WO2021190531A1 - 一种多激光组合多轴车铣复合机床及其加工方法 - Google Patents

一种多激光组合多轴车铣复合机床及其加工方法 Download PDF

Info

Publication number
WO2021190531A1
WO2021190531A1 PCT/CN2021/082564 CN2021082564W WO2021190531A1 WO 2021190531 A1 WO2021190531 A1 WO 2021190531A1 CN 2021082564 W CN2021082564 W CN 2021082564W WO 2021190531 A1 WO2021190531 A1 WO 2021190531A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
axis
component
processing
machine tool
Prior art date
Application number
PCT/CN2021/082564
Other languages
English (en)
French (fr)
Inventor
王成勇
林海生
胡小月
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021190531A1 publication Critical patent/WO2021190531A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention belongs to the technical field of laser processing equipment, and specifically relates to a multi-laser combined multi-axis turning-milling compound machine tool and a processing method thereof.
  • Laser processing has the characteristics of non-contact, high energy, flexible processing, small heat-affected zone, and no material selectivity. It has become an important means of replacing traditional difficult-to-process materials at home and abroad.
  • the level of laser processing equipment is the key to restricting the development of advanced laser processing technology.
  • Foreign high-end laser processing machine tool manufacturers such as GF, DMG MORI, C.B.Ferrari, and EWAG mainly use nanosecond or picosecond single lasers for laser milling processing, while domestic Muji machine tools mainly use a single laser for turning processing.
  • the patent 201710958233.6 discloses a combined multifunctional laser processing machine tool, which combines traditional machining and laser processing methods into one machine tool.
  • laser machine tools are mainly suitable for laser cutting, drilling and surface texture processing in the world. There is no laser machine tool that has an overall special system design and meets the requirements of tools for roughing and finishing of complex surface tools, turning and milling combined processing.
  • the present invention provides a multi-laser combined multi-axis turning-milling compound machine tool and its processing method.
  • the present invention combines nanosecond, picosecond and femtosecond lasers to perform rough, semi-precision and finishing of the tool respectively, and through multi-axis motion
  • the platform design realizes turning and milling compound processing, realizes the one-time clamping and forming of complex profile tools, effectively improves the processing efficiency and processing quality, and solves the problem that general laser processing cannot achieve complex profile tool processing.
  • a multi-laser combined multi-axis turning-milling compound machine tool including a frame, is characterized in that a first laser processing area, a second laser processing area, and an X-axis motion component are respectively provided on the frame, and the first laser
  • the processing area includes a first laser processing component and a first movement component.
  • the first laser processing component is mated and connected to the first movement component;
  • the second laser processing area includes a second laser processing component and a second movement component.
  • the laser processing component is matched and connected with the second movement component; the X-axis movement component is located below the first laser processing component and the second laser processing component.
  • the maximum linear movement range of the X-axis motion component is 1500 mm, and the maximum positioning accuracy is 0.1 ⁇ m.
  • the X-axis movement assembly is provided with a central turntable and a knife handle, and the knife handle is clamped in the middle area of the center turntable; the central turntable is provided with a motor.
  • the tool holder is used for clamping tools, and the motor can drive the central turntable to rotate.
  • the motor drives the central turntable to rotate at a high speed along the A-axis and the C-axis;
  • the A-axis is an axis parallel to the X-axis movement assembly, and
  • the C-axis is an axis perpendicular to the X-axis movement assembly.
  • the rotation range of the central turntable along the A axis is -140°-140°
  • the rotation range of the central turntable along the C axis is 0°-360°
  • the highest rotational positioning accuracy is 0.001°.
  • the first movement component includes a Y1 axis movement component and a Z1 axis movement component;
  • the first laser processing component performs linear movement in the Y-axis and Z-axis directions through the Y1-axis movement component and the Z1-axis movement component, respectively, and the maximum linear movement ranges of the first laser processing component on the Y1 and Z1 axes are 500 and respectively. 600mm, the highest positioning accuracy is 0.1 ⁇ m.
  • the first laser processing component includes a nanosecond laser, a nanosecond laser fixing frame, a first processing area galvanometer scanning module, and a first processing area laser head, and the nanosecond laser is arranged on the nanosecond laser fixing frame
  • the nanosecond laser fixing frame is connected with the Y1 axis movement assembly, and the first processing area galvanometer scanning module and the first processing area laser head are respectively connected with the Z1 axis movement assembly.
  • the second motion component includes a Y2-axis motion component and a Z2-axis motion component; the second laser processing component performs linear movement in the Y-axis and Z-axis directions through the Y2-axis motion component and the Z2-axis motion component respectively, so
  • the maximum linear movement ranges of the second laser processing component on the Y2 and Z2 axes are 500 and 600 mm, respectively, and the maximum positioning accuracy is 0.1 ⁇ m.
  • the second laser processing component includes picosecond and femtosecond lasers, picosecond and femtosecond laser fixing frames, second processing area galvanometer scanning module, second processing area laser head, CCD module, and optical path transmission module,
  • the picosecond and femtosecond lasers are arranged on a picosecond and femtosecond laser fixing frame, one side of the picosecond and femtosecond laser is provided with an optical path transmission module, the second processing area galvanometer scanning module, the second processing The area laser heads are respectively connected with the Z2-axis movement assembly, the CCD module is arranged on one side of the picosecond and femtosecond laser fixing frame, and the picosecond and femtosecond laser fixing frame is connected with the Y2-axis movement assembly.
  • the picosecond and femtosecond lasers share a set of optical paths, and the laser light source is switched as required; in particular, the CCD module can perform online monitoring of tool processing accuracy.
  • the frame includes a mineral bed and a mineral column.
  • the laser machine tool is connected with a mute vacuum cleaner and a dust-proof device to realize the removal of waste debris and exhaust gas during processing.
  • a processing method for a multi-laser combined multi-axis turning-milling compound machine tool specifically: the processed tool can be linearly moved to the first processing area through the X-axis motion platform for nanosecond laser roughing, and moved to the second processing area for picoseconds Laser semi-finishing or femtosecond laser finishing; after the A-axis is deflected by 90° to be parallel to the Y-axis, it is fixed, and the C-axis continues to rotate 360° to achieve laser turning processing; through A, C, X, Y1, Z1 or A
  • the linkage control between, C, X, Y2, and Z2 can realize laser milling processing, and finally realize laser turning-milling combined processing.
  • the main innovations of the present invention are:
  • the laser machine tool combines nanosecond, picosecond and femtosecond lasers to perform rough, semi-precision and finishing of the tool respectively;
  • the present invention provides a multi-laser combined multi-axis turning-milling compound machine tool, which combines nanosecond, picosecond and femtosecond lasers to perform rough, semi-finish and finishing of cutters respectively, and realizes turning and milling compound processing through the design of a multi-axis motion platform, which realizes complexity It can effectively improve the processing efficiency and processing quality. It solves the problems of low processing efficiency and poor quality caused by the general laser processing that cannot be realized by the general laser processing, and the low processing efficiency and poor quality caused by multiple clamping. The level of tool manufacturing is of great significance.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • a multi-laser combined multi-axis turning-milling compound machine tool includes a frame 1, wherein the frame is provided with a first laser processing area 100, a second laser processing area 200, and an X-axis motion component 11, respectively.
  • the first laser processing area includes a first laser processing component 102 and a first moving component 101, and the first laser processing component is mated and connected with the first moving component;
  • the second laser processing area includes a second laser processing component 202 and a second laser processing component.
  • the movement component 201, the second laser processing component and the second movement component are matedly connected;
  • the X-axis movement component is located below the first laser processing component and the second laser processing component.
  • the maximum linear movement range of the X-axis motion component is 1500 mm, and the maximum positioning accuracy is 0.1 ⁇ m.
  • a central turntable and a knife handle are provided on the X-axis movement assembly, and the knife handle is clamped in the middle area of the center turntable; a motor is provided in the center turntable.
  • the tool holder is used for clamping tools, and the motor can drive the central turntable to rotate.
  • the motor drives the central turntable to rotate at a high speed along the A-axis and the C-axis;
  • the A-axis is an axis parallel to the X-axis movement assembly, and
  • the C-axis is an axis perpendicular to the X-axis movement assembly.
  • the rotation range of the central turntable along the A axis is -140°-140°
  • the rotation range of the central turntable along the C axis is 0°-360°
  • the highest rotational positioning accuracy is 0.001°.
  • the first movement component includes a Y1 axis movement component 2 and a Z1 axis movement component 3;
  • the first laser processing component performs linear movement in the Y-axis and Z-axis directions through the Y1-axis movement component and the Z1-axis movement component, respectively, and the maximum linear movement ranges of the first laser processing component on the Y1 and Z1 axes are 500 and respectively. 600mm, the highest positioning accuracy is 0.1 ⁇ m.
  • the first laser processing assembly includes a nanosecond laser 5, a nanosecond laser fixing frame 4, a first processing area galvanometer scanning module 15, and a first processing area laser head 16, and the nanosecond laser is set at the nanosecond On the laser fixing frame, the nanosecond laser fixing frame is connected to the Y1 axis movement component, and the first processing area galvanometer scanning module and the first processing area laser are connected to the Z1 axis movement component.
  • the second movement component includes a Y2-axis movement component 13 and a Z2-axis movement component 14;
  • the second laser processing component performs linear movement in the Y-axis and Z-axis directions through the Y2-axis movement component and the Z2-axis movement component, respectively, and the maximum linear movement ranges of the second laser processing component on the Y2 and Z2 axes are 500 and respectively. 600mm, the highest positioning accuracy is 0.1 ⁇ m.
  • the second laser processing component includes picosecond and femtosecond laser 6, picosecond and femtosecond laser fixing frame 7, second processing area galvanometer scanning module 9, second processing area laser head 12, and CCD module 10.
  • Optical path transmission module 8 the picosecond and femtosecond lasers are set on the picosecond and femtosecond laser fixing frame, the picosecond and femtosecond lasers are provided with an optical path transmission module on one side, and the second processing area galvanometer
  • the scanning module and the laser head 12 of the second processing area are connected with the Z2-axis movement assembly, the CCD module is arranged on one side of the picosecond and femtosecond laser fixing frame, and the picosecond and femtosecond laser fixing frame is moved with the Y2 axis Component connection.
  • the picosecond and femtosecond lasers share a set of optical paths, and the laser light source is switched as required; in particular, the CCD module can perform online monitoring of tool processing accuracy.
  • the frame includes a mineral bed (not marked) and a mineral column (not marked).
  • the laser machine tool is connected with a silent vacuum cleaner (not marked) and a dustproof device (not marked) to realize the removal of waste and exhaust gas during processing.
  • a processing method for a multi-laser combined multi-axis turning-milling compound machine tool specifically: the processed tool can be linearly moved to the first processing area through the X-axis motion platform for nanosecond laser roughing, and moved to the second processing area for picoseconds Laser semi-finishing or femtosecond laser finishing; after the A-axis is deflected by 90° and parallel to the Y-axis, it is fixed, and the C-axis continues to rotate 360° to achieve laser turning processing; through A, C, X, Y1, Z1 or A, The linkage control between C, X, Y2, and Z2 can realize laser milling processing, and finally realize laser turning-milling combined processing.
  • the present invention provides a multi-laser combined multi-axis turning-milling compound machine tool, which combines nanosecond, picosecond and femtosecond lasers to perform rough, semi-finish and finishing of cutters respectively, and realizes turning and milling compound processing through the design of a multi-axis motion platform, which realizes complexity It can effectively improve the processing efficiency and processing quality. It solves the problems of low processing efficiency and poor quality caused by the general laser processing that cannot be realized by the general laser processing, and the low processing efficiency and poor quality caused by multiple clamping. The level of tool manufacturing is of great significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种多激光组合多轴车铣复合机床及其加工方法。多激光组合多轴车铣复合机床包括机架(1),机架(1)上分别设有第一激光加工区域(100)、第二激光加工区域(200)、X轴运动组件(11),第一激光加工区域(100)包括第一激光加工组件(102)和第一运动组件(101);第二激光加工区域(200)包括第二激光加工组件(202)和第二运动组件(201);X轴运动组件(11)位于第一激光加工组件(102)、第二激光加工组件(202)下方。

Description

一种多激光组合多轴车铣复合机床及其加工方法 技术领域
本发明属于激光加工设备技术领域,具体涉及一种多激光组合多轴车铣复合机床及其加工方法。
背景技术
随着3C电子、汽车、模具、航空航天等领域高速发展,典型难加工材料被广泛应用,对加工质量及加工效率的要求也不断提高。为满足关键领域材料的加工需求,切削刀具材料向超硬方向发展,刀具型面趋于复杂,对精度与质量要求更高。由于刀具本身材料的难加工特性,采用金刚石砂轮磨削等传统加工方法制造超硬刀具、复杂形状刀具尤为困难,制造成本高、加工效率低、加工工艺极其复杂。
激光加工具有无接触、高能量、加工灵活、热影响区小、无材料选择性等特点,成为国内外代替传统难加工材料加工方式的重要手段。激光加工装备水平是制约先进激光加工技术发展的关键。国外高端激光加工机床制造商GF、DMG MORI、C.B.Ferrari和EWAG等主要采用纳秒或皮秒单一激光进行激光铣削加工,而国内牧激机床主要采用单一激光进行车削加工。另外,专利201710958233.6公开了一种组合式多功能激光加工机床,将传统机械加工与激光加工方法集合在一台机床,主要用于材料的钻孔、切割、铣削加工,无法满足复杂型面刀具激光车铣复合等加工。目前国际上激光机床主要适用于激光切割、打孔和表面纹理加工,尚未有具有整体专用***设计且满足复杂型面刀具粗、精加工以及车铣复合加工等应用刀具要求的激光机床。
针对复杂型面刀具的激光加工要求以及激光加工机床现状,亟需设计研制组合式激光加工机床,兼顾纳秒、皮秒和飞秒等不同特性激光的加工效率与加工质量,并通过运动轴设计进行车铣复合加工,实现一次装夹加工成型。
发明内容
有鉴于此,本发明提供一种多激光组合多轴车铣复合机床及其加工方法,本发明组合纳秒、皮秒和飞秒激光器分别进行刀具粗、半精和精加工,通过多轴运动平台设计实现车铣复合加工,实现复杂型面刀具一次装夹加工成型,有效提高加工效率和加工质量,解决了一般激光加工无法实现复杂型面刀具加工。
本发明的技术方案为:
一种多激光组合多轴车铣复合机床,包括机架,其特征在于,所述机架上分别设有第一激光 加工区域、第二激光加工区域、X轴运动组件,所述第一激光加工区域包括第一激光加工组件和第一运动组件,所述第一激光加工组件与第一运动组件配合连接;第二激光加工区域包括第二激光加工组件和第二运动组件,所述第二激光加工组件与第二运动组件配合连接;所述X轴运动组件位于第一激光加工组件、第二激光加工组件下方。
进一步的,所述X轴运动组件的最大直线移动范围为1500mm,最高定位精度为0.1μm。
进一步的,所述X轴运动组件上设有中心转台和刀柄,所述刀柄夹持在中心转台的中间区域;所述中心转台内设有马达。所述刀柄用于装夹刀具,所述马达可驱动中心转台旋转。
进一步的,所述马达驱动中心转台沿A轴、C轴进行高速旋转;所述A轴为与X轴运动组件平行的轴,所述C轴为与X轴运动组件垂直的轴。
进一步的,所述中心转台沿A轴的转动范围为-140°-140°,所述中心转台沿C轴的转动范围为0°-360°,最高旋转定位精度均为0.001°。
进一步的,所述第一运动组件包括Y1轴运动组件和Z1轴运动组件;
所述第一激光加工组件分别通过Y1轴运动组件和Z1轴运动组件进行Y轴和Z轴方向的直线移动,所述第一激光加工组件在Y1和Z1轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
进一步的,所述第一激光加工组件包括纳秒激光器、纳秒激光器固定架、第一加工区域振镜扫描模块、第一加工区域激光头,所述纳秒激光器设置在纳秒激光器固定架上,所述纳秒激光器固定架与Y1轴运动组件连接,所述第一加工区域振镜扫描模块、第一加工区域激光头分别与Z1轴运动组件连接。
进一步的,所述第二运动组件包括Y2轴运动组件和Z2轴运动组件;所述第二激光加工组件分别通过Y2轴运动组件和Z2轴运动组件进行Y轴和Z轴方向的直线移动,所述第二激光加工组件在Y2和Z2轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
进一步的,所述第二激光加工组件包括皮秒和飞秒激光器、皮秒和飞秒激光器固定架、第二加工区域振镜扫描模块、第二加工区域激光头、CCD模块、光路传输模块,所述皮秒和飞秒激光器设置在皮秒和飞秒激光器固定架上,所述皮秒和飞秒激光器一侧设有光路传输模块,所述第二加工区域振镜扫描模块、第二加工区域激光头分别与Z2轴运动组件连接,所述CCD模块设置于所述皮秒和飞秒激光器固定架一侧,所述皮秒和飞秒激光器固定架与Y2轴运动组件连接。
特别的,所述皮秒和飞秒激光器共用一套光路,按照需求进行激光光源切换;特别的,CCD模块可进行刀具加工精度在线监测。
进一步的,所述机架包括矿物质床身和矿物质立柱。
进一步的,所述激光机床连接有静音吸尘器和防尘装置,实现加工时废屑、废气的去除。
一种多激光组合多轴车铣复合机床的加工方法,具体为:被加工刀具可通过X轴运动平台直线移动到第一加工区域进行纳秒激光粗加工,移动到第二加工区域进行皮秒激光半精加工或飞秒激光精加工;通过A轴偏转90°与Y轴平行后固定,C轴持续360°旋转,可以实现激光车加工;通过A、C、X、Y1、Z1之间或A、C、X、Y2、Z2之间的联动控制,可以实现激光铣加工,最终实现激光车铣复合加工。
本发明的主要创新点在于:
1.激光机床组合纳秒、皮秒和飞秒激光,可分别进行刀具粗、半精和精加工;
2.通过多轴运动平台设计,实现激光车铣复合加工;
3.通过以上两点的组合,实现复杂型面刀具一次装夹激光加工成型。
本发明的有益效果在于:
本发明提供一种多激光组合多轴车铣复合机床,组合纳秒、皮秒和飞秒激光器分别进行刀具粗、半精和精加工,通过多轴运动平台设计实现车铣复合加工,实现复杂型面刀具一次装夹加工成型,有效提高加工效率和加工质量,解决了一般激光加工无法实现复杂型面刀具加工,以及多次装夹造成的加工效率低、质量差等问题,对提高我国高端刀具制造水平具有重要意义。
附图说明
图1为本发明的结构示意图;
本发明附图中,1-机架、2-Y1轴运动组件、3-Z1轴运动组件、4-纳秒激光器固定架、5-纳秒激光器、6-皮秒和飞秒激光器、7-皮秒和飞秒激光器固定架、8-光路传输模块、9-第二加工区域扫描振镜模块、10-CCD模块、11-X轴运动组件、12-第二加工区域激光头、13-Z2轴运动组件、14-Y2轴运动组件、15-第一加工区域扫描振镜模块、16-第一加工区域激光头、17-中心转台、18-刀柄、100-第一激光加工区域、200-第二激光加工区域、101-第一运动组件、102-第一激光加工组件、201-第二运动组件、202-第二激光加工组件。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发 明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种多激光组合多轴车铣复合机床,包括机架1,其特征在于,所述机架上分别设有第一激光加工区域100、第二激光加工区域200、X轴运动组件11,所述第一激光加工区域包括第一激光加工组件102和第一运动组件101,所述第一激光加工组件与第一运动组件配合连接;第二激光加工区域包括第二激光加工组件202和第二运动组件201,所述第二激光加工组件与第二运动组件配合连接;所述X轴运动组件位于第一激光加工组件、第二激光加工组件下方。
进一步的,所述X轴运动组件的最大直线移动范围为1500mm,最高定位精度为0.1μm。
进一步的,所述X轴运动组件上设有中心转台和刀柄,所述刀柄夹持在中心转台的中间区域;所述中心转台内设有马达。所述刀柄用于装夹刀具,所述马达可驱动中心转台旋转。
进一步的,所述马达驱动中心转台沿A轴、C轴进行高速旋转;所述A轴为与X轴运动组件平行的轴,所述C轴为与X轴运动组件垂直的轴。
进一步的,所述中心转台沿A轴的转动范围为-140°-140°,所述中心转台沿C轴的转动范围为0°-360°,最高旋转定位精度均为0.001°。
进一步的,所述第一运动组件包括Y1轴运动组件2和Z1轴运动组件3;
所述第一激光加工组件分别通过Y1轴运动组件和Z1轴运动组件进行Y轴和Z轴方向的直线移动,所述第一激光加工组件在Y1和Z1轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
进一步的,所述第一激光加工组件包括纳秒激光器5、纳秒激光器固定架4、第一加工区域振镜扫描模块15、第一加工区域激光头16,所述纳秒激光器设置在纳秒激光器固定架上,所述纳秒激光器固定架与Y1轴运动组件连接,所述第一加工区域振镜扫描模块、第一加工区域激光与Z1轴运动组件连接。
进一步的,所述第二运动组件包括Y2轴运动组件13和Z2轴运动组件14;
所述第二激光加工组件分别通过Y2轴运动组件和Z2轴运动组件进行Y轴和Z轴方向的直线移动,所述第二激光加工组件在Y2和Z2轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
进一步的,所述第二激光加工组件包括皮秒和飞秒激光器6、皮秒和飞秒激光器固定 架7、第二加工区域振镜扫描模块9、第二加工区域激光头12、CCD模块10、光路传输模块8,所述皮秒和飞秒激光器设置在皮秒和飞秒激光器固定架上,所述皮秒和飞秒激光器一侧设有光路传输模块,所述第二加工区域振镜扫描模块、第二加工区域激光头12与Z2轴运动组件连接,所述CCD模块设置于所述皮秒和飞秒激光器固定架一侧,所述皮秒和飞秒激光器固定架与Y2轴运动组件连接。
特别的,所述皮秒和飞秒激光器共用一套光路,按照需求进行激光光源切换;特别的,CCD模块可进行刀具加工精度在线监测。
进一步的,所述机架包括矿物质床身(未标注)和矿物质立柱(未标注)。
进一步的,所述激光机床连接有静音吸尘器(未标注)和防尘装置(未标注),实现加工时废屑、废气的去除。
一种多激光组合多轴车铣复合机床的加工方法,具体为:被加工刀具可通过X轴运动平台直线移动到第一加工区域进行纳秒激光粗加工,移动到第二加工区域进行皮秒激光半精加工或飞秒激光精加工;通过A轴偏转90°与Y轴平行后固定,C轴持续360°旋转,可以实现激光车加工;通过A、C、X、Y1、Z1或A、C、X、Y2、Z2之间的联动控制,可以实现激光铣加工,最终实现激光车铣复合加工。
本发明提供一种多激光组合多轴车铣复合机床,组合纳秒、皮秒和飞秒激光器分别进行刀具粗、半精和精加工,通过多轴运动平台设计实现车铣复合加工,实现复杂型面刀具一次装夹加工成型,有效提高加工效率和加工质量,解决了一般激光加工无法实现复杂型面刀具加工,以及多次装夹造成的加工效率低、质量差等问题,对提高我国高端刀具制造水平具有重要意义。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。需注意的是,本发明中所未详细描述的技术特征,均可以通过本领域任一现有技术实现。

Claims (10)

  1. 一种多激光组合多轴车铣复合机床,包括机架,其特征在于,所述机架上分别设有第一激光加工区域、第二激光加工区域、X轴运动组件,所述第一激光加工区域包括第一激光加工组件和第一运动组件,所述第一激光加工组件与第一运动组件配合连接;第二激光加工区域包括第二激光加工组件和第二运动组件,所述第二激光加工组件与第二运动组件配合连接;所述X轴运动组件位于第一激光加工组件、第二激光加工组件下方;
    所述X轴运动组件的最大直线移动范围为1500mm,最高定位精度为0.1μm。
  2. 根据权利要求1所述的一种多激光组合多轴车铣复合机床,其特征在于,所述X轴运动组件上设有中心转台和刀柄,所述刀柄夹持在中心转台的中间区域;所述中心转台内设有马达。
  3. 根据权利要求2所述的一种多激光组合多轴车铣复合机床,其特征在于,所述马达驱动中心转台沿A轴、C轴进行高速旋转;所述A轴为与X轴运动组件平行的轴,所述C轴为与X轴运动组件垂直的轴。
  4. 根据权利要求3所述的一种多激光组合多轴车铣复合机床,其特征在于,所述中心转台沿A轴的转动范围为-140°-140°,所述中心转台沿C轴的转动范围为0°-360°,最高旋转定位精度均为0.001°。
  5. 根据权利要求1所述的一种多激光组合多轴车铣复合机床,其特征在于,所述第一运动组件包括Y1轴运动组件和Z1轴运动组件;
    所述第一激光加工组件分别通过Y1轴运动组件和Z1轴运动组件进行Y轴和Z轴方向的直线移动,所述第一激光加工组件在Y1和Z1轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
  6. 根据权利要求5所述的一种多激光组合多轴车铣复合机床,其特征在于,所述第一激光加工组件包括纳秒激光器、纳秒激光器固定架、第一加工区域振镜扫描模块、第一加工区域激光头,所述纳秒激光器设置在纳秒激光器固定架上,所述纳秒激光器固定架与Y1轴运动组件连接,所述第一加工区域振镜扫描模块、第一加工区域激光头分别与Z1轴运动组件连接。
  7. 根据权利要求1所述的一种多激光组合多轴车铣复合机床,其特征在于,所述第二运动组件包括Y2轴运动组件和Z2轴运动组件;
    所述第二激光加工组件分别通过Y2轴运动组件和Z2轴运动组件进行Y轴和Z轴方向的直线移动,所述第二激光加工组件在Y2和Z2轴的最大直线移动范围分别为500和600mm,最高定位精度为0.1μm。
  8. 根据权利要求7所述的一种多激光组合多轴车铣复合机床,其特征在于,所述第二激光加工组件包括皮秒和飞秒激光器、皮秒和飞秒激光器固定架、第二加工区域振镜扫描模块、第二 加工区域激光头、CCD模块、光路传输模块,所述皮秒和飞秒激光器设置在皮秒和飞秒激光器固定架上,所述皮秒和飞秒激光器一侧设有光路传输模块,所述第二加工区域振镜扫描模块、第二加工区域激光头分别与Z2轴运动组件连接,所述CCD模块设置于所述皮秒和飞秒激光器固定架一侧,所述皮秒和飞秒激光器固定架与Y2轴运动组件连接。
  9. 根据权利要求1所述的一种多激光组合多轴车铣复合机床,其特征在于,所述激光机床连接有静音吸尘器和防尘装置。
  10. 根据权利要求1-9任一项所述的多激光组合多轴车铣复合机床的加工方法,其特征在于,具体为:被加工刀具可通过X轴运动平台直线移动到第一加工区域进行纳秒激光粗加工,移动到第二加工区域进行皮秒激光半精加工或飞秒激光精加工;通过A轴偏转90°与Y轴平行后固定,C轴持续360°旋转,进行激光车加工,通过A、C、X、Y1、Z1之间或A、C、X、Y2、Z2之间的联动控制,进行激光铣加工,最终实现激光车铣复合加工。
PCT/CN2021/082564 2020-03-25 2021-03-24 一种多激光组合多轴车铣复合机床及其加工方法 WO2021190531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010219037.9 2020-03-25
CN202010219037.9A CN111408844A (zh) 2020-03-25 2020-03-25 一种多激光组合多轴车铣复合机床及其加工方法

Publications (1)

Publication Number Publication Date
WO2021190531A1 true WO2021190531A1 (zh) 2021-09-30

Family

ID=71487740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082564 WO2021190531A1 (zh) 2020-03-25 2021-03-24 一种多激光组合多轴车铣复合机床及其加工方法

Country Status (2)

Country Link
CN (1) CN111408844A (zh)
WO (1) WO2021190531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060785A (zh) * 2023-01-20 2023-05-05 中航西安飞机工业集团股份有限公司 一种飞机蒙皮化铣精确刻型装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111375901B (zh) * 2020-03-25 2021-10-15 广东工业大学 一种激光车铣复合加工刀具的方法
CN111408844A (zh) * 2020-03-25 2020-07-14 广东工业大学 一种多激光组合多轴车铣复合机床及其加工方法
CN112207430A (zh) * 2020-10-28 2021-01-12 汇专科技集团股份有限公司 一种五轴激光铣削加工机床
CN112207427A (zh) * 2020-10-28 2021-01-12 汇专科技集团股份有限公司 一种激光车削加工机床
CN113927186B (zh) * 2021-11-05 2022-07-05 深圳市超越激光智能装备股份有限公司 高精度智能化uv激光钻孔机
CN114682918A (zh) * 2022-05-17 2022-07-01 南京航空航天大学 一种表面微织构皮秒激光加工装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191692A1 (en) * 2008-01-25 2009-07-30 Disco Corporation Wafer processing method
CN107538227A (zh) * 2017-10-16 2018-01-05 广东工业大学 组合式多功能激光加工机床
CN207013873U (zh) * 2017-05-26 2018-02-16 东莞市盛雄激光设备有限公司 双工位全自动双头紫外切割机
CN107825104A (zh) * 2017-11-23 2018-03-23 深圳市牧激科技有限公司 一种加工***
CN109940270A (zh) * 2019-04-08 2019-06-28 西安交通大学 一种七轴五联动超快激光加工***
CN110587123A (zh) * 2019-09-17 2019-12-20 深圳市牧激科技有限公司 激光加工装置及其加工方法
CN111408844A (zh) * 2020-03-25 2020-07-14 广东工业大学 一种多激光组合多轴车铣复合机床及其加工方法
CN212286298U (zh) * 2020-03-25 2021-01-05 广东工业大学 一种多激光组合多轴车铣复合机床

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191692A1 (en) * 2008-01-25 2009-07-30 Disco Corporation Wafer processing method
CN207013873U (zh) * 2017-05-26 2018-02-16 东莞市盛雄激光设备有限公司 双工位全自动双头紫外切割机
CN107538227A (zh) * 2017-10-16 2018-01-05 广东工业大学 组合式多功能激光加工机床
CN107825104A (zh) * 2017-11-23 2018-03-23 深圳市牧激科技有限公司 一种加工***
CN109940270A (zh) * 2019-04-08 2019-06-28 西安交通大学 一种七轴五联动超快激光加工***
CN110587123A (zh) * 2019-09-17 2019-12-20 深圳市牧激科技有限公司 激光加工装置及其加工方法
CN111408844A (zh) * 2020-03-25 2020-07-14 广东工业大学 一种多激光组合多轴车铣复合机床及其加工方法
CN212286298U (zh) * 2020-03-25 2021-01-05 广东工业大学 一种多激光组合多轴车铣复合机床

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060785A (zh) * 2023-01-20 2023-05-05 中航西安飞机工业集团股份有限公司 一种飞机蒙皮化铣精确刻型装置

Also Published As

Publication number Publication date
CN111408844A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021190531A1 (zh) 一种多激光组合多轴车铣复合机床及其加工方法
US8887360B2 (en) Composite working lathe
CN110732776A (zh) 一种激光修刃装置及方法
CN112207430A (zh) 一种五轴激光铣削加工机床
CN110449995B (zh) 一种用于自由曲面磨削的激光辅助磨削加工装置及方法
CN114770234B (zh) 一种激光复合超声辅助磨削机床及加工方法
CN110625395A (zh) 一种双主轴车铣复合机床
WO2002092266A1 (fr) Tour a commande numerique et procede d'usinage realise avec ce tour
CN107538227B (zh) 组合式多功能激光加工机床
CN112935555B (zh) 基于光束调制的复合型精密激光抛光方法及加工***
CN212286298U (zh) 一种多激光组合多轴车铣复合机床
CN114850653A (zh) 一种集成超声辅助磨削和激光加工的复合机床及加工方法
CN107443075A (zh) 一种复合激光加工的五轴超振声数控机床
CN204686025U (zh) 一种工件固定牢靠且能够进行精密加工的数控车床
CN216656391U (zh) 一种伺服控制y轴动力刀塔的数控车床
US9254523B2 (en) Lathe with two cross beams
CN213470237U (zh) 一种双主轴双刀塔cnc车铣复合装置
CN213795578U (zh) 一种车铣复合机床
CN213827473U (zh) 一种五轴激光铣削加工机床
CN210099469U (zh) 双主轴轴类立式车加工及外圆磨组合机床
JP5554585B2 (ja) 砥石工具による加工方法および加工装置
CN112571068A (zh) 一种对立双主轴卧式五轴车铣复合加工中心
CN114932410B (zh) 一种激光与超声磨削复合的加工刀柄及加工方法
CN218016470U (zh) 一种双头激光切割机床
CN207534345U (zh) 组合式多功能激光加工机床

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775539

Country of ref document: EP

Kind code of ref document: A1