WO2018147713A1 - Lead-free thick film resistor and electronic component comprising same - Google Patents

Lead-free thick film resistor and electronic component comprising same Download PDF

Info

Publication number
WO2018147713A1
WO2018147713A1 PCT/KR2018/001903 KR2018001903W WO2018147713A1 WO 2018147713 A1 WO2018147713 A1 WO 2018147713A1 KR 2018001903 W KR2018001903 W KR 2018001903W WO 2018147713 A1 WO2018147713 A1 WO 2018147713A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
thick film
film resistor
free thick
network
Prior art date
Application number
PCT/KR2018/001903
Other languages
French (fr)
Korean (ko)
Inventor
우동준
이혜성
김경용
강성학
임종찬
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to JP2019543789A priority Critical patent/JP6975246B2/en
Priority to CN201880024662.9A priority patent/CN110494937B/en
Publication of WO2018147713A1 publication Critical patent/WO2018147713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors

Definitions

  • the present invention relates to a lead-free thick film resistor and an electronic component comprising the same. More specifically, a lead-free thick film resistor having improved temperature characteristics, current noise, overload characteristics, and antistatic characteristics in a wide range of resistances even though lead components are removed by forming a double network structure in which the first network and the second network cross each other. And it relates to an electronic component comprising the same.
  • Thick film resistor compositions for the manufacture of thick film resistors generally consist of an organic vehicle composed of a glass component, a conductor material, a binder, and a solvent to control resistance and impart bonding properties. After printing on the substrate, the thick film resistor is formed by firing.
  • the conventional thick film resistance composition uses lead, such as glass components, such as lead oxide type glass, and electroconductive materials, such as ruthenium oxide or the compound of ruthenium oxide and lead, and contains lead.
  • lead such as glass components, such as lead oxide type glass
  • electroconductive materials such as ruthenium oxide or the compound of ruthenium oxide and lead
  • ruthenium (RuO 2) based thick film resistor Thiick Film Resistor
  • RuO 2 thick film resistor
  • glass containing lead has been recently banned due to environmental regulations, and is known to be incompatible with the aluminum nitride substrate due to low adhesion and blister generation.
  • oxides especially lead oxide (PbO)
  • PbO lead oxide
  • aluminum nitride which is a substrate
  • Pb lead oxide
  • nitrogen gas is generated, which may cause low adhesion. Therefore, it is important to select a lead-free glass composition that does not contain lead and has good mutual bonding with aluminum nitride.
  • the temperature resistance coefficient of the final thick film resistance is controlled by adjusting the composition of the glass component or adding a component having a low resistance temperature coefficient. It is necessary to make an effort to lower it.
  • Patent Document 1 provides a resistor having a high resistance value and a low temperature characteristic and a short time overload by using a glass component substantially free of lead and NiO.
  • a resistive paste that can be used is disclosed.
  • Patent Document 2 uses a ruthenium oxide (RuO 2 ) powder having a rutile crystal structure to determine the content of ruthenium.
  • the composition for thick film resistors and thick film resistors which have sufficient performance even if low is disclosed.
  • the glass component is changed or ruthenium oxide having a rutile crystal structure is used as described above, the growth of particles is suppressed during firing of the resist composition, so that the resistivity is lowered and the resistance value stability and temperature characteristics of the thick film resistor ( Electrical characteristics such as TCR) and C-Noise were significantly reduced.
  • the RuO 2 powder and the glass component are generally mixed in the preparation of the resist composition, it is difficult to obtain a uniform mixing state between the components. Because of this, it is difficult to obtain a uniform microstructure after firing in the thick-film resistor, and as a result, the change of the electrical properties of the thick-film resistor increased, so that the stability of the thick-film resistor remained.
  • the present invention comprises a first network derived from the first glass precursor mixture and ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network cross each other to provide a lead-free thick film resistor. do.
  • first network and the second network form a cross-linked structure to form a double network structure, fine conductive paths are uniformly formed so that temperature characteristics, resistance dispersion, current noise, overload characteristics and
  • An object of the present invention is to provide a lead-free thick film resistor having improved antistatic properties.
  • Another object of the present invention is to provide an electronic component including the lead-free thick film resistor described above.
  • the second network may form a continuous phase and the first network may form a dispersed phase in the continuous phase, and the dispersed phase may form a crosslinked structure.
  • the first glass precursor mixture and the second glass precursor mixture may further include any one or a mixture of two or more selected from transition metal oxides, alkali metal oxides and alkaline earth metal oxides.
  • the transition metal oxide is any one or a mixture of two or more selected from Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2 , WO 3 and ZnO, wherein the alkali metal oxide is Na 2 O, a mixture or two or more of any one selected from K 2 O and Li 2 O, the alkaline earth metal oxide may be any one or a mixture of two or more selected from SrO, CaO and MgO.
  • the softening point T 1 of the first glass precursor mixture may be 600 to 800 ° C.
  • the softening point T 2 of the second glass precursor mixture may be 500 to 700 ° C.
  • the softening point (T 1 ) of the first glass precursor mixture and the softening point (T 2 ) of the second glass precursor mixture may be 50 to 150 °C T 1 -T 2 .
  • the lead-free thick film resistor may have a peak area intensity that satisfies Equation 1 in an X-ray diffraction pattern using CuK ⁇ rays.
  • the lead-free thick film resistor may have a peak area intensity ratio that satisfies Equation 2 in an X-ray diffraction pattern using CuK ⁇ rays.
  • the lead-free thick film resistor has a resistance (Rs) of 10 ⁇ / ⁇ to 10M ⁇ / ⁇ , the resistance value distribution (CV) may be 5% or less.
  • the lead-free thick film resistor may have a number of bubbles of 20 ⁇ m or more in a diameter of 1 mm ⁇ 1 mm or less.
  • the present invention may be an electronic component including the lead-free thick film resistor described above.
  • the electronic component may be a circuit board, a chip resistor, an isolator device, a C-R composite device, a module device, a capacitor, or an inductor.
  • the lead-free thick film resistor according to the present invention has the advantage that the temperature characteristics, current noise, overload characteristics and antistatic properties are remarkably excellent in the range of resistance values wider than the conventional thick film resistors containing no lead.
  • the lead-free thick film resistor according to the present invention has an advantage that the first network and the second network form a cross-linked structure to form a double network structure, thereby providing excellent resistance to surface uniformity and low resistance spread (CV), thereby providing a resistor having excellent stability. There is this.
  • 1 is a photograph of the surface uniformity of the lead-free thick film resistor according to an embodiment and one comparative example of the present invention with an optical microscope.
  • FIG. 2 is an XRD measurement graph of a lead-free thick film resistor according to an embodiment of the present invention.
  • FIG. 3 is an XRD measurement graph of a lead-free thick film resistor according to an embodiment and a comparative example of the present invention.
  • FIG. 4 is a graph of comparative XRD measurement after drying and after baking of a lead-free thick film resistor according to one embodiment and one comparative example of the present invention.
  • Figure 5 shows a SEM photograph of the surface and cross section of the lead-free thick film resistor according to an embodiment of the present invention.
  • Fig. 5A is the resistor surface
  • Fig. 5B is the resistor cross section.
  • the present invention comprises a first network derived from a first glass precursor mixture and a ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network may form a lead-free thick film resistor formed to cross each other.
  • the present invention was completed by finding out.
  • the "dual network” is a heat treatment of the ruthenium-based composite oxide and the first glass precursor mixture to form a second network by firing the conductive composite powder and the second glass precursor mixture on which the first network is formed. And a second network intersecting with each other to form a more dense conductive path.
  • lead-free means a lead component of 1000 ppm or less, preferably 500 ppm or less in the thick film resistor.
  • the lead-free thick film resistor of the present invention comprises a first network derived from a first glass precursor mixture and a ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network may be formed to cross each other.
  • the first network and the second network cross each other to form a double network, the fine conductive paths are uniformly formed and the surface uniformity is excellent, thereby spreading resistance values, temperature characteristics, current noise, overload characteristics, and static electricity in a wide resistance range. Preventive properties can be improved.
  • the second network may form a continuous phase and the first network may form a dispersed phase in the continuous phase, and the dispersed phase may form a crosslinked structure.
  • the crosslinked structure may mean that the entire dispersed phase is connected to each other, and a portion of the dispersed phase may be connected to each other to form a crosslinked structure.
  • the first network distributed phase may be formed in a continuous phase formed of the second network, and all or part of the first network distributed phase may be connected to the second network to form a crosslinked structure. Due to the crosslinked structure, it is preferable to obtain a fine and uniform conductive path, thereby improving resistance distribution, temperature characteristics, current noise, overload characteristics, and antistatic characteristics.
  • the first network may be formed derived from the first glass precursor mixture and the ruthenium-based composite oxide.
  • the first glass precursor mixture and the ruthenium-based composite oxide may be prepared as a conductive composite powder having a first network formed by heat treatment.
  • the ruthenium-based composite oxide is thermally treated with the first glass precursor mixture in one step to form a first network, and then mixed with the second glass precursor mixture, without two-step firing, and the ruthenium-based composite oxide is mixed with the first glass precursor mixture and first.
  • ruthenium-based composite oxides having the shape of XRuO 3 are decomposed into XO and RuO 2 to lower specific resistance and significantly reduce resistance value stability of the manufactured thick film resistor. In addition to this, it may cause difficulty in maintaining electrical characteristics such as temperature characteristics and current noise characteristics.
  • X in XRuO 3 and XO is selected from Ca, Sr, Ba and the like.
  • a ruthenium-based composite oxide having a perovskite structure and a first glass precursor mixture are heat-treated to form a stable network structure by using a conductive composite powder having a first network.
  • the conductive composite powder according to an aspect of the present invention may be mixed with the second glass precursor mixture by heat treatment of the mixture of the ruthenium-based composite oxide and the first glass precursor mixture at a heat treatment temperature of a specific range, followed by pulverization.
  • the average particle diameter of the conductive composite powder is not limited, for example, when the volume is accumulated from the small particles by measuring the particle diameter of each conductive composite powder, a particle size D50 corresponding to a total volume of 50% may be 2.0 ⁇ m or less. . Preferably it may be 1.0 to 2.0 ⁇ m.
  • the second glass precursor mixture is excellent in compatibility with each other, and thus it is preferable to uniformly form the first network intersecting with the second network.
  • the heat treatment temperature may be heat treated at 700 to 900 ° C. for 10 to 60 minutes to form a dense and uniform first network.
  • the heat treatment may be performed at 700 to 850 ° C. for 10 to 40 minutes, but is not limited thereto.
  • the conductive composite powder formed as described above may form a uniform primary network structure, and as the ruthenium-based composite oxide is formed with the first glass precursor mixture and the first network through heat treatment during manufacture of the lead-free thick film resistor, the ruthenium-based composite oxide and Reactivity with the second glass precursor mixture is suppressed, so that the ruthenium-based composite oxide does not decompose, thereby forming a stable and uniform double network structure.
  • the electrical properties are insufficient, and the fluidity is insufficient, so that the smoothness of the thick film resistor and the adhesion with the substrate may be significantly reduced, so that it is mixed with the second glass precursor mixture. It is then desirable to form a dense double network structure by firing.
  • the first glass precursor mixture may include silicon oxide, barium oxide, boron oxide, and aluminum oxide.
  • the silicon oxide may be silicon dioxide (SiO 2 )
  • the barium oxide may be barium oxide (BaO)
  • the boron oxide may be boron trioxide (B 2 O 3 )
  • the aluminum oxide may be aluminum oxide ( Al 2 O 3 ).
  • the silicon oxide, barium oxide, boron oxide and aluminum oxide it is preferable to further improve the reactivity with the ruthenium-based composite oxide to form the first network structure more densely.
  • the compatibility of the first network and the second network derived from the ruthenium-based composite oxide and the first glass precursor mixture can be improved, which is preferable.
  • the barium oxide in the first glass precursor mixture it is possible to form a crystal structure in which a first network more stable in the reaction with the ruthenium-based composite oxide is formed.
  • the crystal structure may be a B-Ba-Si-Al based partial crystal structure.
  • a fusion between the second glass precursor mixture does not occur and the first network structure and the second network are clearly distinguished, thereby forming a double network.
  • the generation of ruthenium oxide by the reaction of the ruthenium-based composite oxide and the second glass precursor mixture in the process of firing the lead-free thick film resistor can be suppressed, so that a more stable lead-free thick film resistor can be obtained.
  • the ruthenium-based composite oxide is not limited as long as it is a ruthenium-based composite oxide having a perovskite crystal structure known in the art. It may be, for example, calcium carbonate ruthenate (CaRuO 3), strontium carbonate ruthenate (SrRuO 3), and barium ruthenate carbonate (BaRuO 3) one or a mixture of two or more selected from the.
  • the ruthenium-based composite oxide may be used alone or in combination with other ruthenium-based composite oxides (Ca 1-xy Sr X Ba y ) RuO 3 . Examples include the work of (Ca 1-xy Sr y Ba X) in RuO 3 0 ⁇ x ⁇ 0.8, 0 ⁇ y ⁇ 0.8, 0 ⁇ x + y ⁇ 0.9 are satisfied.
  • the ruthenium-based composite oxide having the perovskite crystal structure is particularly preferable because it can play a role of maintaining temperature characteristics (TCR) and overload characteristics (STOL) at 1 K ⁇ or more.
  • Ruthenium-based composite oxide is not limited according to an aspect of the present invention, it may be used a ruthenium-based composite oxide prepared according to the manufacturing method of Korean Patent No. 10-0840893.
  • ruthenium metal powder for example, 1) dissolving ruthenium metal powder in strong acid or strong base or alkali fusion to prepare a ruthenium salt aqueous solution; 2) mixing the aqueous solution of strontium compound containing a dispersant with the aqueous solution of ruthenium salt prepared in the above step to obtain a hydrated strontium ruthenate; 3) heat treating the hydrate strontium ruthenate obtained in the above step at 320 to 1,000 ° C. to obtain strontium ruthenate powder; 4)
  • the strontium ruthenate powder obtained in the above step may be used to remove impurities using an inorganic acid, but is not limited thereto.
  • the ruthenium-based composite oxide is preferable because it can form a lead-free thick film resistor having high electrical resistance and excellent electrical properties such that no structural change occurs in the heat treatment and sintering process and the resistance distribution is 5% or less. .
  • the conductive composite powder in which the first network is formed may include 20 to 80% by weight of the ruthenium-based composite oxide and 80 to 20% by weight of the first glass precursor mixture, and more preferably, the ruthenium-based composite oxide 30 To 70% by weight and 70 to 30% by weight of the first glass precursor mixture. More preferably, the first network may be formed by including 40 to 60 wt% of the ruthenium-based composite oxide and 60 to 40 wt% of the first glass precursor mixture.
  • the first network structure is uniformly formed, and the temperature characteristic (TCR), the overload characteristic (STOL), and the antistatic characteristic (ESD) is remarkably improved and preferable.
  • TCR temperature characteristic
  • STOL overload characteristic
  • ESD antistatic characteristic
  • the second network may be formed derived from the second glass precursor mixture.
  • the second glass precursor mixture may be mixed with the conductive composite powder having the first network and fired so that the first network and the second network cross each other to form a double network.
  • CV resistance distribution
  • TCR temperature characteristics
  • STOL overload characteristics
  • ESD antistatic characteristics
  • the conductive composite powder and the second glass precursor mixture may be included in a weight ratio of 10:90 to 90:10 and more preferably in a 20:80 to 80:10 weight ratio to form a second network.
  • a weight ratio of 10:90 to 90:10 and more preferably in a 20:80 to 80:10 weight ratio to form a second network.
  • the electrical properties of the lead-free thick film resistor is improved, it is preferable to form a lead-free thick film resistor having a uniform surface.
  • the lead-free thick film resistor may have a dual network structure while forming a second network by mixing a conductive composite powder having a first network and a second glass precursor mixture.
  • a mixture of the conductive composite powder and the second glass precursor mixture having the first network formed thereon may be formed by screen printing on a substrate and then baked to form a double network structure.
  • the substrate may be an alumina substrate, but is not limited thereto.
  • the firing temperature may be heat treated at 700 to 900 ° C. for 10 to 60 minutes.
  • the heat treatment may be performed at 800 to 900 ° C. for 10 to 40 minutes, but is not limited thereto.
  • the first glass precursor mixture and the second glass precursor mixture are any one or two or more selected from transition metal oxides, alkali metal oxides and alkaline earth metal oxides in order to improve reactivity with ruthenium-based composite oxides. It may further comprise a mixture.
  • the transition metal oxide is Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2 , May be any one or a mixture of two or more selected from WO 3 and ZnO.
  • the transition metal oxide may improve the temperature characteristics of the lead-free thick-film resistor whereby the first glass precursor mixture and the two are included in the glass precursor mixture made of lead-free thick-film resistor It is preferable to make it possible.
  • the alkali metal oxide may be any one or a mixture of two or more selected from Na 2 O, K 2 O, and Li 2 O.
  • the alkali metal oxide is preferably included in the first glass precursor mixture and the second glass precursor mixture to adjust the softening point.
  • the alkaline earth metal oxide may be any one or a mixture of two or more selected from SrO, CaO, and MgO.
  • the alkaline earth metal oxide may control the reactivity with the ruthenium-based composite oxide.
  • the specific composition of the first glass precursor mixture may be, for example, SiO 2 10.
  • SiO 2 to 40% by weight , 10 to 30% by weight of B 2 O 3 , 5 to 40% by weight of BaO, 2 to 15% by weight of Al 2 O 3 , 0.1 to 20% by weight of transition metal oxides and 15 to 20 alkali metal oxides and alkaline earth metal oxides. It may be included in an amount of 40% by weight.
  • the specific composition of the second glass precursor mixture may be, for example, SiO 2 5-30 wt%, B 2 O 3 10-40 wt%, Al 2 O 3 2-15 wt%, transition metal Oxide may be included in an amount of 0.1 to 35% by weight and 20 to 60% by weight of alkali metal oxides and alkaline earth metal oxides.
  • the composition as described above it is excellent in compatibility and compounding with the conductive composite powder to maintain the density and smooth plastic surface of the lead-free thick film resistor and form a uniform and dense double network structure with the conductive composite powder. effective.
  • the stability of the second glass precursor mixture is excellent, so that the film strength of the lead-free thick film resistor of the coating film can be improved, and an increase in the softening point can be prevented.
  • the characteristic is improved and preferable.
  • the second network may further include inorganic particles and conductive powder in the second glass precursor mixture to form a second network in order to maintain the density and smooth and uniform surface of the lead-free thick film resistor.
  • the inorganic particles may be any one or a mixture of two or more selected from Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2, and ZnO.
  • the inorganic particles are preferably made of a lead-free thick film resistor of the first glass precursor mixture and the second glass precursor mixture, thereby improving electrical characteristics and fluidity.
  • the conductive powder is Ag, Au, Pd, Pt, Cu, Ni, W, Mo, Zn, Al, RuO 2 , It may be any one or a mixture of two or more selected from IrO 2 , Rh 2 O 3 and AgPd.
  • the conductive powder is included in the first glass precursor mixture and the second glass precursor mixture to be produced as a lead-free thick film resistor, so that the electrical properties of the lead-free thick film resistor can be improved.
  • the second network includes 10 to 65 wt% of the conductive composite powder, 10 to 60 wt% of the second glass precursor mixture, 0.01 to 40 wt% of the conductive powder, and 0.1 to 10 wt% of the inorganic particles.
  • 15 to 60% by weight of the conductive composite powder, 15 to 60% by weight of the second glass precursor mixture, 1 to 20% by weight of the conductive powder, and 0.1 to 6% by weight of the inorganic particles may be derived, but are not limited thereto. .
  • the conductive composite powder, the second glass precursor mixture, the conductive powder, and the inorganic particles are included in the above range, a uniform and dense double network structure is formed, the temperature characteristic (TCR), the overload characteristic (STOL), and the antistatic characteristic (ESD ) Is improved, so that a lead-free thick film resistor having excellent smoothness and adhesion to the substrate can be produced.
  • the second glass precursor mixture may further include a vehicle including an organic solvent and a binder to form a second network.
  • the vehicle must meet suitable rheological properties in order to apply the conductive composite powder and the second glass precursor mixture by screen printing.
  • the second glass precursor mixture may be mixed with a conventional vehicle and applied to paste, paint, or ink formation.
  • the vehicle is not limited as long as it is well known in the art, and examples thereof include terpineol, carbitol, butylcarbitol, cellosolve, butyl cellosolve, and esters thereof; Any one or two or more organic solvents selected from toluene, xylene and the like; Binder resin which is any one or a mixture of two or more selected from ethyl cellulose, nitrocellulose, acrylic acid ester, methacrylic acid ester, rosin and the like; Mixed solutions may be used. If necessary, it may further include any one or a mixture of two or more selected from a plasticizer, a viscosity modifier, a surfactant, an antioxidant, a metal organic compound, and the like.
  • the compounding ratio of the vehicle is also not limited as long as it is a range applied to a conventional lead-free thick film resistor, and may be adjusted according to an application method such as printing.
  • the vehicle may preferably further comprise 0.01 to 100 parts by weight based on 100 parts by weight of the conductive composite powder, the second glass precursor mixture, the conductive powder and the inorganic particles. More preferably, 0.1 to 50 parts by weight may be further included, but is not limited thereto.
  • organic solvent may preferably further comprise 10 to 200 parts by weight based on 100 parts by weight of the conductive composite powder, the second glass precursor mixture, the conductive powder and the inorganic particles. More preferably, but may further include 20 to 100 parts by weight, but is not limited thereto.
  • the softening point T 1 of the first glass precursor mixture may be 600 to 800 ° C.
  • the softening point T 2 of the second glass precursor mixture may be 500 to 700 ° C.
  • the reactivity with the ruthenium-based composite oxide may be improved to more uniformly form the first network, and may have a partial crystal structure during heat treatment.
  • the firing temperature is easy to form a second network intersecting with the first network at 800 to 900 ° C., and the surface uniformity of the lead-free thick film resistor is improved, thereby reducing the resistance spread.
  • having a different softening point of the first glass precursor mixture and the second glass precursor mixture can be controlled according to the presence or absence of barium oxide, and the barium oxide is not included in the second glass precursor mixture. It is possible to prevent the phenomenon that the resistance spread value CV becomes high due to high reactivity with the substrate.
  • the first softening point of the glass precursor mixtures (T 1) and a second softening point of the glass precursor mixtures (T 2) may be one of T 1 -T 2 is 50 to 150 °C.
  • T 1 -T 2 may be 80 to 110 °C.
  • the X-ray diffraction pattern obtained using the CuK ⁇ ray includes the X-ray diffraction results measured by the ⁇ -2 ⁇ method at room temperature and normal pressure, and is measured at a scan rate of 2 ° / min. Included X-ray diffraction results.
  • the diffraction peak of the region is a diffraction peak that appears as a double network of the lead-free thick film resistor is formed, and may indicate that the lead-free thick film resistor having the diffraction peak has excellent surface uniformity and electrical characteristics.
  • the lead-free thick film resistor of the present invention was formed on a substrate, dried at 150 ° C. for 10 minutes, and then fired at 850 ° C. for 10 minutes to form a double network.
  • the lead-free thick film resistor may have a peak area intensity that satisfies Equation 1 below in an X-ray diffraction pattern using CuK ⁇ rays.
  • the peak area intensity is Can be satisfied.
  • the lead-free thick film resistor of the present invention has a peak area intensity that satisfies Equation 1, it may represent that the first network and the second network cross each other to form a double network.
  • the double network structure it is preferable to further improve resistance distribution, temperature characteristics, current noise, overload characteristics, and antistatic characteristics of the lead-free thick film resistor, and to form a uniform surface.
  • the lead-free thick film resistor may have a peak area intensity ratio that satisfies Equation 2 below in an X-ray diffraction pattern using CuK ⁇ rays.
  • the peak area intensity ratio is Can be satisfied.
  • the lead-free thick film resistor of the present invention has a peak area intensity ratio that satisfies Equation 2, it may indicate that a double network is formed more densely and uniformly between the first network and the second network.
  • the dense and uniform double network structure it is preferable to further improve resistance distribution, temperature characteristic, current noise, overload characteristic, and antistatic characteristic of the lead-free thick film resistor, and to form a uniform surface.
  • the lead-free thick film resistor of the present invention may be observed in an optical microscope to have a number of bubbles of 80 ⁇ m or more, preferably 70 ⁇ m or more in a 1 mm ⁇ 1 mm area.
  • the number of bubbles in the 1 mm x 1 mm area may be five or less. More preferably, the number of bubbles in the 1 mm x 1 mm area may be zero or less, that is, no bubbles.
  • a lead-free thick film resistor having excellent surface uniformity is prepared, and as the surface uniformity is excellent, resistance spread (CV) is reduced, which is preferable because it can exhibit stable electrical characteristics.
  • the lead-free thick film resistor of the present invention is a lead-free thick film resistor having a stable electrical property with low resistance value dispersion (CV) due to the manufacture of a lead-free thick film resistor having excellent surface uniformity in which bubbles are not generated at all, as shown in FIG. 1. .
  • the lead-free thick film resistor may have a resistance (Rs) of 10 ⁇ / ⁇ to 10 M ⁇ / ⁇ and a resistance distribution (CV) of 5% or less.
  • the lead-free thick film resistor has a resistance (Rs) of 10 ⁇ / ⁇ to 10M ⁇ / ⁇ , resistance spread (CV) of 5% or less, temperature characteristic (TCR) of -100 to 100 ppm / ° C, and 1
  • the overload characteristic (STOL) measured at / 8W rated power can be less than 0.15%.
  • the lead-free thick film resistor has a resistance (Rs) of 10 ⁇ / ⁇ to 10M ⁇ / ⁇ , resistance spread (CV) of 5% or less, temperature characteristic (TCR) of -70 to 70 ppm / ° C, and 1
  • the overload characteristic (STOL) measured at / 8W rated power can be less than 0.1%.
  • the resistance of the lead-free thick film resistor that satisfies the above properties is excellent, and there is an advantage in that smoothness and adhesion to the substrate are excellent.
  • the present invention may include the lead-free thick film resistor described above in an electronic component according to one aspect.
  • the lead-free thick film resistor may be applied to a single layer or a multilayer circuit board, a chip resistor, an isolator element, a C-R composite element, a module element, a capacitor or an inductor as an electronic component.
  • the unit of the additive which is not specifically described in the specification may be wt%.
  • test voltage was applied to the lead-free thick film resistor for 5 seconds, it was left to stand for 30 minutes and confirmed by checking the rate of change of the resistance value before and after.
  • the test voltage was 2.5 times the rated voltage.
  • Rated voltage It was set as. Where R is the resistance value ( ⁇ / ⁇ ).
  • the test voltage was performed at 200V about the resistor whose calculated test voltage exceeded 200V.
  • the fired lead-free thick film resistor is applied with 5 times by applying 1 kV of voltage at a speed of several nano s for 1 second on and 1 second off. Before applying a voltage of 1 kV, the resistance value and the change in resistance value after calculating the voltage were calculated.
  • the lead-free thick film resistors were quantitatively evaluated for the number of resistor bubbles formed on the surface at magnifications x50, x100, and x500 using an optical microscope.
  • the ruthenium-based composite oxide and the first glass precursor mixture or the second glass precursor mixture to have a composition (g) as shown in Table 2, including the composition of the first glass precursor mixture or the second glass precursor mixture shown in Table 1 below.
  • Table 2 Table 2
  • the sintered compact obtained after the heat treatment at 800 ° C. for 30 minutes was pulverized using a grinder for 12 hours to prepare a conductive composite powder having a first network having an average particle diameter of 1.5 ⁇ m.
  • Table 3 it is mixed according to the composition and the content (g) as described in the Examples and Comparative Examples, 12% by weight of the organic cellulose resin ethyl cellulose resin and BCA (Butyl Carbitol Acetate) 3: TPNL (Terpineol) 16 weight ratio organic
  • TPNL Tepineol
  • An organic vehicle consisting of 88% by weight of solvent was used and a dispersant (BYK-111) was used as an additive.
  • the composition was stirred for 2hr using a P / L mixer, and then dispersed 5 times and 5 times using a 3-roll mill.
  • the lead-free thick film resistant composition obtained on the paste was aged at 65 ° C. for 24 hours, and was prepared through a filtration process after viscosity adjustment using an additional organic solvent TPNL (Terpineol).
  • Ag-Pd conductor paste was screen printed with U-pattern on 96% purity alumina substrate and dried at 150 ° C. for 10 minutes. 95 wt% Ag and 5 wt% Pd. The dried specimen was calcined at 850 ° C. for 10 minutes.
  • the lead-free thick film resistance composition according to the embodiment was screen-printed to a predetermined shape of 1 mm x 1 mm on alumina substrate having a conductor, dried at 150 ° C. for 10 minutes, and then baked at 850 ° C. for 10 minutes to have a thickness of 8.5 ⁇ m.
  • a lead-free thick film resistor was prepared.
  • the lead-free thick film resistor of the present invention was remarkably excellent in temperature characteristics, overload characteristics, and antistatic characteristics in a wide range of resistance values.
  • a uniform and dense resistor was prepared because of excellent surface uniformity and low dispersion of resistance value (CV).
  • the lead-free thick film resistor prepared in the embodiment of the present invention had a low current noise compared to the lead-free thick film resistor prepared in the comparative example.
  • the second network is formed in a dark shape in a continuous phase and the first network is represented in a bright shape in a dispersed phase in the continuous phase, thereby forming a network structure in which a dispersed network is formed in the continuous phase. It confirmed that it did.
  • the lead-free thick film resistor of the present invention having a double network as described above was confirmed that the uniformity of the surface is further improved to improve the resistance distribution (CV) and electrical properties.
  • Comparative Examples 1 to 8 since the first network does not include the conductive composite powder and the ruthenium-based composite oxide does not form a double network, the ruthenium-based composite oxide is decomposed and lead-free as shown in FIG. 1. As a result of having a non-uniform surface of the thick film resistor, it was confirmed that the stability of the resistance value was remarkably decreased, thereby deteriorating the physical properties of the temperature characteristic. In addition, in Comparative Example 9, as the lead-free thick film resistor was manufactured by applying only the conductive composite powder having the first network formed thereon, fluidity was decreased during formation on the substrate, thereby significantly decreasing the uniformity of the surface of the resistor, and significantly reducing the adhesion to the substrate. It was confirmed that the stability was poor.

Abstract

The present invention relates to a lead-free thick film resistor and an electronic component comprising same, the lead-free thick film resistor comprising: a first network derived from a ruthenium-based complex oxide and a first glass precursor compound comprising silicon oxide, barium oxide, boron oxide, and aluminum oxide; and a second network derived from a second glass precursor compound comprising silicon oxide, boron oxide, and aluminum oxide, wherein the first and second networks are formed so as to cross each other.

Description

무연 후막 저항체 및 이를 포함하는 전자부품Lead-free thick film resistors and electronic components including the same
본 발명은 무연 후막 저항체 및 이를 포함하는 전자부품에 관한 것이다. 보다 상세하게는 제1네트워크와 제2네트워크가 서로 교차되어 이중네트워크 구조를 형성함으로써, 납 성분을 제거하여도 폭 넓은 저항 범위에서 온도특성, 전류잡음, 과부하 특성 및 정전기 방지 특성이 향상된 무연 후막 저항체 및 이를 포함하는 전자부품에 관한 것이다.The present invention relates to a lead-free thick film resistor and an electronic component comprising the same. More specifically, a lead-free thick film resistor having improved temperature characteristics, current noise, overload characteristics, and antistatic characteristics in a wide range of resistances even though lead components are removed by forming a double network structure in which the first network and the second network cross each other. And it relates to an electronic component comprising the same.
후막 저항체 제조를 위한 후막 저항 조성물은 일반적으로 저항치를 조절하고 결합성을 부여하기 위한 유리성분, 도전체 재료와 바인더 및 용매로 이루어진 유기 비히클(organic vehicle) 등으로 구성되어 있고, 이러한 조성물을 기판 상에 인쇄한 후 소성함으로써 후막 저항체가 형성된다. Thick film resistor compositions for the manufacture of thick film resistors generally consist of an organic vehicle composed of a glass component, a conductor material, a binder, and a solvent to control resistance and impart bonding properties. After printing on the substrate, the thick film resistor is formed by firing.
종래의 후막 저항 조성물은 산화 납계 유리 등의 유리성분 및 산화 루테늄 또는 산화루테늄과 납의 화합물 등의 도전성 재료를 이용하고 있어 납을 함유하고 있다. 그 중에 산화루테늄(RuO2)계 후막 저항체(Thick Film Resistor)는 RuO2와 유리성분의 비를 조절함으로써 넓은 범위의 저항 값이 구현 가능하고, 우수한 온도저항계수를 가지고 있기 때문에 칩 저항과 혼성 미세회로(hybrid microcircuits) 등에 광범위하게 응용되어 왔다.The conventional thick film resistance composition uses lead, such as glass components, such as lead oxide type glass, and electroconductive materials, such as ruthenium oxide or the compound of ruthenium oxide and lead, and contains lead. Among them, ruthenium (RuO 2) based thick film resistor (Thick Film Resistor) is RuO the resistance of a wide range achieved by adjusting the ratio of 2 and a glass component is possible, and a chip resistor and a hybrid fine because it has a good temperature resistance Oxidation It has been widely applied to hybrid microcircuits.
그러나 납이 포함된 유리는 최근 환경 규제로 인하여 사용을 금지하고 있는 추세일 뿐만 아니라, 질화알루미늄 기판과는 낮은 접착력과 블리스터 발생 등으로 인해 상호 접합성이 떨어진다고 알려져 있다. 납 성분이 포함된 유리 사용 시 산화물, 특히 산화납(PbO)은 기판인 질화알루미늄과 반응이 일어나 블리스터링(blistering)의 원인이 될 수 있다. 또한, 유리 내의 산화납이 소결 시 질화알루미늄과 반응하여 납(Pb)으로 환원이 되면서 질소가스를 발생하기 때문에 낮은 접착력의 원인이 될 수 있다. 따라서 납이 포함되지 않으면서 질화알루미늄과 상호 접합성이 좋은 무연의 유리 조성을 선정하는 것이 중요하다. 또한, 일반적으로 RuO2의 온도저항계수는 5,670ppm/℃로 높은 양의 온도저항계수를 가지기 때문에, 유리성분의 조성을 조절하거나, 낮은 저항온도계수를 가지는 성분을 첨가함으로써 최종 후막저항의 온도저항계수를 낮추는 노력을 하는 것이 필요하다.However, glass containing lead has been recently banned due to environmental regulations, and is known to be incompatible with the aluminum nitride substrate due to low adhesion and blister generation. When using lead-containing glass, oxides, especially lead oxide (PbO), may react with aluminum nitride, which is a substrate, and may cause blistering. In addition, since lead oxide in the glass reacts with aluminum nitride during sintering and is reduced to lead (Pb), nitrogen gas is generated, which may cause low adhesion. Therefore, it is important to select a lead-free glass composition that does not contain lead and has good mutual bonding with aluminum nitride. In addition, since RuO 2 has a high temperature resistance coefficient of 5670 ppm / ° C, the temperature resistance coefficient of the final thick film resistance is controlled by adjusting the composition of the glass component or adding a component having a low resistance temperature coefficient. It is necessary to make an effort to lower it.
대한민국 공개특허 제10-2006-0056330호(특허문헌 1)에는 실질적으로 납을 포함하지 않고, NiO를 포함하는 유리성분을 사용함으로써 높은 저항치를 가지면서 저항치의 온도특성 및 단시간 과부하가 작은 저항체를 제공할 수 있는 저항체 페이스트에 관하여 개시하고 있으며, 대한민국 공개특허 제10-2014-0025338호(특허문헌 2)에는 루틸형(rutile) 결정구조를 가지는 산화루테늄(RuO2) 분말을 이용하여 루테늄의 함유율이 낮아도 충분한 성능을 가지는 후막 저항체용 조성물 및 후막 저항체에 관하여 개시하고 있다. Korean Patent Laid-Open No. 10-2006-0056330 (Patent Document 1) provides a resistor having a high resistance value and a low temperature characteristic and a short time overload by using a glass component substantially free of lead and NiO. A resistive paste that can be used is disclosed. Korean Patent Laid-Open Publication No. 10-2014-0025338 (Patent Document 2) uses a ruthenium oxide (RuO 2 ) powder having a rutile crystal structure to determine the content of ruthenium. The composition for thick film resistors and thick film resistors which have sufficient performance even if low is disclosed.
그러나, 상기와 같이 유리성분을 변화시키거나, 루틸형의 결정구조를 가지는 산화루테늄을 사용할 경우, 저항 조성물의 소성 시 입자의 성장이 억제되어 비저항이 낮아지고 후막 저항체의 저항 값 안정성, 온도특성(TCR) 및 C-Noise 등의 전기적 특성이 현저히 저하되었다. 또한, 저항 조성물의 제조 시에 일반적으로 RuO2 분말과 유리성분을 단순히 혼합하여 제조하기 때문에 구성성분 간의 균일한 혼합 상태를 얻는 것이 어렵다. 이로 인해 후막 저항체에서 소성 후에 균일한 미세조직을 얻기 어렵고, 결과적으로 후막 저항체의 전기적 특성의 변화가 증가하여 후막 저항체의 안정성이 떨어지는 문제가 여전히 남아있었다.However, when the glass component is changed or ruthenium oxide having a rutile crystal structure is used as described above, the growth of particles is suppressed during firing of the resist composition, so that the resistivity is lowered and the resistance value stability and temperature characteristics of the thick film resistor ( Electrical characteristics such as TCR) and C-Noise were significantly reduced. In addition, since the RuO 2 powder and the glass component are generally mixed in the preparation of the resist composition, it is difficult to obtain a uniform mixing state between the components. Because of this, it is difficult to obtain a uniform microstructure after firing in the thick-film resistor, and as a result, the change of the electrical properties of the thick-film resistor increased, so that the stability of the thick-film resistor remained.
본 발명은 상기의 문제점을 해결하기 위하여, 본 발명은 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 1유리전구체혼합물 및 루테늄계 복합산화물로부터 유도된 제1네트워크; 및 실리콘산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 2유리전구체혼합물로부터 유도된 제2네트워크;를 포함하며, 상기 제1네트워크 및 제2네트워크는 서로 교차하여 형성된 무연 후막 저항체를 제공하는 것을 목적으로 한다. The present invention to solve the above problems, the present invention comprises a first network derived from the first glass precursor mixture and ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network cross each other to provide a lead-free thick film resistor. do.
또한, 제1네트워크 및 제2네트워크가 가교 구조를 형성하여 이중네트워크구조를 형섬함으로써 미세한 도전패스가 균일하게 형성되어 납 성분이 없이도 폭 넓은 저항 범위에서 온도특성, 저항 산포, 전류잡음, 과부하 특성 및 정전기 방지 특성이 향상된 무연 후막 저항체를 제공하는 것을 목적으로 한다. In addition, since the first network and the second network form a cross-linked structure to form a double network structure, fine conductive paths are uniformly formed so that temperature characteristics, resistance dispersion, current noise, overload characteristics and An object of the present invention is to provide a lead-free thick film resistor having improved antistatic properties.
또한, 상술한 무연 후막 저항체를 포함하는 전자부품을 제공하는 것을 목적으로 한다. Another object of the present invention is to provide an electronic component including the lead-free thick film resistor described above.
상기와 같은 목적을 달성하기 위한 본 발명의 무연 후막 저항체는 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 1유리전구체혼합물 및 루테늄계 복합산화물로부터 유도된 제1네트워크; 및 실리콘산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 2유리전구체혼합물로부터 유도된 제2네트워크;를 포함하며, 상기 제1네트워크 및 제2네트워크는 서로 교차하여 형성되는 것일 수 있다.The lead-free thick film resistor of the present invention for achieving the above object comprises a first network derived from the first glass precursor mixture and ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network may be formed to cross each other.
상기 제2네트워크는 연속상을 형성하고 제1네트워크는 상기 연속상 내에 분산상을 형성하되, 상기 분산상은 가교 구조를 형성하는 것일 수 있다.The second network may form a continuous phase and the first network may form a dispersed phase in the continuous phase, and the dispersed phase may form a crosslinked structure.
상기 제 1유리전구체혼합물 및 제 2유리전구체혼합물은 전이금속 산화물, 알칼리금속 산화물 및 알칼리토금속 산화물에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 더 포함할 수 있다.The first glass precursor mixture and the second glass precursor mixture may further include any one or a mixture of two or more selected from transition metal oxides, alkali metal oxides and alkaline earth metal oxides.
상기 전이금속 산화물은 Nb2O5, Ta2O5, TiO2, MnO2, CuO, ZrO2, WO3 및 ZnO 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이며, 상기 알칼리금속 산화물은 Na2O, K2O 및 Li2O에서 선택되는 어느 하나 또는 둘 이상의 혼합물이며, 상기 알칼리토금속 산화물은 SrO, CaO 및 MgO에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.The transition metal oxide is any one or a mixture of two or more selected from Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2 , WO 3 and ZnO, wherein the alkali metal oxide is Na 2 O, a mixture or two or more of any one selected from K 2 O and Li 2 O, the alkaline earth metal oxide may be any one or a mixture of two or more selected from SrO, CaO and MgO.
상기 제 1유리전구체혼합물의 연화점(T1)은 600 내지 800℃이고, 상기 제 2유리전구체혼합물의 연화점(T2)은 500 내지 700℃인 것일 수 있다.The softening point T 1 of the first glass precursor mixture may be 600 to 800 ° C., and the softening point T 2 of the second glass precursor mixture may be 500 to 700 ° C.
상기 제 1유리전구체혼합물의 연화점(T1)과 제 2유리전구체혼합물의 연화점(T2)은 T1-T2는 50 내지 150℃인 것일 수 있다.The softening point (T 1 ) of the first glass precursor mixture and the softening point (T 2 ) of the second glass precursor mixture may be 50 to 150 ℃ T 1 -T 2 .
상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 2θ=27 내지 29°와 2θ=30 내지 32°의 영역의 회절 피크가 위치할 수 있다.The lead-free thick film resistor may have a diffraction peak in a region of 2θ = 27 to 29 ° and 2θ = 30 to 32 ° in an X-ray diffraction pattern using CuKα rays.
상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 1을 만족하는 피크 면적강도를 가질 수 있다.The lead-free thick film resistor may have a peak area intensity that satisfies Equation 1 in an X-ray diffraction pattern using CuKα rays.
[식 1][Equation 1]
Figure PCTKR2018001903-appb-I000001
Figure PCTKR2018001903-appb-I000001
상기 식 1에 있어서, In the formula 1,
상기 A2θ0은 2θ=20 내지 36°영역의 모든 회절 피크 면적강도의 합이고,A 2θ0 is the sum of all diffraction peak area intensities in the region 2θ = 20 to 36 °,
상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이며,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 2를 만족하는 피크 면적강도비를 가질 수 있다.The lead-free thick film resistor may have a peak area intensity ratio that satisfies Equation 2 in an X-ray diffraction pattern using CuKα rays.
[식 2][Equation 2]
Figure PCTKR2018001903-appb-I000002
Figure PCTKR2018001903-appb-I000002
상기 식 2에 있어서, In the formula 2,
상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이고,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
상기 무연 후막 저항체는 저항(Rs) 값이 10Ω/□ 내지 10MΩ/□이며, 저항치 산포(CV) 5% 이하일 수 있다.The lead-free thick film resistor has a resistance (Rs) of 10Ω / □ to 10MΩ / □, the resistance value distribution (CV) may be 5% or less.
상기 무연 후막 저항체는 1mm x 1mm 면적에서 입경 80 ㎛ 이상의 기포의 수가 20개 이하일 수 있다.The lead-free thick film resistor may have a number of bubbles of 20 μm or more in a diameter of 1 mm × 1 mm or less.
본 발명은 상술한 상기 무연 후막 저항체를 포함하는 전자부품일 수 있다.The present invention may be an electronic component including the lead-free thick film resistor described above.
상기 전자부품은 회로기판, 칩저항기, 아이솔레이터소자, C-R복합소자, 모듈소자, 콘덴서 또는 인덕터일 수 있다.The electronic component may be a circuit board, a chip resistor, an isolator device, a C-R composite device, a module device, a capacitor, or an inductor.
본 발명에 따른 무연 후막 저항체는 납을 포함하지 않으면서도 종래 납을 포함한 후막 저항체보다 넓은 저항 값의 범위에서 온도특성, 전류잡음, 과부하 특성 및 정전기 방지 특성이 현저히 우수하다는 장점이 있다.The lead-free thick film resistor according to the present invention has the advantage that the temperature characteristics, current noise, overload characteristics and antistatic properties are remarkably excellent in the range of resistance values wider than the conventional thick film resistors containing no lead.
본 발명에 따른 무연 후막 저항체는 제1네트워크 및 제2네트워크가 가교 구조를 형성하여 이중네트워크구조를 형성함으로써 표면균일도가 우수하고, 저항치 산포(CV)가 낮아 안정성이 우수한 저항체를 제공할 수 있다는 장점이 있다.The lead-free thick film resistor according to the present invention has an advantage that the first network and the second network form a cross-linked structure to form a double network structure, thereby providing excellent resistance to surface uniformity and low resistance spread (CV), thereby providing a resistor having excellent stability. There is this.
도 1은 본 발명의 일 실시예 및 일 비교실시예에 따른 무연 후막 저항체를 광학현미경으로 표면균일도를 관찰한 사진이다.1 is a photograph of the surface uniformity of the lead-free thick film resistor according to an embodiment and one comparative example of the present invention with an optical microscope.
도 2는 본 발명의 일 실시예에 따른 무연 후막 저항체의 XRD 측정 그래프이다. 2 is an XRD measurement graph of a lead-free thick film resistor according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예 및 일 비교실시예에 따른 무연 후막 저항체의 XRD 측정 그래프이다.3 is an XRD measurement graph of a lead-free thick film resistor according to an embodiment and a comparative example of the present invention.
도 4는 본 발명의 일 실시예 및 일 비교실시예에 따른 무연 후막 저항체의 건조 후 및 소성 후의 비교 XRD 측정 그래프이다.4 is a graph of comparative XRD measurement after drying and after baking of a lead-free thick film resistor according to one embodiment and one comparative example of the present invention.
도 5는 본 발명의 일 실시예에 따른 무연 후막 저항체의 표면 및 단면의 SEM 사진을 나타낸 것이다. 도 5의 (a)는 저항체 표면이고, 도 5의 (b)는 저항체 단면이다.Figure 5 shows a SEM photograph of the surface and cross section of the lead-free thick film resistor according to an embodiment of the present invention. Fig. 5A is the resistor surface, and Fig. 5B is the resistor cross section.
이하 실시예를 통해 본 발명에 따른 무연 후막 저항체 및 이를 포함하는 전자부품에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 참조일 뿐 본 발명이 이에 제한되는 것은 아니며, 여러 형태로 구현 될 수 있다.Hereinafter, the lead-free thick film resistor and the electronic component including the same according to the present invention will be described in more detail with reference to the following examples. However, the following examples are merely for the purpose of describing the present invention in detail, and the present invention is not limited thereto and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.Also, unless defined otherwise, all technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description herein is for the purpose of effectively describing particular embodiments only and is not intended to be limiting of the invention.
본 발명은 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 1유리전구체혼합물 및 루테늄계 복합산화물로부터 유도된 제1네트워크; 및 실리콘산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 2유리전구체혼합물로부터 유도된 제2네트워크;를 포함하며, 상기 제1네트워크 및 제2네트워크는 서로 교차하여 형성되는 무연 후막 저항체를 형성할 수 있음을 발견하여 본 발명을 완성하였다. The present invention comprises a first network derived from a first glass precursor mixture and a ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network may form a lead-free thick film resistor formed to cross each other. The present invention was completed by finding out.
본 명세서에서 "이중네트워크"는 루테늄계 복합산화물과 제1유리전구체혼합물을 열처리하여 제1네트워크가 형성된 전도성 복합분말과 제2유리전구체혼합물을 소성함에 따라 제2네트워크를 형성한 것으로, 제1네트워크 및 제2네트워크가 서로교차되어 더욱 치밀한 도전성 패스가 형성된 것을 의미한다.In the present specification, the "dual network" is a heat treatment of the ruthenium-based composite oxide and the first glass precursor mixture to form a second network by firing the conductive composite powder and the second glass precursor mixture on which the first network is formed. And a second network intersecting with each other to form a more dense conductive path.
본 명세서에서 "무연"은 후막 저항체 내에 납성분이 1000ppm 이하, 바람직하게는 500ppm이하를 의미한다.In the present specification, "lead-free" means a lead component of 1000 ppm or less, preferably 500 ppm or less in the thick film resistor.
이하, 본 발명의 일 실시예에 관하여 보다 상세히 설명한다. Hereinafter, an embodiment of the present invention will be described in more detail.
본 발명의 무연 후막 저항체는 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 1유리전구체혼합물 및 루테늄계 복합산화물로부터 유도된 제1네트워크; 및 실리콘산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 2유리전구체혼합물로부터 유도된 제2네트워크;를 포함하며, 상기 제1네트워크 및 제2네트워크는 서로 교차하여 형성되는 것일 수 있다. 상기와 같이 제1네트워크 및 제2네트워크가 서로 교차하여 이중네트워크를 형성함으로써 미세한 도전경로가 균일하게 형성되면서 표면균일도가 우수하여 폭 넓은 저항 범위에서 저항치 산포, 온도특성, 전류잡음, 과부하특성 및 정전기 방지 특성을 향상시킬 수 있다. The lead-free thick film resistor of the present invention comprises a first network derived from a first glass precursor mixture and a ruthenium-based composite oxide including silicon oxide, barium oxide, boron oxide and aluminum oxide; And a second network derived from a second glass precursor mixture including silicon oxide, boron oxide, and aluminum oxide, wherein the first network and the second network may be formed to cross each other. As described above, since the first network and the second network cross each other to form a double network, the fine conductive paths are uniformly formed and the surface uniformity is excellent, thereby spreading resistance values, temperature characteristics, current noise, overload characteristics, and static electricity in a wide resistance range. Preventive properties can be improved.
본 발명의 일 양태에 따라 상기 제2네트워크는 연속상을 형성하고 제1네트워크는 상기 연속상 내에 분산상을 형성하되, 상기 분산상은 가교 구조를 형성하는 것일 수 있다. 상기 가교 구조는 분산상 전체가 서로 연결되는 것을 의미할 수 있고, 분산상의 일부가 서로 연결되어 가교 구조를 형성하는 것을 의미할 수 있다. 구체적인 예를 들어, 제1네트워크인 분산상이 제2네트워크로 형성된 연속상 내에 형성되면서 제1네트워크 분산상의 전체 또는 일부가 제2네트워크와 서로 연결되어 가교 구조를 형성할 수 있다. 상기 가교 구조로 인하여 미세하고, 균일한 도전경로를 확보하여 더욱 우수한 저항치 산포, 온도특성, 전류잡음, 과부하특성 및 정전기 방지 특성이 향상시킬 수 있어 바람직하다.According to an aspect of the present invention, the second network may form a continuous phase and the first network may form a dispersed phase in the continuous phase, and the dispersed phase may form a crosslinked structure. The crosslinked structure may mean that the entire dispersed phase is connected to each other, and a portion of the dispersed phase may be connected to each other to form a crosslinked structure. For example, the first network distributed phase may be formed in a continuous phase formed of the second network, and all or part of the first network distributed phase may be connected to the second network to form a crosslinked structure. Due to the crosslinked structure, it is preferable to obtain a fine and uniform conductive path, thereby improving resistance distribution, temperature characteristics, current noise, overload characteristics, and antistatic characteristics.
본 발명의 일 양태에 따라 상기 제1네트워크는 제1유리전구체혼합물과 루테늄계 복합 산화물로부터 유도되어 형성될 수 있다. 상기 제1유리전구체혼합물과 루테늄계 복합 산화물을 열처리를 통하여 제1네트워크가 형성된 전도성 복합분말로 제조될 수 있다. 상기 루테늄계 복합 산화물을 제1유리전구체혼합물과 1단계 열처리하여 제1네트워크를 형성한 후 제2유리전구체혼합물과 혼합하여 2단계 소성하지 않고, 상기 루테늄계 복합산화물을 제1유리전구체혼합물 및 제2유리전구체혼합물과 단순혼합하여 한번에 소성할 경우, XRuO3의 형상을 갖는 루테늄계 복합산화물이 XO와 RuO2로 분해되어 비저항이 낮아지고 제조된 후막 저항체의 저항 값 안정성이 현저하게 떨어진다. 이 뿐 만 아니라, 온도특성 및 전류잡음 특성 등의 전기적 특성의 유지에 어려움을 발생시킬 수 있다. 상기 XRuO3 및 XO에서 X는 Ca, Sr, Ba 등에서 선택된다.According to an aspect of the present invention, the first network may be formed derived from the first glass precursor mixture and the ruthenium-based composite oxide. The first glass precursor mixture and the ruthenium-based composite oxide may be prepared as a conductive composite powder having a first network formed by heat treatment. The ruthenium-based composite oxide is thermally treated with the first glass precursor mixture in one step to form a first network, and then mixed with the second glass precursor mixture, without two-step firing, and the ruthenium-based composite oxide is mixed with the first glass precursor mixture and first. In the case of simple mixing with the two glass precursor mixtures and firing at once, ruthenium-based composite oxides having the shape of XRuO 3 are decomposed into XO and RuO 2 to lower specific resistance and significantly reduce resistance value stability of the manufactured thick film resistor. In addition to this, it may cause difficulty in maintaining electrical characteristics such as temperature characteristics and current noise characteristics. X in XRuO 3 and XO is selected from Ca, Sr, Ba and the like.
상기와 같은 문제를 해결하기 위하여 페로브스카이트 구조를 가지는 루테늄계 복합 산화물과 제1유리전구체혼합물을 열처리하여 제1네트워크가 형성된 전도성 복합분말을 사용함으로써 안정적인 네트워크 구조를 형성하는 것이다.In order to solve the above problems, a ruthenium-based composite oxide having a perovskite structure and a first glass precursor mixture are heat-treated to form a stable network structure by using a conductive composite powder having a first network.
본 발명의 일 양태에 따른 상기 전도성 복합 분말은 상기 루테늄계 복합 산화물과 제1유리전구체혼합물의 혼합물을 특정 범위의 열처리온도에서 열처리한 다음 분쇄 후 미세화하여 제2유리전구체혼합물과 혼합될 수 있다. 상기 전도성 복합분말의 평균입경은 제한되지 않으나, 예를 들면, 각각 전도성 복합분말의 입경을 측정하여 작은 입자부터 부피를 누적할 경우 총 부피가 50%에 해당하는 입경인 D50이 2.0㎛ 이하일 수 있다. 바람직하게는 1.0 내지 2.0㎛ 일 수 있다. 상기 범위로 분쇄됨에 따라 제2유리전구체혼합물과 혼화성이 우수하여 제2네트워크와 서로 교차되는 제1네트워크를 균일하게 형성할 수 있어 바람직하다. The conductive composite powder according to an aspect of the present invention may be mixed with the second glass precursor mixture by heat treatment of the mixture of the ruthenium-based composite oxide and the first glass precursor mixture at a heat treatment temperature of a specific range, followed by pulverization. Although the average particle diameter of the conductive composite powder is not limited, for example, when the volume is accumulated from the small particles by measuring the particle diameter of each conductive composite powder, a particle size D50 corresponding to a total volume of 50% may be 2.0 μm or less. . Preferably it may be 1.0 to 2.0㎛. As it is pulverized in the above range, the second glass precursor mixture is excellent in compatibility with each other, and thus it is preferable to uniformly form the first network intersecting with the second network.
본 발명의 일 양태에 따라 상기 열처리온도는 치밀하고 균일한 제 1네트워크 형성을 위하여 700 내지 900℃에서 10 내지 60분동안 열처리할 수 있다. 바람직하게는 700 내지 850℃에서 10 내지 40분동안 열처리할 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, the heat treatment temperature may be heat treated at 700 to 900 ° C. for 10 to 60 minutes to form a dense and uniform first network. Preferably, the heat treatment may be performed at 700 to 850 ° C. for 10 to 40 minutes, but is not limited thereto.
상기와 같이 형성된 전도성 복합 분말은 균일한 일차 네트워크 구조를 형성할 수 있으며, 무연 후막 저항체 제조 시 열처리를 통하여 루테늄계 복합 산화물을 제1유리전구체혼합물과 제1네트워크가 형성됨에 따라 루테늄계 복합산화물과 제2유리전구체혼합과의 반응성이 억제되어 루테늄계 복합산화물의 분해가 일어나지 않아 안정적이고 균일한 이중네트워크 구조를 형성할 수 있다.The conductive composite powder formed as described above may form a uniform primary network structure, and as the ruthenium-based composite oxide is formed with the first glass precursor mixture and the first network through heat treatment during manufacture of the lead-free thick film resistor, the ruthenium-based composite oxide and Reactivity with the second glass precursor mixture is suppressed, so that the ruthenium-based composite oxide does not decompose, thereby forming a stable and uniform double network structure.
상기 전도성 복합분말을 단독으로 후막 저항체를 제조할 경우, 전기적 특성이 불충분하고, 유동성이 부족하여 후막 저항체의 평활성 및 기판과의 접착력이 현저히 저하되는 문제가 발생할 수 있으므로, 제2유리전구체혼합물과 혼합한 후 소성하여 치밀한 이중네트워크 구조를 형성하는 것이 바람직하다.When the conductive composite powder alone is used to prepare a thick film resistor, the electrical properties are insufficient, and the fluidity is insufficient, so that the smoothness of the thick film resistor and the adhesion with the substrate may be significantly reduced, so that it is mixed with the second glass precursor mixture. It is then desirable to form a dense double network structure by firing.
본 발명의 일 양태에 따라 상기 제1유리전구체혼합물은 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함할 수 있다. 상기 실리콘 산화물은 이산화규소(SiO2)일 수 있고, 상기 바륨산화물은 산화바륨(BaO)일 수 있고, 상기 보론산화물은 삼산화 붕소(B2O3)일 수 있고, 상기 알루미늄 산화물은 산화알루미늄(Al2O3)일 수 있다. 상기 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함함으로써 루테늄계 복합 산화물과의 반응성을 더욱 향상시켜 제1네트워크 구조를 더욱 치밀하게 형성할 수 있어 바람직하다. 또한, 루테늄계 복합 산화물과 제 1유리전구체혼합물로 유도된 제1네트워크와 제2네트워크의 상용성을 향상시킬 수 있어 바람직하다.According to an aspect of the present invention, the first glass precursor mixture may include silicon oxide, barium oxide, boron oxide, and aluminum oxide. The silicon oxide may be silicon dioxide (SiO 2 ), the barium oxide may be barium oxide (BaO), the boron oxide may be boron trioxide (B 2 O 3 ), and the aluminum oxide may be aluminum oxide ( Al 2 O 3 ). By including the silicon oxide, barium oxide, boron oxide and aluminum oxide it is preferable to further improve the reactivity with the ruthenium-based composite oxide to form the first network structure more densely. In addition, the compatibility of the first network and the second network derived from the ruthenium-based composite oxide and the first glass precursor mixture can be improved, which is preferable.
특히, 바륨산화물을 제1유리전구체혼합물에 포함함으로써 루테늄계 복합산화물과의 반응에서 보다 안정적인 제1네트워크가 형성된 결정구조를 형성할 수 있다. 상기 결정구조는 B-Ba-Si-Al계 부분결정구조일 수 있다. 상기 부분결정구조를 형성함에 따라 제2유리전구체혼합물과의 상호융합이 발생하지 않고 제1네트워크 구조와 제2네트워크의 구분이 명확히 되어 이중네트워크가 형성될 수 있다. 또한, 무연 후막 저항체 소성과정에서 루테늄계 복합산화물과 제2유리전구체혼합물과의 반응에 의한 루테늄 산화물의 생성을 억제할 수 있어 보다 안정된 무연 후막 저항체를 얻을 수 있어 바람직하다. In particular, by including the barium oxide in the first glass precursor mixture, it is possible to form a crystal structure in which a first network more stable in the reaction with the ruthenium-based composite oxide is formed. The crystal structure may be a B-Ba-Si-Al based partial crystal structure. As the partial crystal structure is formed, a fusion between the second glass precursor mixture does not occur and the first network structure and the second network are clearly distinguished, thereby forming a double network. In addition, the generation of ruthenium oxide by the reaction of the ruthenium-based composite oxide and the second glass precursor mixture in the process of firing the lead-free thick film resistor can be suppressed, so that a more stable lead-free thick film resistor can be obtained.
본 발명의 일 양태에 따라 상기 루테늄계 복합 산화물은 당해 기술분야에서 자명하게 공지된 페로브스카이트형 결정 구조를 갖는 루테늄계 복합 산화물이면 제한되지 않는다. 예를 들면, 칼슘루테네이트(CaRuO3), 스트론튬루테네이트(SrRuO3) 및 바륨루테네이트(BaRuO3)에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 또한, 본 발명의 일 실시예에 따라 루테늄계 복합 산화물은 (Ca1-x-ySrXBay)RuO3을 단독으로 사용하거나 다른 루테늄계 복합산화물과 혼용하여 사용할 수 있다. 상기의 일예로서는 (Ca1-x-ySrXBay)RuO3에서 0<x<0.8, 0≤y<0.8, 0<x+y<0.9을 만족한다.According to one aspect of the present invention, the ruthenium-based composite oxide is not limited as long as it is a ruthenium-based composite oxide having a perovskite crystal structure known in the art. It may be, for example, calcium carbonate ruthenate (CaRuO 3), strontium carbonate ruthenate (SrRuO 3), and barium ruthenate carbonate (BaRuO 3) one or a mixture of two or more selected from the. In addition, according to an embodiment of the present invention, the ruthenium-based composite oxide may be used alone or in combination with other ruthenium-based composite oxides (Ca 1-xy Sr X Ba y ) RuO 3 . Examples include the work of (Ca 1-xy Sr y Ba X) in RuO 3 0 <x <0.8, 0≤y <0.8, 0 <x + y <0.9 are satisfied.
상기 페로브스카이트형 결정 구조를 가지는 루테늄계 복합 산화물은 특히, 1KΩ이상에서 온도특성(TCR)과 과부하특성(STOL)을 유지하는 역할을 할 수 있어 바람직하다.The ruthenium-based composite oxide having the perovskite crystal structure is particularly preferable because it can play a role of maintaining temperature characteristics (TCR) and overload characteristics (STOL) at 1 KΩ or more.
본 발명의 일 양태에 따라 루테늄계 복합 산화물은 제한되지 않으나, 대한민국 등록특허 제10-0840893호의 제조방법에 따라 제조된 루테늄계 복합 산화물을 사용할 수 있다. Ruthenium-based composite oxide is not limited according to an aspect of the present invention, it may be used a ruthenium-based composite oxide prepared according to the manufacturing method of Korean Patent No. 10-0840893.
예를 들면, 1) 루테늄 금속분말을 강산 또는 강염기에 용해하거나 알칼리 퓨전하여 루테늄염 수용액을 제조하는 단계; 2) 상기 단계에서 제조된 루테늄염 수용액에 분산제가 포함된 스트론튬 화합물 수용액을 혼합하여 수화물 스트론튬 루테네이트를 수득하는 단계; 3) 상기 단계에서 얻어진 수화물 스트론튬 루테네이트를 320 내지 1,000 ℃에서 열처리하여 스트론튬 루테네이트 분말을 수득하는 단계; 4) 상기 단계에서 얻어진 스트론튬 루테네이트 분말에 무기산을 사용하여 불순물을 제거하여 사용할 수 있으나, 이로 제한되는 것은 아니다.For example, 1) dissolving ruthenium metal powder in strong acid or strong base or alkali fusion to prepare a ruthenium salt aqueous solution; 2) mixing the aqueous solution of strontium compound containing a dispersant with the aqueous solution of ruthenium salt prepared in the above step to obtain a hydrated strontium ruthenate; 3) heat treating the hydrate strontium ruthenate obtained in the above step at 320 to 1,000 ° C. to obtain strontium ruthenate powder; 4) The strontium ruthenate powder obtained in the above step may be used to remove impurities using an inorganic acid, but is not limited thereto.
본 발명의 일 양태에 따라 상기 루테늄계 복합 산화물은 비저항이 높고, 열처리 및 소성 과정에서 구조 변화가 발생하지 않고 저항치 산포가 5%이하로 우수한 전기적 특성을 가진 무연 후막 저항체를 형성할 수 있어 바람직하다.According to one aspect of the present invention, the ruthenium-based composite oxide is preferable because it can form a lead-free thick film resistor having high electrical resistance and excellent electrical properties such that no structural change occurs in the heat treatment and sintering process and the resistance distribution is 5% or less. .
본 발명의 일 양태에 따라 상기 제1네트워크가 형성된 전도성 복합분말은 루테늄계 복합산화물 20 내지 80중량% 및 제1유리전구체혼합물 80 내지 20중량% 포함할 수 있으며, 보다 바람직하게 루테늄계 복합산화물 30 내지 70중량% 및 제1유리전구체혼합물 70 내지 30중량% 포함할 수 있다. 더 바람직하게는 루테늄계 복합산화물 40 내지 60중량% 및 제1유리전구체혼합물 60 내지 40중량% 포함하여 제1네트워크를 형성할 수 있다.According to an aspect of the present invention, the conductive composite powder in which the first network is formed may include 20 to 80% by weight of the ruthenium-based composite oxide and 80 to 20% by weight of the first glass precursor mixture, and more preferably, the ruthenium-based composite oxide 30 To 70% by weight and 70 to 30% by weight of the first glass precursor mixture. More preferably, the first network may be formed by including 40 to 60 wt% of the ruthenium-based composite oxide and 60 to 40 wt% of the first glass precursor mixture.
본 발명의 일 양태에 따라 상기 루테늄계 복합 산화물과 제1유리전구체혼합물이 상술한 범위로 포함될 때 제 1네트워크 구조가 균일하게 형성되고, 온도특성(TCR), 과부하특성(STOL), 정전기방지특성(ESD)이 현저히 향상되어 바람직하다. 또한, 전도성 재료로써 온도 특성이 (-) 방향으로 이동하는 것을 방지할 수 있고, 결정 구조의 안정성을 유지하는 데 바람직하다.According to an aspect of the present invention, when the ruthenium-based composite oxide and the first glass precursor mixture are included in the above-mentioned range, the first network structure is uniformly formed, and the temperature characteristic (TCR), the overload characteristic (STOL), and the antistatic characteristic (ESD) is remarkably improved and preferable. In addition, it is possible to prevent the temperature characteristic from moving in the negative direction as the conductive material and is preferable to maintain the stability of the crystal structure.
본 발명의 일 양태에 따라 상기 제2네트워크는 제2유리전구체혼합물로부터 유도되어 형성될 수 있다. 상기 제2유리전구체혼합물은 제1네트워크가 형성된 전도성 복합분말과 혼합되어 소성함으로써 제1네트워크와 제2네트워크가 서로 교차되어 이중네트워크가 형성될 수 있다. 상기와 같이 제1네트워크 및 제2네트워크가 서로 교차되어 이중네트워크를 형성함으로써 저항치 산포(CV), 저항치 재현성이 우수하고, 온도특성(TCR), 과부하특성(STOL), 정전기방지특성(ESD)의 특성 또한 우수한 무연 후막 저항체를 얻을 수 있다.According to an aspect of the present invention, the second network may be formed derived from the second glass precursor mixture. The second glass precursor mixture may be mixed with the conductive composite powder having the first network and fired so that the first network and the second network cross each other to form a double network. As described above, since the first network and the second network cross each other to form a double network, resistance distribution (CV) and resistance reproducibility are excellent, and temperature characteristics (TCR), overload characteristics (STOL), and antistatic characteristics (ESD) The lead-free thick film resistor having excellent characteristics can also be obtained.
본 발명의 일 양태에 따라 상기 전도성 복합분말과 제2유리전구체혼합물은 10 : 90 내지 90 : 10 중량비로 포함될 수 있으며, 보다 바람직하게 20 : 80 내지 80 : 20 중량비로 포함되어 제2네트워크를 형성하여 이중네트워크를 형성할 수 있다.According to an aspect of the present invention, the conductive composite powder and the second glass precursor mixture may be included in a weight ratio of 10:90 to 90:10 and more preferably in a 20:80 to 80:10 weight ratio to form a second network. To form a dual network.
또한, 상기 범위로 포함될 때, 무연 후막 저항체의 전기적 특성이 향상되고, 균일한 표면을 갖는 무연 후막 저항체를 형성할 수 있어 바람직하다.In addition, when included in the above range, the electrical properties of the lead-free thick film resistor is improved, it is preferable to form a lead-free thick film resistor having a uniform surface.
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 제1네트워크가 형성된 전도성복합분말과 제2유리전구체혼합물을 혼합하여 제2네트워크가 형성되면서 이중네트워크 구조를 가질 수 있다. 이를 제조 시 상기 제1네트워크가 형성된 전도성복합분말과 제2유리전구체혼합물의 혼합물을 기판 상에 스크린 인쇄 후 소성하여 이중네트워크 구조가 형성된 것일 수 있다. 상기 기판은 알루미나 기판일 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, the lead-free thick film resistor may have a dual network structure while forming a second network by mixing a conductive composite powder having a first network and a second glass precursor mixture. In the preparation thereof, a mixture of the conductive composite powder and the second glass precursor mixture having the first network formed thereon may be formed by screen printing on a substrate and then baked to form a double network structure. The substrate may be an alumina substrate, but is not limited thereto.
본 발명의 일 양태에 따라 상기 소성 온도는 700 내지 900℃에서 10 내지 60분동안 열처리할 수 있다. 바람직하게는 800 내지 900℃에서 10 내지 40분동안 열처리할 수 있으나, 이에 제한되는 것은 아니다.According to an aspect of the present invention, the firing temperature may be heat treated at 700 to 900 ° C. for 10 to 60 minutes. Preferably, the heat treatment may be performed at 800 to 900 ° C. for 10 to 40 minutes, but is not limited thereto.
본 발명의 일 양태에 따라 상기 제 1유리전구체혼합물 및 제 2유리전구체혼합물은 루테늄계 복합 산화물과의 반응성을 향상시키기 위하여 전이금속 산화물, 알칼리금속 산화물 및 알칼리토금속 산화물에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 더 포함할 수 있다.According to an aspect of the present invention, the first glass precursor mixture and the second glass precursor mixture are any one or two or more selected from transition metal oxides, alkali metal oxides and alkaline earth metal oxides in order to improve reactivity with ruthenium-based composite oxides. It may further comprise a mixture.
본 발명의 일 양태에 따라 상기 전이금속 산화물은 Nb2O5, Ta2O5, TiO2, MnO2, CuO, ZrO2, WO3 및 ZnO 에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.상기 전이금속 산화물은 제1유리전구체혼합물 및 제2유리전구체혼합물에 포함되어 무연 후막 저항체로 제조됨으로써 무연 후막 저항체의 온도특성을 향상시킬 수 있어 바람직하다.According to one embodiment of the present invention, the transition metal oxide is Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2 , May be any one or a mixture of two or more selected from WO 3 and ZnO. The transition metal oxide may improve the temperature characteristics of the lead-free thick-film resistor whereby the first glass precursor mixture and the two are included in the glass precursor mixture made of lead-free thick-film resistor It is preferable to make it possible.
상기 알칼리금속 산화물은 Na2O, K2O 및 Li2O에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 알칼리금속 산화물은 제1유리전구체혼합물 및 제2유리전구체혼합물에 포함되어 연화점을 조절할 수 있어 바람직하다.The alkali metal oxide may be any one or a mixture of two or more selected from Na 2 O, K 2 O, and Li 2 O. The alkali metal oxide is preferably included in the first glass precursor mixture and the second glass precursor mixture to adjust the softening point.
상기 알칼리토금속 산화물은 SrO, CaO 및 MgO에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 알칼리토금속 산화물은 루테늄계 복합 산화물과의 반응성을 조절할 수 있다.The alkaline earth metal oxide may be any one or a mixture of two or more selected from SrO, CaO, and MgO. The alkaline earth metal oxide may control the reactivity with the ruthenium-based composite oxide.
본 발명의 일 양태에 따라 제1유리전구체혼합물의 구체적인 조성은 예를 들면, SiO2 10 내지 40 중량%, B2O3 10 내지 30 중량%, BaO 5 내지 40 중량%, Al2O3 2 내지 15중량%, 전이금속 산화물 0.1 내지 20 중량% 및 알칼리금속 산화물과 알칼리토금속 산화물 15 내지 40중량% 함량으로 포함할 수 있다. 바람직하게는 SiO2 15 내지 35 중량%, B2O3 15 내지 30 중량%, BaO 10 내지 30 중량%, Al2O3 4 내지 15중량%, 전이금속 산화물 5 내지 20 중량% 및 알칼리금속 산화물과 알칼리토금속 산화물 15 내지 35중량% 함량으로 포함할 수 있다. 상기와 같은 조성으로 구성됨에 따라, 루테늄계 복합 산화물과 반응성이 우수하고, 전기적 특성 및 내구성을 향상시킬 수 있어 바람직하다.According to an aspect of the present invention, the specific composition of the first glass precursor mixture may be, for example, SiO 2 10. To 40% by weight , 10 to 30% by weight of B 2 O 3 , 5 to 40% by weight of BaO, 2 to 15% by weight of Al 2 O 3 , 0.1 to 20% by weight of transition metal oxides and 15 to 20 alkali metal oxides and alkaline earth metal oxides. It may be included in an amount of 40% by weight. Preferably 15 to 35% by weight of SiO 2 , 15 to 30% by weight of B 2 O 3 , 10 to 30% by weight of BaO, 4 to 15% by weight of Al 2 O 3 , 5 to 20% by weight of transition metal oxide, and 15 to 35% by weight of alkali metal oxide and alkaline earth metal oxide. It may include. Since the composition is configured as described above, it is preferable because it is excellent in reactivity with the ruthenium-based composite oxide and can improve electrical characteristics and durability.
본 발명의 일 양태에 따라 제2유리전구체혼합물의 구체적인 조성은 예를 들면, SiO2 5 내지 30 중량%, B2O3 10 내지 40 중량%, Al2O3 2 내지 15중량%, 전이금속 산화물 0.1 내지 35중량% 및 알칼리금속 산화물과 알칼리토금속 산화물 20 내지 60중량% 함량으로 포함할 수 있다. 바람직하게는 SiO2 5 내지 20 중량%, B2O3 20 내지 40 중량%, Al2O3 2 내지 10중량%, 전이금속 산화물 2 내지 30중량% 및 알칼리금속 산화물과 알칼리토금속 산화물 25 내지 60중량% 함량으로 포함할 수 있다. 상기와 같은 조성으로 구성됨에 따라, 전도성 복합분말과의 상용성 및 복합화가 우수하여 무연 후막 저항체의 밀도와 평활한 소성 표면을 유지하고 전도성 복합분말과의 균일하고 치밀한 이중네트워크 구조를 형성시킬 수 있어 효과적이다.According to an aspect of the present invention, the specific composition of the second glass precursor mixture may be, for example, SiO 2 5-30 wt%, B 2 O 3 10-40 wt%, Al 2 O 3 2-15 wt%, transition metal Oxide may be included in an amount of 0.1 to 35% by weight and 20 to 60% by weight of alkali metal oxides and alkaline earth metal oxides. Preferably SiO 2 5 to 20% by weight, B 2 O 3 20 to 40% by weight, Al 2 O 3 2 to 10% by weight, a transition metal oxide from 2 to 30% by weight of alkali metal oxides and alkaline earth oxides 25 to 60 It may be included in the wt% content. With the composition as described above, it is excellent in compatibility and compounding with the conductive composite powder to maintain the density and smooth plastic surface of the lead-free thick film resistor and form a uniform and dense double network structure with the conductive composite powder. effective.
또한, 상기 제2유리전구체혼합물의 조성으로 포함하면, 제 2유리전구체혼합물의 안정성이 우수하여 도막의 무연 후막 저항체의 도막 강도가 향상되고, 연화점의 증가를 방지할 수 있으며, 무연 후막 저항체의 전기적 특성이 향상되어 바람직하다.In addition, when the composition of the second glass precursor mixture is included, the stability of the second glass precursor mixture is excellent, so that the film strength of the lead-free thick film resistor of the coating film can be improved, and an increase in the softening point can be prevented. The characteristic is improved and preferable.
본 발명의 일 양태에 따라 상기 제2네트워크는 무연 후막 저항체의 밀도 및 매끄럽고 균일한 표면을 유지하기 위하여 제2유리전구체혼합물에 무기입자 및 전도성 분말을 더 포함하여 제2네트워크를 형성할 수 있다.According to an aspect of the present invention, the second network may further include inorganic particles and conductive powder in the second glass precursor mixture to form a second network in order to maintain the density and smooth and uniform surface of the lead-free thick film resistor.
본 발명의 일 양태에 따라 상기 무기입자는 Nb2O5, Ta2O5, TiO2, MnO2, CuO, ZrO2 및 ZnO에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 무기입자는 제1유리전구체혼합물 및 제2유리전구체혼합물의 무연 후막 저항체로 제조됨으로써 전기적 특성 및 유동성을 향상시킬 수 있어 바람직하다. According to an aspect of the present invention, the inorganic particles may be any one or a mixture of two or more selected from Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2, and ZnO. The inorganic particles are preferably made of a lead-free thick film resistor of the first glass precursor mixture and the second glass precursor mixture, thereby improving electrical characteristics and fluidity.
상기 전도성 분말은 Ag, Au, Pd, Pt, Cu,Ni,W, Mo, Zn, Al, RuO2, IrO2, Rh2O3 및 AgPd에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 전도성 분말은 제1유리전구체혼합물 및 제2유리전구체혼합물에 포함되어 무연 후막 저항체로 제조됨으로써 무연 후막 저항체의 전기적특성을 향상시킬 수 있어 바람직하다.The conductive powder is Ag, Au, Pd, Pt, Cu, Ni, W, Mo, Zn, Al, RuO 2 , It may be any one or a mixture of two or more selected from IrO 2 , Rh 2 O 3 and AgPd. The conductive powder is included in the first glass precursor mixture and the second glass precursor mixture to be produced as a lead-free thick film resistor, so that the electrical properties of the lead-free thick film resistor can be improved.
보다 구체적으로, 일 양태에 따라 상기 제2네트워크는 전도성 복합분말 10 내지 65중량%, 제2유리전구체혼합물 10 내지 60중량%, 전도성 분말 0.01 내지 40중량% 및 무기입자 0.1 내지 10중량% 포함하여 유도될 수 있다. 바람직하게는 전도성 복합분말 15 내지 60중량%, 제2유리전구체혼합물 15 내지 60중량%, 전도성 분말 1 내지 20중량% 및 무기입자 0.1 내지 6중량% 포함하여 유도될 수 있으나, 이로 제한되는 것은 아니다. 상기 전도성 복합분말, 제2유리전구체혼합물, 전도성분말 및 무기입자가 상기 범위로 포함될 때, 균일하고 치밀한 이중네트워크 구조가 형성되고, 온도특성(TCR), 과부하특성(STOL), 정전기방지특성(ESD)이 향상되어 평활성 및 기판과의 접착력이 우수한 무연 후막 저항체를 제조할 수 있어 바람직하다.More specifically, according to one aspect, the second network includes 10 to 65 wt% of the conductive composite powder, 10 to 60 wt% of the second glass precursor mixture, 0.01 to 40 wt% of the conductive powder, and 0.1 to 10 wt% of the inorganic particles. Can be induced. Preferably, 15 to 60% by weight of the conductive composite powder, 15 to 60% by weight of the second glass precursor mixture, 1 to 20% by weight of the conductive powder, and 0.1 to 6% by weight of the inorganic particles may be derived, but are not limited thereto. . When the conductive composite powder, the second glass precursor mixture, the conductive powder, and the inorganic particles are included in the above range, a uniform and dense double network structure is formed, the temperature characteristic (TCR), the overload characteristic (STOL), and the antistatic characteristic (ESD ) Is improved, so that a lead-free thick film resistor having excellent smoothness and adhesion to the substrate can be produced.
본 발명의 일 양태에 따라 제2유리전구체혼합물에 유기용매와 바인더로 이루어진 비히클을 더 포함하여 제2네트워크를 형성할 수 있다. 상기 비히클은 전도성 복합분말과 제2유리전구체혼합물을 혼합하여 스크린 인쇄 등으로 적용하기 위해서는 적합한 레올로지 특성을 충족하여야 한다. 따라서 상기 제2유리전구체혼합물은 통상의 비히클과 혼합되어 페이스트, 도료, 또는 잉크 형성에 적용될 수 있다. 상기 비히클로 당해 기술분야에 자명하게 공지된 것이면 제한되지 않으며, 예를 들면, 테르피네올, 카르비톨, 부틸카르비톨, 셀로솔브, 부틸셀로솔브 및 이들의 에스테르류; 톨루엔, 크실렌 등에서 선택되는 어느 하나 또는 둘 이상의 유기용매; 에틸셀룰로오스, 니트로셀룰로오스, 아크릴산 에스테르, 메타크릴산 에스테르, 로진 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 바인더 수지; 등을 혼합한 용액이 사용될 수 있다. 필요에 따라 가소제, 점도조절제, 계면활성제, 산화방지제, 금속 유기화합물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 더 포함할 수 있다. According to an aspect of the present invention, the second glass precursor mixture may further include a vehicle including an organic solvent and a binder to form a second network. The vehicle must meet suitable rheological properties in order to apply the conductive composite powder and the second glass precursor mixture by screen printing. Thus, the second glass precursor mixture may be mixed with a conventional vehicle and applied to paste, paint, or ink formation. The vehicle is not limited as long as it is well known in the art, and examples thereof include terpineol, carbitol, butylcarbitol, cellosolve, butyl cellosolve, and esters thereof; Any one or two or more organic solvents selected from toluene, xylene and the like; Binder resin which is any one or a mixture of two or more selected from ethyl cellulose, nitrocellulose, acrylic acid ester, methacrylic acid ester, rosin and the like; Mixed solutions may be used. If necessary, it may further include any one or a mixture of two or more selected from a plasticizer, a viscosity modifier, a surfactant, an antioxidant, a metal organic compound, and the like.
상기 비히클의 배합비율 또한 통상의 무연 후막 저항체에 적용되는 범위이면 제한되지 않으며, 인쇄 등의 적용방법에 따라서 조절될 수 있다. The compounding ratio of the vehicle is also not limited as long as it is a range applied to a conventional lead-free thick film resistor, and may be adjusted according to an application method such as printing.
상기 비히클은 바람직하게는 전도성 복합분말, 제2유리전구체혼합물, 전도성분말 및 무기입자 100 중량부에 대하여 0.01 내지 100중량부 더 포함할 수 있다. 더 바람직하게는 0.1 내지 50중량부 더 포함할 수 있으나, 이에 제한되는 것은 아니다.The vehicle may preferably further comprise 0.01 to 100 parts by weight based on 100 parts by weight of the conductive composite powder, the second glass precursor mixture, the conductive powder and the inorganic particles. More preferably, 0.1 to 50 parts by weight may be further included, but is not limited thereto.
또한, 상기 비히클에 사용된 유기용매와 동일 또는 상이한 유기용매를 추가하여 더 포함하여 점도를 조절하여 제2유리전구체혼합물과 전도성복합분말의 혼화성을 향상시킬 수 있으나, 이에 제한되는 것은 아니다. 상기 유기용매는 바람직하게는 전도성 복합분말, 제2유리전구체혼합물, 전도성분말 및 무기입자 100 중량부에 대하여 10 내지 200중량부 더 포함할 수 있다. 더 바람직하게는 20 내지 100중량부 더 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, by adding the same or different organic solvent and the organic solvent used in the vehicle to further adjust the viscosity to improve the miscibility of the second glass precursor mixture and the conductive composite powder, but is not limited thereto. The organic solvent may preferably further comprise 10 to 200 parts by weight based on 100 parts by weight of the conductive composite powder, the second glass precursor mixture, the conductive powder and the inorganic particles. More preferably, but may further include 20 to 100 parts by weight, but is not limited thereto.
본 발명의 양태에 따라 상기 제 1유리전구체혼합물의 연화점(T1)은 600 내지 800℃일 수 있고, 상기 제 2유리전구체혼합물의 연화점(T2)은 500 내지 700℃일 수 있다. 상기 범위의 제1유리전구체혼합물의 연화점일 경우 루테늄계 복합 산화물과의 반응성이 향상되어 더욱 균일하게 제1네트워크를 형성할 수 있으며, 열처리 중 부분 결정구조를 가질 수 있어 바람직하다. 또한, 상기 범위의 제2유리전구체혼합물의 연화점일 경우 소성 온도는 800 내지 900℃에서 제1네트워크와 서로 교차되는 제2네트워크 형성이 용이하고, 무연 후막 저항체의 표면균일도가 향상되어 저항치 산포가 감소함에 따라 우수한 전기적 특성을 나타낼 수 있어 바람직하다. 상기와 같이 제1유리전구체혼합물과 제2유리전구체혼합물의 상이한 연화점을 갖는 것은 바륨산화물의 여부에 따라 조절할 수 있으며, 상기 바륨산화물을 제2유리전구체혼합물에 포함하지 않음에 따라 제2네트워크 형성 중 기판과의 높은 반응성으로 저항치 산포가(CV)가 높아지는 현상이 발생하는 것을 방지할 수 있다.According to an embodiment of the present invention, the softening point T 1 of the first glass precursor mixture may be 600 to 800 ° C., and the softening point T 2 of the second glass precursor mixture may be 500 to 700 ° C. In the case of the softening point of the first glass precursor mixture in the above range, the reactivity with the ruthenium-based composite oxide may be improved to more uniformly form the first network, and may have a partial crystal structure during heat treatment. In addition, in the case of the softening point of the second glass precursor mixture in the above range, the firing temperature is easy to form a second network intersecting with the first network at 800 to 900 ° C., and the surface uniformity of the lead-free thick film resistor is improved, thereby reducing the resistance spread. It is preferable because it can exhibit excellent electrical properties. As described above, having a different softening point of the first glass precursor mixture and the second glass precursor mixture can be controlled according to the presence or absence of barium oxide, and the barium oxide is not included in the second glass precursor mixture. It is possible to prevent the phenomenon that the resistance spread value CV becomes high due to high reactivity with the substrate.
본 발명의 일 양태에 따라 상기 제 1유리전구체혼합물의 연화점(T1)과 제 2유리전구체혼합물의 연화점(T2)은 T1-T2이 50 내지 150℃인 것일 수 있다. 바람직하게는 T1-T2이 80 내지 110℃인 것일 수 있다. 상기와 같은 연화점차이를 보일 경우 소성 시 제1네트워크와 제2네트워크의 상호융합이 발생하지 않아 제1네트워크와 제2네트워크가 서로 교차되는 이중네트워크를 형성할 수 있어 바람직하다.According to one aspect of the present invention, the first softening point of the glass precursor mixtures (T 1) and a second softening point of the glass precursor mixtures (T 2) may be one of T 1 -T 2 is 50 to 150 ℃. Preferably T 1 -T 2 may be 80 to 110 ℃. When the softening point difference is as described above, it is preferable to form a dual network in which the first network and the second network cross each other because inter-fusion of the first network and the second network does not occur during firing.
본 명세서에서, CuKα선을 이용하여 얻어지는 X-선 회절 패턴은 상온, 상압에서 θ-2 θ법에 의해 측정된 X-선 회절 결과를 포함하며, 2˚/min의 속도(scan rate)로 측정된 X-선 회절 결과를 포함한다.In the present specification, the X-ray diffraction pattern obtained using the CuKα ray includes the X-ray diffraction results measured by the θ-2 θ method at room temperature and normal pressure, and is measured at a scan rate of 2 ° / min. Included X-ray diffraction results.
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 2θ=27 내지 29°와 2θ=30 내지 32°의 영역의 회절 피크가 위치한다. 상기 영역의 회절 피크는 무연 후막 저항체의 이중네트워크가 형성됨에 따라 나타나는 회절 피크로써, 상기 회절 피크를 가진 무연 후막 저항체가 표면균일도 및 전기적 특성의 우수함을 나타낼 수 있다.According to an aspect of the present invention, the lead-free thick film resistor has a diffraction peak in a region of 2θ = 27 to 29 ° and 2θ = 30 to 32 ° in an X-ray diffraction pattern using CuKα rays. The diffraction peak of the region is a diffraction peak that appears as a double network of the lead-free thick film resistor is formed, and may indicate that the lead-free thick film resistor having the diffraction peak has excellent surface uniformity and electrical characteristics.
도 2에 도시된 바와 같이 본 발명의 일 실시예 무연 후막 저항체는 기판 위에 형성 후 150℃, 10분 동안 건조한 후, 850℃, 10분 동안 소성하여 이중네트워크를 형성하였다. 이의 X선 회절패턴을 관찰하였을 때, 2θ=28°와 2θ=30°의 영역에서 회절 피크가 위치하는 것을 확인할 수 있다.As shown in FIG. 2, the lead-free thick film resistor of the present invention was formed on a substrate, dried at 150 ° C. for 10 minutes, and then fired at 850 ° C. for 10 minutes to form a double network. When observing the X-ray diffraction pattern thereof, it can be seen that the diffraction peaks are located in the region of 2θ = 28 ° and 2θ = 30 °.
또한, 도 3에 도시된 바와 같이 본 발명의 일 실시예 무연 후막 저항체와 일 비교실시예 무연 후막 저항체를 비교하기 위하여 기판 위에 형성 후 150℃, 10분 동안 건조한 후, 850℃, 10분 동안 소성하여 X선 회절패턴을 관찰하였다. 본 발명의 일 실시예와 달리 일 비교실시예에서는 2θ=28°와 2θ=30°의 영역에서 회절 피크가 위치하지 않는 것을 통하여 본 발명의 무연 후막 저항체의 구성과 같이 제1네트워크 및 제2네트워크를 서로 교차하여 연결된 이중네트워크가 형성되지 않음을 확인할 수 있다.In addition, as shown in FIG. 3, after forming on a substrate, drying is performed at 150 ° C. for 10 minutes and then calcined at 850 ° C. for 10 minutes to compare one embodiment of a lead-free thick film resistor with a comparative lead-free thick film resistor of the present invention. The X-ray diffraction pattern was observed. Unlike one embodiment of the present invention, in one comparative embodiment, the first network and the second network are similar to those of the lead-free thick film resistor of the present invention through the fact that diffraction peaks are not located in the region of 2θ = 28 ° and 2θ = 30 °. It can be seen that the dual network is not formed by crossing each other.
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 1을 만족하는 피크 면적강도를 가질 수 있다.According to an aspect of the present invention, the lead-free thick film resistor may have a peak area intensity that satisfies Equation 1 below in an X-ray diffraction pattern using CuKα rays.
[식 1][Equation 1]
Figure PCTKR2018001903-appb-I000003
Figure PCTKR2018001903-appb-I000003
상기 식 1에 있어서, In the formula 1,
상기 A2θ0은 2θ=20 내지 36°영역의 모든 회절 피크 면적강도의 합이고,A 2θ0 is the sum of all diffraction peak area intensities in the region 2θ = 20 to 36 °,
상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이며,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
바람직하게는 상기 피크 면적강도는
Figure PCTKR2018001903-appb-I000004
을 만족할 수 있다.
Preferably the peak area intensity is
Figure PCTKR2018001903-appb-I000004
Can be satisfied.
본 발명의 상기 무연 후막 저항체가 상기 식 1을 만족하는 피크 면적강도를 가질 경우 제1네트워크 및 제2네트워크이 서로 교차하여 이중네트워크가 형성된 것을 나타낼 수 있다. 상기 이중네트워크가 구조가 형성됨에 따라 무연 후막 저항체의 저항치 산포, 온도특성, 전류잡음, 과부하특성 및 정전기 방지 특성을 더욱 향상시키고, 균일한 표면을 형성할 수 있어 바람직하다.When the lead-free thick film resistor of the present invention has a peak area intensity that satisfies Equation 1, it may represent that the first network and the second network cross each other to form a double network. As the double network structure is formed, it is preferable to further improve resistance distribution, temperature characteristics, current noise, overload characteristics, and antistatic characteristics of the lead-free thick film resistor, and to form a uniform surface.
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 2를 만족하는 피크 면적강도비를 가질 수 있다.According to an aspect of the present invention, the lead-free thick film resistor may have a peak area intensity ratio that satisfies Equation 2 below in an X-ray diffraction pattern using CuKα rays.
[식 2][Equation 2]
Figure PCTKR2018001903-appb-I000005
Figure PCTKR2018001903-appb-I000005
상기 식 2에 있어서,In the formula 2,
상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이고,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
바람직하게는 상기 피크 면적강도비는
Figure PCTKR2018001903-appb-I000006
을 만족할 수 있다.
Preferably the peak area intensity ratio is
Figure PCTKR2018001903-appb-I000006
Can be satisfied.
본 발명의 상기 무연 후막 저항체가 상기 식 2를 만족하는 피크 면적강도비를 가질 경우 제1네트워크 및 제2네트워크 간의 더욱 치밀하고 균일하게 이중네트워크가 형성된 것을 나타낼 수 있다. 상기 치밀하고 균일한 이중네트워크가 구조가 형성됨에 따라 무연 후막 저항체의 저항치 산포, 온도특성, 전류잡음, 과부하특성 및 정전기 방지 특성을 더욱 향상시키고, 균일한 표면을 형성할 수 있어 바람직하다.When the lead-free thick film resistor of the present invention has a peak area intensity ratio that satisfies Equation 2, it may indicate that a double network is formed more densely and uniformly between the first network and the second network. As the dense and uniform double network structure is formed, it is preferable to further improve resistance distribution, temperature characteristic, current noise, overload characteristic, and antistatic characteristic of the lead-free thick film resistor, and to form a uniform surface.
도 4에 도시된 바와 같이 본 발명의 일 실시예 무연 후막 저항체는 소성 후 제2네트워크 형성하기 전의 과정 중 건조과정에서의 결정구조와 소성 후의 결정구조를 비교하였을 때, 소성을 함에 따라 2θ=30 내지 32°의 영역에서 회절 피크의 면적강도가 더욱 강하게 나타나는 것을 통하여 제2네트워크가 더욱 치밀하고 균일하게 형성되는 것을 확인할 수 있다. 이에 반해, 일 비교실시예로 제조된 무연 후막 저항체의 경우 이중네트워크가 소성 후에도 본 발명의 무연 후막 저항체의 구성과 같이 제1네트워크 및 제2네트워크를 서로 교차하여 연결된 이중네트워크가 형성되지 않음을 확인할 수 있다.As shown in FIG. 4, the lead-free thick film resistor of the present invention has a calcination value of 2θ = 30 as it is calcined when the crystal structure of the drying process and the crystal structure of the baking process are compared before the formation of the second network after firing. It can be seen that the second network is more densely and uniformly formed through the stronger intensity of the diffraction peak in the region of 32 °. In contrast, in the case of the lead-free thick film resistor manufactured according to the comparative example, it is confirmed that even after the double network is fired, the double network connected to each other by crossing the first network and the second network is not formed, as in the configuration of the lead-free thick film resistor of the present invention. Can be.
본 발명의 상기 무연 후막 저항체는 광학현미경으로 관찰하여 1mm x 1mm 면적에서 입경 80 ㎛ 이상, 바람직하게는 입경 70 ㎛ 이상의 기포의 수가 20개 이하일 수 있다. 바람직하게는 상기 1mm x 1mm 면적에서 기포의 수가 5개 이하일 수 있다. 더 바람직하게는 상기 1mm x 1mm 면적에서 기포의 수가 0개 이하, 즉 기포가 없을 수 있다. 상기와 같은 기포의 수가 적을수록 표면균일도가 우수한 무연 후막 저항체가 제조되며, 표면균일도가 우수할수록 저항치 산포(CV)가 감소하여 안정적인 전기적 특성을 나타낼 수 있어 바람직하다. 본 발명의 상기 무연 후막 저항체는 실질적으로 도 1에 도시된 바와 같이 기포가 전혀 발생하지 않는 표면균일도가 우수한 무연 후막 저항체가 제조되어 저항치 산포(CV)가 낮고, 안정적인 전기적 특성을 갖는 무연 후막 저항체이다.The lead-free thick film resistor of the present invention may be observed in an optical microscope to have a number of bubbles of 80 μm or more, preferably 70 μm or more in a 1 mm × 1 mm area. Preferably, the number of bubbles in the 1 mm x 1 mm area may be five or less. More preferably, the number of bubbles in the 1 mm x 1 mm area may be zero or less, that is, no bubbles. As the number of bubbles as described above is reduced, a lead-free thick film resistor having excellent surface uniformity is prepared, and as the surface uniformity is excellent, resistance spread (CV) is reduced, which is preferable because it can exhibit stable electrical characteristics. The lead-free thick film resistor of the present invention is a lead-free thick film resistor having a stable electrical property with low resistance value dispersion (CV) due to the manufacture of a lead-free thick film resistor having excellent surface uniformity in which bubbles are not generated at all, as shown in FIG. 1. .
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 저항(Rs) 값이 10Ω/□ 내지 10MΩ/□이며, 저항치 산포(CV) 5% 이하일 수 있다.According to an aspect of the present invention, the lead-free thick film resistor may have a resistance (Rs) of 10 Ω / □ to 10 MΩ / □ and a resistance distribution (CV) of 5% or less.
더 구체적으로는 상기 무연 후막 저항체는 저항(Rs) 값이 10Ω/□ 내지 10MΩ/□이며, 저항치 산포(CV) 5% 이하이고, 온도특성(TCR)은 -100 내지 100 ppm/℃이며, 1/8W 정격전력에서 측정된 과부하특성(STOL)은 0.15% 이하일 수 있다. More specifically, the lead-free thick film resistor has a resistance (Rs) of 10Ω / □ to 10MΩ / □, resistance spread (CV) of 5% or less, temperature characteristic (TCR) of -100 to 100 ppm / ° C, and 1 The overload characteristic (STOL) measured at / 8W rated power can be less than 0.15%.
더 바람직하게는 상기 무연 후막 저항체는 저항(Rs) 값이 10Ω/□ 내지 10MΩ/□이며, 저항치 산포(CV) 5% 이하이고, 온도특성(TCR)은 -70 내지 70 ppm/℃이며, 1/8W 정격전력에서 측정된 과부하특성(STOL)은 0.1% 이하일 수 있다. 상기의 물성을 만족하는 무연 후막 저항체의 저항값의 안정성이 우수하고, 평활성 및 기판과의 접착력이 우수한 장점이 있다.More preferably, the lead-free thick film resistor has a resistance (Rs) of 10Ω / □ to 10MΩ / □, resistance spread (CV) of 5% or less, temperature characteristic (TCR) of -70 to 70 ppm / ° C, and 1 The overload characteristic (STOL) measured at / 8W rated power can be less than 0.1%. The resistance of the lead-free thick film resistor that satisfies the above properties is excellent, and there is an advantage in that smoothness and adhesion to the substrate are excellent.
본 발명은 일 양태에 따라 전자부품에 상술한 상기 무연 후막 저항체를 포함할 수 있다. The present invention may include the lead-free thick film resistor described above in an electronic component according to one aspect.
본 발명의 일 양태에 따라 상기 무연 후막 저항체는 전자부품으로서, 단층 또는 다층의 회로기판, 칩저항기, 아이솔레이터소자, C-R복합소자, 모듈소자, 콘덴서 또는 인덕터 등에 적용될 수 있다.According to an aspect of the present invention, the lead-free thick film resistor may be applied to a single layer or a multilayer circuit board, a chip resistor, an isolator element, a C-R composite element, a module element, a capacitor or an inductor as an electronic component.
이하 실시예를 통해 본 발명에 따른 무연 후막 저항체 및 이를 포함하는 전자부품에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, the lead-free thick film resistor and the electronic component including the same according to the present invention will be described in more detail with reference to the following examples. However, the following examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto and may be implemented in various forms.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Also, unless defined otherwise, all technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description herein is for the purpose of effectively describing particular embodiments only and is not intended to be limiting of the invention.
또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.In addition, the unit of the additive which is not specifically described in the specification may be wt%.
[물성측정방법][Measurement of physical properties]
1. 저항치 산포(CV, coefficient of variation) 평가 1. Evaluate the coefficient of variation (CV)
본 발명의 무연 후막 저항체 20개를 제작하고, 멀티미터기를 이용하여 각각의 저항값을 측정한다. 이들 값에 대한 평균값과 표준편차 값을 계산하고, 저항 값의 표준편차를 평균값으로 나눠주어 저항치 산포(CV)를 도출하며, 단위는 백분율로 나타낸다. Twenty lead-free thick film resistors of the present invention were produced, and each resistance value was measured using a multimeter. The mean and standard deviation of these values are calculated, and the standard deviation of the resistance values is divided by the average value to derive the resistance distribution (CV), expressed in percentage.
2. 저항치의 온도특성(TCR, temperature coefficient of resistance) 평가2. Evaluation of temperature coefficient of resistance (TCR)
실온 25℃를 기준으로 하여, 125℃로 온도로 변화시켰을 때의 저항치의 변화율을 확인함으로써 행하였다. 구체적으로는, 25℃, 125℃의 각각의 저항치를 R25,R125(Ω/□)로 표현하여, TCR을 하기 수학식에 의하여 도출하였으며, 단위는 ppm/℃이다.It carried out by confirming the change rate of the resistance value at the time of changing into temperature at 125 degreeC on the basis of room temperature of 25 degreeC. Specifically, the resistance values of 25 ° C. and 125 ° C. were expressed by R 25 and R 125 (Ω / □), and TCR was derived by the following equation, and the unit is ppm / ° C.
[수학식]
Figure PCTKR2018001903-appb-I000007
[Equation]
Figure PCTKR2018001903-appb-I000007
3. 단시간 과부하 특성(STOL, short-time overload) 평가3. Evaluation of short-time overload (STOL)
무연 후막 저항체에 시험 전압을 5초 인가한 후에 30분 방치하고, 그 전후에서의 저항치의 변화율을 확인함으로써 행하였다. 시험 전압은, 정격 전압의 2.5배로 하였다. 정격 전압은
Figure PCTKR2018001903-appb-I000008
로 하였다. 여기에서 R은 저항치(Ω/□)이다. 또한, 계산한 시험 전압이 200V를 넘는 저항치를 갖는 저항체에 대해서는, 시험 전압을 200V로 행하였다.
After the test voltage was applied to the lead-free thick film resistor for 5 seconds, it was left to stand for 30 minutes and confirmed by checking the rate of change of the resistance value before and after. The test voltage was 2.5 times the rated voltage. Rated voltage
Figure PCTKR2018001903-appb-I000008
It was set as. Where R is the resistance value (Ω / □). In addition, the test voltage was performed at 200V about the resistor whose calculated test voltage exceeded 200V.
4. 정전기 방지 특성(ESD) 평가4. Evaluation of antistatic properties (ESD)
소성된 무연 후막 저항체에 ESD test 장비(ELECTRO STATIC DISCHARGE SIMULATOR ESS-066)를 이용하여 1kV의 전압을 수 나노 s의 속도로 1초 on, 1초 off하여 5회 인가한다. 1kV의 전압을 인가하기 전 저항 값과 전압을 인가한 후 저항 값의 변화를 계산하였다.Using a ESD test equipment (ELECTRO STATIC DISCHARGE SIMULATOR ESS-066), the fired lead-free thick film resistor is applied with 5 times by applying 1 kV of voltage at a speed of several nano s for 1 second on and 1 second off. Before applying a voltage of 1 kV, the resistance value and the change in resistance value after calculating the voltage were calculated.
5. XRD를 통하여 결정구조 확인5. Check the crystal structure through XRD
무연 후막 저항체를 XRD 측정 장비 Rigaku사제 「X-ray diffraction UltimaIV」를 사용하여 시료 판위에 수평이 되도록 올린 후 하기 조건으로 2θ값을 10°에서 80°까지 측정하였다. 측정 조건은 관전압:40 kV, 관전류:40 mA, X선:CuKα(파장λ=1. 541Å)로 했다. X선회절 측정에 의해 회절 피크가 확인하였다.The lead-free thick film resistor was raised horizontally on the sample plate using "X-ray diffraction® Ultima IV" manufactured by Rigaku, an XRD measuring apparatus, and then 2θ values were measured from 10 ° to 80 ° under the following conditions. Measurement conditions were made into tube voltage: 40 kV, tube current: 40 mA, and X-ray: CuKα (wavelength lambda = 1.541 kPa). The diffraction peak was confirmed by X-ray diffraction measurement.
6. 광학현미경을 통하여 무연 후막 저항체 표면 균일도 확인6. Check the surface uniformity of lead-free thick film resistor through optical microscope
무연 후막 저항체를 광학현미경을 사용하여 배율 x50, x100, x500으로 표면에 형성된 저항체 기포의 수를 정량적으로 평가하였다.The lead-free thick film resistors were quantitatively evaluated for the number of resistor bubbles formed on the surface at magnifications x50, x100, and x500 using an optical microscope.
[실시예 1-24 및 비교예 1-9]Example 1-24 and Comparative Example 1-9
1) 제1네트워크가 형성된 전도성 복합분말의 제조1) Preparation of conductive composite powder with a first network
하기 표 1에 기재된 제 1유리전구체혼합물 또는 제2유리전구체혼합물의 조성을 포함하여 하기 표 2에 기재된 바와 같은 함량(g)의 조성이 되도록 루테늄계 복합 산화물과 1유리전구체혼합물 또는 제2유리전구체혼합물을 계량하여 볼밀로 2시간 혼합하였다. 그리고 800 ℃에서 30분 동안 열처리한 후 얻어진 소결체를 분쇄기를 이용하여 12시간 분쇄하여 최종 분말의 평균입경이 1.5㎛인 제1네트워크가 형성된 전도성 복합분말을 제조하였다.The ruthenium-based composite oxide and the first glass precursor mixture or the second glass precursor mixture to have a composition (g) as shown in Table 2, including the composition of the first glass precursor mixture or the second glass precursor mixture shown in Table 1 below. Was metered and mixed with a ball mill for 2 hours. The sintered compact obtained after the heat treatment at 800 ° C. for 30 minutes was pulverized using a grinder for 12 hours to prepare a conductive composite powder having a first network having an average particle diameter of 1.5 μm.
2) 무연 후막 저항 조성물의 제조2) Preparation of Lead Free Thick Film Resistance Compositions
하기 표 3에 실시예 및 비교예에 기재된 바와 같은 조성 및 함량(g)에 따라혼합하고, 유기 바인더인 에틸 셀룰로오스 수지 12중량% 및 BCA(Butyl Carbitol Acetate)3 : TPNL(Terpineol)16 중량비인 유기 용매 88중량%로 구성된 유기비히클을 사용하였고 첨가제로는 분산제(BYK-111)를 사용하였다. 위 조성물을 P/L mixer를 이용하여 2hr 교반한 후 3-롤밀을 이용하여 풀어주기 5회, 압박 5회에 걸쳐 분산을 하였다. 얻어진 페이스트 상의 무연 후막 저항 조성물을 65℃에서 24시간 에이징 하였고 추가 유기 용매 TPNL(Terpineol)를 이용하여 점도 조정 후 여과 공정을 거쳐서 제작하였다.In Table 3, it is mixed according to the composition and the content (g) as described in the Examples and Comparative Examples, 12% by weight of the organic cellulose resin ethyl cellulose resin and BCA (Butyl Carbitol Acetate) 3: TPNL (Terpineol) 16 weight ratio organic An organic vehicle consisting of 88% by weight of solvent was used and a dispersant (BYK-111) was used as an additive. The composition was stirred for 2hr using a P / L mixer, and then dispersed 5 times and 5 times using a 3-roll mill. The lead-free thick film resistant composition obtained on the paste was aged at 65 ° C. for 24 hours, and was prepared through a filtration process after viscosity adjustment using an additional organic solvent TPNL (Terpineol).
3) 무연 후막 저항체의 제조3) Preparation of lead-free thick film resistor
96% 순도의 알루미나 기판 상에 Ag-Pd 도체 페이스트를 U-pattern으로 스크린 인쇄하여 150℃에서 10분 건조시켰다. Ag는 95중량% 및 Pd는 5중량%이었다. 상기 건조된 시편을 850℃에서 10분 동안 소성하였다. 도체가 형성된 알루미나 기판 상에 실시예에 따른 무연 후막 저항 조성물을 1㎜ x 1㎜의 소정 형상으로 스크린 인쇄하여 150℃에서 10분 건조시킨 후, 850℃에서 10분 동안 소성하여 두께는 8.5㎛인 무연 후막 저항체를 제조하였다.Ag-Pd conductor paste was screen printed with U-pattern on 96% purity alumina substrate and dried at 150 ° C. for 10 minutes. 95 wt% Ag and 5 wt% Pd. The dried specimen was calcined at 850 ° C. for 10 minutes. The lead-free thick film resistance composition according to the embodiment was screen-printed to a predetermined shape of 1 mm x 1 mm on alumina substrate having a conductor, dried at 150 ° C. for 10 minutes, and then baked at 850 ° C. for 10 minutes to have a thickness of 8.5 μm. A lead-free thick film resistor was prepared.
[표 1]TABLE 1
Figure PCTKR2018001903-appb-I000009
Figure PCTKR2018001903-appb-I000009
[표 2]TABLE 2
Figure PCTKR2018001903-appb-I000010
Figure PCTKR2018001903-appb-I000010
[표 3]TABLE 3
Figure PCTKR2018001903-appb-I000011
Figure PCTKR2018001903-appb-I000011
[표 4]TABLE 4
Figure PCTKR2018001903-appb-I000012
Figure PCTKR2018001903-appb-I000012
Figure PCTKR2018001903-appb-I000013
Figure PCTKR2018001903-appb-I000013
상기 표 4에 나타낸 바와 같이 본 발명의 무연 후막 저항체는 넓은 저항 값의 범위에서 온도특성, 과부하 특성 및 정전기 방지 특성이 현저히 우수한 것을 확인하였다. 또한, 표면균일도가 우수하고, 저항치 산포(CV)가 낮아 균일하고 치밀한 저항체가 제조된 것을 확인하였다.As shown in Table 4, it was confirmed that the lead-free thick film resistor of the present invention was remarkably excellent in temperature characteristics, overload characteristics, and antistatic characteristics in a wide range of resistance values. In addition, it was confirmed that a uniform and dense resistor was prepared because of excellent surface uniformity and low dispersion of resistance value (CV).
더욱이, 본 발명의 실시예로 제조된 무연 후막 저항체는 비교예로 제조된 무연 후막 저항체에 대비하여 낮은 전류잡음을 가지는 것을 확인하였다.Furthermore, it was confirmed that the lead-free thick film resistor prepared in the embodiment of the present invention had a low current noise compared to the lead-free thick film resistor prepared in the comparative example.
도 5에 도시된 바와 같이 제2네트워크는 연속상으로 어두운 형상으로 나타내고 제1네트워크는 상기 연속상 내에 분산상으로 밝은 형상으로 나타내는 것을 통하여 상기 연속상 내에 분산상이 이중네트워크 구조가 형성되는 그물망 구조를 형성한 것을 확인하였다. 상기와 같이 이중네트워크를 갖는 본 발명의 무연 후막 저항체는 표면의 균일도가 더욱 향상되어 저항치 산포(CV) 및 전기적 특성이 향상됨을 확인하였다.As shown in FIG. 5, the second network is formed in a dark shape in a continuous phase and the first network is represented in a bright shape in a dispersed phase in the continuous phase, thereby forming a network structure in which a dispersed network is formed in the continuous phase. It confirmed that it did. The lead-free thick film resistor of the present invention having a double network as described above was confirmed that the uniformity of the surface is further improved to improve the resistance distribution (CV) and electrical properties.
상기 비교예 1 내지 8의 경우 제1네트워크가 형성된 전도성 복합분말을 포함하지 않고 루테늄계 복합 산화물을 포함함에 따라 이중네트워크를 형성하지 못하고, 루테늄계 복합 산화물이 분해되면서 도 1에 도시된 바와 같이 무연 후막 저항체의 불균일한 표면을 가짐에 따라 저항값 안정성이 현저히 감소하여 온도특성의 물성이 저하되는 것을 확인하였다. 또한, 비교예 9의 경우 제1네트워크가 형성된 전도성 복합분말만을 적용하여 무연 후막 저항체를 제조함에 따라 기판에 형성 시 유동성이 떨어져 저항체 표면의 균일도가 현저히 저하되고, 기판과의 접착력이 현저히 감소하여 제조안정성이 떨어지는 것을 확인하였다.In Comparative Examples 1 to 8, since the first network does not include the conductive composite powder and the ruthenium-based composite oxide does not form a double network, the ruthenium-based composite oxide is decomposed and lead-free as shown in FIG. 1. As a result of having a non-uniform surface of the thick film resistor, it was confirmed that the stability of the resistance value was remarkably decreased, thereby deteriorating the physical properties of the temperature characteristic. In addition, in Comparative Example 9, as the lead-free thick film resistor was manufactured by applying only the conductive composite powder having the first network formed thereon, fluidity was decreased during formation on the substrate, thereby significantly decreasing the uniformity of the surface of the resistor, and significantly reducing the adhesion to the substrate. It was confirmed that the stability was poor.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예를 통해 무연 후막 저항체 및 이를 포함하는 전자부품이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, in the present invention, a lead-free thick film resistor and an electronic component including the same have been described through specific matters and a limited embodiment, but the present invention is provided only to help a more general understanding of the present invention. Without being limited thereto, various modifications and variations can be made by those skilled in the art to which the present invention pertains.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (13)

  1. 실리콘산화물, 바륨산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 1유리전구체혼합물 및 루테늄계 복합산화물로부터 유도된 제1네트워크; 및A first network derived from a first glass precursor mixture and a ruthenium-based composite oxide comprising silicon oxide, barium oxide, boron oxide and aluminum oxide; And
    실리콘산화물, 보론산화물 및 알루미늄산화물을 포함하는 제 2유리전구체혼합물로부터 유도된 제2네트워크;를 포함하며,And a second network derived from a second glass precursor mixture comprising silicon oxide, boron oxide, and aluminum oxide.
    상기 제1네트워크 및 제2네트워크는 서로 교차하여 형성되는 것을 특징으로 하는 무연 후막 저항체.And the first network and the second network are formed to cross each other.
  2. 제 1항에 있어서, The method of claim 1,
    상기 제2네트워크는 연속상을 형성하고 제1네트워크는 상기 연속상 내에 분산상을 형성하되, 상기 분산상은 가교 구조를 형성하는 것인 무연 후막 저항체.Wherein the second network forms a continuous phase and the first network forms a dispersed phase in the continuous phase, wherein the dispersed phase forms a crosslinked structure.
  3. 제 1항에 있어서, The method of claim 1,
    상기 제 1유리전구체혼합물 및 제 2유리전구체혼합물은 전이금속 산화물, 알칼리금속 산화물 및 알칼리토금속 산화물에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 더 포함하는 무연 후막 저항체.The first glass precursor mixture and the second glass precursor mixture further comprises any one or a mixture of two or more selected from transition metal oxides, alkali metal oxides and alkaline earth metal oxides.
  4. 제 3항에 있어서, The method of claim 3, wherein
    상기 전이금속 산화물은 Nb2O5, Ta2O5, TiO2, MnO2, CuO,ZrO2, WO3 및 ZnO 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The transition metal oxide is any one or a mixture of two or more selected from Nb 2 O 5 , Ta 2 O 5 , TiO 2 , MnO 2 , CuO, ZrO 2, WO 3 and ZnO,
    상기 알칼리금속 산화물은 Na2O, K2O 및 Li2O에서 선택되는 어느 하나 또는 둘 이상의 혼합물이며,The alkali metal oxide is any one or a mixture of two or more selected from Na 2 O, K 2 O and Li 2 O,
    상기 알칼리토금속 산화물은 SrO, CaO 및 MgO에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 무연 후막 저항 저항체.The alkaline earth metal oxide is any one or a mixture of two or more selected from SrO, CaO and MgO lead-free thick film resistance resistor.
  5. 제 1항에 있어서, The method of claim 1,
    상기 제 1유리전구체혼합물의 연화점(T1)은 600 내지 800℃이고, 상기 제 2유리전구체혼합물의 연화점(T2)은 500 내지 700℃인 것을 특징으로 하는 무연 후막 저항체. The softening point (T 1 ) of the first glass precursor mixture is 600 to 800 ℃, the softening point (T 2 ) of the second glass precursor mixture is 500 to 700 ℃ lead-free thick film resistor.
  6. 제 5항에 있어서, The method of claim 5,
    상기 제 1유리전구체혼합물의 연화점(T1)과 제 2유리전구체혼합물의 연화점(T2)은 T1-T2는 50 내지 150℃인 것을 특징으로 하는 무연 후막 저항체.The softening point (T 1 ) of the first glass precursor mixture and the softening point (T 2 ) of the second glass precursor mixture is T 1 -T 2 is 50 to 150 ℃ lead-free thick film resistor.
  7. 제 1항에 있어서, The method of claim 1,
    상기 무연 후막 저항체는 CuKα선을 이용한 X선 회절패턴에서, 2θ=27 내지 29°와 2θ=30 내지 32°의 영역의 회절 피크가 위치하는 무연 후막 저항체.The lead-free thick film resistor is a lead-free thick film resistor is located in the X-ray diffraction pattern using CuKα rays, the diffraction peaks in the region of 2θ = 27 to 29 ° and 2θ = 30 to 32 °.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 1을 만족하는 피크 면적강도를 갖는 무연 후막 저항체.The lead-free thick film resistor is a lead-free thick film resistor having a peak area intensity that satisfies Equation 1 in the X-ray diffraction pattern using CuKα rays.
    [식 1][Equation 1]
    Figure PCTKR2018001903-appb-I000014
    Figure PCTKR2018001903-appb-I000014
    상기 식 1에 있어서, In the formula 1,
    상기 A2θ0은 2θ=20 내지 36°영역의 모든 회절 피크 면적강도의 합이고,A 2θ0 is the sum of all diffraction peak area intensities in the region 2θ = 20 to 36 °,
    상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이며,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
    상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
  9. 제 8항에 있어서, The method of claim 8,
    상기 무연 후막 저항체는 CuKα선을이용한 X선 회절패턴에서, 하기 식 2를 만족하는 피크 면적강도비를 갖는 무연 후막 저항체.The lead-free thick film resistor is a lead-free thick film resistor having a peak area intensity ratio that satisfies Equation 2 in the X-ray diffraction pattern using CuKα rays.
    [식 2][Equation 2]
    Figure PCTKR2018001903-appb-I000015
    Figure PCTKR2018001903-appb-I000015
    상기 식 2에 있어서, In the formula 2,
    상기 A2θ1은 2θ=27 내지 29°영역의 회절 피크 면적강도이고,A 2θ1 is a diffraction peak area intensity in a 2θ = 27 to 29 ° region,
    상기 A2θ2는 2θ=30 내지 32°영역의 회절 피크 면적강도이다.A 2 is a diffraction peak area intensity in a 2θ = 30 to 32 ° region.
  10. 제 1항에 있어서, The method of claim 1,
    상기 무연 후막 저항체는 저항(Rs) 값이 10Ω/□ 내지 10MΩ/□이며, 저항치 산포(CV) 5% 이하인 무연 후막 저항체.The lead-free thick film resistor is a resistance (Rs) value of 10Ω / □ to 10MΩ / □, lead-free thick film resistor having a resistance distribution (CV) 5% or less.
  11. 제 1항에 있어서, The method of claim 1,
    상기 무연 후막 저항체는 1mm x 1mm 면적에서 입경 80 ㎛ 이상의 기포의 수가 20개 이하인 무연 후막 저항체.The lead-free thick film resistor is a lead-free thick film resistor having a particle size of 80 ㎛ or more in the area of 1mm x 1mm 20 or less.
  12. 제 1항 내지 제11항에서 선택되는 어느 한 항의 무연 후막 저항체를 포함하는 전자부품.An electronic component comprising the lead-free thick film resistor of any one of claims 1 to 11.
  13. 제 12항에 있어서, The method of claim 12,
    상기 전자부품은 회로기판, 칩저항기, 아이솔레이터소자, C-R복합소자, 모듈소자, 콘덴서 또는 인덕터인 전자부품.The electronic component is a circuit board, a chip resistor, an isolator element, a C-R composite element, a module element, a capacitor or an inductor.
PCT/KR2018/001903 2017-02-13 2018-02-13 Lead-free thick film resistor and electronic component comprising same WO2018147713A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019543789A JP6975246B2 (en) 2017-02-13 2018-02-13 Lead-free thick film low antibody and electronic components containing it
CN201880024662.9A CN110494937B (en) 2017-02-13 2018-02-13 Lead-free thick film resistor and electronic component including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170019648A KR101848694B1 (en) 2017-02-13 2017-02-13 Lead-free thick film resistor, and electronic deivce coprising the same
KR10-2017-0019648 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147713A1 true WO2018147713A1 (en) 2018-08-16

Family

ID=62082114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001903 WO2018147713A1 (en) 2017-02-13 2018-02-13 Lead-free thick film resistor and electronic component comprising same

Country Status (4)

Country Link
JP (1) JP6975246B2 (en)
KR (1) KR101848694B1 (en)
CN (1) CN110494937B (en)
WO (1) WO2018147713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011415A (en) * 2019-07-09 2021-02-04 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050917A (en) * 2004-09-01 2006-05-19 티디케이가부시기가이샤 Thick-film resistor paste and thick-film resistor
KR20070015451A (en) * 2004-06-09 2007-02-02 페로 코포레이션 Lead-free and cadmium-free conductive copper thick film pastes
KR20070037680A (en) * 2005-10-03 2007-04-06 소에이 가가쿠 고교 가부시키가이샤 Resistor composition and thick film resistor
KR20080033312A (en) * 2005-08-10 2008-04-16 페로 코포레이션 Copper termination inks containing lead free and cadmium free glasses for capacitors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073442A1 (en) * 2002-02-28 2003-09-04 Kojima Chemical Co., Ltd. Resistor
JP4079669B2 (en) * 2002-02-28 2008-04-23 小島化学薬品株式会社 Thick film resistor paste
CN100511496C (en) * 2004-09-01 2009-07-08 Tdk株式会社 Thick-film resistor paste and thick-film resistor
JP5159080B2 (en) * 2005-12-02 2013-03-06 昭栄化学工業株式会社 Overcoat glass paste and thick film resistance element
US8628695B2 (en) * 2008-04-18 2014-01-14 E I Du Pont De Nemours And Company Surface-modified ruthenium oxide conductive material, lead-free glass(es), thick film resistor paste(s), and devices made therefrom
JP5831055B2 (en) * 2011-09-02 2015-12-09 住友金属鉱山株式会社 Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
CA2939542C (en) * 2014-09-12 2017-07-18 Shoei Chemical Inc. Thick film resistor and production method for same
CN104795128B (en) * 2015-05-14 2017-02-22 刘飞全 Lead-free resistance paste as well as manufacturing process and application of lead-free resistance paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015451A (en) * 2004-06-09 2007-02-02 페로 코포레이션 Lead-free and cadmium-free conductive copper thick film pastes
KR20060050917A (en) * 2004-09-01 2006-05-19 티디케이가부시기가이샤 Thick-film resistor paste and thick-film resistor
KR20080033312A (en) * 2005-08-10 2008-04-16 페로 코포레이션 Copper termination inks containing lead free and cadmium free glasses for capacitors
KR20070037680A (en) * 2005-10-03 2007-04-06 소에이 가가쿠 고교 가부시키가이샤 Resistor composition and thick film resistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIELBASINSKL KONRAD ET AL.: "Investigation on Electrical and Microstructural Properties of Thick Film Lead-Free Resistor Series under Various Firing Conditions", JOURNAL OF MATERIALS SCIENCE : MATERIALS IN ELECTRONICS, vol. 21, no. 10, 10 March 2010 (2010-03-10), pages 1099 - 1105, XP019822017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011415A (en) * 2019-07-09 2021-02-04 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7279551B2 (en) 2019-07-09 2023-05-23 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Also Published As

Publication number Publication date
JP2020510996A (en) 2020-04-09
JP6975246B2 (en) 2021-12-01
KR101848694B1 (en) 2018-04-16
CN110494937A (en) 2019-11-22
CN110494937B (en) 2021-09-21

Similar Documents

Publication Publication Date Title
US10403421B2 (en) Thick film resistor and production method for same
KR100887013B1 (en) Cationically Polymerizable Photoimageable Thick Film Compositions, Electrodes, and Methods of Forming Thereof
JPH03197333A (en) Crystallizable glass and thick membranous composition thereof
US10446290B2 (en) Resistive composition
WO2011025283A2 (en) Zno-based varistor composition
US5210057A (en) Partially crystallizable glass compositions
WO2018147713A1 (en) Lead-free thick film resistor and electronic component comprising same
WO2017025943A1 (en) Lead-free thick film resistant composition, lead-free thick film resistor, and method for manufacturing same
DE2714220C3 (en) Coated alumina substrate and powder mixture for coating such substrates
TWI662561B (en) Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof
JPH0597472A (en) Partially crystalline glass composition
JPH02188479A (en) Dielectric composition
EP0498409A1 (en) Partially crystallizable glass compositions
WO2016171323A1 (en) Electrode paste composition for chip component
US4780248A (en) Thick film electronic materials
KR100246720B1 (en) Method of preparing paste for resistor for lcr co-firing, method of manufacturing thick film using it
WO2022216136A1 (en) Electrode composition for electrospraying
WO2022225361A1 (en) Multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component implemented through same
WO2021194299A1 (en) Electrode composition, method for manufacturing electronic component using same, and electronic component implemented therewith
JPH06163202A (en) Thick film resistor paste and thick film resistor and manufacturing method thereof
JPH02212336A (en) Glass-ceramic composition and its use
JPH0644670B2 (en) Ceramic circuit board manufacturing method
KR100611805B1 (en) Resistor and electronic device
KR100978736B1 (en) A conductive paste composition for PDP electrode and manufacturing method thereof
JP2005209738A (en) Thick film resistor and its production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750800

Country of ref document: EP

Kind code of ref document: A1