including, for example, an access network (AN) device, such as a base station (eg, an access point), may refer to a device in an access network that communicates with a wireless terminal device over an air interface through one or more cells.
  • the base station may be used to convert received air frames to and from Internet Protocol (IP) packets and act as a router between the terminal device and the rest of the access network, which may include the IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include fifth generation mobile
  • NodeB or eNB or e-NodeB, evolutional Node B in the LTE system or long term evolution-advanced (LTE-A)
  • LTE-A long term evolution-advanced
  • the embodiment of the present disclosure is not limited to a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • the terminal device may have three states, which are an inactive state, an active state, and an idle state, respectively.
  • the terminal device When the terminal device is in the inactive state, the base station and the terminal device can save the context of the terminal device.
  • the terminal device When there is data to be sent and received, the terminal device can quickly restore the RRC connection through the random access process to enter the active state without re-entering the security mode.
  • Activation, capability reporting, information configuration and other processes can reduce the signaling interaction process, reduce signaling overhead, and reduce the power consumption of terminal equipment.
  • the random access procedures of several terminal devices are described below.
  • the random access process of LTE and the conventional random access process of NR can be divided into two types: contention random access and non-contention random access.
  • the process of contention for random access may include two types, namely, 4-step RACH (4-step RACH) and 2-step RACH (2-step RACH). For details, see related protocols, which will not be repeated in this article.
  • the terminal device needs to transmit a certain size of uplink data to the network device.
  • the water meter may need to periodically report the parameters of the water meter to the server, and the sports bracelet needs to periodically The collected heartbeat data of the user is reported to the network device, etc.
  • the size of the uplink data may be several hundred bits, for example, it may be 600 bits or 800 bits, or even 1000 bits or several thousand bits.
  • the amount of these data can usually be hundreds of bits or thousands of bits. If the terminal device frequently performs random access process, it will cause serious power consumption. Based on this, the solutions provided in the embodiments of the present disclosure can enable the terminal device to transmit user plane data in an inactive state, thereby reducing the power consumption problem of the terminal device.
  • the terminal device since the size of the data that the terminal device needs to report to the network device may not be fixed, if the number of bits that can be carried in the random access request MsgA is set to a fixed value in the standard, Bearing 1000 bits of user plane data, when the terminal device needs to transmit a small amount of data, such as 50 bits, in this case, the terminal device will also transmit the 50 bits of data through the resource block that can carry 1000 bits , it can be seen that this scheme will cause a lot of waste of resources. When the terminal device needs to transmit a large amount of data, such as 1100 bits, in this case, the terminal device finds that a MsgA cannot carry the 1100 bits, and can only carry up to 1000 bits. Therefore, the terminal device will pass the random access process.
  • the embodiments of the present disclosure provide a solution that enables the terminal device to select a resource block of an appropriate size according to the amount of data to be transmitted.
  • the implementation of the present disclosure will be described in detail below.
  • FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present disclosure. As shown in FIG. 2 , the method includes:
  • Step 200 Determine the target RO and target preamble according to the data volume of the data to be transmitted, and the mapping relationship between the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence, and the time-frequency resource PO group of the physical uplink shared channel PUSCH. sequence and target PO group;
  • step 200 in a possible implementation manner, the number of bits used for carrying data in the target PO group satisfies the data to be transmitted.
  • step 200 in a possible implementation manner, when the terminal device selects the target RO, the target preamble sequence and the target PO group with the mapping relationship, in addition to the need for the number of bits used for carrying data in the target PO group to meet all requirements
  • other rules such as channel conditions can also be considered, such as Reference Signal Receiving Power (RSRP), Signal to Interference plus Noise Ratio (SINR) and so on to meet the requirements.
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • Step 201 transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group; the number of bits used for carrying data in the target PO group satisfies all requirements. Describe the amount of data to be transmitted;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the terminal device sends the MsgA in the inactive state.
  • the data to be transmitted may be transmitted through the time-frequency resource corresponding to the PO.
  • the data to be transmitted may be user plane data.
  • the terminal device since the terminal device is in the inactive state, when sending MsgA, it can transmit the data to be transmitted through the time-frequency resources corresponding to the PO group. Shorten the delay of data transmission.
  • the terminal device transmits the data to be transmitted in the inactive state, even if MsgB is subsequently received, it does not need to enter the active state and can continue to remain in the inactive state, thereby saving the power of the terminal device and reducing the power consumption of the terminal device. problem.
  • the terminal device can select an appropriate one according to the amount of data to be transmitted.
  • the target PO group is used to transmit the data to be transmitted.
  • PO groups with fewer resources can reduce the problem of wasting resources.
  • PO groups with larger resources can be used. In this way, when the amount of data to be transmitted is large, It can also be transmitted in the inactive state.
  • the embodiments of the present disclosure provide more flexibility for the terminal device to transmit data in the inactive state, and can also support the terminal device to transmit data blocks of various sizes in the inactive state, so that the terminal device can be satisfied Devices have different service requirements, and the embodiments of the present disclosure can also improve the utilization efficiency of network resources.
  • the network device can support multiple transmission blocks in a random access process while being in a non-connected state, and the terminal can flexibly select uplink transmission resources in the MSGA according to the size of its own data service and channel conditions; It provides more flexibility for the allocation of random access resources of network devices, and improves the utilization efficiency of network resources. At the same time, it supports a variety of data transmission volumes (from tens of bits to thousands of bits) of terminal devices in the non-connected state to meet the needs of different terminals. Business needs.
  • the following steps may also be included:
  • the resource configuration information includes RO, preamble sequence, PO, and a preset mapping rule, and the mapping rule includes indication information for indicating the number of resource blocks included in a PO group; according to the resource configuration information to generate the mapping relationship.
  • the network device may configure uplink transmission resources, and the uplink transmission resources include physical random access channel (Physical Random Access Channel, PRACH) resources and physical uplink shared channel (Physical Uplink Shared Channel, PUSCH, PUSCH) resources )resource.
  • the resource configuration information may include the channel time-frequency resource (RACH Occasion, RO) of the random access channel, the time-frequency resource (PUSCH Occasion, PO) of the preamble sequence and the physical uplink shared channel, and the combination of the RO, the preamble sequence and the PO group. between preset mapping rules.
  • the network device sends the resource configuration information, and the terminal device receives the resource configuration information.
  • the terminal device generates the mapping relationship according to a preset mapping rule. It can be understood that, in a possible implementation manner, according to the same preset mapping rule, the network device can also generate the same mapping relationship based on the resource configuration information.
  • the network device may configure uplink transmission resources, and the uplink transmission resources include PRACH resources and PUSCH resources.
  • the network device may configure multiple PUSCH physical layer resource blocks, for example, may be configured through RRC signaling.
  • the size of one resource block (the resource block may refer to the resource block of the PUSCH physical layer) may be defined, for example, one resource block may be defined to include several unit resource blocks, where one unit resource block refers to the unit A resource block occupies 1 subcarrier in the frequency domain and occupies 1 time domain symbol in the time domain.
  • the number of unit resource blocks included in a resource block defined in the embodiments of the present disclosure may be related to a modulation and coding scheme (Modulation and Coding Scheme, MCS).
  • MCS Modulation and Coding Scheme
  • it can be defined under the Quadrature Phase Shift Keying (Quadrature Phase Shift Keying, QPSK) modulation and coding strategy
  • a resource block can be defined to include k0 unit resource blocks, where k0 is a positive integer.
  • the absolute value of the difference between the numbers of unit resource blocks included in any two resource blocks is not greater than the difference threshold. That is, the number of unit resource blocks included in every two resource blocks may not be equal, but the deviation cannot be greater than the difference threshold.
  • the difference between the numbers of unit resource blocks included in any two resource blocks may be required to be zero. That is, the number of unit resource blocks included in every two resource blocks is equal. It can be seen that, in the embodiment of the present disclosure, the number of unit resource blocks included in any two resource blocks may be limited, but the specific location information of the unit resource block may not be limited, such as the time domain occupied by one of the resource blocks. There are a total of 2 matches, a total of 12 occupied subcarriers, and a total of 4 time domain symbols occupied by another resource block, and a total of 6 occupied subcarriers.
  • a possible implementation is that one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is the same as that of all the POs. The number of resource blocks included in the second PO group is different; the target PO group includes one or more target POs.
  • the terminal device transmits the target preamble sequence on the target RO, and transmits the data to be transmitted on the resource blocks in the target PO group, including:
  • the data to be transmitted is transmitted on the resource block corresponding to the sequence.
  • the mapping relationship includes: the mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein, a PO group includes one or more PO, and one PO corresponds to one or more DMRS sequences; one PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is the same as that included in the second PO group The number of resource blocks varies; the target PO group includes one or more target POs.
  • the terminal device determines the target RO, the target preamble sequence and the target PO group, it further includes:
  • mapping relationship of RO, preamble sequence, PO and DMRS sequence determine the target PO and target DMRS sequence corresponding to the target RO and the target preamble sequence
  • Transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • the terminal device can select an appropriate target PO group to transmit the to-be-transmitted data according to the data volume of the data to be transmitted.
  • a PO group including a smaller number of resource blocks can be used, so that the problem of waste of resources can be alleviated.
  • the PO group with a large number of blocks can also be transmitted in the inactive state when the amount of data to be transmitted is large.
  • mapping relationship satisfies one of the following contents:
  • the terminal device transmits the target preamble sequence on the target RO, and after transmitting the data to be transmitted on the target PO group, further includes: monitoring in the random access response window Random access response message MsgB.
  • a terminal device may be provided with multiple MCSs.
  • the terminal device may select a target MCS from a plurality of preset coding and modulation levels MCS according to the data amount of the data to be transmitted and the number of bits used for carrying data in the target PO group.
  • the number of bits used for carrying data in the target PO group satisfies: the data amount of the data obtained after encoding and modulating the data to be transmitted by the target MCS.
  • the target preamble sequence is transmitted on the target RO, and the target preamble sequence is transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the data to be transmitted by the target MCS.
  • the terminal device can select a more suitable MCS for encoding and modulating the data to be transmitted according to the amount of data to be transmitted and channel conditions, etc., so that the flexibility of the scheme can be increased.
  • FIG. 3 is a schematic flowchart of a data transmission method provided by another embodiment of the present disclosure. As shown in FIG. 3 , the method includes:
  • Step 300 Determine resource configuration information; the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the relationship between the RO, the preamble sequence and the PO group.
  • the preset mapping rule includes instruction information for indicating the number of resource blocks included in a PO group;
  • the network device may configure uplink transmission resources, uplink PRACH resources and PUSCH resources.
  • the resource configuration information may include RO, preamble sequence and PO, and preset mapping rules among RO, preamble sequence and PO groups.
  • Step 301 sending the resource configuration information
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the network device and the terminal device may generate the same mapping relationship based on the resource configuration information.
  • the network device can support multiple transmission blocks in a random access process while being in a non-connected state, and the terminal can flexibly select uplink transmission resources in the MSGA according to the size of its own data service and channel conditions; It provides more flexibility for the allocation of random access resources of network equipment, and improves the utilization efficiency of network resources. At the same time, it supports a variety of data transmission volumes (from tens of bits to thousands of bits) of terminal equipment in the non-connected state to meet the needs of different terminals. Business needs.
  • the network device after the network device sends the resource configuration information, it further includes:
  • the network device receives a random access request MsgA, the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble sequence is transmitted through the target RO , the data to be transmitted is transmitted through the resource blocks in the target PO group; the target RO, the target preamble sequence and the target PO group have a mapping relationship.
  • the random access request MsgA is used to request random access.
  • the random access request MsgA includes a target preamble sequence and data to be transmitted.
  • the target preamble sequence is transmitted through the target RO, and the data to be transmitted is transmitted through the resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the network device may perform a PUSCH decoding operation according to the position of the resource block in the target PO group associated with the target RO and the target preamble sequence, and then acquire the to-be-transmitted data transmitted by the terminal device.
  • the network device can blindly decode the signal of the resource blocks in the PO group by combining the MCS that encodes and modulates the signal, so as to obtain the specific PUSCH signal.
  • Information bits carried on a resource block can be used to blindly decode the signal of the resource blocks in the PO group by combining the MCS that encodes and modulates the signal, so as to obtain the specific PUSCH signal.
  • the network device after receiving the random access request MsgA, the network device further includes: sending a random access response message MsgB.
  • the terminal device monitors the random access response message MsgB within the random access response window. Subsequently, if the random access response message is a random access success response, since the terminal device has already transmitted the data to be transmitted, the terminal device may remain in the inactive state after receiving the random access response MsgB.
  • the terminal device has other requirements, such as the need to transmit 100M or Gigabit basic data, the terminal device can also enter the active state after receiving the random access response MsgB.
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is the same as the number of resource blocks included in the second PO group. The number of resource blocks varies; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRSs sequence;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs.
  • mapping relationship satisfies one of the following:
  • the mapping rule includes a rule for the number of resource blocks included in each PO group. It can also be said that according to the mapping rule, the PO group corresponding to each RO and the preamble sequence can be determined, and the corresponding PO group can be determined according to the mapping rule. The number of resource blocks included in the PO group. A few examples are given below.
  • a definition "aggregation factor" is introduced, the value of the aggregation factor is a numerical value, and the value of the aggregation factor corresponding to a PO group is used to indicate the number of resource blocks included in the PO group.
  • the value of the aggregation factor corresponding to a PO group is 1, which means that the PO group includes only one resource block.
  • the value of the aggregation factor corresponding to a PO group is 2, it means that the PO group includes only 2 resource blocks.
  • the value of the aggregation factor corresponding to a PO group is 4, which means that the PO group includes only 4 resource blocks.
  • the value of the aggregation factor corresponding to a PO group is 8, which means that only 8 resource blocks are included in the PO group.
  • the total number of preamble sequences (which can also be written as Preamble index) configured by the network device is 2, which are Preamble index0 and Preamble index1 respectively.
  • the number of demodulation reference signal (Demodulation Reference Signal, DMRS) indications (which can also be written as DMRS index) configured by the network device is 1, which is 0 for DMRS index.
  • DMRS Demodulation Reference Signal
  • each PUSCH slot corresponds to one aggregation factor.
  • each PO group in all PO groups in each PUSCH time slot corresponds to the aggregation factor corresponding to the PUSCH time slot.
  • the preset mapping rule satisfies the following conditions: T0 values correspond to T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots , the number of resource blocks included in each PO group in the PUSCH time slot is the same as the value corresponding to the PUSCH time slot.
  • the T1 is a positive integer greater than 1
  • the T0 is a positive integer greater than 1.
  • FIG. 4 exemplarily shows a schematic diagram of a possible correspondence between aggregation factors and PUSCH time slots.
  • one PRACH time slot may correspond to one PUSCH time slot.
  • An aggregation factor cycle can be set, and the aggregation factor cycle includes 4 aggregation factors, which are 1, 2, 4, and 8 in sequence.
  • the four aggregation factors included in the one aggregation factor cycle period are the above-mentioned T0 values.
  • each PUSCH time slot corresponds to an aggregation factor
  • each aggregation factor in the cycle period of the aggregation factor can be sequentially and cyclically corresponding to the PUSCH time slot.
  • the aggregation factor corresponding to the PUSCH time slot m is 1, and each PO group in the PUSHC time slot m includes one resource block.
  • the aggregation factor corresponding to the PUSCH time slot m+1 is 2, then each PO group in the PUSHC time slot m+1 includes 2 resource blocks.
  • the aggregation factor corresponding to the PUSCH time slot m+2 is 4, then each PO group in the PUSHC time slot m+2 includes 4 resource blocks.
  • the aggregation factor corresponding to the PUSCH time slot m+3 is 8, then each PO group in the PUSHC time slot m+3 includes 8 resource blocks.
  • the resources in the PO group associated with one RO and the preamble sequence may come from the same PUSCH time slot. It can also be said that all resource blocks included in the first RO belong to resource blocks in the same PUSCH time slot; all resource blocks included in the first PO group belong to resource blocks in the same PUSCH time slot.
  • FIG. 5 exemplarily shows a schematic diagram of the corresponding relationship between RO and PO.
  • PRACH time slot n+1 and the PUSCH time slot m+1 in FIG. 5 are used as examples for description.
  • PRACH time slot n+1 includes three resource blocks, namely SSB0 RO#0, SSB1 RO#1, and SSB2 RO#2.
  • the aggregation factor of the PUSCH time slot m+1 is 2, which means that each PO group in the PUSCH time slot m+1 includes 2 resource blocks.
  • the total number of PO groups included in the PUSCH time slot can be calculated by the following formula (1):
  • T PUSCH floor(N PO *N DMRStotal /N Aggregation )... Formula (1)
  • T PUSCH represents the total number of PO groups included in the PUSCH time slot
  • N PO represents the total number of PO groups included in a PUSCH time slot
  • N DMRStotal represents the total number of DMRS indexes configured by the network device
  • N Aggregation represents the value of the aggregation factor.
  • the total number of resource blocks included in a PRACH slot can be calculated by the following formula (2):
  • T PRACH N RO *N preamble ...
  • T PRACH represents the total number of resource blocks included in a PRACH time slot
  • N RO represents the total number of RO included in a PRACH time slot
  • N preamble represents the total number of Preamble indexes configured by the network device.
  • N ratio ceil (T PRACH /T PUSCH ) & formula (3)
  • T PUSCH represents the total number of PO groups included in the PUSCH slot
  • T PRACH represents the total number of resource blocks included in the PRACH slot
  • N ratio represents the resource blocks included in the PRACH slot and the PUSCH Correspondence of PO groups included in the time slot.
  • the total number of Preamble indexes configured by the network device is 2.
  • the number of configured DMRS indexes is 1.
  • two resource blocks in the PRACH time slot correspond to one PO group in the PUSCH or one PO group + DMRS Index in the PO group.
  • the correspondence in this example can be shown in Table 1 below.
  • Table 1 exemplarily shows a schematic table of a possible correspondence between RO, preamble sequence and PO.
  • each resource block in the PRACH time slot can be sorted, and when one PRACH A resource block in a slot can be defined by two parameters, the RO and the preamble sequence.
  • the resource blocks in the PRACH time slot can be sorted according to the preset order of ROs, and for the multiple resource blocks corresponding to each RO, the multiple resource blocks can be sorted according to the preset order of multiple preamble sequences configured by the network device. Blocks are sorted.
  • each resource block in a PUSCH slot can be sorted, and a resource block in a PUSCH slot can be defined by two parameters, namely PO and DMRS index.
  • the resource blocks in the PUSCH time slot can be sorted according to the preset order of the POs, and for the multiple resource blocks corresponding to each PO, the multiple resource blocks can be sorted according to the preset order of the DMRS index configured by the network device . Then, the resource blocks in the PUSCH time slot are divided into different PO groups according to the preset division rules of PO groups.
  • the two resource blocks in the PRACH time slot are corresponding to a PO group, that is, according to the ordering of the resource blocks in the PRACH time slot, and the PUSCH time slot.
  • the ordering of the PO groups is to establish the corresponding relationship between the resource blocks in every two PRACH time slots and one PO group in the PUSCH time slot in sequence.
  • Table 1 the second row in Table 1 is used as an example.
  • the PRACH resource block SSB 0 RO#0 and the preamble sequence Preamble index0 are associated with PO group #1 in the PUSCH time slot, and PO
  • the resource blocks included in group #1 are: PO#0, DMRS index0; and resource blocks corresponding to PO#1, DMRS index0.
  • Other contents in Table 1 are similar and will not be described again.
  • FIG. 6 exemplarily shows another schematic diagram of the corresponding relationship between RO and PO.
  • the total number of Preamble indexes configured by the network device is 2.
  • the number of configured DMRS indexes is 3.
  • one resource block in the PRACH time slot corresponds to one PO group in the PUSCH + the DMRS Index in the PO group.
  • the correspondence in this example can be shown in Table 2 below.
  • each resource block in a PUSCH slot can be sorted, and a resource block in a PUSCH slot can be defined by two parameters, namely PO and DMRS index.
  • the resource blocks in the PUSCH time slot can be sorted according to the preset order of the POs, and for the multiple resource blocks corresponding to each PO, the multiple resource blocks can be sorted according to the preset order of the DMRS index configured by the network device . Then, the resource blocks in the PUSCH time slot are divided into different PO groups according to the preset division rules of PO groups.
  • the resource block of PUSCH (one resource block in the PUSCH slot is jointly determined by PO and DMRS).
  • N ratio 1
  • the number of PUSCH resource blocks is more than the number of PRACH resource blocks, there will be surplus PUSCH resources.
  • a specific example of a possible RO, a preamble sequence, and the corresponding relationship between PO and DMRS is shown in Table 2.
  • Table 2 since the DMRS resources in each PO group are 3, the mapping result shows that only two PO groups (PO group #1 and PO group #2) are used in the mapping.
  • FIG. 7 exemplarily shows another schematic diagram of the corresponding relationship between RO and PO. In the example of FIG. 7 , the total number of Preamble indexes configured by the network device is 2.
  • the number of configured DMRS index resource combinations is 9 (because each PO group contains 2 PO resource blocks, each resource block is configured with 3 DMRS indexes, and each resource block is configured with a DMRS index to form a new DMRS index Combining resources, see Table 3).
  • the total number of POs included in the PUSCH time slot m+1 is 6, and the value of the aggregation factor is 2.
  • one resource block in the PRACH time slot corresponds to one PO group in the PUSCH + the DMRS Index in the PO group.
  • the correspondence in this example can be shown in Table 4 below. According to Table 4, all PRACH resources correspond to resources in PO group #1.
  • each PUSCH time slot corresponds to all aggregation factors in one aggregation factor cycle period. For example, if an aggregation factor cycle includes all aggregation factors including 1 and 2. Then, in this example, among all PO groups in each PUSCH time slot, there is one PO group including 1 resource block, and another PO group including 2 resource blocks.
  • the total number of physical layer resource blocks in one PUSCH time slot (it can also be said to be the total number of POs in one PUSCH time slot) is not less than the corresponding time slot The maximum value of all aggregation factors. For example, if the aggregation factors corresponding to a PUSCH time slot include 1 and 2, and the maximum value of the aggregation factors corresponding to the PUSCH time slot is 2, then the The total number of physical layer resource blocks is not less than 2. In this way, all aggregation factors corresponding to all PO groups in the PUSCH time slot can be implemented to include 1 and 2. In a possible implementation manner, the physical layer resource blocks in the PUSCH time slot may be divided according to all aggregation factors corresponding to the PUSCH time slot to obtain multiple PO groups, and one RO may correspond to one or more PO groups.
  • multiple groups of POs corresponding to one RO may be from different PUSCH time slots, or may be from the same PUSCH time slot, which is not limited in the embodiment of the present disclosure.
  • the POs included in the corresponding PO group all correspond to the same PUSCH time slot as an example for example.
  • the preset mapping rule satisfies the following conditions: the preset mapping rule satisfies the following conditions: for T2 PO groups in one PUSCH time slot of T1 PUSCH time slots, the T0
  • the values correspond to the T2 PO groups in sequence according to the preset sorting; for one PO group in the T2 PO groups, the number of resource blocks included in the PO group corresponds to the value of the PO group same.
  • the T1 is a positive integer
  • the T2 is a positive integer greater than 1
  • the T0 is a positive integer greater than 1.
  • an aggregation factor cycle includes all aggregation factors including 1 and 2.
  • Table 5 exemplarily shows a possible schematic table of the corresponding relationship between RO, preamble sequence and PO group.
  • the preset rules specify the division method of PO groups.
  • PO group #0 includes PO#0, the resource block corresponding to DMRS index0
  • PO group #1 includes PO#0, DMRS index0, and PO#1, resource blocks corresponding to DMRS index0. It can be seen that PO group #0 includes 1 resource block, and PO group #1 includes 2 resource blocks.
  • the total number of PO groups included in the PUSCH time slot can be calculated by the following formula (4):
  • T PUSCH floor(N PO *N DMRStotal /N Aggregation max )... Formula (4)
  • T PUSCH represents the total number of PO groups included in the PUSCH time slot
  • N PO represents the total number of PO groups included in a PUSCH time slot
  • N DMRStotal represents the total number of DMRS indexes configured by the network device
  • N Aggregation max represents the maximum value of all aggregation factors included in the PUSCH slot.
  • N RO represents the total number of ROs included in the PRACH slot
  • T PUSCH represents the total number of PO groups included in the PUSCH slot
  • N ratio represents the resource blocks included in the PRACH slot and the PUSCH Correspondence of PO groups included in the slot.
  • the correspondence in this example can be shown in Table 5 below. How the resource blocks in a PUSCH in Table 5 are divided into PO groups may be a pre-configured division rule.
  • FIG. 8 exemplarily shows a schematic diagram of the corresponding relationship between the RO and PO groups shown in Table 5. As shown in FIG.
  • each PUSCH time slot corresponds to all aggregation factors in one aggregation factor cycle period. For example, if an aggregation factor cycle includes all aggregation factors including 1 and 2. Then, in this example, among all PO groups in each PUSCH time slot, there is at least one PO group including 1 resource block, and at least one PO group including 2 resource blocks.
  • Example 3 there is an overlapping resource block between PO group #0 and PO group #1, that is, the resource block corresponding to PO #0, DMRS index0.
  • Example 3 in a possible implementation manner, for two PO groups in a PUSCH time slot, optionally, the resource blocks included in the two PO groups are different. There are overlapping resource blocks so that interference problems between PO groups can be reduced.
  • Example 3 if all the aggregation factors included in one aggregation factor cycle period include 1 and 2.
  • Table 6 exemplarily shows a possible schematic table of the corresponding relationship between RO, preamble sequence and PO group.
  • the preset rules specify the division method of PO groups.
  • PO group #0 includes PO#0, the resource block corresponding to DMRS index0
  • PO group #1 includes PO#1, DMRS index0, and PO#2, resource blocks corresponding to DMRS index0. It can be seen that PO group #0 includes 1 resource block, and PO group #1 includes 2 resource blocks. And there is no overlap of resource blocks between PO group #0 and PO group #1.
  • the total number of PO groups included in the PUSCH time slot can be calculated by the following formula (6):
  • T PUSCH represents the total number of PO groups included in the PUSCH time slot
  • N PO represents the total number of PO groups included in a PUSCH time slot
  • N DMRStotal represents the total number of DMRS indexes configured by the network device
  • T Aggregation Total represents the total number of all aggregation factors included in the PUSCH slot
  • ⁇ j aggregation value represents the sum of the values of all the aggregation factors included in the PUSCH slot.
  • the correspondence in this example can be shown in Table 6 below. How the resource blocks in a PUSCH in Table 6 are divided into PO groups may be a pre-configured division rule.
  • FIG. 9 exemplarily shows a schematic diagram of the corresponding relationship between the RO and PO groups shown in Table 6. As shown in FIG.
  • each PUSCH time slot corresponds to all aggregation factors in one aggregation factor cycle period. For example, if an aggregation factor cycle includes all aggregation factors including 1 and 2. Then, in this example, among all PO groups in each PUSCH time slot, there is at least one PO group including 1 resource block, and at least one PO group including 2 resource blocks.
  • Example 1 Example 2 and Example 3 are all described by taking one PRACH time slot corresponding to one PUSCH time slot as an example.
  • One PRACH slot may also correspond to multiple PUSCH slots.
  • the resource blocks in the first RO and the second RO belong to the same PUSCH time slot.
  • the PUSCH time slots corresponding to the resource blocks included in the first PO group are different from the PUSCH time slots corresponding to the resource blocks included in the second PO group.
  • the fourth example can be used for description.
  • Example 4 if all the aggregation factors included in one aggregation factor cycle period include 1 and 2.
  • Table 7 exemplarily shows a possible schematic table of the corresponding relationship between RO, preamble sequence and PO group.
  • the preset rules specify the division method of PO groups.
  • the resource blocks included in PO group #0 are resource blocks in PUSCH time slot j.
  • PO group #0 0 includes PO group #0 including PO #0 in PUSCH slot j, resource blocks corresponding to DMRS index 0, PO group #1 including PO #1 in PUSCH slot j, DMRS index 0, and PO in PUSCH slot j #2, the resource block corresponding to DMRS index0.
  • the resource blocks included in PO group #2 are resource blocks corresponding to PUSCH time slot j+1.
  • PO group #2 includes PO #3 in PUSCH time slot j+1, resource blocks corresponding to DMRS index 0
  • PO group #3 includes PO#4 in PUSCH slot j+1, DMRS index 0, and PO#5 in PUSCH slot j+1, resource blocks corresponding to DMRS index 0.
  • PO group #0 includes 1 resource block
  • PO group #1 includes 2 resource blocks.
  • PO group #0 and PO group #1 both belong to PUSCH time slot j.
  • PO group #2 includes 1 resource block
  • PO group #3 includes 2 resource blocks.
  • PO group #2 and PO group #3 both belong to PUSCH time slot j+1.
  • Both SSB0 RO#0 and SSB1 RO#1 belong to PRACH time slot i, and SSB0 RO#0 is associated with Preamble index0 in PO group #0, SSB0 RO#0 is associated with Preamble index1 in PO group #1, and SSB1 RO#1 is associated with Preamble index1. Index0 is associated with PO group #2, and SSB1 RO#1 is associated with Preamble index1 with PO group #3.
  • Example 4 The difference between Example 4 and Example 3 is that PO group #0 and PO group #1 are located in PUSCH time slot j, PO group #2 and PO group #3 are located in PUSCH time slot j+1, PO group #4 and PO group #5 Located in PUSCH slot j+2.
  • Example 3 the corresponding relationship in Example 4 can be shown in Table 7 below. How the resource blocks in a PUSCH in Table 7 are divided into PO groups may be a preconfigured division rule.
  • FIG. 10 exemplarily shows a schematic diagram of the corresponding relationship between the RO and PO groups shown in Table 7. As shown in FIG.
  • Example 5 in a possible application scenario, if the number of POs included in the PUSCH time slot is small, in this case, when dividing PO groups, the resource blocks in two adjacent PO groups may overlap, And the same PO can also be divided into multiple PO groups correspondingly.
  • Example 5 is used for illustration below.
  • the total number of physical layer resource blocks in one PUSCH time slot (it can also be said to be the total number of POs in one PUSCH time slot) is not less than the corresponding time slot The maximum value of all aggregation factors. For example, if the aggregation factors corresponding to a PUSCH time slot include 1 and 2, and the maximum value of the aggregation factors corresponding to the PUSCH time slot is 2, then the The total number of physical layer resource blocks is not less than 2. In this way, all aggregation factors corresponding to all PO groups in the PUSCH time slot can be implemented to include 1 and 2.
  • an aggregation factor cycle includes all aggregation factors including 1 and 2.
  • Table 8 exemplarily shows a possible schematic table of the corresponding relationship between RO, preamble sequence and PO group.
  • the preset rules specify the division method of PO groups.
  • PO group #0 includes PO#0, the resource block corresponding to DMRS index0
  • PO group #1 includes PO#0, DMRS index0, and PO#1, resource blocks corresponding to DMRS index0. It can be seen that PO group #0 includes 1 resource block, and PO group #1 includes 2 resource blocks.
  • the total number of PO groups included in the PUSCH time slot can be calculated by the following formula (7):
  • T PUSCH floor(N PO *N DMRStotal *N Aggregation max )... Formula (7)
  • T PUSCH represents the total number of PO groups included in the PUSCH time slot
  • N PO represents the total number of PO groups included in a PUSCH time slot
  • N DMRStotal represents the total number of DMRS indexes configured by the network device
  • N Aggregation max represents the maximum value of all aggregation factors included in the PUSCH slot.
  • the correspondence in this example can be shown in Table 8 below. How to divide the resource blocks in a PUSCH in Table 8 into PO groups can be pre-configured division rules. For example, PO groups can be divided in sequence based on the order of PO#0, PO#1 and PO#2. For details, see Table 8 content in .
  • FIG. 11 exemplarily shows a schematic diagram of the corresponding relationship between the RO and PO groups shown in Table 8. As shown in FIG.
  • the network device can be configured with multiple PO groups, and the number of physical layer resource blocks included in the two PO groups can be different, so that the terminal device can be configured according to the data to be transmitted. size, select a suitable group: RO, preamble and PO group to send MsgA.
  • a suitable group RO, preamble and PO group to send MsgA.
  • the terminal device does not find a PO group that can carry the data to be transmitted. In this way, the terminal device can enter the active state through the random access process. Then, the data to be transmitted is transmitted in the active state.
  • the terminal device when the amount of data to be transmitted is relatively large, can divide the data to be transmitted, for example, the data to be transmitted can be divided into two parts, so that the data to be transmitted at one time can be reduced. Therefore, a part of the data can be transmitted in the inactive state, and the remaining part can be transmitted in the active state or in the inactive state, which is not limited in the embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present disclosure.
  • the data transmission apparatus may be a terminal device, which includes a first determination module 1201 and a processing module 1202, wherein:
  • the first determining module 1201 is configured to determine the target according to the amount of data to be transmitted, and the mapping relationship between the time-frequency resources RO of the physical random access channel PRACH, the preamble sequence, and the time-frequency resource PO group of the physical uplink shared channel PUSCH.
  • RO, target preamble sequence and target PO group the processing module 1202 is configured to transmit the target preamble sequence on the target RO, and transmit the data to be transmitted on the resource blocks in the target PO group;
  • the target PO The number of bits used to carry data in the group satisfies the data amount of the data to be transmitted;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the apparatus further includes: a first receiving module 1203, configured to receive resource configuration information; the resource configuration information includes RO, preamble, PO, and a preset mapping rule, where the mapping rule includes Indication information indicating the number of resource blocks included in a PO group; the generating module 1204 is configured to generate the mapping relationship according to the resource configuration information.
  • a first receiving module 1203 configured to receive resource configuration information
  • the resource configuration information includes RO, preamble, PO, and a preset mapping rule, where the mapping rule includes Indication information indicating the number of resource blocks included in a PO group
  • the generating module 1204 is configured to generate the mapping relationship according to the resource configuration information.
  • the one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group;
  • the target PO group includes one or more target POs;
  • the processing module 1202 is configured to: select a target DMRS sequence from one or more preset demodulation reference signal DMRS sequences; transmit the target preamble sequence on the target RO, and transmit the target preamble sequence on the target PO group.
  • the to-be-transmitted data is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences; the mapping relationship A PO and a DMRS sequence in the corresponding one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes one or more targets PO;
  • the first determination module 1201 is further configured to: determine the target PO and the target DMRS sequence corresponding to the target RO and the target preamble sequence according to the mapping relationship between the RO, the preamble sequence, the PO and the DMRS sequence;
  • the processing module 1202 is configured to: select a target DMRS sequence from one or more preset demodulation reference signal DMRS sequences; transmit the target preamble sequence on the target RO, and transmit the target preamble sequence on the target PO group.
  • the to-be-transmitted data is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence.
  • the mapping rule satisfies the following conditions: T0 values correspond to T1 PUSCH time slots in sequence according to a preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the PUSCH The number of resource blocks included in each PO group in the time slot is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1; or; for T1 PUSCHs T2 PO groups in a PUSCH time slot in the time slot, the T0 values correspond to the T2 PO groups in sequence according to the preset ordering; for one PO group in the T2 PO groups , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1.
  • the mapping relationship satisfies one of the following contents: a resource block in a PRACH time slot has an associated relationship with a resource block in a PUSCH time slot; a resource block in a PRACH time slot is associated with multiple Resource blocks in PUSCH time slots are associated; resource blocks in multiple PRACH time slots are associated with resource blocks in one PUSCH time slot; resource blocks in multiple PRACH time slots are associated with multiple PUSCH time slots There is an association relationship between resource blocks in a time slot.
  • the device further includes:
  • the monitoring module 1205 is configured to monitor the random access response message MsgB in the random access response window.
  • the processing module 1202 is configured to: according to the data amount of the data to be transmitted and the number of bits used to carry data in the target PO group, from preset multiple coding modulation levels MCS Selecting a target MCS; wherein, the number of bits used to carry data in the target PO group satisfies: the data amount of data obtained after encoding and modulating the data to be transmitted by the target MCS; on the target RO
  • the target preamble sequence is transmitted, and transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the to-be-transmitted data by the target MCS.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus provided by another embodiment of the present disclosure.
  • the data transmission apparatus may be a network device, which includes a second determining module 1301 and a sending module 1302, wherein:
  • the second determining module 1301 is configured to determine resource configuration information; the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence, the time-frequency resource PO of the physical uplink shared channel PUSCH, and the RO, preamble sequence and A preset mapping rule between PO groups; the mapping rule includes indication information used to indicate the number of resource blocks included in a PO group; the sending module 1302 is used to send the resource configuration information;
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the device further includes:
  • the second receiving module 1303 is configured to receive a random access request MsgA, the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble The sequence is transmitted through the target RO, and the data to be transmitted is transmitted through the resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the sending module 1302 is further configured to: send a random access response message MsgB.
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group and the number of resource blocks included in the second PO group different; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRS sequences; the mapping relationship A PO and a DMRS sequence in the corresponding one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes one or more targets po.
  • the preset mapping rule satisfies the following conditions: T0 values correspond to T1 PUSCH time slots in sequence according to a preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, The number of resource blocks included in each PO group in the PUSCH time slot is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1; or; for For T2 PO groups in one PUSCH time slot of the T1 PUSCH time slots, the T0 values correspond to the T2 PO groups in sequence according to the preset ordering; for the T2 PO groups in the T2 PO groups A PO group, the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 .
  • the mapping relationship satisfies one of the following contents: a resource block in a PRACH time slot has an associated relationship with a resource block in a PUSCH time slot; a resource block in a PRACH time slot is associated with multiple Resource blocks in PUSCH time slots are associated; resource blocks in multiple PRACH time slots are associated with resource blocks in one PUSCH time slot; resource blocks in multiple PRACH time slots are associated with multiple PUSCH time slots There is an association relationship between resource blocks in a time slot.
  • the network device can support multiple transport blocks in the non-connected state during the random access process, and the terminal can flexibly select the uplink transmission resources in the MSGA according to the size of its own data service and channel conditions; Access resource allocation provides more flexibility, improves network resource utilization efficiency, and supports various data transmission volumes (from tens of bits to thousands of bits) of terminal devices in a disconnected state to meet different service requirements of terminals.
  • FIG. 14 is a schematic structural diagram of an electronic device according to an embodiment of the disclosure.
  • the electronic device may be a mobile terminal.
  • the mobile terminal 1400 may include: at least one processor 1401 , memory 1402 , and at least one network interface 1404 and other user interfaces 1403.
  • the various components in mobile terminal 1400 are coupled together by bus system 1405 .
  • the bus system 1405 is used to implement the connection communication between these components.
  • the bus system 1405 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 1405 in FIG. 14 .
  • the user interface 1403 may include a display, a keyboard or a pointing device, such as a mouse, a trackball, a touch pad or a touch screen, and the like.
  • the memory 1402 in embodiments of the present disclosure may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 1402 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set of them, such as the operating system 14021 and the application programs 14022.
  • the operating system 14021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 14022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiment of the present disclosure may be included in the application program 14022 .
  • the processor 1401 by calling the computer program or instruction stored in the memory 1402, specifically, the computer program or instruction stored in the application program 14022, the processor 1401 is configured to:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group satisfies the to-be-transmitted data the amount of data;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the methods disclosed in the above embodiments of the present disclosure may be applied to the processor 1401 or implemented by the processor 1401 .
  • the processor 1401 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1401 or an instruction in the form of software.
  • the above-mentioned processor 1401 can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1402, and the processor 1401 reads the information in the memory 1402, and completes the steps of the above method in combination with its hardware.
  • the embodiments described in this disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Device (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure electronic unit or a combination thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Device
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the described techniques may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in memory and executed by a processor.
  • the memory can be implemented in the processor or external to the processor.
  • the target preamble sequence and the target PO before the determining of the target RO, the target preamble sequence and the target PO, further includes:
  • the resource configuration information includes RO, preamble sequence, PO, and a preset mapping rule, and the mapping rule includes indication information for indicating the number of resource blocks included in a PO group;
  • the mapping relationship is generated according to the resource configuration information.
  • the one PO group includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is the same as the resources included in the second PO group. The number of blocks is different; the target PO group includes one or more target POs;
  • the transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRSs sequence;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs;
  • target preamble sequence and target PO group also include:
  • mapping relationship of RO, preamble sequence, PO and DMRS sequence determine the target PO and target DMRS sequence corresponding to the target RO and the target preamble sequence
  • Transmitting the target preamble sequence on the target RO, and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks corresponding to the target PO and the target DMRS sequence in the target PO group.
  • mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • the transmitting the target preamble sequence on the target RO, after transmitting the data to be transmitted on the target PO group further includes:
  • the transmitting the target preamble sequence on the target RO and transmitting the data to be transmitted on the resource blocks in the target PO group includes:
  • a target MCS is selected from a plurality of preset coding and modulation levels MCS; wherein, the target PO group uses The number of bits carrying data satisfies: the data volume of the data obtained after encoding and modulating the data to be transmitted by the target MCS;
  • the target preamble sequence is transmitted on the target RO, and the target preamble sequence is transmitted on the resource blocks in the target PO group: data obtained by encoding and modulating the data to be transmitted by the target MCS.
  • the mobile terminal provided by the embodiments of the present disclosure can implement each process implemented by the mobile terminal in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a mobile terminal according to another embodiment of the present disclosure.
  • the mobile terminal in FIG. 15 may be a mobile phone, a tablet computer, a Personal Digital Assistant (PDA), or an electronic reader or a handheld game console. , Point of Sales (POS), vehicle electronic equipment (vehicle computer), etc.
  • the mobile terminal includes a radio frequency (Radio Frequency, RF) circuit 1510, a memory 1520, an input unit 1530, a display unit 1540, a processor 1560, an audio circuit 1570, a WiFi (Wireless Fidelity) module 1580 and a power supply 1590.
  • RF Radio Frequency
  • RF Radio Frequency
  • the structure of the mobile phone shown in FIG. 15 does not constitute a limitation on the mobile phone, and may include more or less components than the one shown in the figure, or combine some components, or disassemble some components, or Different component arrangements.
  • the input unit 1530 may be used for receiving numerical or character information input by the user, and generating signal input related to user setting and function control of the mobile terminal.
  • the input unit 1530 may include a touch panel 15301 .
  • the touch panel 15301 also known as a touch screen, can collect the user's touch operations on or near it (such as the user's operations on the touch panel 15301 using any suitable objects or accessories such as a finger, a stylus, etc.)
  • the specified program drives the corresponding connection device.
  • the touch panel 15301 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 15301 can be realized by various types of resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1530 may also include other input devices 15302, which may be used to receive input numerical or character information and generate key signal input related to user settings and function control of the mobile terminal.
  • other input devices 15302 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch-sensitive mice that do not display visual output) surface, or an extension of a touch-sensitive surface formed by a touch screen), etc.
  • the display unit 1540 may be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal.
  • the display unit 1540 may include a display panel 15401.
  • the display panel 15401 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), and the like.
  • the touch panel 15301 can cover the display panel 15401 to form a touch display.
  • the touch display detects a touch operation on or near it, it is transmitted to the processor 1560 to determine the type of touch event, and then the processor 1560 provides corresponding visual output on the touch display screen according to the type of touch event.
  • the touch screen includes the application program interface display area and the commonly used controls display area.
  • the arrangement of the application program interface display area and the common control display area is not limited, and can be an arrangement that can distinguish the two display areas, such as up and down, left and right.
  • the application program interface display area can be used to display the interface of the application program. Each interface may contain at least one application icon and/or interface elements such as widget desktop controls.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display controls with high usage rate, such as setting buttons, interface numbers, scroll bars, phonebook icons and other application icons.
  • the RF circuit 1510 can be used for receiving and sending signals during sending and receiving of information or during a call. In particular, after receiving the downlink information from the network side, it is processed by the processor 1560; in addition, it sends the designed uplink data to the network side.
  • the RF circuit 1510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • RF circuitry 1510 may also communicate with networks and other devices via wireless communications.
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobilecommunication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access, CDMA), Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Long Term Evolution (Long Term Evolution, LTE), email, Short Messaging Service (Short Messaging Service, SMS), etc.
  • GSM Global System of Mobilecommunication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the memory 1520 is used to store software programs and modules, and the processor 1560 executes various functional applications and data processing of the mobile terminal by running the software programs and modules stored in the memory 1520 .
  • the memory 1520 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function, and the like; Data (such as audio data, phone book, etc.) created by the use of the mobile terminal, etc.
  • memory 1520 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 1560 is the control center of the mobile terminal, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the first memory 15201, and calling the software programs and/or modules stored in the second memory 15202, perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • processor 1560 may include one or more processing units.
  • the processor 1560 is configured to:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group satisfies the to-be-transmitted data the amount of data;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the mobile terminal provided by the embodiments of the present disclosure can implement each process implemented by the mobile terminal in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • FIG. 16 is a schematic structural diagram of an electronic device according to another embodiment of the present disclosure.
  • the electronic device may be a base station.
  • the base station 1600 may include at least one processor 1601, a memory 1602, and at least one other user interface 1603, and transceiver 1604.
  • the various components in base station 1600 are coupled together by bus system 1605 .
  • the bus system 1605 is used to implement connection communication between these components.
  • the bus system 1605 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 1605 in FIG.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1601 and memory 1602
  • the various circuits representing the memory are linked together.
  • the bus system can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be further described in the embodiments of the present disclosure .
  • the bus interface provides the interface.
  • Transceiver 1604 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over a transmission medium.
  • the user interface 1603 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the memory 1602 in embodiments of the present disclosure may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1601 is responsible for managing the bus system and general processing, and the memory 1602 can store computer programs or instructions used by the processor 1601 when performing operations. Specifically, the processor 1601 can be used for:
  • the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the preset between the RO, the preamble sequence and the PO group
  • the mapping rule; the mapping rule includes the indication information for indicating the number of resource blocks included in a PO group
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.
  • the methods disclosed in the above embodiments of the present disclosure may be applied to the processor 1601 or implemented by the processor 1601 .
  • the processor 1601 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 1601 or an instruction in the form of software.
  • the above-mentioned processor 1601 can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1602, and the processor 1601 reads the information in the memory 1602, and completes the steps of the above method in combination with its hardware.
  • the embodiments described in this disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Device (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure electronic unit or a combination thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Device
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the described techniques may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in memory and executed by a processor.
  • the memory can be implemented in the processor or external to the processor.
  • the method further includes:
  • the random access request MsgA is used to request random access, and the random access request MsgA includes a target preamble sequence and data to be transmitted; the target preamble sequence is transmitted through the target RO, so The data to be transmitted is transmitted through resource blocks in the target PO group; there is a mapping relationship among the target RO, the target preamble sequence and the target PO group.
  • the method further includes:
  • one PO group of the mapping relationship includes one or more POs, and one PO corresponds to one resource block; the number of resource blocks included in the first PO group is the same as that of the second PO group. The number of included resource blocks varies; the target PO group includes one or more target POs.
  • the mapping relationship includes: a mapping relationship between RO, preamble sequence, PO and DMRS sequence, wherein one PO group includes one or more POs, and one PO corresponds to one or more DMRSs sequence;
  • One PO and one DMRS sequence in the mapping relationship correspond to one resource block; the number of resource blocks included in the first PO group is different from the number of resource blocks included in the second PO group; the target PO group includes a or multiple target POs.
  • the preset mapping rule satisfies the following conditions:
  • the T0 values correspond to the T1 PUSCH time slots in sequence according to the preset ordering; for one PUSCH time slot in the T1 PUSCH time slots, the number of resource blocks included in each PO group in the PUSCH time slot is The number is the same as the value corresponding to the PUSCH time slot; the T0 is a positive integer greater than 1, and the T1 is a positive integer greater than 1;
  • the T0 values correspond to the T2 PO groups in sequence according to a preset ordering; for the T2 PO groups in the T2 PO groups A PO group of , the number of resource blocks included in the PO group is the same as the value corresponding to the PO group; the T0 is a positive integer greater than 1, the T1 is a positive integer, and the T2 is a positive integer greater than 1 Integer.
  • mapping relationship satisfies one of the following:
  • the base station provided in the embodiment of the present disclosure can implement each process implemented by the network device in the foregoing embodiment, and in order to avoid repetition, details are not repeated here.
  • the base station can support multiple transport blocks in the non-connected state during the random access process, and the mobile terminal can flexibly select the uplink transmission resources in the MSGA according to the size of its own data service and channel conditions; Access resource allocation provides more flexibility, improves network resource utilization efficiency, and supports multiple data transmission volumes (from tens of bits to thousands of bits) of mobile terminal equipment in the disconnected state to meet different service requirements of the terminal.
  • the electronic device provided by the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for executing each function.
  • the present disclosure can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed in the present disclosure.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection of devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium and includes several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the computer storage medium is a non-transitory (English: nontransitory) medium, including: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other mediums that can store program codes.
  • an embodiment of the present disclosure further provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, is implemented to execute the methods provided by the foregoing embodiments, for example, including:
  • the target preamble sequence is transmitted on the target RO, and the data to be transmitted is transmitted on the resource blocks in the target PO group; the number of bits used to carry data in the target PO group satisfies the to-be-transmitted data the amount of data;
  • the mapping relationship includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, the second RO and the second preamble sequence are associated with the second PO group, so The number of bits used for carrying data in the first PO group is different from the number of bits used for carrying data in the second PO group.
  • the embodiments of the present disclosure further provide another non-transitory computer-readable storage medium, on which a computer program is stored, and the computer program is implemented when executed by a processor to execute the methods provided in the foregoing embodiments, for example, including :
  • the resource configuration information includes the time-frequency resource RO of the physical random access channel PRACH, the preamble sequence and the time-frequency resource PO of the physical uplink shared channel PUSCH, and the preset between the RO, the preamble sequence and the PO group
  • the mapping rule; the mapping rule includes the indication information for indicating the number of resource blocks included in a PO group
  • the mapping relationship corresponding to the preset mapping rule includes at least a first RO and a second RO, the first RO and the first preamble sequence are associated with the first PO group, and the second RO and the second preamble sequence are associated with the first PO group.
  • the number of bits used to carry data in the first PO group is different from the number of bits used to carry data in the second PO group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种数据传输方法、装置及存储介质,该方法包括根据待传输数据的数据量,以及RO、前导序列和PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;在目标RO上传输所述目标前导序列,在目标PO组中的资源块上传输待传输数据;目标PO组中用于承载数据的比特的数量满足待传输数据的数据量。本公开实施例中,网络设备可以实现在随机接入过程中支持多种传输块同时在非连接状态,终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为网络设备随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持终端设备多种数据传输量,满足终端不同业务需求。

Description

一种数据传输方法、装置及存储介质
相关申请的交叉引用
本申请要求于2020年07月28日提交的申请号为202010737097X,发明名称为“一种数据传输方法、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种数据传输方法、装置及存储介质。
背景技术
5G新的无线电技术(New Radio,NR)Release 15版本中,终端设备可以有三种状态,分别为空闲(idle)态、非激活(inactive)状态和激活(active)态。
当终端设备没有数据收发的时候,基站可以指示终端设备进入inactive态。当终端设备处于inactive态或idle时,终端设备可以不需要监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),可以仅进行参考信号的检测、小区重选、以及监听寻呼(英文可以称为paging)或监听***消息等。
与终端设备的idle态不同的是,当终端设备处于inactive态时,基站和终端设备可以保存终端设备的上下文,当有数据需要收发时,终端设备可以通过随机接入过程快速恢复无线资源控制(Radio Resource Control,RRC)连接,进入active态,不需要重新进行安全模式激活、能力上报、信息配置等过程,从而可以减少信令交互过程,降低信令开销,降低终端设备的功耗。
Release 16版本不支持终端设备在inactive状态进行用户面数据的传输,如果终端设备有用户面数据需要传输,则需先通过随机接入进入active态,之后在active状态进行数据的传输。而终端设备发起随机接入过程一方面会加大终端设备的耗电,且另外一方面也会增加数据的传输时延。若在终端设 备需频繁上传数据的应用场景中,由于终端设备需频繁的发起随机接入过程,则终端设备的耗电程度会愈加严重。
发明内容
针对现有技术存在的上述技术问题,本公开实施例提供一种数据传输方法、装置及存储介质。
第一方面,本公开实施例提供一种数据传输方法,包括:
根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述确定目标RO、目标前导序列和目标PO之前,还包括:
接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
根据所述资源配置信息生成所述映射关系。
可选地,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目 标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述确定目标RO、目标前导序列和目标PO组之后,还包括:
根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关 联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
可选地,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组上传输所述待传输数据之后,还包括:
在随机接入响应窗内监听随机接入响应消息MsgB。
可选地,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
第二方面,本公开实施例还提供另一种数据传输方法,包括:
确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述发送所述资源配置信息之后,还包括:
接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
可选地,所述接收随机接入请求MsgA之后,还包括:
发送随机接入响应消息MsgB。
可选地,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述预设的映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
第三方面,本公开实施例还提供一种数据传输装置,包括:
第一确定模块,用于根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
处理模块,用于在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述装置还包括:
第一接收模块,用于接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
生成模块,用于根据所述资源配置信息生成所述映射关系。
可选地,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述处理模块,用于:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述第一确定模块,还用于:
根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
所述处理模块,用于:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
可选地,所述装置还包括:
监听模块,用于在随机接入响应窗内监听随机接入响应消息MsgB。
可选地,所述处理模块,用于:
根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
第四方面,本公开实施例还提供另一种数据传输装置,包括:
第二确定模块,用于确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
发送模块,用于发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述装置还包括:
第二接收模块,用于接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
可选地,所述发送模块还用于:
发送随机接入响应消息MsgB。
可选地,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述预设的映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
第五方面,本公开实施例还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如下步骤:
根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述确定目标RO、目标前导序列和目标PO之前,还包括:
接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
根据所述资源配置信息生成所述映射关系。
可选地,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同; 所述目标PO组包括一个或多个目标PO;
所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述确定目标RO、目标前导序列和目标PO组之后,还包括:
根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中 的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
可选地,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组上传输所述待传输数据之后,还包括:
在随机接入响应窗内监听随机接入响应消息MsgB。
可选地,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
第六方面,本公开实施例还提供另一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如下步骤:
确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指 示一个PO组包括的资源块数量的指示信息;
发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述发送所述资源配置信息之后,还包括:
接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
可选地,所述接收随机接入请求MsgA之后,还包括:
发送随机接入响应消息MsgB。
可选地,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述预设的映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
第七方面,本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述第二方面提供的数据传输方法的步骤。
第八方面,本公开实施例还提供另一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面提供的数据传输方法的步骤。
本公开实施例提供的数据传输方法、装置及存储介质,网络设备可以实现在随机接入过程中支持多种传输块同时在非连接状态,终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为网络设备随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持终端设备多种数据传输量(从几十比特到上千比特),满足终端不同业务需求。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例适用的一种可能的***架构示意图;
图2为本公开一实施例提供的数据传输方法流程示意图;
图3为本公开另一实施例提供的数据传输方法流程示意图;
图4示例性示出了一种可能的聚合因子和PUSCH时隙的对应关系示意图;
图5示例性示出了一种RO和PO的对应关系示意图;
图6示例性示出了另一种RO和PO的对应关系示意图;
图7示例性示出了又一种RO和PO的对应关系示意图;
图8示例性示出了表5中所示的RO和PO组的对应关系示意图;
图9示例性示出了表6中所示的RO和PO组的对应关系示意图;
图10示例性示出了表7中所示的RO和PO组的对应关系示意图;
图11示例性示出了表8中所示的RO和PO组的对应关系示意图;
图12为本公开一实施例提供的数据传输装置结构示意图;
图13为本公开另一实施例提供的数据传输装置结构示意图;
图14为本公开一实施例提供的电子设备的结构示意图;
图15为本公开另一实施例提供的移动终端的结构示意图;
图16为本公开另一实施例提供的电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了便于清楚描述本公开实施例的技术方案,在本公开的各实施例中,若采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项 进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
图1为本公开实施例适用的一种可能的***架构示意图。如图1所示的***100包括网络设备101和终端设备102。应理解,本公开实施例对***架构中网络设备的数量、终端设备的数量不作限定,而且本公开实施例所适用的***架构中除了包括网络设备和终端设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本公开实施例也不作限定。以及,本公开实施例中的网络设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本公开实施例也不作限定。此外,本公开实施例中的终端设备可以通过无线方式与网络设备连接。
本公开实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile Communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)***、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***,以及5G通信***等。
下面对本公开实施例涉及到的术语以及相关技术进行相关介绍。
终端设备包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine /machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本公开实施例并不限定。
本公开实施例中终端设备可以有三种状态,分别为inactive态、active态 和idle态。当终端设备处于inactive态时,基站和终端设备可以保存终端设备的上下文,当有数据需要收发时,终端设备可以通过随机接入过程快速恢复RRC连接,以进入active态,不需要重新进行安全模式激活、能力上报、信息配置等过程,从而可以减少信令交互过程,降低信令开销,降低终端设备的功耗。下面介绍几种终端设备的随机接入过程。LTE的随机接入过程和NR的常规随机接入过程可以分为竞争随机接入和非竞争随机接入两种。其中竞争随机接入的过程可以包括两种,分别为4步RACH(4-step RACH)和2步RACH(2-step RACH),具体内容见相关协议,本文不再赘述。
而随着物联网的发展,存在一种应用场景,该应用场景下,终端设备需向网络设备传输一定大小的上行数据,例如水表可能需要周期性向服务器上报水表的参数,运动手环需要周期性将采集到的用户的心跳数据上报至网络设备等。该上行数据的大小可能为几百比特,比如可能为600比特或800比特,甚至为1000比特或几千比特。若根据现有技术的方案,则需要该终端设备通过随机接入进程接入至网络设备,之后在active态下传输数据。这些数据量通常可以为几百比特或几千比特,若终端设备频繁的进行随机接入进程,则会导致自身耗电严重。基于此,本公开实施例中提供的方案可以使终端设备在inactive状态下传输用户面数据,从而可以减缓终端设备的耗电问题。
另一方面,由于终端设备需要向网络设备上报的数据的大小可能并不是固定的,若在标准中将随机接入请求MsgA中可以承载的比特的数量设置为一个固定值,比如规定通过MsgA可以承载1000比特的用户面数据,则当终端设备需要传输较小的数据量时,比如50比特,这种情况下,终端设备也会通过该能够承载1000比特的资源块来传输该50比特的数据,可见,该方案会造成资源的大量浪费。而当终端设备需要传输较大的数据量时,比如1100比特,这种情况下,终端设备发现一个MsgA无法装载该1100比特,最多仅能承载1000比特,因此,终端设备会通过随机接入进程进入active态,之后,在active态下向网络设备传输数据,如此,造成了终端设备的耗电问题。针对这种问题,本公开实施例中提供了一种方案,可以使终端设备依据待传输数据的数据量来选择适当大小的资源块,下面对本公开实施进行详细介绍。
图2为本公开一实施例提供的数据传输方法流程示意图,如图2所示,该方法包括:
步骤200、根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在步骤200中,一种可能地实施方式中,所述目标PO组中用于承载数据的比特的数量满足所述待传输数据。
在步骤200中,在一种可能地实施方式中,终端设备在选择具有映射关系的目标RO、目标前导序列和目标PO组时,除了需要目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量之外,还可以考虑信道条件等其他的规则,例如参考信号接收功率(Reference Signal Receiving Power,RSRP)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)等是否满足要求。
步骤201、在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
在上述步骤201中,终端设备在inactive态下发送MsgA。在MsgA中可以通过PO对应的时频资源来传输待传输数据。该待传输数据可以为用户面数据。一方面,由于终端设备在inactive态下,在发送MsgA时,可以通过PO组对应的时频资源来传输待传输数据,则相比终端设备在随机接入成功后传输数据的方案来说,可以缩短数据传输的时延。
另一方面,当终端设备在inactive态传输了待传输数据,则即使后续接收到MsgB,也无需进入active态,可以继续维持在inactive态,从而可以节省终端设备的电量,减缓终端设备的耗电问题。
第三,由于不同的RO可以对应不同的PO组,且两个PO组中用于承载数据的比特位的数量可以是不同的,因此,终端设备可以根据待传输数据的数据量去选择合适的目标PO组来传输该待传输数据,相比任两个RO对应的两个PO组中用于承载数据的比特位的数量均相同的方案,本公开中当需传输较小的数据时,可以采用资源数量较少的PO组,如此,可以减缓资源浪费的问题,当需传输较大的数据时,可以采用资源数量较多的PO组,如此,当待传输数据的数据量较大时,也可以在inactive态下传输。可以看出,本公开实施例中为终端设备在inactive态下进行数据传输提供了更多的灵活性,且也可以支持终端设备各种大小的数据块在inactive态下进行传输,从而可以满足终端设备不同的业务需求,且本公开实施例也可以提升网络资源利用效率。
本公开实施例提供的数据传输方法,网络设备可以实现在随机接入过程中支持多种传输块同时在非连接状态,终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为网络设备随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持终端设备多种数据传输量(从几十比特到上千比特),满足终端不同业务需求。
可选地,在上述实施例的基础上,在确定目标RO、目标前导序列和目标PO之前,还可以包括如下步骤:
接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;根据所述资源配置信息生成所述映射关系。
具体地,在一种可能地实施方式中,网络设备可以配置上行发送资源,上行发送资源包括物理随机接入信道(Physical Random Access Channel,PRACH)资源和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源。所述资源配置信息可以包括随机接入信的道时频资源(RACH Occasion,RO)、前导序列和物理上行共享信道的时频资源(PUSCH Occasion,PO),以及RO、前导序列和PO组之间的预设的映射规则。
网络设备发送所述资源配置信息,终端设备接收资源配置信息。终端设备根据预设的映射规则生成所述映射关系。可以理解的是,在一种可能地实 施方式中,根据同一个预设的映射规则,网络设备也可以基于资源配置信息生成相同的映射关系。
在一种可能地实施方式中,网络设备可以配置上行发送资源,上行发送资源包括PRACH资源和PUSCH资源。一种可能地实施方式中,网络设备可以配置多个PUSCH物理层的资源块,比如可以通过RRC信令配置。本公开实施例中可以定义一个资源块(该资源块可以是指PUSCH物理层的资源块)的大小,比如可以定义一个资源块包括若干个单位资源块,其中,一个单位资源块是指该单位资源块在频域上占用1个子载波,在时域上占用1个时域符号。
在一种可能地实施方式中,本公开实施例中定义的一个资源块包括的单位资源块的数量可以和调制与编码策略(Modulation and Coding Scheme,MCS)相关。比如,可以定义在正交相移键控(Quadrature Phase Shift Keying,QPSK)调制与编码策略下,定义一个资源块包括k0个单位资源块,k0为正整数。
在一种可能地实施方式中,可以要求任两个资源块中包括的单位资源块的数量之间的差值的绝对值不大于差值阈值。也就是说,每两个资源块中包括的单位资源块的数量可以不相等,但是偏差不能大于差值阈值。在另一种可能地实施方式中,可以要求任两个资源块中包括的单位资源块的数量之间的差值为零。也就是说,每两个资源块中包括的单位资源块的数量均相等。可以看出,本公开实施例中可以对任两个资源块中包括的单位资源块的数量进行限定,但是对单位资源块的具***置信息可以不做限定,比如其中一个资源块占用的时域符合一共为2个,占用的子载波一共为12个,而另外一个资源块占用的时域符号一共为4个,占用的子载波一共为6个。
基于上述可能地实施方式,本公开实施例中,一种可能地实施方式,一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
相应地,终端设备在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
基于上述可能地实施方式,本公开实施例中,另一种可能地实施方式,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
相应地,终端设备确定目标RO、目标前导序列和目标PO组之后,还包括:
根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
如此,终端设备可以根据待传输数据的数据量去选择合适的目标PO组来传输该待传输数据,相比任两个RO对应的两个PO组中包括的资源块的数量均相同的方案,本公开实施例中当需传输较小的数据时,可以采用包括的资源块数量较少的PO组,如此,可以减缓资源浪费的问题,当需传输较大的数据时,可以采用包括的资源块数量较多的PO组,如此,当待传输数据的数据量较大时,也可以在inactive态下传输。
基于上述可能地实施方式,本公开实施例中,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
基于上述可能地实施方式,本公开实施例中,终端设备在目标RO上传输所述目标前导序列,在目标PO组上传输所述待传输数据之后,还包括:在随机接入响应窗内监听随机接入响应消息MsgB。
在一种可能地实施方式中,本公开实施例中可以为终端设备提供多种MCS。终端设备可以根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS。其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量。在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。如此,终端设备可以根据实际需要传输的数据的数据量的大小,以及信道条件等,选择更加适合的MCS,用于对待传输数据进行编码调制,如此,可以增加方案的灵活性。
图3为本公开另一实施例提供的数据传输方法流程示意图,如图3所示,该方法包括:
步骤300、确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
在一种可能地实施方式中,网络设备可以配置上行发送资源,上PRACH资源和PUSCH资源。所述资源配置信息可以包括RO、前导序列和PO,以及RO、前导序列和PO组之间的预设的映射规则。
步骤301、发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
在一种可能地实施方式中,根据同一个预设的映射规则,网络设备和终端设备可以基于资源配置信息生成相同的映射关系。
本公开实施例提供的数据传输方法,网络设备可以实现在随机接入过程中支持多种传输块同时在非连接状态,终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为网络设备随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持终端设备多种数据传输量(从几十比特到上千比特),满足终端不同业务需求。
基于上述可能地实施方式,本公开实施例中,网络设备发送资源配置信息后,还包括:
网络设备接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
所述随机接入请求MsgA用于请求随机接入。所述随机接入请求MsgA中包括目标前导序列和待传输数据。所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。网络设备可以根据目标RO和目标前导序列关联的目标PO组中的资源块的位置,进行PUSCH的解码操作,进而获取终端设备传输的待传输数据。
在一种可能地实施方式中,网络设备可以在接收到来自终端设备的MsgA信号之后,可以通过结合对信号进行编码调制的MCS盲解PO组中的资源块的信号,从而得到具体的PUSCH的资源块上所携带的信息比特。
基于上述可能地实施方式,本公开实施例中,网络设备接收随机接入请求MsgA之后,还包括:发送随机接入响应消息MsgB。终端设备在随机接入响应窗内监听随机接入响应消息MsgB。随后,若随机接入响应消息为随机接入成功响应,则由于终端设备已经传输了待传输数据,因此终端设备可以在接收到随机接入响应MsgB之后,仍然维持在inactive态。在另一种可能地实施方式中,若终端设备还有其他需求,比如还需要传输百兆或千兆基本的数据,则终端设备也可以在接收到该随机接入响应MsgB之后进入active态。
在一种可能的实施方式中,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
在另一种可能的实施方式中,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
进一步地,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
在一种可能的实施方式中,映射规则中包括有每个PO组包括的资源块的数量的规则,也可以说根据映射规则,可以确定出每个RO和前导序列对应的PO组,以及该PO组中包括的资源块的数量。下面通过几个示例进行介 绍。
本公开实施例中为了后续内容介绍方便,引入一个定义“聚合因子”,聚合因子的值为一个数值,一个PO组对应的聚合因子的值用于指示该PO组包括的资源块的数量。比如一个PO组对应的聚合因子的值为1,则表示该PO组中仅包括一个资源块。再比如一个PO组对应的聚合因子的值为2,则表示该PO组中仅包括2个资源块。比如一个PO组对应的聚合因子的值为4,则表示该PO组中仅包括4个资源块。比如一个PO组对应的聚合因子的值为8,则表示该PO组中仅包括8个资源块。
为了更清楚的介绍本公开实施例,下述示例中以以下配置信息为例进行介绍:网络设备配置的前导序列(也可以写为Preamble index)的总数量为2,分别为Preamble index0和Preamble index1。网络设备配置的解调参考信号(Demodulation Reference Signal,DMRS)指示(也可写为DMRS index)的数量为1,为DMRS index 0。本领域技术人员可知,该配置信息仅仅是一种示例,实际应用中,也可以配置更多的Preamble index和更多的DMRS index,本公开实施例中不做限制。
示例一,每个PUSCH时隙对应一个聚合因子。该示例中每个PUSCH时隙中的所有PO组中的每个PO组均对应该PUSCH时隙对应的聚合因子。
在示例一中,所述预设的映射规则满足以下条件:T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同。所述T1为大于1的正整数,所述T0为大于1的正整数。
为了更清楚的介绍该示例一,图4示例性示出了一种可能的聚合因子和PUSCH时隙的对应关系示意图,如图4所示,一个PRACH时隙可以与一个PUSCH时隙对应。可以设置一个聚合因子循环周期,该聚合因子循环周期内包括4个聚合因子,依次为1、2、4和8。该一个聚合因子循环周期内包括的4个聚合因子即为上述T0个数值。在一种可能地映射规则中规定每个PUSCH时隙对应一个聚合因子,则可以依据PUSCH时隙的排序,依序循环 将聚合因子循环周期中的每个聚合因子对应至PUSCH时隙。如图4所示,PUSCH时隙m对应的聚合因子为1,则PUSHC时隙m中的每个PO组中均包括1个资源块。PUSCH时隙m+1对应的聚合因子为2,则PUSHC时隙m+1中的每个PO组中均包括2个资源块。PUSCH时隙m+2对应的聚合因子为4,则PUSHC时隙m+2中的每个PO组中均包括4个资源块。PUSCH时隙m+3对应的聚合因子为8,则PUSHC时隙m+3中的每个PO组中均包括8个资源块。
在示例一中,一种可能地实施方式中,一个RO和前导序列所关联的PO组中的资源可以来自于同一个PUSCH时隙。也可以说,所述第一RO包括的所有资源块属于同一个PUSCH时隙中的资源块;所述第一PO组包括的所有资源块属于同一个PUSCH时隙中的资源块。
图5示例性示出了一种RO和PO的对应关系示意图,如图5所示,以图5中的PRACH时隙n+1和PUSCH时隙m+1为例进行说明。如图5所示,PRACH时隙n+1中包括三个资源块,分别为SSB0 RO#0,SSB1 RO#1,SSB2 RO#2。PUSCH时隙m+1的聚合因子为2,则说明PUSCH时隙m+1中的每个PO组中均包括2个资源块。
在一种可能地实施方式中,可以通过下述公式(1)计算PUSCH时隙中包括的PO组的总数量:
T PUSCH=floor(N PO*N DMRStotal/N Aggregation)……公式(1)
在公式(1)中,T PUSCH表示PUSCH时隙中包括的PO组的总数量;N PO表示一个PUSCH时隙中包括的PO的总数量,N DMRStotal表示网络设备配置的DMRS index的总数量;N Aggregation表示聚合因子的值。
可以通过下述公式(2)计算PRACH时隙中包括的资源块的总数量:
T PRACH=N RO*N preamble……公式(2)
在公式(2)中,T PRACH表示PRACH时隙中包括的资源块的总数量;N RO表示一个PRACH时隙中包括的RO的总数量,N preamble表示网络设备配置的Preamble index的总数量。
可以通过公式(3)计算PRACH时隙中包括的资源块与PUSCH时隙中包括的PO组的对应关系:
N ratio=ceil(T PRACH/T PUSCH)……公式(3)
在公式(3)中,T PUSCH表示PUSCH时隙中包括的PO组的总数量;T PRACH表示PRACH时隙中包括的资源块的总数量;N ratio表示PRACH时隙中包括的资源块与PUSCH时隙中包括的PO组的对应关系。
若在图5的示例中,网络设备配置的Preamble index的总数量为2。配置的DMRS index的数量为1。且从图5中可以看出,PUSCH时隙m+1中包括的PO的总数量为6,聚合因子的值为2,则根据上述公式(1)可以得到T PUSCH=6*1/2=3。根据上述公式(2)可以得到T PRACH=3*2=6。基于这两个值并结合上述公式(3)可以计算出N ratio=2。也就是说,PRACH时隙中的两个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组或者对应一个PO组+PO组中的DMRS Index。该示例中的对应关系可以通过下述表1来展示。下述表1示例性示出了一种可能RO、前导序列和PO之间的对应关系的示意表,如表1所示,可以将PRACH时隙中的每个资源块进行排序,一个PRACH时隙中的资源块可以由两个参数来定义,即RO和前导序列。针对PRACH时隙中的资源块,可以依据RO的预设顺序进行排序,且针对每个RO对应的多个资源块,可以依据网络设备配置的多个前导序列的预设顺序对该多个资源块进行排序。
如表1所示,可以将PUSCH时隙中的每个资源块进行排序,一个PUSCH时隙中的资源块可以由两个参数来定义,即PO和DMRS index。针对PUSCH时隙中的资源块,可以依据PO的预设顺序进行排序,且针对每个PO对应的多个资源块,可依据网络设备配置的DMRS index的预设顺序对多个资源块进行排序。之后依据预设的PO组的划分规则,将PUSCH时隙中的资源块划分为不同的PO组。之后依据上述公式(3)确定出的数值2,将PRACH时隙中的两个资源块对应到一个PO组上,也就是说,依据PRACH时隙中资源块的排序,以及PUSCH时隙中的PO组的排序,依序建立每两个PRACH时 隙中的资源块与PUSCH时隙中的一个PO组的对应关系。
在表1中,以表1中的第二行为例进行介绍,如表1所示,PRACH的资源块SSB 0 RO#0和前导序列Preamble index0关联PUSCH时隙中的PO组#1,且PO组#1中包括的资源块为:PO#0,DMRS index0;以及PO#1,DMRS index0对应的资源块。表1中其它内容与之类似,不再阐述。
表1
Figure PCTCN2021100337-appb-000001
图6示例性示出了另一种RO和PO的对应关系示意图,在图6的示例中,网络设备配置的Preamble index的总数量为2。配置的DMRS index的数量为3。且从图6中可以看出,PUSCH时隙m+1中包括的PO的总数量为6,聚合因子的值为2,则根据上述公式(1)可以得到T PUSCH=6*3/2=9。根据上述公式(2)可以得到T PRACH=3*2=6。基于这两个值并结合上述公式(3)可以计算出N ratio=1。也就是说,PRACH时隙中的1个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组+PO组中的DMRS Index。该示例中的对应关系可以通过下述表2来展示。
表2
Figure PCTCN2021100337-appb-000002
Figure PCTCN2021100337-appb-000003
如表2所示,可以将PUSCH时隙中的每个资源块进行排序,一个PUSCH时隙中的资源块可以由两个参数来定义,即PO和DMRS index。针对PUSCH时隙中的资源块,可以依据PO的预设顺序进行排序,且针对每个PO对应的多个资源块,可依据网络设备配置的DMRS index的预设顺序对多个资源块进行排序。之后依据预设的PO组的划分规则,将PUSCH时隙中的资源块划分为不同的PO组。
因为PUSCH的资源块(PUSCH时隙中的一个资源块由PO和DMRS共同确定)。根据图6所示,尽管N ratio=1,但是因为PUSCH资源块数量要多于PRACH资源块的数量,因此PUSCH资源会有剩余。具体的一种可能RO、前导序列和PO和DMRS之间的对应关系的示意表2所示。表2所示,因为每个PO组中的DMRS资源是3个,因此映射结果显示只有两个PO组(PO组#1和PO组#2)在映射中被使用。图7示例性示出了又一种RO和PO的对应关系示意图,在图7的示例中,网络设备配置的Preamble index的总数量 为2。配置的DMRS index资源组合数量为9(因为每个PO组包含了2个PO资源块,每个资源块上配置3个DMRS index,两个资源块分别配置一个DMRS index就组成一个新的DMRS index组合资源,具体见表3)。且从图7中可以看出,PUSCH时隙m+1中包括的PO的总数量为6,聚合因子的值为2,则根据上述公式(1)可以得到T PUSCH=6*9/2=27。根据上述公式(2)可以得到T PRACH=3*2=6。基于这两个值并结合上述公式(3)可以计算出N ratio=1。也就是说,PRACH时隙中的1个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组+PO组中的DMRS Index。该示例中的对应关系可以通过下述表4来展示。根据表4,所有的PRACH资源对应了PO组#1内的资源。
表3
Figure PCTCN2021100337-appb-000004
Figure PCTCN2021100337-appb-000005
表4
Figure PCTCN2021100337-appb-000006
示例二,每个PUSCH时隙对应一个聚合因子循环周期内的所有聚合因子。举个例子,若一个聚合因子循环周期包括的所有聚合因子包括1和2。 则,该示例中每个PUSCH时隙中的所有PO组中存在一个PO组包括1个资源块,还存一个PO组包括2个资源块。
在该示例中,一种可能地实施方式中,在一个PUSCH时隙中的物理层资源块的总数量(也可以说是一个PUSCH时隙中的PO的总数量)不小于该时隙对应的所有聚合因子中的最大值,举个例子,若一个PUSCH时隙对应的聚合因子包括1和2,则该PUSCH时隙对应的聚合因子的最大值为2,则,可以要求该PUSCH时隙的物理层资源块的总数量不小于2。如此,可以实现该PUSCH时隙中的所有PO组对应的所有聚合因子包括1和2。在一种可能地实施方式中,可以依据PUSCH时隙对应的所有聚合因子,对PUSCH时隙中的物理层资源块进行划分,得到多个PO组,一个RO可以对应一个或多个PO组。
本公开实施例中一个RO对应的多组PO可以是来自不同的PUSCH时隙,也可以是来自于同一个PUSCH时隙,本公开实施例中不做限制,在该示例二中,以一个RO对应的PO组所包括的PO均对应来自同一个PUSCH时隙为例进行示例。
在示例二中,所述预设的映射规则满足以下条件:所述预设的映射规则满足以下条件:针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同。其中,所述T1为正整数,所述T2为大于1的正整数,所述T0为大于1的正整数。
若一个聚合因子循环周期包括的所有聚合因子包括1和2。表5示例性示出了一种可能地RO、前导序列和PO组的对应关系示意表。如表5所示,预设的规则规定了PO组的划分方法,如表5中所示,PO组#0包括PO#0,DMRS index0对应的资源块,PO组#1包括PO#0,DMRS index0,以及PO#1,DMRS index0对应的资源块。可以看出,PO组#0包括1个资源块,PO组#1包括2个资源块。
在一种可能地实施方式中,可以通过下述公式(4)计算PUSCH时隙中 包括的PO组的总数量:
T PUSCH=floor(N PO*N DMRStotal/N Aggregation max)……公式(4)
在公式(4)中,T PUSCH表示PUSCH时隙中包括的PO组的总数量;N PO表示一个PUSCH时隙中包括的PO的总数量,N DMRStotal表示网络设备配置的DMRS index的总数量;N Aggregation max表示PUSCH时隙中包括的所有聚合因子的最大值。
可以通过公式(5)计算PRACH时隙中包括的资源块与PUSCH时隙中包括的PO组的对应关系:
N ratio=ceil(N RO/T PUSCH)……公式(5)
在公式(5)中,N RO表示PRACH时隙中包括的RO的总数量;T PUSCH表示PUSCH时隙中包括的PO组的总数量;N ratio表示PRACH时隙中包括的资源块与PUSCH时隙中包括的PO组的对应关系。
根据上述公式(4)可以得到T PUSCH=6*1/2=3.根据上述公式(5)可以计算出N ratio=ceil(N RO/T PUSCH)=ceil(3/3)=1。就是说,PRACH时隙中的一个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组。该示例中的对应关系可以通过下述表5来展示。表5中一个PUSCH中的资源块如何划分PO组,可以是预先配置的划分规则。图8示例性示出了表5中所示的RO和PO组的对应关系示意图。
表5
Figure PCTCN2021100337-appb-000007
Figure PCTCN2021100337-appb-000008
示例三,每个PUSCH时隙对应一个聚合因子循环周期内的所有聚合因子。举个例子,若一个聚合因子循环周期包括的所有聚合因子包括1和2。则,该示例中每个PUSCH时隙中的所有PO组中存在至少一个PO组包括1个资源块,还存在至少一个PO组包括2个资源块。
从上述表5可以看出,PO组#0和PO组#1之间存在一个重叠的资源块,即PO#0,DMRS index0对应的资源块。与示例二之间有区别的是:在示例三中,在一种可能地实施方式中,针对一个PUSCH时隙中的两个PO组,可选地,该两个PO组包括的资源块不存在重叠的资源块,从而可以减少PO组之间的干扰问题。
在示例三中,若一个聚合因子循环周期包括的所有聚合因子包括1和2。表6示例性示出了一种可能地RO、前导序列和PO组的对应关系示意表。如表6所示,预设的规则规定了PO组的划分方法,如表6中所示,PO组#0包括PO#0,DMRS index0对应的资源块,PO组#1包括PO#1,DMRS index0,以及PO#2,DMRS index0对应的资源块。可以看出,PO组#0包括1个资源块,PO组#1包括2个资源块。且PO组#0和PO组#1之间的资源块没有重叠。
在一种可能地实施方式中,可以通过下述公式(6)计算PUSCH时隙中包括的PO组的总数量:
T PUSCH=floor(N PO*N DMRStotal*T Aggregation Total/∑j aggregation value)……公式(6)
在公式(6)中,T PUSCH表示PUSCH时隙中包括的PO组的总数量;N PO表示一个PUSCH时隙中包括的PO的总数量,N DMRStotal表示网络设备配置的DMRS index的总数量;T Aggregation Total表示PUSCH时隙中包括的所有聚合因子的总数量,∑j aggregation value表示PUSCH时隙中包括的所有聚合因子的值的总和。
根据上述公式(6)以及表6中的参数可以得到T PUSCH=9*1*2/3=6.根据上述公式(3)可以计算出N ratio=ceil(N RO/T PUSCH)=ceil(6/6)=1。就是说,PRACH时隙中的一个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组。该示例中的对应关系可以通过下述表6来展示。表6中一个PUSCH中的资源块如何划分PO组,可以是预先配置的划分规则。图9示例性示出了表6中所示的RO和PO组的对应关系示意图。
表6
Figure PCTCN2021100337-appb-000009
Figure PCTCN2021100337-appb-000010
示例四,每个PUSCH时隙对应一个聚合因子循环周期内的所有聚合因子。举个例子,若一个聚合因子循环周期包括的所有聚合因子包括1和2。则,该示例中每个PUSCH时隙中的所有PO组中存在至少一个PO组包括1个资源块,还存在至少一个PO组包括2个资源块。
示例一、示例二和示例三中的示例,均是以一个PRACH时隙对应一个PUSCH时隙为例进行说明的。一个PRACH时隙也可以对应多个PUSCH时隙。在一种可能地实施方式中,所述第一RO和所述第二RO中的资源块属于同一个PUSCH时隙。所述第一PO组中包括的资源块对应的PUSCH时隙与所述第二PO组中包括的资源块对应的PUSCH时隙不同。具体可以通过该示例四来进行说明。
在示例四中,若一个聚合因子循环周期包括的所有聚合因子包括1和2。表7示例性示出了一种可能地RO、前导序列和PO组的对应关系示意表。如表7所示,预设的规则规定了PO组的划分方法,如表7中所示,PO组#0包括的资源块为PUSCH时隙j中的资源块,具体来说,PO组#0包括PO组#0包括PUSCH时隙j中的PO#0,DMRS index0对应的资源块,PO组#1包括PUSCH时隙j中的PO#1,DMRS index0,以及PUSCH时隙j中的PO#2,DMRS index0对应的资源块。PO组#2包括的资源块为PUSCH时隙j+1对应的资源块,具体来说,PO组#2包括PUSCH时隙j+1中的PO#3,DMRS index0对应的资源块,PO组#3包括PUSCH时隙j+1中的PO#4,DMRS index0,以及PUSCH时隙j+1中的PO#5,DMRS index0对应的资源块。可以看出,PO组#0包括1个资源块,PO组#1包括2个资源块。且PO组#0和PO组#1同属于PUSCH时隙j。PO组#2包括1个资源块,PO组#3包括2个资源块。且PO组#2和PO组#3同属于PUSCH时隙j+1。而SSB0 RO#0和SSB1 RO#1 均属于PRACH时隙i,且SSB0 RO#0与Preamble index0关联PO组#0,SSB0 RO#0与Preamble index1关联PO组#1,SSB1 RO#1与Preamble index0关联PO组#2,SSB1 RO#1与Preamble index1关联PO组#3。
示例四与示例三不同的是,PO组#0和PO组#1位于PUSCH时隙j,PO组#2和PO组#3位于PUSCH时隙j+1,PO组#4和PO组#5位于PUSCH时隙j+2。其余内容可以参见示例三中的论述。且该示例四中的对应关系可以通过下述表7来展示。表7中一个PUSCH中的资源块如何划分PO组,可以是预先配置的划分规则。图10示例性示出了表7中所示的RO和PO组的对应关系示意图。
表7
Figure PCTCN2021100337-appb-000011
Figure PCTCN2021100337-appb-000012
示例五,在一种可能地应用场景中,若PUSCH时隙中包括的PO数量较少,这种情况下,在划分PO组时,相邻两个PO组中的资源块都可以有重叠,且同一个PO也可以对应划分为多个PO组。下面通过示例五进行举例说明。
在该示例中,一种可能地实施方式中,在一个PUSCH时隙中的物理层资源块的总数量(也可以说是一个PUSCH时隙中的PO的总数量)不小于该时隙对应的所有聚合因子中的最大值,举个例子,若一个PUSCH时隙对应的聚合因子包括1和2,则该PUSCH时隙对应的聚合因子的最大值为2,则,可以要求该PUSCH时隙的物理层资源块的总数量不小于2。如此,可以实现该PUSCH时隙中的所有PO组对应的所有聚合因子包括1和2。
若一个聚合因子循环周期包括的所有聚合因子包括1和2。表8示例性示出了一种可能地RO、前导序列和PO组的对应关系示意表。如表8所示,预设的规则规定了PO组的划分方法,如表8中所示,PO组#0包括PO#0,DMRS index0对应的资源块,PO组#1包括PO#0,DMRS index0,以及PO#1,DMRS index0对应的资源块。可以看出,PO组#0包括1个资源块,PO组#1包括2个资源块。
在一种可能地实施方式中,可以通过下述公式(7)计算PUSCH时隙中包括的PO组的总数量:
T PUSCH=floor(N PO*N DMRStotal*N Aggregation max)……公式(7)
在公式(7)中,T PUSCH表示PUSCH时隙中包括的PO组的总数量;N PO表示一个PUSCH时隙中包括的PO的总数量,N DMRStotal表示网络设备配置的DMRS index的总数量;N Aggregation max表示PUSCH时隙中包括的所有聚合因子 的最大值。
根据上述公式(7)可以得到T PUSCH=3*1*2=6。根据上述公式(3)可以计算出N ratio=ceil(T PRACH/T PUSCH)=ceil(6/6)=1。就是说,PRACH时隙中的一个资源块(PRACH时隙中的一个资源块由RO和前导序列共同确定)对应PUSCH中的一个PO组。该示例中的对应关系可以通过下述表8来展示。表8中一个PUSCH中的资源块如何划分PO组,可以是预先配置的划分规则,比如可以基于PO#0、PO#1和PO#2的排序,依序循环划分PO组,具体参见表8中的内容。图11示例性示出了表8中所示的RO和PO组的对应关系示意图。
表8
Figure PCTCN2021100337-appb-000013
通过示例一到示例五的方案,可以看出,网络设备可以配置多个PO组,且两个PO组中包括的物理层资源块的数量可以是不同的,从而可以使终端设备根据待传输数据的大小,选择适合的一组:RO、前导序列和PO组来发送MsgA。另一方面,若待传输数据的数据量较大,一种可能地实施方式是,终端设备未找到能够承载该待传输数据的PO组,如此,终端设备可以通过随机接入过程进入active态,进而在active态下传输该待传输数据。
另一种可能地实施方式中,当待传输数据的数据量较大的话,终端设备可以将待传输数据进行分割,比如可以将待传输数据分为两部分,如此,可以减少一次需传输的数据的数据量,从而可以在inactive态下传输一部分,而其余的部分可以在active态下传输,也可以在inactive态下传输,本公开实施例不做限制。
图12为本公开一实施例提供的数据传输装置结构示意图,如图12所示,该数据传输装置可以为终端设备,其包括第一确定模块1201和处理模块1202,其中:
第一确定模块1201用于根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;处理模块1202用于在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述装置还包括:第一接收模块1203,用于接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;生成模块1204,用于根据所述资源配置信息生成所述映射关系。
可选地,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述处理模块1202,用于:从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述第一确定模块1201,还用于:根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
所述处理模块1202,用于:从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,所述映射规则满足以下条件:T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;或者;针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
可选地,所述装置还包括:
监听模块1205,用于在随机接入响应窗内监听随机接入响应消息MsgB。
可选地,所述处理模块1202,用于:根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
图13为本公开另一实施例提供的数据传输装置结构示意图,如图13所示,该数据传输装置可以为网络设备,其包括第二确定模块1301和发送模块1302,其中:
第二确定模块1301用于确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;发送模块1302用于发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
可选地,所述装置还包括:
第二接收模块1303,用于接收随机接入请求MsgA,所述随机接入请求 MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
可选地,所述发送模块1302还用于:发送随机接入响应消息MsgB。
可选地,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,所述预设的映射规则满足以下条件:T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;或者;针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,所述映射关系满足以下内容中的一项:一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
本公开实施例中,网络设备可以实现在随机接入过程中支持多种传输块 同时在非连接状态,终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为网络设备随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持终端设备多种数据传输量(从几十比特到上千比特),满足终端不同业务需求。
图14为本公开一实施例提供的电子设备的结构示意图,所述电子设备可以为移动终端,如图14所示,该移动终端1400可以包括:至少一个处理器1401、存储器1402、至少一个网络接口1404和其他的用户接口1403。移动终端1400中的各个组件通过总线***1405耦合在一起。可理解,总线***1405用于实现这些组件之间的连接通信。总线***1405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图14中将各种总线都标为总线***1405。
其中,用户接口1403可以包括显示器、键盘或者点击设备,例如鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1402可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开各实施例所描述的***和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1402存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作***14021和应用程序14022。
其中,操作***14021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序14022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序14022中。
在本公开实施例中,通过调用存储器1402存储的计算机程序或指令,具体的,可以是应用程序14022中存储的计算机程序或指令,处理器1401用于:
根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
上述本公开实施例揭示的方法可以应用于处理器1401中,或者由处理器1401实现。处理器1401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1401可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1402,处理器1401读取存储器1402中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,所述确定目标RO、目标前导序列和目标PO之前,还包括:
接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
根据所述资源配置信息生成所述映射关系。
可选地,作为另一个实施例,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,作为另一个实施例,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
所述确定目标RO、目标前导序列和目标PO组之后,还包括:
根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
可选地,作为另一个实施例,所述映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,作为另一个实施例,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
可选地,作为另一个实施例,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组上传输所述待传输数据之后,还包括:
在随机接入响应窗内监听随机接入响应消息MsgB。
可选地,作为另一个实施例,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
本公开实施例提供的移动终端能够实现前述实施例中移动终端实现的各个过程,为避免重复,此处不再赘述。
图15为本公开另一实施例提供的移动终端的结构示意图,图15中的移动终端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图15所示,该移动终端包括射频(Radio Frequency,RF)电路1510、存储器1520、输入单元1530、显示单元1540、处理器1560、音频电路1570、WiFi(Wireless Fidelity)模块1580和电源1590。本领域技术人员可以理解,图15中示出的手机结构并不构成对手机的限定,可以包括比 图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元1530可用于接收用户输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元1530可以包括触控面板15301。触控面板15301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板15301上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板15301可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1560,并能接收处理器1560发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板15301。除了触控面板15301,输入单元1530还可以包括其他输入设备15302,其他输入设备15302可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备15302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元1540可用于显示由用户输入的信息或提供给用户的信息以及移动终端的各种菜单界面。显示单元1540可包括显示面板15401。其中显示面板15401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(OrganicLight-Emitting Diode,OLED)等形式来配置显示面板15401。
应注意,触控面板15301可以覆盖显示面板15401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1560以确定触摸事件的类型,随后处理器1560根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界 面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路1510可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器1560处理;另外,将设计上行的数据发送给网络侧。通常,RF电路1510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1510还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(Global System of Mobilecommunication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1520用于存储软件程序以及模块,处理器1560通过运行存储在存储器1520的软件程序以及模块,从而执行移动终端的各种功能应用以及数据处理。存储器1520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器1560是移动终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器15201内的软件程序和/或模块,以及调用存储在第二存储器15202内的数据,执行移动终端的各种 功能和处理数据,从而对移动终端进行整体监控。可选的,处理器1560可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器15201内的软件程序和/或模块和/或该第二存储器15202内的数据,处理器1560用于:
根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
本公开实施例提供的移动终端能够实现前述实施例中移动终端实现的各个过程,为避免重复,此处不再赘述。
图16为本公开另一实施例提供的电子设备的结构示意图,该电子设备可以为基站,如图16所示,该基站1600可以包括至少一个处理器1601、存储器1602、至少一个其他的用户接口1603,以及收发机1604。基站1600中的各个组件通过总线***1605耦合在一起。可理解,总线***1605用于实现这些组件之间的连接通信。总线***1605除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图16中将各种总线都标为总线***1605,总线***可以包括任意数量的互联的总线和桥,具体由处理器1601代表的一个或多个处理器和存储器1602代表的存储器的各种电路链接在一起。总线***还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开实施例不再对其进行进一步描述。总线接口提供接口。收发机1604可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他 装置通信的单元。针对不同的用户设备,用户接口1603还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本公开实施例中的存储器1602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开各实施例所描述的***和方法的存储器1602旨在包括但不限于这些和任意其它适合类型的存储器。
处理器1601负责管理总线***和通常的处理,存储器1602可以存储处理器1601在执行操作时所使用的计算机程序或指令,具体地,处理器1601可以用于:
确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前 导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
上述本公开实施例揭示的方法可以应用于处理器1601中,或者由处理器1601实现。处理器1601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1601可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1602,处理器1601读取存储器1602中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,所述发送所述资源配置信息之后,还包括:
接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入, 所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
可选地,作为另一个实施例,所述接收随机接入请求MsgA之后,还包括:
发送随机接入响应消息MsgB。
可选地,作为另一个实施例,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,作为另一个实施例,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
可选地,作为另一个实施例,所述预设的映射规则满足以下条件:
T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
或者;
针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
可选地,作为另一个实施例,所述映射关系满足以下内容中的一项:
一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
本公开实施例提供的基站能够实现前述实施例中网络设备实现的各个过程,为避免重复,此处不再赘述。
本公开提供的实施例,基站可以实现在随机接入过程中支持多种传输块同时在非连接状态,移动终端可以根据自身数据业务大小以及信道条件灵活的选择MSGA中上行发送资源;为基站随机接入资源分配提供了更多的灵活性,同时提升网络资源利用效率同时在非连接态,支持移动终端设备多种数据传输量(从几十比特到上千比特),满足终端不同业务需求。
上述主要从电子设备的角度对本公开实施例提供的方案进行了介绍。可以理解的是,本公开实施例提供的电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
本公开实施例可以根据上述方法示例对电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,本公开实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本公开各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或 者光盘等各种可以存储程序代码的介质。
另一方面,本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:
根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
另一方面,本公开实施例还提供另一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:
确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
发送所述资源配置信息;
其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术 人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (47)

  1. 一种数据传输方法,其特征在于,包括:
    根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
    其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述确定目标RO、目标前导序列和目标PO之前,还包括:
    接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    根据所述资源配置信息生成所述映射关系。
  3. 根据权利要求2所述的数据传输方法,其特征在于,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  4. 根据权利要求1所述的数据传输方法,其特征在于,所述映射关系包 括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述确定目标RO、目标前导序列和目标PO组之后,还包括:
    根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  5. 根据权利要求3或4所述的数据传输方法,其特征在于,所述映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  6. 根据权利要求1或2所述的数据传输方法,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关 联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  7. 根据权利要求1或2所述的数据传输方法,其特征在于,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组上传输所述待传输数据之后,还包括:
    在随机接入响应窗内监听随机接入响应消息MsgB。
  8. 根据权利要求1或2所述的数据传输方法,其特征在于,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
  9. 一种数据传输方法,其特征在于,包括:
    确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    发送所述资源配置信息;
    其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前 导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  10. 根据权利要求9所述的数据传输方法,其特征在于,所述发送所述资源配置信息之后,还包括:
    接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
  11. 根据权利要求10所述的数据传输方法,其特征在于,所述接收随机接入请求MsgA之后,还包括:
    发送随机接入响应消息MsgB。
  12. 根据权利要求10或11所述的数据传输方法,其特征在于,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  13. 根据权利要求10或11所述的数据传输方法,其特征在于,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  14. 根据权利要求9所述的数据传输方法,其特征在于,所述预设的映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  15. 根据权利要求9所述的数据传输方法,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  16. 一种数据传输装置,其特征在于,包括:
    第一确定模块,用于根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
    处理模块,用于在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
    其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  17. 根据权利要求16所述的数据传输装置,其特征在于,所述装置还包括:
    第一接收模块,用于接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    生成模块,用于根据所述资源配置信息生成所述映射关系。
  18. 根据权利要求17所述的数据传输装置,其特征在于,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述处理模块,用于:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  19. 根据权利要求16所述的数据传输装置,其特征在于,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述第一确定模块,还用于:
    根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
    所述处理模块,用于:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  20. 根据权利要求18或19所述的数据传输装置,其特征在于,所述映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所 述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  21. 根据权利要求16或17所述的数据传输装置,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  22. 根据权利要求16或17所述的数据传输装置,其特征在于,所述装置还包括:
    监听模块,用于在随机接入响应窗内监听随机接入响应消息MsgB。
  23. 根据权利要求16或17所述的数据传输装置,其特征在于,所述处理模块,用于:
    根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
  24. 一种数据传输装置,其特征在于,包括:
    第二确定模块,用于确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    发送模块,用于发送所述资源配置信息;
    其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  25. 根据权利要求24所述的数据传输装置,其特征在于,所述装置还包括:
    第二接收模块,用于接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
  26. 根据权利要求25所述的数据传输装置,其特征在于,所述发送模块还用于:
    发送随机接入响应消息MsgB。
  27. 根据权利要求25或26所述的数据传输装置,其特征在于,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  28. 根据权利要求25或26所述的数据传输装置,其特征在于,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO 组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  29. 根据权利要求24所述的数据传输装置,其特征在于,所述预设的映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  30. 根据权利要求24所述的数据传输装置,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  31. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如下 步骤:
    根据待传输数据的数据量,以及物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO组之间的映射关系,确定目标RO、目标前导序列和目标PO组;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据;所述目标PO组中用于承载数据的比特的数量满足所述待传输数据的数据量;
    其中,所述映射关系中至少包括第一RO和第二RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  32. 根据权利要求31所述的电子设备,其特征在于,所述确定目标RO、目标前导序列和目标PO之前,还包括:
    接收资源配置信息;所述资源配置信息包括RO、前导序列、PO,以及预设的映射规则,所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    根据所述资源配置信息生成所述映射关系。
  33. 根据权利要求32所述的电子设备,其特征在于,所述一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  34. 根据权利要求31所述的电子设备,其特征在于,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个 或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO;
    所述确定目标RO、目标前导序列和目标PO组之后,还包括:
    根据RO、前导序列、PO和DMRS序列的映射关系,确定所述目标RO和所述目标前导序列对应的所述目标PO和目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    从预设的一个或多个解调参考信号DMRS序列中选择目标DMRS序列;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的所述目标PO和所述目标DMRS序列对应的资源块上传输所述待传输数据。
  35. 根据权利要求33或34所述的电子设备,其特征在于,所述映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  36. 根据权利要求31或32所述的电子设备,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  37. 根据权利要求31或32所述的电子设备,其特征在于,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组上传输所述待传输数据之后,还包括:
    在随机接入响应窗内监听随机接入响应消息MsgB。
  38. 根据权利要求31或32所述的电子设备,其特征在于,所述在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输所述待传输数据,包括:
    根据所述待传输数据的数据量,以及所述目标PO组中用于承载数据的比特的数量,从预设的多个编码调制等级MCS中选择目标MCS;其中,所述目标PO组中用于承载数据的比特的数量满足:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据的数据量;
    在所述目标RO上传输所述目标前导序列,在所述目标PO组中的资源块上传输:通过所述目标MCS对所述待传输数据进行编码调制后得到的数据。
  39. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定资源配置信息;所述资源配置信息包括物理随机接入信道PRACH的时频资源RO、前导序列和物理上行共享信道PUSCH的时频资源PO,以及RO、前导序列和PO组之间的预设的映射规则;所述映射规则包括用于指示一个PO组包括的资源块数量的指示信息;
    发送所述资源配置信息;
    其中,所述预设的映射规则对应的映射关系中至少包括第一RO和第二 RO,所述第一RO和第一前导序列关联第一PO组,所述第二RO和第二前导序列关联第二PO组,所述第一PO组中用于承载数据的比特的数量与所述第二PO组中用于承载数据的比特的数量不同。
  40. 根据权利要求39所述的电子设备,其特征在于,所述发送所述资源配置信息之后,还包括:
    接收随机接入请求MsgA,所述随机接入请求MsgA用于请求随机接入,所述随机接入请求MsgA中包括目标前导序列和待传输数据;所述目标前导序列通过目标RO来传输,所述待传输数据通过目标PO组中的资源块来传输;所述目标RO、所述目标前导序列和所述目标PO组之间具有映射关系。
  41. 根据权利要求40所述的电子设备,其特征在于,所述接收随机接入请求MsgA之后,还包括:
    发送随机接入响应消息MsgB。
  42. 根据权利要求40或41所述的电子设备,其特征在于,所述映射关系的一个PO组包括一个或多个PO,一个PO对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  43. 根据权利要求40或41所述的电子设备,其特征在于,所述映射关系包括:RO、前导序列、PO和DMRS序列的映射关系,其中,一个PO组包括一个或多个PO,且一个PO对应一个或多个DMRS序列;
    所述映射关系中的一个PO和一个DMRS序列对应一个资源块;所述第一PO组包括的资源块数量与所述第二PO组包括的资源块的数量不同;所述目标PO组包括一个或多个目标PO。
  44. 根据权利要求39所述的电子设备,其特征在于,所述预设的映射规则满足以下条件:
    T0个数值依据预设的排序,依序循环与T1个PUSCH时隙对应;针对所述T1个PUSCH时隙中的一个PUSCH时隙,所述PUSCH时隙中每个PO组包括的资源块的数量与所述PUSCH时隙对应的数值相同;所述T0为大于1的正整数,所述T1为大于1的正整数;
    或者;
    针对T1个PUSCH时隙中的一个PUSCH时隙中的T2个PO组,所述T0个数值依据预设的排序,依序循环与所述T2个PO组对应;针对所述T2个PO组中的一个PO组,所述PO组包括的资源块的数量与所述PO组对应的数值相同;所述T0为大于1的正整数,所述T1为正整数,所述T2为大于1的正整数。
  45. 根据权利要求39所述的电子设备,其特征在于,所述映射关系满足以下内容中的一项:
    一个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    一个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与一个PUSCH时隙中的资源块之间具有关联关系;
    多个PRACH时隙中的资源块与多个PUSCH时隙中的资源块之间具有关联关系。
  46. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至8任一项所述的数据传输方法的步骤。
  47. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求9至15任一项所述的数据传输方法的步骤。
PCT/CN2021/100337 2020-07-28 2021-06-16 一种数据传输方法、装置及存储介质 WO2022022135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010737097.X 2020-07-28
CN202010737097.XA CN114007264A (zh) 2020-07-28 2020-07-28 一种数据传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022022135A1 true WO2022022135A1 (zh) 2022-02-03

Family

ID=79920663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100337 WO2022022135A1 (zh) 2020-07-28 2021-06-16 一种数据传输方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114007264A (zh)
WO (1) WO2022022135A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536418A (zh) * 2019-03-13 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置、用户设备、基站及存储介质
WO2020076953A1 (en) * 2018-10-09 2020-04-16 Idac Holdings, Inc. Simplified physical random access methods and procedures for nr-u
CN111294937A (zh) * 2019-01-17 2020-06-16 北京展讯高科通信技术有限公司 数据传输方法及装置
CN111328152A (zh) * 2020-02-27 2020-06-23 北京邮电大学 两步随机接入中MsgA的资源配置和传输方法
CN112040559A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种两步随机接入过程中的上行数据传输方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076953A1 (en) * 2018-10-09 2020-04-16 Idac Holdings, Inc. Simplified physical random access methods and procedures for nr-u
CN111294937A (zh) * 2019-01-17 2020-06-16 北京展讯高科通信技术有限公司 数据传输方法及装置
CN110536418A (zh) * 2019-03-13 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置、用户设备、基站及存储介质
CN111328152A (zh) * 2020-02-27 2020-06-23 北京邮电大学 两步随机接入中MsgA的资源配置和传输方法
CN112040559A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种两步随机接入过程中的上行数据传输方法和设备

Also Published As

Publication number Publication date
CN114007264A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2020125433A1 (zh) 一种通信方法及装置
EP3595383B1 (en) Resource mapping method, network device and terminal device
US11799619B2 (en) Method and devices for communication of information regarding a frequency resource unit
US11483111B2 (en) Data transmission method, related apparatus, and system
US10382243B2 (en) OFDM subframe transmission method and device using determined transport block sizes
EP4192082A1 (en) Communication method, apparatus and system
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
WO2022127678A1 (zh) 信息传输方法、接收方法、装置、终端及网络侧设备
WO2022028464A1 (zh) 资源调度方法、装置及设备
US11564216B2 (en) Information transmission method and device
TWI724139B (zh) 基於設備到設備的通訊方法和終端
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
WO2020063546A1 (zh) 一种指示方法、装置及***
CN111278112B (zh) 一种功率余量的上报方法及装置
WO2022022135A1 (zh) 一种数据传输方法、装置及存储介质
WO2020199023A1 (zh) 一种通信方法及设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
US11963218B2 (en) Communications method and communications apparatus
CN112217618B (zh) 信息传输方法及装置
US11050796B2 (en) Interface session discovery within wireless communication networks
CN108811162B (zh) 一种***信息传输方法、终端及基站
WO2021087986A1 (zh) 一种调制和编码方案配置方法及装置
EP4145871A1 (en) Signal sending method and apparatus, signal receiving method and apparatus, and storage medium
WO2022036655A1 (zh) 通信方法、装置和***
WO2022042480A1 (zh) 一种资源传输保障方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850868

Country of ref document: EP

Kind code of ref document: A1