WO2021194299A1 - Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith - Google Patents

Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith Download PDF

Info

Publication number
WO2021194299A1
WO2021194299A1 PCT/KR2021/003768 KR2021003768W WO2021194299A1 WO 2021194299 A1 WO2021194299 A1 WO 2021194299A1 KR 2021003768 W KR2021003768 W KR 2021003768W WO 2021194299 A1 WO2021194299 A1 WO 2021194299A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
silver
electrode composition
sintering
electronic component
Prior art date
Application number
PCT/KR2021/003768
Other languages
French (fr)
Korean (ko)
Inventor
윤성신
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2021194299A1 publication Critical patent/WO2021194299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the present invention relates to an electrode composition, and more particularly, to an electrode composition, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
  • the electronic components range from elements such as capacitors, capacitors, varistors, suppressors, and MLCCs to circuit boards on which the elements are mounted.
  • the electronic components commonly include electrodes for electrically connecting different electronic components or between a power source and an electronic component or for expressing a desired function of the electronic component itself.
  • materials such as Ni, Ag, Cu, Pd, and Ag-Pd alloy have been mainly used for these electrodes, but these materials are not applicable to all kinds of electronic components, and the manufacture of electronic components applied in addition to electrical conductivity
  • materials with properties corresponding to these have been applied as electrode materials for the corresponding electronic components.
  • devices such as capacitors, capacitors, varistors, suppressors, and MLCCs are devices having a plurality of electrodes inside and outside a ceramic body that is a dielectric.
  • the provided electrode structure is different.
  • these devices are generally manufactured by laminating and sintering a plurality of green sheets after forming electrodes in a desired pattern on a ceramic green sheet. Therefore, the electrode material applied to these devices also has an appropriate shrinkage rate according to the sintering temperature of the green sheet, Those having electrical resistance are selected.
  • electrode materials such as Ni and Cu can reduce raw material costs, but when applied to sintered electronic components, sintering is required in a reducing atmosphere, thereby increasing the manufacturing cost.
  • the present invention has been devised in consideration of the above points, and it is possible to lower the raw material cost by not using a rare metal with a high raw material cost such as Pd, and at the same time realize an electrode capable of expressing electrical characteristics at the same or higher level
  • An object of the present invention is to provide an electrode composition that can be used, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
  • the present invention can be sintered at a high temperature, so it can be sintered together with a component material that requires sintering at a high temperature to be implemented as a part, and since sintering under an atmospheric atmosphere is possible, the electrical properties required for sintering can be achieved without investment and maintenance in special manufacturing facilities.
  • Another object is to provide an electrode composition capable of realizing an electrode that can be expressed at the same or higher level, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
  • the present invention provides an electrode composition comprising a silver-nickel powder including a crystalline phase having a peak at 2 ⁇ 38.5 ⁇ 0.1° on an XRD pattern as a conductive component.
  • the electrode composition may be used as an electrode of a sintered electronic component sintered at a temperature of 900° C. or higher.
  • the silver-nickel powder may contain 0.5 to 20 wt% of nickel.
  • the silver-nickel powder may have a BET specific surface area of 1 to 4 m 2 /g and a D50 of the primary particles of 2 ⁇ m or less.
  • the silver-nickel powder may not have a peak at 2 ⁇ 38.2 ⁇ 0.1° on the XRD pattern.
  • the electrode composition may be sintered in an atmospheric atmosphere without an inert gas.
  • the electrode composition may be an electrode composition capable of realizing an electrode having a specific resistance of 4.5 ⁇ cm or less when sintered for 2 hours at a temperature of 1050° C. in an atmospheric atmosphere.
  • the electrode composition may have a thixotropic index (T.I) according to viscosity measured at 1 rpm and 10 rpm of 3.5 or more, and a thixotropic index (T.I) according to viscosity measured at 10 rpm and 100 rpm may be 2.3 or more.
  • T.I thixotropic index
  • TI thixotropic index
  • the present invention also comprises the steps of (1) patterning an electrode by treating the electrode composition according to any one of claims 1 to 6 on a surface, and (2) sintering the patterned electrode.
  • a method for manufacturing an electronic component is provided.
  • the surface of step (1) may be the surface of the unsintered ceramic green sheet or the surface of the sintered ceramic substrate.
  • the unsintered ceramic green sheet may be sintered at a temperature of 900° C. or higher.
  • the step (2) may be performed at a temperature of 800 ⁇ 1050 °C under an atmospheric atmosphere.
  • the present invention provides an electronic component having a plurality of electrodes, wherein some or all of the plurality of electrodes are silver-nickel electrodes formed by sintering the electrode composition according to the present invention.
  • the silver-nickel electrode may have a specific resistance of 4.5 ⁇ cm or less.
  • the electrode composition according to the present invention can be sintered under a general atmospheric atmosphere in the same way as when using an Ag-Pd alloy, which is used a lot as an electrode material, especially as an electrode material for sintered electronic components, and significantly lowers the raw material cost. It is possible to realize an electrode in which the resistivity characteristic of the implemented electrode is equal to or higher than that of the Ag-Pd alloy.
  • sintering is possible in an atmospheric atmosphere, it is possible to reduce a separate equipment investment or equipment operation cost required for atmospheric sintering, thereby significantly reducing manufacturing costs.
  • silver elution is prevented or minimized after sintering the electrode, so that uniform physical properties can be expressed throughout the sintered electrode, and at the same time, the electrode surface quality can be guaranteed.
  • the thickness and width of the electrode can be easily implemented to a desired level, it can be widely applied in realizing electrodes of various electronic components.
  • Example 1 is an XRD pattern measured for the silver-nickel powder used in Example 1 and Comparative Example 1;
  • Example 2 is a SEM photograph of a silver-nickel powder according to Example 1;
  • 4a and 4b are optical micrographs of a sintered electrode sintered for 2 hours at a temperature of 950° C. under an atmospheric atmosphere using the electrode composition according to Example 1, and
  • 5A and 5B are optical micrographs of a sintered electrode sintered at a temperature of 950° C. for 2 hours in an atmospheric atmosphere using the electrode composition according to Comparative Example 1.
  • FIG. 1 is optical micrographs of a sintered electrode sintered at a temperature of 950° C. for 2 hours in an atmospheric atmosphere using the electrode composition according to Comparative Example 1.
  • the electrode composition according to an embodiment of the present invention includes silver-nickel powder as a conductive component, and the silver-nickel powder includes a crystalline phase having a peak at 2 ⁇ 38.5 ⁇ 0.1° on an XRD pattern.
  • the silver and nickel are materials commonly used as electrode materials.
  • silver is widely used as an electrode material by forming an alloy with other metals, an example of which is Ag-Pd alloy.
  • Ag-Pd alloy an example of which is Ag-Pd alloy.
  • silver and nickel it is difficult for one of them to be dissolved in the other, so it is difficult for an alloy composed of these two components to exist. For this reason, when these two components are included as electrode materials, it is common to simply blend them or to powder them into a core-shell structure type coated with silver with nickel.
  • the silver-nickel powder having a core-shell structure has a problem in being commercialized as an electrode material or applied to electronic components because the electrical properties are not better than that of silver alone or a silver-palladium alloy.
  • the present invention solves the above problem by using silver-nickel powder as a conductive component, but the silver-nickel powder includes a crystalline phase having a peak at 2 ⁇ 38.5 ⁇ 0.1° on the XRD pattern, and palladium
  • the silver-nickel powder includes a crystalline phase having a peak at 2 ⁇ 38.5 ⁇ 0.1° on the XRD pattern, and palladium
  • the crystal phase having a peak at 2 ⁇ 38.5 ⁇ 0.1° on the XRD pattern is simply a powder in which silver and nickel are blended, or a new crystal phase by silver and nickel that does not appear in a powder in which the two materials are partitioned in a core-shell structure.
  • the silver-nickel powder according to an embodiment of the present invention may not have a peak at 2 ⁇ 38.2 ⁇ 0.1°, through which there may be no crystal by silver alone, which is a simple blending of silver and nickel.
  • the silver-nickel powder that may have a peak at 2 ⁇ 38.5 ⁇ 0.1° on the XRD pattern and furthermore may not have a peak at 2 ⁇ 38.2 ⁇ 0.2° is a conventional silver-nickel powder divided so that silver and nickel occupy a certain area, respectively.
  • the silver-nickel powder provided in the electrode composition according to an embodiment of the present invention may have silver and nickel content appropriately adjusted according to the purpose, but preferably contains nickel in an amount of 0.5 to 20 wt%, more preferably 5 It may be a powder comprising ⁇ 15% by weight, more preferably 5 ⁇ 10% by weight. If the nickel content is less than 0.5% by weight, the amount of silver eluted during sintering at the sintering temperature, for example, 900° C. or higher, may deteriorate the surface quality of the electrode and the electrical characteristics may not be uniform for each electrode position.
  • the silver-nickel powder may have a BET specific surface area of 1.0 to 4.0 m 2 /g and a D50 of the primary particles of 2.0 ⁇ m or less, which may be more advantageous than implementing an electrode having more improved physical properties.
  • the conductive component may further include other types of metals or alloys known as electrode materials in addition to the above-mentioned silver-nickel powder.
  • Other types of metals or alloys other than the silver-nickel powder are, for example, 50% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, 10% by weight or less, or 5% by weight or less of the total weight of the conductive component.
  • the silver-nickel powder used as a conductive component in an embodiment of the present invention may be contained as a member of the conductive component.
  • the silver-nickel powder may be included in an amount of less than 50 wt%, 40 wt% or less, 30 wt% or less, 20 wt% or less, 10 wt% or less, or 5 wt% or less of the total weight of the conductive component.
  • the conductive component may be contained in an amount of 50 to 90% by weight of the total weight of the electrode composition, but is not limited thereto.
  • the above-described silver-nickel powder according to the present invention cannot be prepared by the wet co-precipitation method known to produce silver-nickel powder, but can be manufactured by a dry process, for example, PVD (physical vapor deposition), CVD, etc. can be manufactured using Specifically, when explaining the manufacturing method through PVD, the silver-nickel powder can be implemented using a transfer arc plasma device composed of a plasma torch unit, a plasma melting furnace, a crucible, a raw material input unit, a cooling tube, and a collector.
  • a transfer arc plasma device composed of a plasma torch unit, a plasma melting furnace, a crucible, a raw material input unit, a cooling tube, and a collector.
  • Silver and nickel raw material powder are mixed in the desired content into the raw material input part of such a transfer type arc plasma device, and then gas is injected between the raw material powder as the cathode and the anode of the torch to form a plasma to vaporize the raw material powder.
  • gas is injected between the raw material powder as the cathode and the anode of the torch to form a plasma to vaporize the raw material powder.
  • the distance between the negative electrode and the raw material powder may be 5 to 40 mm.
  • the angle between the cathode and the sample may be 35 ⁇ 15°, through which the vapor vaporized by the raw material powder can be prevented from entering the arc discharge region again, and it can be suitable to obtain the desired silver-nickel powder. have.
  • the gas for forming the arc atmosphere may use at least one of nitrogen, hydrogen and an inert gas, preferably nitrogen, hydrogen and argon in a volume ratio of 60 to 80: 20 to 10: 20 to 10, , through which it may be suitable to obtain the desired silver-nickel powder.
  • the pressure condition of the arc atmosphere may be 0.1 to 2.0 atm before ignition.
  • the arc current value may be 50 ⁇ 1000A.
  • the electrode composition may further include a component contained in a conventional electrode composition in addition to the conductive component.
  • the electrode composition may further include a binder, a solvent, and other additives.
  • these materials contained in the electrode composition may be those used in general electrode compositions.
  • the binder may be cellulose-based, butyral-based, or acrylic-based
  • the solvent may be an organic solvent, and specifically, terpineol, alpha-terpineol, dihydroterpineol, dihydroterpinyl acetate, diethylene It may be a mixed solvent of glycol butyl ether (BC) and diethylene glycol monobutyl acetate (BCA).
  • BC glycol butyl ether
  • BCA diethylene glycol monobutyl acetate
  • a dispersant for example, a ceramic powder corresponding to the ceramic component of the ceramic substrate on which the electrode composition is treated
  • a plasticizer for example, a component that improves adhesion to the surface to which the electrode composition is treated (for example, a ceramic powder corresponding to the ceramic component of the ceramic substrate on which the electrode composition is treated), etc.
  • a dispersant for example, a viscosity modifier, a stabilizer, a plasticizer, a component that improves adhesion to the surface to which the electrode composition is treated (for example, a ceramic powder corresponding to the ceramic component of the ceramic substrate on which the electrode composition is treated), etc.
  • the present invention is not particularly limited thereto.
  • Components such as the above-described conductive component and solvent may be prepared into an electrode composition through kneading using a known method.
  • the electrode composition may have a thixotropic index (TI) according to the viscosity measured at 1 rpm and 10 rpm of 3.5 or more, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm of 2.3 or more, through this It may be advantageous to easily implement an electrode with a width and thickness of the same.
  • the thixotropic index (TI) is a value calculated by substituting the viscosity measured at each rotation speed (rpm) with the 14th spindle using a rotational viscometer at 25°C.
  • the electrode composition according to an embodiment of the present invention described above may be sintered in an atmospheric atmosphere, or a gas atmosphere other than the atmosphere or a vacuum atmosphere.
  • it may be particularly useful in the case of implementing an electrode by sintering in an atmospheric atmosphere.
  • the possibility of sintering in an atmospheric atmosphere means that an atmospheric sintering furnace can be used, which has the advantages of lower equipment installation/maintenance costs, easy operation, and safety.
  • the electrode composition according to the present invention is cheaper than the silver-nickel powder according to the present invention and has good electrical properties, but requires gas atmosphere sintering instead of atmospheric air.
  • an electrode can be implemented using the existing atmospheric sintering furnace as it is by replacing the electrode composition using nickel or copper, which requires operating costs.
  • the electrode composition according to the present invention can be used as a conductive component in the electrode composition for forming the electrode by curing the binder, not the above-described sintering method.
  • the electrode composition according to an embodiment of the present invention described above may be applied without limitation in the case of an electronic component having an electrode.
  • the electronic components include elements such as capacitors, varistors, suppressors, capacitors, common mode filters, inductors, PTCs, diodes, POWER semiconductors, SAW filters and dielectric filters, to circuit boards such as hybrid integrated circuits (HICs). All electronic components provided may be applicable.
  • the electrode composition can be used for the external electrode as well as the internal electrode disposed inside the electronic component.
  • sintering is possible at a temperature of 900°C or higher, it may be particularly useful for a sintered electronic component that is required to be manufactured at a temperature of 900°C or higher, for example, at a temperature of 950°C or higher.
  • An electronic component using the electrode composition according to an embodiment of the present invention may include (1) patterning the electrode by treating the electrode composition on the surface, and (2) sintering the patterned electrode. have.
  • the surface may be a surface on a region on which an electrode is disposed in an electronic component.
  • the surface may be a surface on a region in which an electrode is to be provided in an unsintered ceramic green sheet for manufacturing a ceramic element.
  • the surface may be a sintered ceramic substrate such as alumina, AlN, SiC, etc., a glass substrate, a polymer substrate, or the like, on a region where the electrode is to be provided.
  • the electrode composition may be patterned on a desired surface by a conventional method.
  • the electrode composition may be provided using a printing method such as dipping, screen printing, transfer printing, or the like.
  • the specific patterning structure of the electrode, the width, thickness, the distance between the electrodes, etc. may be appropriately changed in consideration of the function, structure, and size of the specific electronic component to be implemented, so the present invention is not particularly limited thereto.
  • step (2) a step of sintering the patterned electrode is performed.
  • the sintering condition in step (2) is not limited to the atmospheric atmosphere as described above, but may be performed in the atmospheric atmosphere in consideration of the manufacturing equipment, manufacturing cost, and the purpose of replacing the Ag-Pd electrode material. More specifically, it may be carried out at a temperature of 800 to 1050° C., more preferably 900 to 1050° C., still more preferably 950 to 1050° C., and still more preferably 950 to 1000° C. under an atmospheric atmosphere. If the sintering temperature is less than 800° C., sintering is not completely performed, so it may be difficult to express electrical characteristics such as specific resistance at a desired level.
  • the sintering temperature exceeds 1050° C.
  • silver may be completely melted and eluted on the surface of the electrode, which may cause deterioration in appearance quality of the electrode, non-uniformity of resistivity for each electrode location, and a significant increase in resistivity itself.
  • the shrinkage rate for each electrode portion may also become non-uniform.
  • the non-uniformity of the shrinkage rate of the electrode may be more problematic when the electrode and the ceramic green sheet are sintered together at the same time sintering, and cracks and peeling of the electrode may be caused due to the difference in the shrinkage rate of each part with the green sheet.
  • the step (2) may be performed for 1 to 4 hours. Also, if the sintering time is less than 1 hour, the sintering of the Ag-Ni electrode may not be complete and it may be difficult to express a desired level of electrical properties. In addition, when the electronic component is a ceramic element and the patterned electrode and the ceramic green sheet are simultaneously sintered, the sintering of the ceramic green sheet may not be completed even if the electrode is completely sintered. Also, if the sintering time exceeds 4 hours, the Ag-Ni electrode may be undersintered. In addition, when the electronic component is a ceramic element and the ceramic green sheet and the electrode are simultaneously sintered, the ceramic green sheet is also undersintered, and thus the desired ceramic properties may not be realized as the grain growth is excessive.
  • the electronic component according to an embodiment of the present invention manufactured through the above-described manufacturing method is an electronic component having a plurality of electrodes, and some or all of the plurality of electrodes are formed by sintering the electrode composition according to the present invention. It is implemented with a nickel electrode.
  • the electronic component may be a known electronic component provided with an electrode, such as an element or a circuit board, as described above.
  • the plurality of electrodes may be included, some of which may be external electrodes disposed on the outer surface of the electronic component, and the remainder may be internal electrodes disposed inside the electronic component. Alternatively, all of the plurality of electrodes may be external electrodes or internal electrodes.
  • at least one of the plurality of electrodes is implemented as a silver-nickel electrode according to an embodiment of the present invention.
  • the electronic component has an electrode sintered through the electrode composition according to the present invention, silver is melted and eluted on the electrode surface is minimized or prevented, and it may be advantageous to implement a low resistivity value.
  • the silver-nickel electrode has a specific resistance of 4.5 ⁇ cm or less, and more preferably 3.0 ⁇ cm or less, thereby exhibiting excellent electrical properties as an electrode.
  • a silver-nickel powder was prepared.
  • the prepared silver-nickel powder is a powder composed of 91.7% by weight of silver and 8.3% by weight of nickel, has a BET specific surface area of 2.82m2/g, and is a volume-based value measured through laser diffraction scattering method.
  • D 10 for primary particles It had a particle size distribution of 0.29 ⁇ m, D 50 0.64 ⁇ m, and D 90 1.11 ⁇ m.
  • silver-nickel powder As an electrode composition, 80% by weight of silver-nickel powder, 12% by weight of binder (DOW Chemical, EC10), 1% by weight of dispersant (NOF Corporation, 221P), based on the total weight of the final electrode composition, 1% by weight, as a solvent
  • An electrode composition as shown in Table 1 was prepared by mixing butyl carbitol acetate in 5 wt% and terpineol in 2 wt%.
  • the prepared electrode composition had a thixotropic index (TI) (1/10) according to the viscosity measured at 1 rpm and 10 rpm of 4.13, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm (10/100) ) was 2.63.
  • TI thixotropic index
  • an arc current of 230A was applied to vaporize the raw material powder, and the vaporized raw material was transferred to a cooling tube and a collector. At this time, nitrogen was used as the quenching gas used, and silver-nickel powder was obtained through classification and drying processes.
  • silver-nickel powder having an XRD pattern having a peak at 2 ⁇ 38.2 ⁇ 0.1° but not having a peak at 2 ⁇ 38.5 ⁇ 0.1° and prepared using a wet co-precipitation method as in Preparation Example 2 below.
  • the prepared silver-nickel powder is the powder shown in FIG. 3 in which a 9 wt% shell part coated with nickel is formed on a 91.0 wt% core part made of silver.
  • As a volume-based value measured through the primary particles it had a particle size distribution of D 10 0.93 ⁇ m, D 50 1.57 ⁇ m, and D 90 2.95 ⁇ m.
  • An electrode composition as shown in Table 1 was prepared in the same manner as in Example 1 using the silver-nickel powder. At this time, the prepared electrode composition had a thixotropic index (TI) (1/10) of 2.18 according to the viscosity measured at 1 rpm and 10 rpm, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm (10/100) ) was 1.96.
  • TI thixotropic index
  • Example 1 The electrode compositions prepared in Example 1, Comparative Example 1 and Comparative Example 2 were screen-printed to have a zigzag pattern as shown in FIGS. 4A and 5B with a line width of 0.7 mm and a length of 400 mm on an alumina substrate, followed by drying, and Table 1 below. Electrodes were prepared by sintering for 2 hours at different sintering temperatures under an atmospheric atmosphere, as shown in Table 1 below by measuring specific resistance and shrinkage of the prepared electrodes.
  • the specific resistance was calculated by the following Equation 1 by measuring the resistance at both ends of the sintered electrode terminal.
  • the cross-sectional area is calculated as the product of the electrode line width and the thickness of the sintered electrode.
  • the shrinkage ratio was measured by measuring the average electrode thickness after drying the electrode pattern at 100° C. for 10 minutes after printing, and measuring the electrode average thickness after sintering. The value calculated by the following formula 2 was used as the shrinkage ratio.
  • Shrinkage (%) (Average thickness of electrode after sintering ( ⁇ m) / Average thickness of electrode after drying ( ⁇ m)) ⁇ 100
  • Example 1 Comparative Example 1 Comparative Example 2 Conductive component (wt%) Ag91.7/Ni8.3 Ag90/Ni10 Ag90/Pd10 Silver-nickel powder XRD phase with or without peak (2 ⁇ ) 38.5 ⁇ 0.1° ⁇ ⁇ - 38.2 ⁇ 0.1° ⁇ ⁇ - Sintering conditions atmosphere Waiting Waiting Waiting Sintered electrode thickness ( ⁇ m) 6.66 9.00 5.06 by sintering temperature Resistivity ( ⁇ cm) 900°C 3.11 7.17 7.78 950°C 2.83 5.62 7.58 1000°C 2.39 5.20 6.97 1050°C 4.21 16.79 not done by sintering temperature Shrinkage (%) 900°C 19.14 12.90 54.23 950°C 39.27 48.02 55.04 1000°C 42.11 61.90 60.31 1050°C 44.94 71.33 not done
  • the electrode composition according to Example 1 has a very excellent resistivity of 4.21 ⁇ cm or less after sintering at 900 to 1050° C.
  • the electrode composition according to Comparative Example 1 was measured to have a resistivity value of 4.01 ⁇ cm at 1000°C, but the resistivity value increased by about 4 times at 1050°C. It can be confirmed that there was an increase in resistance due to the increase in resistance and the increase in resistance due to the increase in nickel oxide due to sintering under atmospheric atmosphere.
  • Example 1 when compared with Comparative Example 2, it can be seen that the electrode composition of Example 1 has a lower material cost, and has better electrical conductivity properties and sintering under an atmospheric atmosphere.
  • the electrode composition according to Example 1 is more uniform than the electrode composition according to Comparative Example 1 in terms of shrinkage according to the sintering temperature.

Abstract

An electrode composition is provided. The electrode composition according to one embodiment of the present invention includes, as a conductive component, a silver-nickel powder including a crystalline phase having a peak at 2θ 38.5 ± 0.1° on the XRD pattern. As a result, the electrode composition can be sintered in the same general atmospheric sintering conditions as an Ag-Pd alloy, which is widely used as an electrode material, and can significantly lower the raw material cost while the implemented electrode exhibits equivalent or superior resistivity characteristics. In addition, since the electrode composition can be sintered in the atmospheric atmosphere, it is possible to significantly lower the manufacturing cost by reducing the investment cost or operating cost that otherwise would have been incurred via additional equipment required for sintering in non-atmospheric conditions. Furthermore, since silver elution is prevented or minimized after sintering the electrode, uniform physical properties can be expressed throughout the electrode, and at the same time, the quality of the electrode surface can be guaranteed. In addition, since the thickness and width of the electrode can be easily implemented to a desired level, the electrode composition can be widely applied in realizing electrodes of various electronic components.

Description

전극 조성물, 이를 이용한 전자부품 제조방법 및 이로 구현된 전자부품Electrode composition, method for manufacturing electronic component using same, and electronic component embodied therewith
본 발명은 전극 조성물에 관한 것이며, 보다 구체적으로는 전극 조성물, 이를 이용한 전자부품 제조방법 및 이로 구현된 전자부품에 대한 것이다.The present invention relates to an electrode composition, and more particularly, to an electrode composition, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
최근, 휴대전화나 휴대 음악 플레이어 등 다양한 전자기기의 개발에 따라서 전자기기에 탑재되는 전자부품에 대한 연구 및 개발이 활발하게 이루어지고 있다. Recently, with the development of various electronic devices such as mobile phones and portable music players, research and development of electronic components mounted on electronic devices are being actively conducted.
상기 전자부품은 콘덴서, 커패시터, 바리스터, 서프레서, MLCC 등의 소자에서부터 상기 소자가 실장되는 회로기판에 이르기까지 매우 광범위하다. 다만 상기 전자부품은 공통적으로 서로 다른 전자부품 간 또는 전원과 전자부품 간을 전기적으로 연결시키거나 전자부품 자체의 목적하는 기능을 발현시키기 위한 전극을 포함한다. The electronic components range from elements such as capacitors, capacitors, varistors, suppressors, and MLCCs to circuit boards on which the elements are mounted. However, the electronic components commonly include electrodes for electrically connecting different electronic components or between a power source and an electronic component or for expressing a desired function of the electronic component itself.
이러한 전극은 일반적으로 Ni, Ag, Cu, Pd, Ag-Pd 합금 등의 재료가 주로 이용되어 왔는데, 이들 재료가 모든 종류의 전자부품에 적용될 수 있는 것은 아니며, 전기전도도 이외에 적용되는 전자부품의 제조방법, 재질, 용도 등을 고려해 이에 부합하는 물성을 갖는 재료를 해당 전자부품의 전극재료로써 적용해왔다. 일 예로, 콘덴서, 커패시터, 바리스터, 서프레서, MLCC 등의 소자는 유전체인 세라믹 몸체 내부와 외부에 다수 개의 전극을 구비한 형태의 소자로써, 각 소자의 기능에 맞춰 세라믹 재료의 종류, 몸체 내부에 구비되는 전극 구조를 달리한다. 그러나 이들 소자는 일반적으로 세라믹 그린시트에 목적하는 패턴으로 전극을 형성시킨 뒤 이들 다수 개의 그린시트를 적층 및 소결시켜서 제조됨에 따라서 이들 소자에 적용되는 전극재료 역시 그린시트의 소결 온도에 맞춰서 적절한 수축률, 전기저항을 가지는 것들이 선택된다. In general, materials such as Ni, Ag, Cu, Pd, and Ag-Pd alloy have been mainly used for these electrodes, but these materials are not applicable to all kinds of electronic components, and the manufacture of electronic components applied in addition to electrical conductivity In consideration of the method, material, and use, materials with properties corresponding to these have been applied as electrode materials for the corresponding electronic components. For example, devices such as capacitors, capacitors, varistors, suppressors, and MLCCs are devices having a plurality of electrodes inside and outside a ceramic body that is a dielectric. The provided electrode structure is different. However, these devices are generally manufactured by laminating and sintering a plurality of green sheets after forming electrodes in a desired pattern on a ceramic green sheet. Therefore, the electrode material applied to these devices also has an appropriate shrinkage rate according to the sintering temperature of the green sheet, Those having electrical resistance are selected.
한편, 전기전도도를 고려했을 때 Ag는 전극 재질로써 좋은 재질이기는 하나 무르고 외력에 의해 손상 받기 쉬우며, 융점이 비교적 낮아서 900℃ 이상의 소결이 필요한 소결형 전자부품에는 사용하기 어려운 단점이 있다. 이에 소결형 전자부품에는 Ag의 단점을 보완시키는 귀금속 재료와 함께 합금화되거나 블렌딩된 것을 사용해 왔으며, 최근에는 Ag-Pd 합금을 소결형 전자부품의 전극 재료로 많이 사용하는 추세에 있다. On the other hand, when considering electrical conductivity, Ag is a good material as an electrode material, but it is soft and easily damaged by external forces. For this reason, alloyed or blended materials with noble metal materials that compensate for the disadvantages of Ag have been used for sintered electronic components.
Ag-Pd 합금의 경우 높은 온도에서 소결되는 소결형 전자부품에 유용한 특성 이외에 대기 분위기 하에서 전극으로 소결이 가능하므로 대기 이외의 분위기에서 소결되어야만 하는 전극 재료에 대비해 소결 시 질소나 수소 등의 가스를 사용하지 않음에 따른 제조비용 절감의 이점과, 대기 이외의 분위기 소결에 필요한 특수 장치의 불사용에 따른 제조설비 설치비 및 유지비가 절감되는 이점이 있다. 그러나 Ag-Pd 합금의 경우 합금의 재료가 되는 Pd의 가격이 비싸서 제조단가를 현저히 상승시키는 문제가 있다. In the case of Ag-Pd alloy, in addition to useful properties for sintered electronic components that are sintered at high temperature, sintering with an electrode is possible under an atmospheric atmosphere, so a gas such as nitrogen or hydrogen is used for sintering in preparation for electrode materials that must be sintered in an atmosphere other than the atmosphere. There is an advantage of reducing the manufacturing cost by not doing it, and there is an advantage of reducing the installation cost and maintenance cost of the manufacturing facility due to the non-use of a special device necessary for sintering in an atmosphere other than the atmosphere. However, in the case of Ag-Pd alloy, the price of Pd, which is a material of the alloy, is high, and thus there is a problem in that the manufacturing cost is significantly increased.
이에 반해 Ni, Cu 등의 전극재료는 원료비를 절감할 수 있으나, 소결형 전자부품에 적용 시 환원분위기에서 소결이 요구됨에 따라서 이에 따른 제조비 증가의 문제가 있다. On the other hand, electrode materials such as Ni and Cu can reduce raw material costs, but when applied to sintered electronic components, sintering is required in a reducing atmosphere, thereby increasing the manufacturing cost.
이에 따라서 높은 온도로 소결되는 소결형 전자부품에도 적용이 가능하며, 대기 분위기에서 소결이 가능해 분위기 소결에 필요한 특수 장치 설치/유지비 등 제조비용을 절감할 수 있으면서도 전극 재료비 증가를 방지할 수 있는 전극재료에 대한 개발이 시급한 실정이다.Accordingly, it can be applied to sintered electronic parts that are sintered at high temperature, and since it can be sintered in an atmospheric atmosphere, it is possible to reduce manufacturing costs such as installation/maintenance cost of special equipment required for atmospheric sintering, and electrode material that can prevent an increase in electrode material cost development is urgently needed.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, Pd와 같은 원료 단가가 높은 희귀금속을 사용하지 않아서 원료 단가를 낮출 수 있는 동시에 전기적 특성을 동등 또는 그 이상 수준으로 발현할 수 있는 전극을 구현시킬 수 있는 전극 조성물, 이를 이용한 전자부품 제조방법 및 이로 구현된 전자부품을 제공하는데 목적이 있다. The present invention has been devised in consideration of the above points, and it is possible to lower the raw material cost by not using a rare metal with a high raw material cost such as Pd, and at the same time realize an electrode capable of expressing electrical characteristics at the same or higher level An object of the present invention is to provide an electrode composition that can be used, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
또한, 본 발명은 높은 온도에서 소결이 가능해 높은 온도에서 소결이 필요한 부품소재와 함께 소결되어 부품으로 구현될 수 있으며, 대기 분위기 하 소결이 가능해 소결 시 특별한 제조설비 투자 및 유지 없이도 요구되는 전기적 특성을 동등 또는 그 이상 수준으로 발현할 수 있는 전극을 구현시킬 수 있는 전극 조성물, 이를 이용한 전자부품 제조방법 및 이로 구현된 전자부품을 제공하는데 다른 목적이 있다.In addition, the present invention can be sintered at a high temperature, so it can be sintered together with a component material that requires sintering at a high temperature to be implemented as a part, and since sintering under an atmospheric atmosphere is possible, the electrical properties required for sintering can be achieved without investment and maintenance in special manufacturing facilities. Another object is to provide an electrode composition capable of realizing an electrode that can be expressed at the same or higher level, a method for manufacturing an electronic component using the same, and an electronic component implemented therewith.
상술한 과제를 해결하기 위하여 본 발명은 XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상을 포함하는 은-니켈 분말을 도전성 성분으로써 포함하는 전극 조성물을 제공한다.In order to solve the above problems, the present invention provides an electrode composition comprising a silver-nickel powder including a crystalline phase having a peak at 2θ 38.5 ± 0.1° on an XRD pattern as a conductive component.
본 발명의 일 실시예에 의하면, 상기 전극 조성물은 900℃ 이상의 온도에서 소결되는 소결형 전자부품의 전극 용도일 수 있다. According to an embodiment of the present invention, the electrode composition may be used as an electrode of a sintered electronic component sintered at a temperature of 900° C. or higher.
또한, 상기 은-니켈 분말은 니켈을 0.5 ~ 20 중량%로 포함할 수 있다. In addition, the silver-nickel powder may contain 0.5 to 20 wt% of nickel.
또한, 상기 은-니켈 분말은 BET 비표면적이 1 ~ 4㎡/g이고, 1차 입자의 D50이 2㎛ 이하일 수 있다.In addition, the silver-nickel powder may have a BET specific surface area of 1 to 4 m 2 /g and a D50 of the primary particles of 2 μm or less.
또한, 상기 은-니켈 분말은 XRD 패턴 상에서 2θ 38.2 ± 0.1°에서 피크를 갖지 않을 수 있다. In addition, the silver-nickel powder may not have a peak at 2θ 38.2 ± 0.1° on the XRD pattern.
또한, 상기 전극 조성물은 불활성 기체가 없는 대기 분위기에서 소결이 가능한 것일 수 있다. In addition, the electrode composition may be sintered in an atmospheric atmosphere without an inert gas.
상기 전극 조성물은 대기 분위기에서 1050℃의 온도로 2시간 소결 시 비저항이 4.5μΩ·㎝ 이하인 전극을 구현시킬 수 있는 전극 조성물일 수 있다. The electrode composition may be an electrode composition capable of realizing an electrode having a specific resistance of 4.5 μΩ·cm or less when sintered for 2 hours at a temperature of 1050° C. in an atmospheric atmosphere.
또한, 상기 전극 조성물은 1rpm 및 10rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 3.5 이상이고, 10rpm 및 100rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 2.3 이상일 수 있다. 이때, 상기 틱소트로픽 지수(TI)는 25℃에서 회전점도계를 이용하여 14번 스핀들로 각 회전수(rpm)에서 측정된 점도를 대입하여 산출된 값이다.In addition, the electrode composition may have a thixotropic index (T.I) according to viscosity measured at 1 rpm and 10 rpm of 3.5 or more, and a thixotropic index (T.I) according to viscosity measured at 10 rpm and 100 rpm may be 2.3 or more. In this case, the thixotropic index (TI) is a value calculated by substituting the viscosity measured at each rotation speed (rpm) with the 14th spindle using a rotational viscometer at 25°C.
또한, 본 발명은 (1) 표면 상에 제1항 내지 제6항 중 어느 한 항에 따른 전극 조성물을 처리하여 전극을 패터닝 하는 단계, 및 (2) 패터닝된 상기 전극을 소결시키는 단계를 포함하는 전자부품 제조방법을 제공한다. The present invention also comprises the steps of (1) patterning an electrode by treating the electrode composition according to any one of claims 1 to 6 on a surface, and (2) sintering the patterned electrode. A method for manufacturing an electronic component is provided.
본 발명의 일 실시예에 의하면, 상기 (1) 단계의 표면은 미소결된 세라믹 그린시트의 표면 또는 소결된 세라믹 기판의 표면일 수 있다. 이때, 상기 미소결된 세라믹 그린시트는 900℃ 이상의 온도에서 소결되는 것일 수 있다. According to an embodiment of the present invention, the surface of step (1) may be the surface of the unsintered ceramic green sheet or the surface of the sintered ceramic substrate. In this case, the unsintered ceramic green sheet may be sintered at a temperature of 900° C. or higher.
또한, 상기 (2) 단계는 대기 분위기 하에서 800 ~ 1050℃ 온도에서 수행될 수 있다. In addition, the step (2) may be performed at a temperature of 800 ~ 1050 ℃ under an atmospheric atmosphere.
또한, 본 발명은 다수 개의 전극을 구비하는 전자부품으로서, 상기 다수 개의 전극 중 일부 또는 전부가 본 발명에 따른 전극조성물이 소결되어 형성된 은-니켈 전극인 전자부품을 제공한다. In addition, the present invention provides an electronic component having a plurality of electrodes, wherein some or all of the plurality of electrodes are silver-nickel electrodes formed by sintering the electrode composition according to the present invention.
본 발명의 일 실시예에 의하면, 상기 은-니켈 전극은 비저항이 4.5μΩ·㎝ 이하일 수 있다.According to an embodiment of the present invention, the silver-nickel electrode may have a specific resistance of 4.5 μΩ·cm or less.
본 발명에 의한 전극 조성물은 전극재료로 많이 사용되는, 특히 소결형 전자부품의 전극재료로 이용되는 Ag-Pd 합금을 이용했을 때와 동일하게 일반 대기 분위기 하에서 소결이 가능하고, 원료 단가도 현저히 낮출 수 있으면서도 구현된 전극의 비저항 특성이 Ag-Pd 합금과 동등 또는 그 이상으로 발현하는 전극을 구현시킬 수 있다. 또한, 대기 분위기로 소결이 가능하므로 분위기 소결에 필요한 별도의 설비 투자나 설비 운영비용을 절감할 수 있어서 제조비용을 크게 낮출 수 있다. 나아가 전극 소결 후에 은의 용출이 방지 또는 최소화되어 소결된 전극 전체에 균일한 물성을 발현시킬 수 있는 동시에 전극 표면 품질을 담보할 수 있는 이점이 있다. 더불어 전극의 두께, 폭을 목적하는 수준으로 쉽게 구현할 수 있어서 각종 전자부품의 전극을 구현하는데 있어서 널리 응용될 수 있다.The electrode composition according to the present invention can be sintered under a general atmospheric atmosphere in the same way as when using an Ag-Pd alloy, which is used a lot as an electrode material, especially as an electrode material for sintered electronic components, and significantly lowers the raw material cost. It is possible to realize an electrode in which the resistivity characteristic of the implemented electrode is equal to or higher than that of the Ag-Pd alloy. In addition, since sintering is possible in an atmospheric atmosphere, it is possible to reduce a separate equipment investment or equipment operation cost required for atmospheric sintering, thereby significantly reducing manufacturing costs. Furthermore, silver elution is prevented or minimized after sintering the electrode, so that uniform physical properties can be expressed throughout the sintered electrode, and at the same time, the electrode surface quality can be guaranteed. In addition, since the thickness and width of the electrode can be easily implemented to a desired level, it can be widely applied in realizing electrodes of various electronic components.
도 1은 실시예1 및 비교예1에서 사용한 은-니켈 분말에 대해서 측정한 XRD 패턴, 1 is an XRD pattern measured for the silver-nickel powder used in Example 1 and Comparative Example 1;
도 2는 실시예1에 따른 은-니켈 분말의 SEM 사진,2 is a SEM photograph of a silver-nickel powder according to Example 1;
도 3은 비교예1에 따른 은-니켈 분말의 SEM 사진,3 is a SEM photograph of a silver-nickel powder according to Comparative Example 1;
도 4a 및 도 4b는 실시예1에 따른 전극 조성물을 이용해 대기 분위기 하에서 950℃ 온도로 2시간 소결시킨 소결전극의 광학현미경 사진, 그리고4a and 4b are optical micrographs of a sintered electrode sintered for 2 hours at a temperature of 950° C. under an atmospheric atmosphere using the electrode composition according to Example 1, and
도 5a 및 도 5b는 비교예1에 따른 전극 조성물을 이용해 대기 분위기 하에서 950℃ 온도로 2시간 소결시킨 소결전극의 광학현미경 사진이다.5A and 5B are optical micrographs of a sintered electrode sintered at a temperature of 950° C. for 2 hours in an atmospheric atmosphere using the electrode composition according to Comparative Example 1. FIG.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명의 일 실시예에 의한 전극 조성물은 도전성 성분으로 은-니켈 분말을 포함하며, 상기 은-니켈 분말은 XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상을 포함한다. The electrode composition according to an embodiment of the present invention includes silver-nickel powder as a conductive component, and the silver-nickel powder includes a crystalline phase having a peak at 2θ 38.5 ± 0.1° on an XRD pattern.
상기 은과 니켈은 전극 재료로서 일반적으로 많이 사용되는 재료이다. 특히 은은 다른 금속과 합금을 이뤄서 전극재료로 많이 사용되며, 그 일 예가 Ag-Pd 합금이다. 그러나 은과 니켈의 경우 어느 일방이 타방에 고용되기 어려워서 이들 두 성분으로 이루어진 합금은 존재하기 어렵다. 이러한 이유 때문에 이들 두 성분을 전극재료로 포함하는 경우 이들을 단순 블렌딩 하거나 은으로 니켈을 코팅하는 코어쉘 구조 타입으로 분말화 하는 것이 일반적이다. 그러나 은과 니켈이 단순 블렌딩 되거나, 또는 코어쉘 구조와 같이 이들 각각이 서로 구분된 영역을 갖도록 일체화된 분말을 전극재료로써 사용하는 경우 은과 니켈의 융점 차이로 인해서 일예로 900℃ 이상의 소결공정에서 은이 용융되어 전극 표면으로 용출 됨에 따라서 전극 표면 품질이 저하되고, 전극의 위치 별로 전기적 특성이 고르지 않으며, 구현된 전극의 비저항이 현저히 증가하고, 니켈의 산화로 인해 소결 시 분위기 조건과 소결 온도의 선택이 제한적일 수 밖에 없는 문제가 있다. 또한, 코어쉘 구조의 은-니켈 분말의 경우 분말 상으로 제조하는 공정에 소요되는 비용증가로 인해서 은을 단독으로 전극을 구현하는 경우보다 더 큰 비용이 소요되는 문제가 있다. 또한, 코어쉘 구조의 은-니켈 분말은 전기적 특성도 은 단독 또는 은-팔라듐 합금보다 좋지 않아서 전극재료로 상용화되거나 전자부품에 적용되는데 문제가 있다. The silver and nickel are materials commonly used as electrode materials. In particular, silver is widely used as an electrode material by forming an alloy with other metals, an example of which is Ag-Pd alloy. However, in the case of silver and nickel, it is difficult for one of them to be dissolved in the other, so it is difficult for an alloy composed of these two components to exist. For this reason, when these two components are included as electrode materials, it is common to simply blend them or to powder them into a core-shell structure type coated with silver with nickel. However, when silver and nickel are simply blended or powders that are integrated to have separate regions, such as a core-shell structure, are used as an electrode material, due to the difference in melting point between silver and nickel, for example, in a sintering process of 900°C or higher, As silver melts and elutes to the electrode surface, the electrode surface quality deteriorates, the electrical properties are uneven for each electrode position, the specific resistance of the implemented electrode is significantly increased, and the selection of atmospheric conditions and sintering temperature during sintering due to the oxidation of nickel There is a problem that cannot but be limited. In addition, in the case of a silver-nickel powder having a core-shell structure, there is a problem in that a higher cost is required than in the case of implementing an electrode using silver alone due to an increase in cost required for a process of manufacturing the powder. In addition, the silver-nickel powder having a core-shell structure has a problem in being commercialized as an electrode material or applied to electronic components because the electrical properties are not better than that of silver alone or a silver-palladium alloy.
이에 따라서 본 발명은 도전성 성분으로 은-니켈 분말을 구비 시키되, 은-니켈 분말이 XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상을 포함하는 것을 사용함을 통해 위와 같은 문제를 해결하고, 팔라듐을 사용하지 않음에 따라서 은-팔라듐 합금보다 적은 비용으로 동등 수준의 물성을 발현하는 전자부품을 구현할 수 있으며, 대기 분위기 하 소결이 가능하다. XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상은 단순하게 은과 니켈이 블렌딩 되어 있는 분말이거나 코어쉘 구조로 두 재료가 구획된 분말에서는 나타나지 않는 은과 니켈에 의한 새로운 결정상이다. 한편, 본 발명의 일 실시예에 의한 상기 은-니켈 분말은 2θ 38.2 ± 0.1°에서 피크를 갖지 않을 수 있으며, 이를 통해 은 단독에 의한 결정은 존재하지 않을 수 있으며, 이는 은과 니켈이 단순 블렌딩이나 코어쉘 구조로 구현된 분말에서는 나타나지 않는 특징이다. 따라서 XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖고, 나아가 2θ 38.2 ± 0.2°에서 피크를 갖지 않을 수 있는 은-니켈 분말은 은과 니켈이 각각 일정 영역을 차지하도록 구분된 종래의 은-니켈 분말에 대비하여 소결 시 은이 용융되어 전극 표면에 용출되는 것을 최소화 또는 방지할 수 있고, 낮은 비저항값을 구현하기 보다 유리할 수 있으며, 대기 분위기에서 소결이 가능할 수 있다. 만일 2θ 38.5 ± 0.1°에서 피크를 가지지 않을 경우 상술한 은과 니켈을 통한 새로운 결정상이 생성되지 않은 분말로써 본 발명의 목적을 달성하기 어려울 수 있다. Accordingly, the present invention solves the above problem by using silver-nickel powder as a conductive component, but the silver-nickel powder includes a crystalline phase having a peak at 2θ 38.5 ± 0.1° on the XRD pattern, and palladium As it is not used, it is possible to implement an electronic component that expresses the same level of physical properties at a lower cost than a silver-palladium alloy, and sintering in an atmospheric atmosphere is possible. The crystal phase having a peak at 2θ 38.5 ± 0.1° on the XRD pattern is simply a powder in which silver and nickel are blended, or a new crystal phase by silver and nickel that does not appear in a powder in which the two materials are partitioned in a core-shell structure. On the other hand, the silver-nickel powder according to an embodiment of the present invention may not have a peak at 2θ 38.2 ± 0.1°, through which there may be no crystal by silver alone, which is a simple blending of silver and nickel. However, it is a characteristic that does not appear in powders implemented with a core-shell structure. Therefore, the silver-nickel powder that may have a peak at 2θ 38.5 ± 0.1° on the XRD pattern and furthermore may not have a peak at 2θ 38.2 ± 0.2° is a conventional silver-nickel powder divided so that silver and nickel occupy a certain area, respectively. In preparation for sintering, it is possible to minimize or prevent silver melting and elution on the electrode surface, it may be advantageous to implement a low specific resistance value, and sintering may be possible in an atmospheric atmosphere. If it does not have a peak at 2θ 38.5 ± 0.1°, it may be difficult to achieve the object of the present invention as a powder in which a new crystalline phase is not generated through the above-mentioned silver and nickel.
또한, 본 발명의 일 실시예에 따른 전극 조성물에 구비되는 은-니켈 분말은 목적에 따라서 은과 니켈의 함량을 적절히 조정할 수 있으나, 바람직하게는 니켈을 0.5 ~ 20 중량%, 보다 바람직하게는 5 ~ 15중량%, 보다 더 바람직하게는 5 ~ 10 중량%로 포함하는 분말일 수 있다. 만일 니켈이 0.5중량% 미만일 경우 소결온도, 예를 들어 900℃ 이상의 온도에서 소결 시 용출되는 은이 많아져 전극의 표면 품질이 저하되고 전극 위치 별로 전기적 특성이 고르지 않을 우려가 있다. 특히, 소결이 전극이 적용되는 표면, 예를 들어 소결 전 세라믹 그린시트와 함께 동시소결되는 경우 용출되는 은에 따른 물성 및 품질 저하는 더욱 심화될 우려가 있다. 또한, 사용할 수 있는 소결 온도가 일예로 800℃ 미만, 다른 일예로 900℃ 미만으로 낮아짐에 따라서 전극재료로써 선택되기 어려울 수 있고, Ag-Pd를 대체할 가치가 상실될 우려가 있다. 또한, 만일 니켈이 20 중량%를 초과할 경우 소결 중 과량의 Ni 산화로 생성된 니켈산화물로 인해 비저항 값이 현저히 증가함에 따라서 전기적 특성이 저하될 수 있다. 더불어 소결 전 세라믹 그린시트와 동시소결되는 경우에 전극의 수축율 상대적으로 작아짐에 따라서 그린시트와 수축율에 있어서 미스매칭이 발생할 수 있다. In addition, the silver-nickel powder provided in the electrode composition according to an embodiment of the present invention may have silver and nickel content appropriately adjusted according to the purpose, but preferably contains nickel in an amount of 0.5 to 20 wt%, more preferably 5 It may be a powder comprising ~ 15% by weight, more preferably 5 ~ 10% by weight. If the nickel content is less than 0.5% by weight, the amount of silver eluted during sintering at the sintering temperature, for example, 900° C. or higher, may deteriorate the surface quality of the electrode and the electrical characteristics may not be uniform for each electrode position. In particular, when sintering is co-sintered with a surface to which an electrode is applied, for example, a ceramic green sheet prior to sintering, there is a risk that physical properties and quality deterioration due to silver eluted may be further aggravated. In addition, as the usable sintering temperature is lowered to less than 800° C. for example, and less than 900° C. for another example, it may be difficult to be selected as an electrode material, and there is a risk that the value of replacing Ag-Pd may be lost. In addition, if nickel exceeds 20 wt %, electrical properties may be deteriorated as the specific resistance value is significantly increased due to nickel oxide generated by excessive Ni oxidation during sintering. In addition, in the case of simultaneous sintering with the ceramic green sheet before sintering, as the shrinkage rate of the electrode becomes relatively small, mismatching in the shrinkage rate with the green sheet may occur.
또한, 상기 은-니켈 분말은 BET 비표면적이 1.0 ~ 4.0㎡/g이고, 1차 입자의 D50이 2.0㎛ 이하일 수 있으며, 이를 통해 보다 향상된 물성을 갖는 전극을 구현하기 보다 유리할 수 있다. In addition, the silver-nickel powder may have a BET specific surface area of 1.0 to 4.0 m 2 /g and a D50 of the primary particles of 2.0 μm or less, which may be more advantageous than implementing an electrode having more improved physical properties.
또한, 도전성 성분으로 상술한 은-니켈 분말 이외에 전극재료로 공지된 다른 종류의 금속이나 합금을 더 포함할 수 있다. 은-니켈 분말 이외의 다른 종류의 금속이나 합금은 일 예로 도전성 성분 전체 중량의 50중량% 이하, 40중량% 이하, 30중량% 이하, 20중량% 이하, 10 중량% 이하, 또는 5 중량% 이하로 구비될 수 있다. 한편, 다른 일 예로 본 발명의 일 실시예의 도전성 성분으로 사용되는 은-니켈 분말은 도전성 성분의 부재로써 함유될 수도 있다. 이 경우 은-니켈 분말은 도전성 성분 전체 중량의 50중량% 미만, 40중량% 이하, 30중량% 이하, 20중량% 이하, 10 중량% 이하, 또는 5 중량% 이하로 구비될 수 있다In addition, the conductive component may further include other types of metals or alloys known as electrode materials in addition to the above-mentioned silver-nickel powder. Other types of metals or alloys other than the silver-nickel powder are, for example, 50% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, 10% by weight or less, or 5% by weight or less of the total weight of the conductive component. can be provided with Meanwhile, as another example, the silver-nickel powder used as a conductive component in an embodiment of the present invention may be contained as a member of the conductive component. In this case, the silver-nickel powder may be included in an amount of less than 50 wt%, 40 wt% or less, 30 wt% or less, 20 wt% or less, 10 wt% or less, or 5 wt% or less of the total weight of the conductive component.
또한, 상기 도전성 성분은 전극 조성물 전체 중량의 50 ~ 90 중량%로 함유될 수 있으나 이에 제한되는 것은 아니다.In addition, the conductive component may be contained in an amount of 50 to 90% by weight of the total weight of the electrode composition, but is not limited thereto.
상술한 본 발명에 따른 은-니켈 분말은 종래 은-니켈 분말을 제조하는 것으로 알려진 습식 공침법으로는 제조할 수 없으며, 건식공정으로 제조할 수 있으며, 일예로 PVD(physical vapor deposition), CVD 등을 이용해 제조할 수 있다. 구체적으로 PVD를 통한 제조방법을 설명하면, 은-니켈 분말은 플라즈마 토치부, 플라즈마 용해로, 도가니, 원료투입부, 냉각관 및 포집기로 구성된 이송식 아크플라즈마 장치를 이용해서 구현할 수 있다. 이와 같은 이송식 아크플라즈마 장치의 원료 투입부에 은과 니켈 원료 분말을 목적하는 함량으로 혼합하여 투입한 뒤 토치부의 음극과 양극으로써 원료 분말 사이에 기체를 주입해 플라즈마를 형성시켜서 원료분말을 기화시킬 수 있으며, 이 때 주기적으로 원료 분말을 투입해 도가니에서 용융되는 원료 분말의 양을 일정하게 유지시킬 수 있다. 음극과 원료 분말 사이의 거리는 5 ~ 40㎜일 수 있다. 이때, 음극과 시료의 각도는 35 ± 15°일 수 있으며, 이를 통해서 원료 분말이 기화한 증기가 다시 아크 방전 영역에 들어오는 것을 방지할 수 있고, 목적하는 은-니켈 분말을 수득하기에 적합할 수 있다. 또한, 아크 분위기를 조성하는 기체는 질소, 수소 및 불활성 기체 중 1종 이상을 사용할 수 있는데, 바람직하게는 질소, 수소 및 아르곤을 60~80:20~10:20~10의 부피비로 사용할 수 있으며, 이를 통해 목적하는 은-니켈 분말을 수득하기에 적합할 수 있다. 또한, 아크 분위기의 압력조건으로 점화 전 0.1 ~ 2.0기압일 수 있다. 또한, 아크 방전 중 흐르는 전류값으로써, 아크 전류 값은 50 ~ 1000A일 수 있다. 이후 플라즈마 방전 후 생성된 기화된 상태의 원료는 냉각관을 경유해 포집기로 이송되는데, 이 과정에서 기화된 상태의 원료가 냉각되고, 은-니켈 분말을 수득할 수 있다. 한편, 기화된 상태의 원료에 희석가스를 주입하여 입자의 크기와 형태를 조절할 수 있다. 이후 냉각되어 수득된 은-니켈 분말은 건조 단계를 더 거칠 수 있다. The above-described silver-nickel powder according to the present invention cannot be prepared by the wet co-precipitation method known to produce silver-nickel powder, but can be manufactured by a dry process, for example, PVD (physical vapor deposition), CVD, etc. can be manufactured using Specifically, when explaining the manufacturing method through PVD, the silver-nickel powder can be implemented using a transfer arc plasma device composed of a plasma torch unit, a plasma melting furnace, a crucible, a raw material input unit, a cooling tube, and a collector. Silver and nickel raw material powder are mixed in the desired content into the raw material input part of such a transfer type arc plasma device, and then gas is injected between the raw material powder as the cathode and the anode of the torch to form a plasma to vaporize the raw material powder. In this case, it is possible to maintain a constant amount of the raw material powder melted in the crucible by periodically inputting the raw material powder. The distance between the negative electrode and the raw material powder may be 5 to 40 mm. At this time, the angle between the cathode and the sample may be 35 ± 15°, through which the vapor vaporized by the raw material powder can be prevented from entering the arc discharge region again, and it can be suitable to obtain the desired silver-nickel powder. have. In addition, the gas for forming the arc atmosphere may use at least one of nitrogen, hydrogen and an inert gas, preferably nitrogen, hydrogen and argon in a volume ratio of 60 to 80: 20 to 10: 20 to 10, , through which it may be suitable to obtain the desired silver-nickel powder. In addition, the pressure condition of the arc atmosphere may be 0.1 to 2.0 atm before ignition. In addition, as a current value flowing during arc discharge, the arc current value may be 50 ~ 1000A. Thereafter, the vaporized raw material generated after plasma discharge is transferred to the collector through a cooling pipe, and in this process, the vaporized raw material is cooled, and silver-nickel powder can be obtained. On the other hand, the size and shape of the particles can be adjusted by injecting a diluent gas into the raw material in a vaporized state. Thereafter, the silver-nickel powder obtained by cooling may be further subjected to a drying step.
한편, 상기 전극 조성물은 도전성 성분 이외에 통상적인 전극 조성물에 함유되는 성분을 더 포함할 수 있다. 일 예로 상기 전극 조성물은 바인더, 용매, 기타 첨가제를 더 포함할 수 있다. 도전성 성분 이외에 전극 조성물에 함유되는 이러한 물질들은 일반적인 전극 조성물에 사용되는 것들일 수 있다. 예를 들어 바인더는 셀룰로오즈계, 부티랄계, 아크릴계일 수 있고, 용매는 유기용매일 수 있고, 구체적으로 테르피네올, 알파-테르피네올, 디하이드로 테르피네올, 디하이드로 터피닐 아세테이트, 디에틸렌 글리콜 부틸 에테르(BC) 및 디에틸렌 글리콜 모노부틸 아세테이트(BCA)의 혼합용매일 수 있다. 또한, 기타 첨가제의 경우 분산제, 점도조절제, 안정화제, 가소제, 전극 조성물이 처리되는 표면과의 부착력을 향상시키는 성분(일 예로, 전극 조성물이 처리되는 세라믹 기판의 세라믹 성분에 상응하는 세라믹 분말) 등을 포함할 수 있다. 한편, 전극 조성물 내 이들 성분들의 함량은 목적에 따라서 달라질 수 있으므로 본 발명은 이에 대해 특별히 한정하지 않는다.Meanwhile, the electrode composition may further include a component contained in a conventional electrode composition in addition to the conductive component. For example, the electrode composition may further include a binder, a solvent, and other additives. In addition to the conductive component, these materials contained in the electrode composition may be those used in general electrode compositions. For example, the binder may be cellulose-based, butyral-based, or acrylic-based, and the solvent may be an organic solvent, and specifically, terpineol, alpha-terpineol, dihydroterpineol, dihydroterpinyl acetate, diethylene It may be a mixed solvent of glycol butyl ether (BC) and diethylene glycol monobutyl acetate (BCA). In addition, in the case of other additives, a dispersant, a viscosity modifier, a stabilizer, a plasticizer, a component that improves adhesion to the surface to which the electrode composition is treated (for example, a ceramic powder corresponding to the ceramic component of the ceramic substrate on which the electrode composition is treated), etc. may include. Meanwhile, since the content of these components in the electrode composition may vary depending on the purpose, the present invention is not particularly limited thereto.
상술한 도전성 성분과 용매 등의 성분들은 공지된 방법을 이용한 혼련을 통해 전극 조성물로 제조될 수 있다. Components such as the above-described conductive component and solvent may be prepared into an electrode composition through kneading using a known method.
또한, 상기 전극 조성물은 1rpm 및 10rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 3.5 이상이고, 10rpm 및 100rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 2.3 이상일 수 있으며, 이를 통해 목적하는 폭, 두께로 전극을 용이하게 구현하기에 유리할 수 있다. 이때, 상기 틱소트로픽 지수(TI)는 25℃에서 회전점도계를 이용하여 14번 스핀들로 각 회전수(rpm)에서 측정된 점도를 대입하여 산출된 값이다.In addition, the electrode composition may have a thixotropic index (TI) according to the viscosity measured at 1 rpm and 10 rpm of 3.5 or more, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm of 2.3 or more, through this It may be advantageous to easily implement an electrode with a width and thickness of the same. In this case, the thixotropic index (TI) is a value calculated by substituting the viscosity measured at each rotation speed (rpm) with the 14th spindle using a rotational viscometer at 25°C.
상술한 본 발명의 일 실시예에 따른 전극 조성물은 대기 분위기, 또는 대기 이외의 기체 분위기나 진공 분위기에서 모두 소결이 가능하다. 다만, 대기 분위기로 소결시켜 전극을 구현하는 경우에 있어서 특히 유용할 수 있다. 달리 말하면 대기 분위기에서 소결이 가능하다는 것은 대기 소결로를 사용할 수 있다는 것을 의미하며 이를 통해 장치 설비/유지비를 낮출 수 있고, 운영이 용이하며, 안전한 이점이 있다. 이에 따라서 본 발명에 따른 전극 조성물은, 원가가 본 발명에 따른 은-니켈 분말보다 더 저렴하고 전기적 특성이 양호하나 대기가 아닌 기체 분위기 소결이 요구되어서 분위기 소결을 위한 초기 장치 투자비나 공정 중 별도의 운영비용이 요구되는 니켈이나 구리를 이용한 전극 조성물을 대체하여 보유하고 있는 대기 소결로를 그대로 이용해 전극을 구현시킬 수 있는 이점이 있다. The electrode composition according to an embodiment of the present invention described above may be sintered in an atmospheric atmosphere, or a gas atmosphere other than the atmosphere or a vacuum atmosphere. However, it may be particularly useful in the case of implementing an electrode by sintering in an atmospheric atmosphere. In other words, the possibility of sintering in an atmospheric atmosphere means that an atmospheric sintering furnace can be used, which has the advantages of lower equipment installation/maintenance costs, easy operation, and safety. Accordingly, the electrode composition according to the present invention is cheaper than the silver-nickel powder according to the present invention and has good electrical properties, but requires gas atmosphere sintering instead of atmospheric air. There is an advantage that an electrode can be implemented using the existing atmospheric sintering furnace as it is by replacing the electrode composition using nickel or copper, which requires operating costs.
한편, 본 발명에 따른 전극 조성물은 상술한 소결이 아닌 바인더의 경화방식으로 전극을 형성하는 전극 조성물에서의 도전성 성분으로 사용 가능함을 밝혀둔다. On the other hand, it is disclosed that the electrode composition according to the present invention can be used as a conductive component in the electrode composition for forming the electrode by curing the binder, not the above-described sintering method.
상술한 본 발명의 일 실시예에 의한 전극 조성물은 전극을 구비하는 전자부품인 경우 제한 없이 적용될 수 있다. 상기 전자부품은 콘덴서, 바리스터, 서프레서, 커패시터, 공통모드필터, 인덕터, PTC, Diode, POWER 반도체, SAW FILTER 및 유전체 필터 등과 같은 소자에서부터 혼성집적회로(HIC)와 같은 회로기판에 이르기까지 전극이 구비되는 전자부품은 모두 해당될 수 있다. 또한, 상기 전극 조성물은 전자부품의 내부에 배치되는 내부전극뿐만 아니라 외부 전극에도 사용가능하다. 또한, 900℃ 이상의 온도에서 소결이 가능함에 따라서 900℃ 이상의 온도, 다른 일예로 950℃ 이상의 온도에서 제조가 요구되는 소결형 전자부품에 특히 유용할 수 있다. The electrode composition according to an embodiment of the present invention described above may be applied without limitation in the case of an electronic component having an electrode. The electronic components include elements such as capacitors, varistors, suppressors, capacitors, common mode filters, inductors, PTCs, diodes, POWER semiconductors, SAW filters and dielectric filters, to circuit boards such as hybrid integrated circuits (HICs). All electronic components provided may be applicable. In addition, the electrode composition can be used for the external electrode as well as the internal electrode disposed inside the electronic component. In addition, since sintering is possible at a temperature of 900°C or higher, it may be particularly useful for a sintered electronic component that is required to be manufactured at a temperature of 900°C or higher, for example, at a temperature of 950°C or higher.
본 발명의 일 실시예에 따른 전극 조성물을 이용한 전자부품은 (1) 표면 상에 전극 조성물을 처리하여 전극을 패터닝 하는 단계, 및 (2) 패터닝된 상기 전극을 소결시키는 단계를 포함하여 수행될 수 있다. An electronic component using the electrode composition according to an embodiment of the present invention may include (1) patterning the electrode by treating the electrode composition on the surface, and (2) sintering the patterned electrode. have.
먼저, (1) 단계로써 표면 상에 전극 조성물을 처리하여 전극을 패터닝 하는 단계에 대해 설명하면, 상기 표면은 전자부품 내 전극이 배치되는 영역 상의 표면일 수 있다. 일 예로 상기 표면은 세라믹 소자를 제조하기 위한 미소결된 세라믹 그린시트에서 전극이 구비될 영역 상의 표면일 수 있다. 또는, 상기 표면은 알루미나, AlN, SiC 등의 소결된 세라믹 기판이나 유리 기판, 폴리머 기판 등에서 전극이 구비될 영역 상의 표면일 수 있다. First, if the step of patterning the electrode by treating the electrode composition on the surface as step (1) will be described, the surface may be a surface on a region on which an electrode is disposed in an electronic component. For example, the surface may be a surface on a region in which an electrode is to be provided in an unsintered ceramic green sheet for manufacturing a ceramic element. Alternatively, the surface may be a sintered ceramic substrate such as alumina, AlN, SiC, etc., a glass substrate, a polymer substrate, or the like, on a region where the electrode is to be provided.
상기 전극 조성물은 통상적인 방법으로 목적하는 표면 상에 패터닝될 수 있다. 일 예로 전극 조성물은 디핑, 스크린 인쇄, 전사나염 등의 인쇄방법을 이용해서 구비될 수 있다. The electrode composition may be patterned on a desired surface by a conventional method. For example, the electrode composition may be provided using a printing method such as dipping, screen printing, transfer printing, or the like.
한편, 전극의 구체적인 패터닝 구조, 전극의 폭, 두께, 전극 간 간격 등은 구현하고자 하는 구체적인 전자부품의 기능, 구조, 크기를 고려해 적절히 변경될 수 있으므로 본 발명은 이에 대해서는 특별히 한정하지 않는다. On the other hand, the specific patterning structure of the electrode, the width, thickness, the distance between the electrodes, etc. may be appropriately changed in consideration of the function, structure, and size of the specific electronic component to be implemented, so the present invention is not particularly limited thereto.
다음으로 본 발명에 따른 (2) 단계로서, 패터닝된 상기 전극을 소결시키는 단계를 수행한다. Next, as the step (2) according to the present invention, a step of sintering the patterned electrode is performed.
상기 (2) 단계에서 소결의 조건은 상술한 것과 같이 대기 분위기인 것에 제한되지는 않으나, 제조설비, 제조비용, Ag-Pd 전극재료의 대체 목적을 고려했을 때 대기 분위기 하에서 수행될 수 있다. 더욱 구체적으로는 대기 분위기 하에서 800 ~ 1050℃ 온도, 보다 바람직하게는 900 ~ 1050℃, 보다 더 바람직하게는 950 ~ 1050℃, 더 바람직하게는 950 ~ 1000℃에서 수행될 수 있다. 만일 소결 온도가 800℃ 미만일 경우 소결이 완전히 이루어지지 않아서 비저항값 등 전기적 특성이 목적하는 수준으로 발현되기 어려울 수 있다. 또한, 소결 온도가 1050℃를 초과하는 경우 은이 완전히 용융되어 전극 표면에 용출될 수 있고, 이로 인해 전극의 외관품질 저하, 전극 위치별 비저항의 불균일 및 비저항 자체가 현저히 증가할 우려가 있다. 또한, 전극 부위별 수축률 또한 불균일해 질 수 있다. 한편, 전극의 수축률 불균일의 문제는 전극과 세라믹 그린시트가 함께 소결되는 동시소결 시 더욱 문제될 수 있으며, 그린시트와의 부위별 수축률 차이로 인해 전극의 크랙, 박리 등을 유발시킬 수 있다.The sintering condition in step (2) is not limited to the atmospheric atmosphere as described above, but may be performed in the atmospheric atmosphere in consideration of the manufacturing equipment, manufacturing cost, and the purpose of replacing the Ag-Pd electrode material. More specifically, it may be carried out at a temperature of 800 to 1050° C., more preferably 900 to 1050° C., still more preferably 950 to 1050° C., and still more preferably 950 to 1000° C. under an atmospheric atmosphere. If the sintering temperature is less than 800° C., sintering is not completely performed, so it may be difficult to express electrical characteristics such as specific resistance at a desired level. In addition, when the sintering temperature exceeds 1050° C., silver may be completely melted and eluted on the surface of the electrode, which may cause deterioration in appearance quality of the electrode, non-uniformity of resistivity for each electrode location, and a significant increase in resistivity itself. In addition, the shrinkage rate for each electrode portion may also become non-uniform. On the other hand, the non-uniformity of the shrinkage rate of the electrode may be more problematic when the electrode and the ceramic green sheet are sintered together at the same time sintering, and cracks and peeling of the electrode may be caused due to the difference in the shrinkage rate of each part with the green sheet.
또한, 상기 (2) 단계는 1 ~ 4 시간 동안 수행될 수 있는데, 또한, 소결 시간이 1시간 미만일 경우 Ag-Ni 전극의 소결이 완전하지 못하여 목적하는 수준의 전기적 특성을 발현하기 어려울 수 있다. 또한, 전자부품이 세라믹 소자이고, 패터닝된 전극과 세라믹 그린시트를 동시 소결시키는 경우에 전극은 완전히 소결되더라도 세라믹 그린시트의 소결이 완료되지 않을 수 있다. 또한, 만일 소결 시간이 4시간을 초과할 경우 Ag-Ni 전극이 과소결될 수 있다. 또한, 전자부품이 세라믹 소자이고 세라믹 그린시트와 전극을 동시소결하는 경우에 세라믹 그린시트 역시 과소결 되어 그레인 성장이 과도함에 따라서 목적하는 세라믹 특성을 구현하지 못할 수 있다. In addition, the step (2) may be performed for 1 to 4 hours. Also, if the sintering time is less than 1 hour, the sintering of the Ag-Ni electrode may not be complete and it may be difficult to express a desired level of electrical properties. In addition, when the electronic component is a ceramic element and the patterned electrode and the ceramic green sheet are simultaneously sintered, the sintering of the ceramic green sheet may not be completed even if the electrode is completely sintered. Also, if the sintering time exceeds 4 hours, the Ag-Ni electrode may be undersintered. In addition, when the electronic component is a ceramic element and the ceramic green sheet and the electrode are simultaneously sintered, the ceramic green sheet is also undersintered, and thus the desired ceramic properties may not be realized as the grain growth is excessive.
상술한 제조방법을 통해 제조된 본 발명의 일 실시예에 의한 전자부품은 다수 개의 전극을 구비하는 전자부품으로서, 상기 다수 개의 전극 중 일부 또는 전부가 본 발명에 따른 전극 조성물이 소결되어 형성된 은-니켈 전극으로 구현된다. The electronic component according to an embodiment of the present invention manufactured through the above-described manufacturing method is an electronic component having a plurality of electrodes, and some or all of the plurality of electrodes are formed by sintering the electrode composition according to the present invention. It is implemented with a nickel electrode.
상기 전자부품은 상술한 것과 같이 소자나 회로기판 등 전극이 구비된 공지의 전자부품일 수 있다. 또한, 상기 전극은 다수 개로 포함되는데, 다수 개 중 일부는 전자부품의 외표면에 배치되는 외부전극일 수 있고, 나머지는 전자부품 내부에 배치되는 내부전극일 수 있다. 또는 다수 개 전극 모두 외부전극 또는 내부전극일 수 있다. 또한, 다수 개의 상기 전극 중 적어도 하나의 전극은 본 발명의 일 실시예에 따른 은-니켈 전극으로 구현된다. The electronic component may be a known electronic component provided with an electrode, such as an element or a circuit board, as described above. In addition, the plurality of electrodes may be included, some of which may be external electrodes disposed on the outer surface of the electronic component, and the remainder may be internal electrodes disposed inside the electronic component. Alternatively, all of the plurality of electrodes may be external electrodes or internal electrodes. In addition, at least one of the plurality of electrodes is implemented as a silver-nickel electrode according to an embodiment of the present invention.
전자부품이 본 발명에 따른 전극조성물을 통해 소결된 전극을 가짐으로써 전극 표면에 은이 용융되어 용출되는 것이 최소화 또는 방지되며, 낮은 비저항값을 구현하기 보다 유리할 수 있다. 이러한 상기 은-니켈 전극은 비저항이 4.5μΩ㎝ 이하, 보다 바람직하게는 3.0 μΩ㎝ 이하로써 전극으로써 우수한 전기적 특성을 발현할 수 있다. Since the electronic component has an electrode sintered through the electrode composition according to the present invention, silver is melted and eluted on the electrode surface is minimized or prevented, and it may be advantageous to implement a low resistivity value. The silver-nickel electrode has a specific resistance of 4.5 μΩcm or less, and more preferably 3.0 μΩcm or less, thereby exhibiting excellent electrical properties as an electrode.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.The present invention will be described in more detail through the following examples, but the following examples are not intended to limit the scope of the present invention, which should be construed to aid understanding of the present invention.
<실시예1><Example 1>
하기 준비예1에 따라서 수득된 도 1에 도시된 것과 같은 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상을 포함하고, 2θ 38.2 ± 0.1° 에서 피크를 갖지 않는 XRD 패턴을 가지는 도 2에 도시된 것과 같은 은-니켈 분말을 준비했다. 준비된 은-니켈 분말은 은 91.7중량%, 니켈 8.3중량%로 이루어진 분말로써, BET 비표면적이 2.82㎡/g이고, 레이저 회절 산란법을 통해서 측정된 체적기준의 값으로써 1차 입자에 대해서 D10 0.29㎛, D50 0.64㎛, D90 1.11㎛인 입도분포를 가졌다. As shown in FIG. 2, including a crystalline phase having a peak at 2θ 38.5±0.1° as shown in FIG. 1 obtained according to Preparation Example 1 below, and having an XRD pattern having no peak at 2θ 38.2±0.1° A silver-nickel powder was prepared. The prepared silver-nickel powder is a powder composed of 91.7% by weight of silver and 8.3% by weight of nickel, has a BET specific surface area of 2.82m2/g, and is a volume-based value measured through laser diffraction scattering method. D 10 for primary particles It had a particle size distribution of 0.29 μm, D 50 0.64 μm, and D 90 1.11 μm.
준비된 은-니켈 분말을 전극 조성물로 구현하기 위해서 최종 전극 조성물 전체 중량 기준 은-니켈 분말 80중량%, 바인더(DOW Chemical, EC10) 12중량%, 분산제(NOF Corporation, 221P) 1중량%, 용매로써 부틸 카르비톨 아세테이트(butyl carbitol acetate) 5중량% 및 테르피네올 2중량%가 되도록 혼합하여 하기 표 1과 같은 전극 조성물을 제조했다. In order to implement the prepared silver-nickel powder as an electrode composition, 80% by weight of silver-nickel powder, 12% by weight of binder (DOW Chemical, EC10), 1% by weight of dispersant (NOF Corporation, 221P), based on the total weight of the final electrode composition, 1% by weight, as a solvent An electrode composition as shown in Table 1 was prepared by mixing butyl carbitol acetate in 5 wt% and terpineol in 2 wt%.
이때, 제조된 전극 조성물은 1rpm 및 10rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)(1/10)가 4.13이었고, 10rpm 및 100rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)(10/100)가 2.63이었다. At this time, the prepared electrode composition had a thixotropic index (TI) (1/10) according to the viscosity measured at 1 rpm and 10 rpm of 4.13, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm (10/100) ) was 2.63.
* 준비예1* Preparation Example 1
플라즈마 토치부, 플라즈마 용해로, 도가니, 원료투입부, 냉각관 및 포집기로 구성된 이송식 아크플라즈마 장치의 원료 투입부에 은과 니켈 원료 분말을 9:1의 중량비로 혼합하여 투입한 뒤 토치부의 음극과 양극으로써 원료 분말 사이 거리를 7㎜가 되도록 하고, 음극 팁과 원료 분말의 각도를 35 ± 10°범위 안에 들어오도록 하고, 아크 분위기를 질소:수소:아르곤 = 70:15:15 부피비가 되도록 조성한 뒤 점화 전 아크 분위기 압력을 0.8기압으로 조정한 뒤 아크 전류를 230A로 가해 원료 분말을 기화시켰고, 기화된 원료를 냉각관 및 포집기로 이송시켰다. 이때 사용된 퀜칭가스로 질소를 사용했고, 분급 및 건조과정을 거쳐서 은-니켈 분말을 수득했다.After mixing silver and nickel raw material powder in a weight ratio of 9:1 to the raw material input part of the transfer arc plasma device consisting of the plasma torch part, plasma melting furnace, crucible, raw material input part, cooling tube and collector, the cathode and the cathode of the torch part As an anode, the distance between the raw material powder should be 7mm, the angle between the cathode tip and the raw material powder should be within the range of 35 ± 10°, and the arc atmosphere should be nitrogen:hydrogen:argon = 70:15:15 volume ratio. After adjusting the arc atmospheric pressure before ignition to 0.8 atm, an arc current of 230A was applied to vaporize the raw material powder, and the vaporized raw material was transferred to a cooling tube and a collector. At this time, nitrogen was used as the quenching gas used, and silver-nickel powder was obtained through classification and drying processes.
<비교예1><Comparative Example 1>
도 1에 도시된 것과 같이, 2θ 38.2 ± 0.1° 에서 피크를 가지나, 2θ 38.5 ± 0.1°에서 피크를 갖지 않는 XRD 패턴을 가지며, 하기 준비예2와 같이 습식 공침법을 이용해 제조된 은-니켈 분말을 준비했다. 준비한 은-니켈분말은 은으로 이루어진 91.0중량%의 코어부 상에 니켈로 코팅된 9중량% 쉘부가 형성된 도 3에 도시된 분말로써, BET 비표면적이 1.87㎡/g이고, 레이저 회절 산란법을 통해서 측정된 체적기준의 값으로써 1차 입자에 대해서 D10 0.93㎛, D50 1.57㎛, D90 2.95㎛인 입도분포를 가졌다. 이와 같은 은-니켈 분말을 이용해 실시예1과 동일하게 실시하여 하기 표 1과 같은 전극조성물을 제조했다. 이때, 제조된 전극 조성물은 1rpm 및 10rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)(1/10)가 2.18이었고, 10rpm 및 100rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)(10/100)가 1.96이었다. As shown in FIG. 1 , silver-nickel powder having an XRD pattern having a peak at 2θ 38.2 ± 0.1° but not having a peak at 2θ 38.5 ± 0.1°, and prepared using a wet co-precipitation method as in Preparation Example 2 below. prepared The prepared silver-nickel powder is the powder shown in FIG. 3 in which a 9 wt% shell part coated with nickel is formed on a 91.0 wt% core part made of silver. As a volume-based value measured through the primary particles, it had a particle size distribution of D 10 0.93 μm, D 50 1.57 μm, and D 90 2.95 μm. An electrode composition as shown in Table 1 was prepared in the same manner as in Example 1 using the silver-nickel powder. At this time, the prepared electrode composition had a thixotropic index (TI) (1/10) of 2.18 according to the viscosity measured at 1 rpm and 10 rpm, and a thixotropic index (TI) according to the viscosity measured at 10 rpm and 100 rpm (10/100) ) was 1.96.
*준비예2*Preparation example 2
먼저, 순수한 은(Ag)과 니켈(Ni)을 은 90g, 니켈 10g의 조성비로 칭량하여 125cc의 질산(HNO3) 수용액에 용해한 후 교반기에서 균일하게 혼합하여 은-니켈 질산수용액을 제조했으며, 이때, 용액의 온도는 70℃로 유지시켰다. 이후 증류수에 알칼리 탄산염을 용해하여 일정 조성의 알칼리 탄산염 수용액을 제조한 후, 이 용액에 별도로 준비된 은-니켈 질산수용액 일정량을 적하하여 연녹색의 은-니켈 탄산염((Ag,Ni)C03) 분말을 공침시켰으며, pH가 5.5 이하가 되지 않도록 pH를 조절했다. 이후 순수한 분말을 얻을 수 있도록, 공침이 완료된 상기 은-니켈 탄산염 분말을 여과하여 용액을 제거한 후 수세·건조해 은-니켈 탄산염 분말만을 얻었다. 이후 수득된 공침된 은-니켈 탄산염 분말을 고온의 환원성 분위기(H2)에서 열처리하여 은-니켈 탄산염 분말에 열분해와 환원반응이 동시에 일어난 순수한 은-니켈 분말을 수득했다. First, pure silver (Ag) and nickel (Ni) were weighed at a composition ratio of 90 g of silver and 10 g of nickel , dissolved in 125 cc of nitric acid (HNO 3 ) aqueous solution, and then uniformly mixed in a stirrer to prepare a silver-nickel nitrate solution, at this time , the temperature of the solution was maintained at 70 °C. After dissolving alkali carbonate in distilled water to prepare an aqueous alkali carbonate solution of a certain composition, a predetermined amount of separately prepared silver-nickel nitrate aqueous solution is added dropwise to this solution, and light green silver-nickel carbonate ((Ag,Ni)C03) powder is coprecipitated. and the pH was adjusted so that the pH did not become 5.5 or less. Thereafter, the silver-nickel carbonate powder, which has been co-precipitated, was filtered to remove the solution, and then washed and dried to obtain only the silver-nickel carbonate powder to obtain a pure powder. Thereafter, the obtained coprecipitated silver-nickel carbonate powder was heat treated in a high temperature reducing atmosphere (H 2 ) to obtain pure silver-nickel powder in which thermal decomposition and reduction reaction were simultaneously performed in the silver-nickel carbonate powder.
<비교예2><Comparative Example 2>
실시예1과 동일하게 실시하여 제조하되, 은-니켈 분말 대신에 D50값이 0.2 ~ 1.0㎛에 속하는 은-팔라듐 분말(DAIKEN Cehmical, GDA-9010)을 이용해 하기 표 1과 같은 전극 조성물을 제조했다. It was prepared in the same manner as in Example 1, but instead of the silver-nickel powder, silver-palladium powder (DAIKEN Cehmical, GDA-9010) having a D50 value of 0.2 to 1.0 μm was used to prepare an electrode composition as shown in Table 1 below. .
<실험예1><Experimental Example 1>
실시예1, 비교예1 및 비교예2에서 제조된 전극 조성물을 알루미나기판 상에 선폭 0.7mm, 길이 400mm로 도 4a 및 도 5b와 같이 지그재그 패턴을 가지도록 스크린 인쇄한 뒤 건조시키고, 하기 표 1과 같이 대기 분위기 하에서 소결온도를 달리하여 2시간 동안 소결시켜서 전극을 제조했고, 제조된 전극에 대해서 비저항 및 수축율을 측정하여 하기 표 1에 나타내었다. The electrode compositions prepared in Example 1, Comparative Example 1 and Comparative Example 2 were screen-printed to have a zigzag pattern as shown in FIGS. 4A and 5B with a line width of 0.7 mm and a length of 400 mm on an alumina substrate, followed by drying, and Table 1 below. Electrodes were prepared by sintering for 2 hours at different sintering temperatures under an atmospheric atmosphere, as shown in Table 1 below by measuring specific resistance and shrinkage of the prepared electrodes.
이때, 비저항은 소결된 전극 단자의 양끝에서 저항을 측정하여, 하기의 식1로 계산하였다.At this time, the specific resistance was calculated by the following Equation 1 by measuring the resistance at both ends of the sintered electrode terminal.
[식 1][Equation 1]
비저항 = 단면적(㎠)×저항(R)/길이(㎝)Specific resistance = cross-sectional area (cm2)×resistance (R)/length (cm)
여기서 단면적은 전극 선폭과 소결된 전극의 두께의 곱으로 계산된다.Here, the cross-sectional area is calculated as the product of the electrode line width and the thickness of the sintered electrode.
또한, 수축율은 전극 패턴을 인쇄 후 100℃ 10분 동안 건조한 후 전극 평균두께를 측정하고, 소결 후 전극 평균두께를 측정하여 하기 식2로 계산한 값을 수축율로 하였다.In addition, the shrinkage ratio was measured by measuring the average electrode thickness after drying the electrode pattern at 100° C. for 10 minutes after printing, and measuring the electrode average thickness after sintering. The value calculated by the following formula 2 was used as the shrinkage ratio.
[식 2] [Equation 2]
수축율(%) = (소결 후 전극 평균두께(㎛)/건조 후 전극 평균두께(㎛)) × 100Shrinkage (%) = (Average thickness of electrode after sintering (㎛) / Average thickness of electrode after drying (㎛)) × 100
실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2
도전성 성분(중량%)Conductive component (wt%) Ag91.7/Ni8.3Ag91.7/Ni8.3 Ag90/Ni10Ag90/Ni10 Ag90/Pd10Ag90/Pd10
은-니켈 분말 XRD 상 피크 유무 (2θ)Silver-nickel powder XRD phase with or without peak (2θ) 38.5 ± 0.1°38.5 ± 0.1° ×× --
38.2 ± 0.1°38.2 ± 0.1° ×× --
소결조건Sintering conditions 분위기atmosphere 대기Waiting 대기Waiting 대기Waiting
소결전극 두께(㎛)Sintered electrode thickness (㎛) 6.666.66 9.009.00 5.065.06
소결온도 별
비저항(μΩcm)
by sintering temperature
Resistivity (μΩcm)
900℃900℃ 3.113.11 7.177.17 7.787.78
950℃950℃ 2.832.83 5.625.62 7.587.58
1000℃1000℃ 2.392.39 5.205.20 6.976.97
1050℃1050℃ 4.214.21 16.7916.79 미실시not done
소결온도 별
수축율(%)
by sintering temperature
Shrinkage (%)
900℃900℃ 19.1419.14 12.9012.90 54.2354.23
950℃950℃ 39.2739.27 48.0248.02 55.0455.04
1000℃1000℃ 42.1142.11 61.9061.90 60.3160.31
1050℃1050℃ 44.9444.94 71.3371.33 미실시not done
표 1을 통해 확인할 수 있듯이, 실시예1에 따른 전극조성물은 900 ~ 1050℃로 소결 후 비저항이 4.21 μΩcm 이하로 매우 우수한 것을 알 수 있다. 그러나 비교예1에 따른 전극조성물은 1000℃에 4.01 μΩcm 수준의 비저항값을 갖는 것으로 측정되었으나 1050℃에 비저항값이 4배 가량 증가했고, 이러한 결과는 은의 용출 후 높은 소결온도로 인해 은이 휘발됨에 따른 저항증가와 대기 분위기 하 소결에 따른 산화니켈의 증가로 저항이 증가된 것이 더해져 상승된 저항증가 있었음을 확인할 수 있다. As can be seen from Table 1, it can be seen that the electrode composition according to Example 1 has a very excellent resistivity of 4.21 μΩcm or less after sintering at 900 to 1050° C. However, the electrode composition according to Comparative Example 1 was measured to have a resistivity value of 4.01 μΩcm at 1000°C, but the resistivity value increased by about 4 times at 1050°C. It can be confirmed that there was an increase in resistance due to the increase in resistance and the increase in resistance due to the increase in nickel oxide due to sintering under atmospheric atmosphere.
한편, 비교예2와 대비했을 때, 실시예1의 전극 조성물은 더 낮은 재료단가를 가지면서도 더 우수한 전기전도도 특성 및 대기 분위기 하 소결이 가능함을 확인할 수 있다. On the other hand, when compared with Comparative Example 2, it can be seen that the electrode composition of Example 1 has a lower material cost, and has better electrical conductivity properties and sintering under an atmospheric atmosphere.
또한, 실시예1에 따른 전극조성물은 소결온도에 따른 수축율에 있어서 비교예1에 따른 전극조성물에 대비해 균일한 것을 알 수 있다. In addition, it can be seen that the electrode composition according to Example 1 is more uniform than the electrode composition according to Comparative Example 1 in terms of shrinkage according to the sintering temperature.
<실험예2><Experimental Example 2>
실험예1에 따라서 구현된 실시예1 및 비교예1에 따른 소결전극 중 950℃에서 소결된 소결전극에 대한 광학현미경 사진을 촬영하였고, 그 결과를 도 4a 내지 도 5b에 나타내었다. Among the sintered electrodes according to Example 1 and Comparative Example 1 implemented according to Experimental Example 1, optical micrographs of the sintered electrode sintered at 950° C. were taken, and the results are shown in FIGS. 4A to 5B.
구체적으로 도 4a 및 도 4b를 통해 확인할 수 있듯이, 실시예1에 따른 전극조성물로 구현된 소결전극은 950℃로 소결되었음에도 은의 용출이 관찰되지 않았다. 그러나 도 5a 및 도 5b와 같이 비교예1에 따른 전극조성물의 경우 950℃에서 은의 용출이 발생함을 확인할 수 있다. Specifically, as can be seen through FIGS. 4A and 4B , in the sintered electrode implemented with the electrode composition according to Example 1, silver elution was not observed even after being sintered at 950°C. However, as shown in FIGS. 5A and 5B , in the case of the electrode composition according to Comparative Example 1, it can be confirmed that the elution of silver occurs at 950°C.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention can add components within the scope of the same spirit. , changes, deletions, additions, etc. may easily suggest other embodiments, but this will also fall within the scope of the present invention.

Claims (13)

  1. XRD 패턴 상에서 2θ 38.5 ± 0.1°에서 피크를 갖는 결정상을 포함하는 은-니켈 분말을 도전성 성분으로써 포함하는 전극 조성물.An electrode composition comprising, as a conductive component, a silver-nickel powder including a crystalline phase having a peak at 2θ 38.5 ± 0.1° on an XRD pattern.
  2. 제1항에 있어서,According to claim 1,
    상기 전극 조성물은 900℃ 이상의 온도에서 소결되는 소결형 전자부품의 전극 용도인 것을 특징으로 하는 전극 조성물.The electrode composition is an electrode composition, characterized in that for use as an electrode of a sintered electronic component sintered at a temperature of 900 °C or higher.
  3. 제1항에 있어서,According to claim 1,
    상기 은-니켈 분말은 니켈을 0.5 ~ 20 중량%로 포함하는 것을 특징으로 하는 전극 조성물.The silver-nickel powder is an electrode composition, characterized in that it contains 0.5 to 20% by weight of nickel.
  4. 제1항에 있어서, According to claim 1,
    상기 은-니켈 분말은 BET 비표면적이 1.0 ~ 4.0㎡/g이고, 1차 입자의 D50이 2.0㎛ 이하인 것을 특징으로 하는 전극 조성물.The silver-nickel powder has a BET specific surface area of 1.0 to 4.0 m 2 /g, and the D50 of the primary particles is 2.0 μm or less.
  5. 제1항에 있어서,According to claim 1,
    상기 은-니켈 분말은 XRD 패턴 상에서 2θ 38.2 ± 0.1° 에서 피크를 갖지 않는 것을 특징으로 하는 전극 조성물.The silver-nickel powder electrode composition, characterized in that it does not have a peak at 2θ 38.2 ± 0.1° on the XRD pattern.
  6. 제1항에 있어서, According to claim 1,
    상기 전극 조성물은 대기 분위기에서 1050℃의 온도로 2시간 소결 시 비저항이 4.5μΩ·㎝ 이하인 전극으로 구현되는 것을 특징으로 하는 전극 조성물.The electrode composition is an electrode composition, characterized in that it is implemented as an electrode having a specific resistance of 4.5 μΩ·cm or less when sintered for 2 hours at a temperature of 1050° C. in an atmospheric atmosphere.
  7. 제1항에 있어서,According to claim 1,
    상기 전극 조성물은 1rpm 및 10rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 3.5 이상이고, 10rpm 및 100rpm에서 측정된 점도에 따른 틱소트로픽 지수(T.I)가 2.3 이상인 것을 특징으로 하는 전극 조성물.The electrode composition has a thixotropic index (T.I) according to the viscosity measured at 1 rpm and 10 rpm of 3.5 or more, and the thixotropic index (T.I) according to the viscosity measured at 10 rpm and 100 rpm is 2.3 or more.
  8. (1) 표면 상에 제1항 내지 제7항 중 어느 한 항에 따른 전극 조성물을 처리하여 전극을 패터닝 하는 단계; 및(1) patterning the electrode by treating the electrode composition according to any one of claims 1 to 7 on the surface; and
    (2) 패터닝된 상기 전극을 소결시키는 단계;를 포함하는 전자부품 제조방법.(2) sintering the patterned electrode; Electronic component manufacturing method comprising a.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 (1) 단계의 표면은 미소결된 세라믹 그린시트의 표면 또는 소결된 세라믹 기판의 표면인 것을 특징으로 하는 전자부품 제조방법.The method of manufacturing an electronic component, characterized in that the surface of step (1) is the surface of the unsintered ceramic green sheet or the surface of the sintered ceramic substrate.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 (2) 단계는 대기 분위기 하에서 800 ~ 1050℃ 온도에서 수행되는 것을 특징으로 하는 전자부품 제조방법.The step (2) is an electronic component manufacturing method, characterized in that it is performed at a temperature of 800 ~ 1050 ℃ under atmospheric atmosphere.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 미소결된 세라믹 그린시트는 900℃ 이상의 온도에서 소결되는 것을 특징으로 하는 전자부품 제조방법.The method for manufacturing an electronic component, characterized in that the unsintered ceramic green sheet is sintered at a temperature of 900 °C or higher.
  12. 다수 개의 전극을 구비하는 전자부품으로서, 상기 다수 개의 전극 중 일부 또는 전부가 제1항 내지 제7항 중 어느 한 항에 따른 전극조성물이 소결되어 형성된 은-니켈 전극인 전자부품.An electronic component having a plurality of electrodes, wherein some or all of the plurality of electrodes are silver-nickel electrodes formed by sintering the electrode composition according to any one of claims 1 to 7.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 은-니켈 전극은 비저항이 4.5μΩ·㎝ 이하인 것을 특징으로 하는 전자부품.The silver-nickel electrode has a specific resistance of 4.5 μΩ·cm or less.
PCT/KR2021/003768 2020-03-26 2021-03-26 Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith WO2021194299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0036885 2020-03-26
KR20200036885 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021194299A1 true WO2021194299A1 (en) 2021-09-30

Family

ID=77892099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003768 WO2021194299A1 (en) 2020-03-26 2021-03-26 Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith

Country Status (2)

Country Link
KR (1) KR102463361B1 (en)
WO (1) WO2021194299A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000007638A (en) * 1998-07-06 2000-02-07 윤문수 Fine silver-nickel alloy powder having excellent dispersion and producing method thereof
JP2010189680A (en) * 2009-02-16 2010-09-02 Dowa Electronics Materials Co Ltd Metal nickel particle powder and fluid dispersion thereof, and method for producing metal nickel particle powder
KR20140048465A (en) * 2012-10-15 2014-04-24 주식회사 엘지화학 Ag paste composition for forming electrode and silicon solar cell using the same
JP2014093517A (en) * 2012-11-05 2014-05-19 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic part, and manufacturing method thereof
US20140374669A1 (en) * 2013-06-20 2014-12-25 Plant PV Core-shell nickel alloy composite particle metallization layers for silicon solar cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990019788A (en) 1997-08-29 1999-03-15 조희재 Internal electrode nickel paste composition for reducing atmosphere firing
JP2002348603A (en) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
CA2359347A1 (en) * 2001-10-18 2003-04-18 Cesur Celik Laminated ceramic capacitor internal electrode material
KR20130111000A (en) * 2012-03-30 2013-10-10 삼성전기주식회사 Laminated ceramic electronic parts and fabricating method thereof
KR102248526B1 (en) * 2013-07-23 2021-05-06 삼성전기주식회사 Nickel powder for internal electrode, multi-layered ceramic capacitor and circuit board for mounting the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000007638A (en) * 1998-07-06 2000-02-07 윤문수 Fine silver-nickel alloy powder having excellent dispersion and producing method thereof
JP2010189680A (en) * 2009-02-16 2010-09-02 Dowa Electronics Materials Co Ltd Metal nickel particle powder and fluid dispersion thereof, and method for producing metal nickel particle powder
KR20140048465A (en) * 2012-10-15 2014-04-24 주식회사 엘지화학 Ag paste composition for forming electrode and silicon solar cell using the same
JP2014093517A (en) * 2012-11-05 2014-05-19 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic part, and manufacturing method thereof
US20140374669A1 (en) * 2013-06-20 2014-12-25 Plant PV Core-shell nickel alloy composite particle metallization layers for silicon solar cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM DONG-WOOK, KIM TAE-HEE, PARK DONG-WHA: "Preparation of silver coated nickel particles by thermal plasma with pre-treatment using ball milling", ADVANCED POWDER TECHNOLOGY, vol. 29, no. 11, 1 November 2018 (2018-11-01), NL, pages 2686 - 2692, XP055853435, ISSN: 0921-8831, DOI: 10.1016/j.apt.2018.07.018 *

Also Published As

Publication number Publication date
KR102463361B1 (en) 2022-11-07
KR20210120897A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US4714570A (en) Conductor paste and method of manufacturing a multilayered ceramic body using the paste
US4695403A (en) Thick film conductor composition
GB2303488A (en) Monolithic ceramic capacitor and method of producing the same
US5407473A (en) Conductive ink
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021194299A1 (en) Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith
JP2007066671A (en) Chip type fuse element and its manufacturing method
CN113707359B (en) Electrode paste, conductive thick film and preparation method thereof
JP2006339105A (en) Chip type fuse element and manufacturing method thereof
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP2601554B2 (en) Method of manufacturing thick film hybrid circuit
KR920001452B1 (en) Resistance materials and making method there of
JPH0555075A (en) Conductor paste for electrode of ceramic capacitor
US7560406B2 (en) Ceramic material and laminated ceramic condenser comprised thereof
WO2017025943A1 (en) Lead-free thick film resistant composition, lead-free thick film resistor, and method for manufacturing same
US11228080B2 (en) Dielectric filter and method for manufacturing the same
US6190790B1 (en) Resistor material, resistive paste and resistor using the resistor material, and multi-layered ceramic substrate
WO2018147713A1 (en) Lead-free thick film resistor and electronic component comprising same
WO2024048851A1 (en) Method for producing co-firable copper-zinc alloy powder for multilayer ceramic device, copper-zinc alloy powder produced thereby, electrode paste comprising same, and multilayer ceramic device
JP2001118424A (en) Copper alloy powder for conductive paste
JP2841586B2 (en) Conductive paste
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH0341997B2 (en)
CA1146740A (en) Air fireable end termination compositions for multilayer capacitors based on nickel borides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776189

Country of ref document: EP

Kind code of ref document: A1