WO2021189873A1 - 孤岛检测方法、装置、并网逆变器及计算机可读存储介质 - Google Patents

孤岛检测方法、装置、并网逆变器及计算机可读存储介质 Download PDF

Info

Publication number
WO2021189873A1
WO2021189873A1 PCT/CN2020/128735 CN2020128735W WO2021189873A1 WO 2021189873 A1 WO2021189873 A1 WO 2021189873A1 CN 2020128735 W CN2020128735 W CN 2020128735W WO 2021189873 A1 WO2021189873 A1 WO 2021189873A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
angle
connected inverter
frequency
disturbance
Prior art date
Application number
PCT/CN2020/128735
Other languages
English (en)
French (fr)
Inventor
曲东瑞
肖尊辉
文武
俞贤桥
蒋世用
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021189873A1 publication Critical patent/WO2021189873A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present disclosure relates to the technical field of power systems, and in particular to an islanding detection method, device, grid-connected inverter, and non-transient computer-readable storage medium.
  • the power generation photovoltaic is connected to the grid through the grid-connected inverter, the grid will be connected to the local load, and the grid will stop operating due to faults, man-made or natural reasons, and the grid-connected power generation system cannot detect that the grid is out of operation in time Status, causing the grid-connected power generation system and the local load to form an uncontrolled independent power supply system is the islanding effect.
  • the islanding detection method is divided into active detection and passive detection. Passive detection mainly determines whether the islanding effect occurs indirectly by detecting the voltage amplitude, frequency, harmonics and other physical quantities of the grid-connected power generation system. There is a large detection blind zone, reliability and The accuracy is very low. Compared with passive detection, traditional active detection can only reduce the detection blind area to a certain extent, so the reliability and accuracy are still low.
  • a technical problem solved by the present disclosure is how to effectively reduce the detection blind zone of island detection.
  • an islanding detection method which includes: obtaining the angle and frequency of the AC terminal voltage of the grid-connected inverter; Angle disturbance imposed by the AC terminal current of the grid-connected inverter; add the angular disturbance to the angle of the AC terminal voltage of the grid-connected inverter to obtain the angle sum; when the angle sum is greater than the preset value, islanding is detected effect.
  • the islanding detection method further includes: when the angle sum is not greater than a preset value, determining the grid-connected inverter according to the cosine value of the angle sum and the voltage loop adjustment signal output by the voltage loop regulator AC terminal current.
  • determining the angular disturbance applied to the AC terminal current of the grid-connected inverter includes: determining the frequency of obtaining the AC terminal voltage of the grid-connected inverter this time The absolute value of the frequency difference between the frequency at which the AC terminal voltage of the grid-connected inverter was acquired last time; if the frequency of the AC terminal voltage of the grid-connected inverter acquired this time is not within the preset frequency range, determine this time Obtain the angle difference between the angle of the AC terminal voltage of the grid-connected inverter and the angle at which the AC terminal voltage of the grid-connected inverter was obtained last time, and determine the angle disturbance of this time according to the absolute value of the frequency difference and the angle difference.
  • the angle disturbance is positively correlated with the absolute value of the frequency difference and the angle difference respectively.
  • determining the angular disturbance applied to the AC terminal current of the grid-connected inverter further includes: obtaining the AC terminal voltage of the grid-connected inverter this time When the frequency is within the preset frequency range, the current angle disturbance is determined according to the absolute value of the frequency difference, and the current angle disturbance is positively correlated with the absolute value of the frequency difference.
  • the preset frequency interval is a continuous interval including the rated frequency of the grid voltage.
  • determining the angular disturbance applied to the AC terminal current of the grid-connected inverter further includes: when the angular disturbance is greater than the first threshold, using the first A threshold value replaces the value of the angle disturbance; in the case that the angle disturbance is less than the second threshold value, the second threshold value is used to replace the value of the angle disturbance, and the second threshold value is less than the first threshold value.
  • a grid-connected inverter including: a memory; and a processor coupled to the memory, and the processor is configured to execute the aforementioned island based on instructions stored in the memory. Detection method.
  • the grid-connected inverter further includes: a phase-locked loop configured to detect the angle of the AC terminal voltage of the grid-connected inverter; and a frequency detector configured to detect the AC terminal voltage of the grid-connected inverter frequency.
  • the grid-connected inverter further includes: a voltage loop regulator configured to output a voltage loop regulation signal according to the reference value and the actual value of the bus voltage of the grid-connected inverter; and the multiplier is configured to The cosine value of the angle sum is multiplied by the voltage loop regulation signal; the current loop regulator is configured to output the AC terminal current of the grid-connected inverter according to the output signal of the multiplier and the grid-connected current value.
  • a non-transitory computer-readable storage medium wherein the non-transitory computer-readable storage medium stores computer instructions, and the aforementioned islanding detection method is implemented when the instructions are executed by a processor. .
  • an islanding detection device including: a signal acquisition module configured to acquire the angle and frequency of the AC terminal voltage of the grid-connected inverter; The angle and frequency of the AC terminal voltage of the grid-connected inverter determine the angle disturbance applied to the AC terminal current of the grid-connected inverter; the angle summation module is configured to compare the angle disturbance with the angle of the AC terminal voltage of the grid-connected inverter Add to obtain the angle summation; the islanding detection module is configured to detect that the islanding effect occurs when the angle summation is greater than the preset value.
  • the islanding detection device further includes a current determination module configured to: in the case where the angle sum is not greater than a preset value, according to the cosine value of the angle sum and the voltage loop adjustment signal output by the voltage loop regulator , Determine the AC terminal current of the grid-connected inverter.
  • the disturbance determination module is configured to: determine the absolute value of the frequency difference between the frequency at which the AC terminal voltage of the grid-connected inverter is acquired this time and the frequency at which the AC terminal voltage of the grid-connected inverter is acquired last time; If the frequency of obtaining the AC terminal voltage of the grid-connected inverter this time is not within the preset frequency range, determine the angle from which the AC terminal voltage of the grid-connected inverter is obtained this time and the AC terminal voltage of the grid-connected inverter obtained last time The angle difference between the angles, and the angle disturbance of this time is determined according to the absolute value of the frequency difference and the angle difference. The angle disturbance of this time is positively correlated with the absolute value of the frequency difference and the angle difference, respectively.
  • the disturbance determination module is further configured to determine the current angle disturbance according to the absolute value of the frequency difference when the frequency of acquiring the AC terminal voltage of the grid-connected inverter is within a preset frequency range. The angle disturbance this time is positively correlated with the absolute value of the frequency difference.
  • the preset frequency interval is a continuous interval including the rated frequency of the grid voltage.
  • the disturbance determination module is further configured to: when the angle disturbance is greater than the first threshold, use the first threshold to replace the value of the angle disturbance; when the angle disturbance is less than the second threshold, use the second The threshold value replaces the value of the angle disturbance, and the second threshold value is less than the first threshold value.
  • the present disclosure can effectively reduce the detection blind area of islanding detection, thereby improving the reliability and accuracy of islanding detection.
  • Fig. 1 shows a schematic structural diagram of a grid-connected inverter according to some embodiments of the present disclosure.
  • FIG. 2 shows a schematic flowchart of an island detection method according to some embodiments of the present disclosure.
  • Fig. 3 shows a schematic structural diagram of an island detection device according to some embodiments of the present disclosure.
  • Figure 4 shows a schematic flow chart of determining the angle disturbance applied to the AC terminal current of the grid-connected inverter.
  • an islanding detection method executed by a grid-connected inverter is taken as an example to introduce the islanding detection method.
  • the DC end of the grid-connected inverter is connected to the grid-connected side, and the AC end is connected to the grid side, so as to realize the conversion of the direct current generated by photovoltaics into alternating current to be supplied to the grid or local loads.
  • Fig. 1 shows a schematic structural diagram of a grid-connected inverter according to some embodiments of the present disclosure.
  • the grid-connected inverter 10 includes an islanding detector 101, a phase-locked loop 102, a frequency detector 103, a voltage loop regulator 104, a multiplier 105, and a current loop regulator 106.
  • the islanding detector 101 specifically includes a memory and a processor coupled to the memory.
  • the processor is configured to execute an islanding detection method based on instructions stored in the memory. The specific detection steps of the islanding detection method are described in subsequent embodiments. Described in detail.
  • the memory includes, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • the islanding detector also includes input and output interfaces, network interfaces, storage interfaces and so on. These interfaces and the memory and the processor are connected, for example, through a bus.
  • the input and output interfaces provide connection interfaces for input and output devices such as displays, mice, keyboards, and touch screens.
  • the network interface provides connection interfaces for various networked devices.
  • the storage interface provides connection interfaces for external storage devices such as SD cards and U disks.
  • the input signal of the phase-locked loop 102 and the frequency detector 103 is the AC terminal voltage of the inverter.
  • the phase locked loop 102 is configured to detect the angle of the AC terminal voltage of the grid-connected inverter
  • the frequency detector 103 is configured to detect the frequency of the AC terminal voltage of the grid-connected inverter
  • the voltage loop regulator 104 is configured to output a voltage loop regulation signal according to the reference value and the actual value of the bus voltage of the grid-connected inverter. In some embodiments, when the voltage loop regulator 104 is working, a voltage outer loop control method is specifically adopted.
  • the multiplier 105 is configured to multiply the output signal of the islanding detector 101 and the voltage loop adjustment signal.
  • the current loop regulator 106 is configured to output the AC-side current of the grid-connected inverter according to the output signal of the multiplier and the grid-connected side current value. In some embodiments, when the current loop regulator 106 is working, a current inner loop control method is specifically adopted to control the current output by the grid-connected inverter to the grid.
  • FIG. 2 shows a schematic flowchart of an island detection method according to some embodiments of the present disclosure. As shown in Figure 2, this embodiment includes steps S201 to S206.
  • step S201 the angle and frequency of the AC terminal voltage of the grid-connected inverter are obtained.
  • the islanding detector After the grid-connected inverter is powered on, the islanding detector first initializes some parameters. These parameters include: the angle of obtaining the AC terminal voltage of the grid-connected inverter from the phase-locked loop this time (initialization value is 0), and the angle of obtaining the AC terminal voltage of the grid-connected inverter from the phase-locked loop last time (initialization value Is 0), the frequency of the AC terminal voltage of the grid-connected inverter is obtained from the frequency detector this time (initialized value is 0), and the frequency of the AC terminal voltage of the grid-connected inverter is obtained from the frequency detector last time (initialized value Is 0).
  • the phase-locked loop can monitor the angle of the AC terminal voltage of the inverter in real time
  • the frequency detector can monitor the frequency of the AC terminal voltage of the inverter in real time
  • the islanding detector obtains the grid-connected inverter from the phase-locked loop several times. The angle of the AC terminal voltage, and the angle of the AC terminal voltage of the grid-connected inverter is obtained from the frequency detector multiple times at the same time.
  • step S202 the angle disturbance applied to the AC terminal current of the grid-connected inverter is determined according to the angle and frequency of the AC terminal voltage of the grid-connected inverter.
  • Figure 4 shows a schematic flow chart of determining the angle disturbance applied to the AC terminal current of the grid-connected inverter. As shown in Fig. 4, determining the angle disturbance applied to the AC terminal current of the grid-connected inverter includes steps S4021 to S4024.
  • step S4021 determine the absolute value f of the frequency difference between the frequency of acquiring the AC terminal voltage of the grid-connected inverter this time and the frequency of acquiring the AC terminal voltage of the grid-connected inverter last time.
  • step S4022 it is determined whether the frequency of acquiring the AC terminal voltage of the grid-connected inverter this time is within a preset frequency interval.
  • the preset frequency interval is a continuous interval including the rated frequency of the grid voltage.
  • the preset frequency interval is specifically (f 0 -0.5, f 0 +0.2), and f0 represents the rated frequency of the grid voltage.
  • step S4023 determines the angle difference ⁇ ′ between the angle at which the AC terminal voltage of the grid-connected inverter was obtained this time and the angle at which the AC terminal voltage of the grid-connected inverter was obtained last time, and the absolute value of the frequency difference f and the angle The difference determines the angle disturbance ⁇ this time. Among them, the angle disturbance this time is positively correlated with the absolute value of the frequency difference and the angle difference.
  • the value is configured according to system requirements.
  • the grid-connected inverter can also reduce this slight change. The changes in the magnification and the islanding effect is detected.
  • step S4024 is executed.
  • the current angle disturbance ⁇ is determined according to the absolute value f of the frequency difference. Among them, the angle disturbance this time is positively correlated with the absolute value of the frequency difference.
  • the inventor considers that the angular disturbance imposed by the traditional active detection method will have a greater impact on the quality of power generation. Therefore, when the frequency of the AC terminal voltage of the grid-connected inverter is stable near the rated frequency, the angle disturbance is no longer calculated on the basis of the last applied angle disturbance (equivalent to assigning ⁇ ′ to 0), so it can be In the process of active detection of islanding effect, the impact on the quality of power generation is reduced, and the detection blind area of islanding detection is reduced while taking into account the quality of power generation.
  • step S203 the angle disturbance is added to the angle of the AC terminal voltage of the grid-connected inverter to obtain the angle sum.
  • step S204 it is determined whether the sum of the angles is greater than a preset value.
  • step S205 is executed to detect the islanding effect and give an alarm.
  • the islanding effect When the islanding effect occurs, the sum of the angle of the AC terminal voltage of the inverter and the angle of the angle disturbance will increase significantly. Therefore, when the sum of the angles is greater than the preset value, the islanding effect can be detected and an alarm will be issued to remind the relevant staff.
  • step S206 is executed to determine the AC terminal current of the grid-connected inverter according to the cosine value of the angle sum and the voltage loop adjustment signal output by the voltage loop regulator.
  • the real-time frequency and real-time angle of the AC terminal voltage of the inverter are simultaneously introduced into the active islanding detection, which can effectively reduce the detection blind zone of the islanding detection and improve the reliability and accuracy of the islanding detection.
  • step S202 further includes: limiting the angular disturbance.
  • the first threshold is used to replace the value of the angle disturbance
  • the second threshold is used to replace the value of the angle disturbance. Value, the second threshold is less than the first threshold.
  • Fig. 3 shows a schematic structural diagram of an island detection device according to some embodiments of the present disclosure.
  • the islanding detection device 30 in this embodiment includes: a signal acquisition module 301 configured to acquire the angle and frequency of the AC terminal voltage of the grid-connected inverter; The angle and frequency of the AC terminal voltage of the inverter determine the angle disturbance applied to the AC terminal current of the grid-connected inverter; the angle summation module 303 is configured to compare the angle disturbance with the angle of the AC terminal voltage of the grid-connected inverter Add to obtain a sum of angles; the islanding detection module 304 is configured to detect that an islanding effect occurs when the sum of angles is greater than a preset value.
  • the islanding detection device 30 further includes a current determination module 305 configured to: in the case where the angle sum is not greater than a preset value, according to the cosine value of the angle sum and the voltage loop output by the voltage loop regulator Adjust the signal to determine the AC terminal current of the grid-connected inverter.
  • the disturbance determination module 302 is configured to determine the absolute value of the frequency difference between the frequency of acquiring the AC terminal voltage of the grid-connected inverter this time and the frequency of acquiring the AC terminal voltage of the grid-connected inverter last time; In the case that the frequency of obtaining the AC terminal voltage of the grid-connected inverter this time is not within the preset frequency range, determine the angle at which the AC terminal voltage of the grid-connected inverter is obtained this time and the AC terminal of the grid-connected inverter obtained last time The angle difference between the angles of the voltage, and the current angle disturbance is determined according to the absolute value of the frequency difference and the angle difference. The current angle disturbance is positively correlated with the absolute value of the frequency difference and the angle difference, respectively.
  • the grid-connected inverter can also reduce this slight change. The changes in the magnification and the islanding effect is detected.
  • the disturbance determination module 302 is further configured to determine the current angle disturbance according to the absolute value of the frequency difference when the frequency of the AC terminal voltage of the grid-connected inverter is within the preset frequency range. , The angle disturbance this time is positively correlated with the absolute value of the frequency difference.
  • the inventor considers that the angular disturbance imposed by the traditional active detection method will have a greater impact on the quality of power generation. Therefore, when the frequency of the AC terminal voltage of the grid-connected inverter is stable near the rated frequency, the angle disturbance is no longer calculated on the basis of the last applied angle disturbance (equivalent to assigning ⁇ ′ to 0), so it can be In the process of active detection of islanding effect, the impact on the quality of power generation is reduced, and the detection blind area of islanding detection is reduced while taking into account the quality of power generation.
  • the preset frequency interval is a continuous interval including the rated frequency of the grid voltage.
  • the disturbance determination module 302 is further configured to replace the value of the angle disturbance with the first threshold when the angle disturbance is greater than the first threshold; and use the first threshold when the angle disturbance is less than the second threshold.
  • the second threshold value replaces the value of the angle disturbance, and the second threshold value is less than the first threshold value.
  • the real-time frequency and real-time angle of the AC terminal voltage of the inverter are simultaneously introduced into the active islanding detection, which can effectively reduce the detection blind zone of the islanding detection and improve the reliability and accuracy of the islanding detection.
  • the present disclosure also includes a non-transitory computer-readable storage medium on which computer instructions are stored, and when the instructions are executed by a processor, the islanding detection method in any of the foregoing embodiments is implemented.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种孤岛检测方法、装置(30)、并网逆变器(10)及非瞬时性计算机可读存储介质,孤岛检测方法包括:获取并网逆变器(10)交流端电压的角度和频率(S201);根据并网逆变器(10)交流端电压的角度和频率,确定向并网逆变器(10)交流端电流施加的角度扰动(S202);将角度扰动与并网逆变器(10)交流端电压的角度相加,获得角度加和(S203);在角度加和大于预设值的情况下,检测到发生孤岛效应并报警(S205)。孤岛检测方法及装置(30)能够有效缩小孤岛检测的检测盲区,从而提升孤岛检测的准确性和可靠性。

Description

孤岛检测方法、装置、并网逆变器及计算机可读存储介质
相关申请的交叉引用
本申请是以CN申请号为202010207996.9,申请日为2020年3月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电力***技术领域,特别涉及一种孤岛检测方法、装置、并网逆变器及非瞬时性计算机可读存储介质。
背景技术
随着全球气候变化,能源可持续发展逐渐成为研究热点。太阳能作为可再生能源,是当今主要的新能源之一因此被广泛使用。光伏应用的重要组成是光伏并网发电,但光伏并网发电属于不稳定的能源,环境气候以及所连接负载都会对光伏并网发电功率产生一定的影响。
在光伏并网***中,发电光伏通过并网逆变器接入电网,电网会连接本地负载,由于故障、人为原因或自然原因导致电网停止运行,并网发电***未能及时检测出电网停止运行状态,导致并网发电***与本地负载形成一个不受控制的独立供电***就是孤岛效应。
发生孤岛效应后,当电网重新合闸运行时,电网与并网发电***在电信号的频率和角度上可能不同步,导致产生很高的冲击电流,从而损坏并网发电***,甚至导致电网重新跳闸。同时,很高的冲击电流也会对维修人员造成安全隐患,因此需要通过孤岛检测方法准确检测孤岛效应的发生。孤岛检测方法分为主动式检测与被动式检测,被动式检测主要通过检测并网发电***的电压幅值、频率、谐波等物理量来间接判断是否发生孤岛效应,存在很大的检测盲区,可靠性和准确性很低。传统的主动式检测相对于被动式检测,只能在一定程度上减小检测盲区,因此可靠性和准确性依然较低。
发明内容
本公开解决的一个技术问题是,如何有效缩小孤岛检测的检测盲区。
根据本公开实施例的一个方面,提供了一种孤岛检测方法,包括:获取并网逆变器交流端电压的角度和频率;根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动;将角度扰动与并网逆变器交流端电压的角度相加,获得角度加和;在角度加和大于预设值的情况下,检测到发生孤岛效应。
在一些实施例中,孤岛检测方法还包括:在角度加和不大于预设值的情况下,根据角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
在一些实施例中,根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动包括:确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值;在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差,并根据频率差绝对值和角度差确定本次的角度扰动,本次的角度扰动分别与频率差绝对值、角度差呈正相关。
在一些实施例中,通过公式θ=θ′+f*n确定本次的角度扰动,θ表示本次的角度扰动,θ′表示角度差,f表示频率差绝对值,n表示预设的系数。
在一些实施例中,根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动还包括:在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,根据频率差绝对值确定本次的角度扰动,本次的角度扰动与频率差绝对值呈正相关。
在一些实施例中,通过公式θ=f*n确定本次的角度扰动,θ表示本次的角度扰动,f表示频率差绝对值,n表示预设的系数。
在一些实施例中,预设频率区间为包含电网电压的额定频率的连续区间。
在一些实施例中,根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动还包括:在角度扰动大于第一阈值的情况下,用第一阈值替代角度扰动的取值;在角度扰动小于第二阈值的情况下,用第二阈值替代角度扰动的取值,第二阈值小于第一阈值。
根据本公开实施例的另一个方面,提供了一种并网逆变器,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述的孤岛检测方法。
在一些实施例中,并网逆变器还包括:锁相环,被配置为检测并网逆变器交流端电压的角度;频率检测器,被配置为检测并网逆变器交流端电压的频率。
在一些实施例中,并网逆变器还包括:电压环调节器,被配置为根据并网逆变器的母线电压的参考值和实际值,输出电压环调节信号;乘法器,被配置为将角度加和的余弦值与电压环调节信号相乘;电流环调节器,被配置为根据乘法器的输出信号和并网侧电流值,输出并网逆变器交流端电流。
根据本公开实施例的又一个方面,提供了一种非瞬时性计算机可读存储介质,其中,非瞬时性计算机可读存储介质存储有计算机指令,指令被处理器执行时实现前述的孤岛检测方法。
根据本公开实施例的再一个方面,提供了一种孤岛检测装置,包括:信号获取模块,被配置为获取并网逆变器交流端电压的角度和频率;扰动确定模块,被配置为根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动;角度加和模块,被配置为将角度扰动与并网逆变器交流端电压的角度相加,获得角度加和;孤岛检测模块,被配置为在角度加和大于预设值的情况下,检测到发生孤岛效应。
在一些实施例中,孤岛检测装置还包括电流确定模块,被配置为:在角度加和不大于预设值的情况下,根据角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
在一些实施例中,扰动确定模块被配置为:确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值;在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差,并根据频率差绝对值和角度差确定本次的角度扰动,本次的角度扰动分别与频率差绝对值、角度差呈正相关。
在一些实施例中,扰动确定模块被配置为通过公式θ=θ′+f*n确定本次的角度扰动,θ表示本次的角度扰动,θ′表示角度差,f表示频率差绝对值,n表示预设的系数。
在一些实施例中,扰动确定模块还被配置为:在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,根据频率差绝对值确定本次的角度扰动,本次的角度扰动与频率差绝对值呈正相关。
在一些实施例中,扰动确定模块被配置为通过公式θ=f*n确定本次的角度扰动,θ表示本次的角度扰动,f表示频率差绝对值,n表示预设的系数。
在一些实施例中,预设频率区间为包含电网电压的额定频率的连续区间。
在一些实施例中,扰动确定模块还被配置为:在角度扰动大于第一阈值的情况下,用第一阈值替代角度扰动的取值;在角度扰动小于第二阈值的情况下,用第二阈值替代角度扰动的取值,第二阈值小于第一阈值。
本公开能够有效缩小孤岛检测的检测盲区,从而提升孤岛检测的可靠性和准确性。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开一些实施例的并网逆变器的结构示意图。
图2示出了本公开一些实施例的孤岛检测方法的流程示意图。
图3示出了本公开一些实施例的孤岛检测装置的结构示意图。
图4示出了确定向并网逆变器交流端电流施加的角度扰动的流程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本公开以并网逆变器执行孤岛检测方法为例,对孤岛检测方法进行介绍。并网逆变器的直流端连接并网侧,交流端连接电网侧,从而实现将光伏产生的直流电转变为交流电供给电网或本地负载。
图1示出了本公开一些实施例的并网逆变器的结构示意图。如图1所示,并网逆变器10包括孤岛检测器101、锁相环102、频率检测器103、电压环调节器104、乘法器105、电流环调节器106。
在一些实施例中,孤岛检测器101具体包括存储器以及耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令执行孤岛检测方法,孤岛检测方法的具体检测步骤在后续实施例中详细描述。存储器例如包括***存储器、固定非易失性存储介质等。***存储器例如存储有操作***、应用程序、引导装载程序(Boot Loader)以及其他程序等。孤岛检测器还包括输入输出接口、网络接口、存储接口等。这些接口以及存储器和处理器之间例如通过总线连接。其中,输入输出接口为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口为各种联网设备提供连接接口。存储接口为SD卡、U盘等外置存储设备提供连接接口。
锁相环102及频率检测器103的输入信号为逆变器交流端电压。锁相环102被配置为检测并网逆变器交流端电压的角度,频率检测器103被配置为检测并网逆变器交流端电压的频率,
电压环调节器104被配置为根据并网逆变器的母线电压的参考值和实际值,输出电压环调节信号。在一些实施例中,电压环调节器104工作时,具体采用电压外环控制方法。
乘法器105被配置为将孤岛检测器101的输出信号与电压环调节信号相乘。
电流环调节器106被配置为根据乘法器的输出信号和并网侧电流值,输出并网逆变器交流端电流。在一些实施例中,电流环调节器106工作时,具体采用电流内环控制方法,控制并网逆变器向电网输出的电流。
下面结合图2描述本公开孤岛检测方法的一些实施例。
图2示出了本公开一些实施例的孤岛检测方法的流程示意图。如图2所示,本实施例包括步骤S201~步骤S206。
在步骤S201中,获取并网逆变器交流端电压的角度和频率。
在并网逆变器上电开机后,孤岛检测器首先对一些参数进行初始化。这些参数包括:本次从锁相环获取并网逆变器交流端电压的角度(初始化取值为0),上一次从锁相环获取并网逆变器交流端电压的角度(初始化取值为0),本次从频率检测器获取并网逆变器交流端电压的频率(初始化取值为0),上一次从频率检测器获取并网逆变器交流端电压的频率(初始化取值为0)。
初始化参数完成后,锁相环能够实时监测逆变器交流端电压的角度,频率检测器能够实时监测逆变器交流端电压的频率,孤岛检测器多次从锁相环获取并网逆变器交流端电压的角度,同时多次从频率检测器获取并网逆变器交流端电压的角度。
在步骤S202中,根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动。
图4示出了确定向并网逆变器交流端电流施加的角度扰动的流程示意图。如图4所示,确定向并网逆变器交流端电流施加的角度扰动包括步骤S4021~步骤S4024。
首先,在步骤S4021中,确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值f。
然后,在步骤S4022中,判断本次获取并网逆变器交流端电压的频率是否处于预设频率区间内。
在一些实施例中,预设频率区间为包含电网电压的额定频率的连续区间。例如,预设频率区间具体为(f 0-0.5,f 0+0.2),f0表示电网电压的额定频率。
情况(一):本次获取并网逆变器交流端电压的频率不处于预设频率区间。
在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,执行步骤S4023。在步骤S4023中,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差θ′,并根据频率差绝对值f和角度差确定本次的角度扰动θ。其中,本次的角度扰动分别与频率差绝对值、角度差呈正相关。
例如,通过公式θ=θ′+f*n确定本次的角度扰动,θ表示本次的角度扰动,θ′表示角度差,f表示频率差绝对值,n表示预设的系数,n的具体取值根据***需要进行配置。一种具体的确定n取值的方法例如为n=2π*T*200,T表示模数转换的采样周期。
在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,如果发生孤岛效应,角度扰动的绝对值会一直增大,且累加值的增幅也会越来越大。因此,如果孤岛效应导致电网侧无法将逆变器交流端电流的角度进行有效限制,导致逆变器交流端电压的频率和角度产生较为轻微的变化,并网逆变器也能够将这种轻微的变化放大而检测出孤岛效应。
情况(二):本次获取并网逆变器交流端电压的频率处于预设频率区间。
在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,执行步 骤S4024。在步骤S4024中,根据频率差绝对值f确定本次的角度扰动θ。其中,本次的角度扰动与频率差绝对值呈正相关。
例如,通过公式θ=f*n确定本次的角度扰动,θ表示本次的角度扰动,f表示频率差绝对值,n表示预设的系数。
发明人考虑到,传统的主动检测方式所施加的角度扰动,会对发电质量产生较大影响。因此,在并网逆变器交流端电压的频率稳定在额定频率附近的情况下,不再在上一次施加的角度扰动基础上计算角度扰动(相当于将θ′赋值为0),因此能够在主动检测孤岛效应的过程中降低对发电质量的影响,在缩小孤岛检测的检测盲区的同时兼顾发电质量。
在步骤S203中,将角度扰动与并网逆变器交流端电压的角度相加,获得角度加和。
在步骤S204中,判断角度加和是否大于预设值。
在角度加和大于预设值的情况下,执行步骤S205,检测到发生孤岛效应并报警。
在孤岛效应发生时,逆变器交流端电压的角度与角度扰动的角度加和会显著增加,因此当角度加和大于预设值的情况下能够检测出孤岛效应并报警以提醒相关工作人员。
在角度加和不大于预设值的情况下,执行步骤S206,根据角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
例如,将角度加和的余弦值与电压环调节器输出的电压环调节信号相乘作为电流环给定值,然后进一步根据电流环给定值和并网侧电流值,确定输出的并网逆变器交流端电流。
上述实施例中,通过逆变器交流端电压的实时频率和实时角度同时引入主动式孤岛检测中,能够有效缩小孤岛检测的检测盲区,提升孤岛检测的可靠性和准确性。
在一些实施例中,步骤S202还包括:对角度扰动进行限幅。
在角度扰动大于第一阈值(例如0.5)的情况下,用第一阈值替代角度扰动的取值;在角度扰动小于第二阈值(例如-0.5)的情况下,用第二阈值替代角度扰动的取值,第二阈值小于第一阈值。
通过对角度扰动进行限幅,能够避免突然施加过大的角度扰动,导致发电质量严重恶化甚至造成***严重损坏,从而进一步降低主动式孤岛检测对发电质量的影响,提升了主动式孤岛检测过程的安全性。
下面结合图3描述本公开孤岛检测装置的一些实施例。
图3示出了本公开一些实施例的孤岛检测装置的结构示意图。如图3所示,本实施例中的孤岛检测装置30包括:信号获取模块301,被配置为获取并网逆变器交流端电压的角度和频率;扰动确定模块302,被配置为根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动;角度加和模块303,被配置为将角度扰动与并网逆变器交流端电压的角度相加,获得角度加和;孤岛检测模块304,被配置为在角度加和大于预设值的情况下,检测到发生孤岛效应。
在一些实施例中,孤岛检测装置30还包括电流确定模块305,被配置为:在角度加和不大于预设值的情况下,根据角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
在一些实施例中,扰动确定模块302被配置为:确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值;在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差,并根据频率差绝对值和角度差确定本次的角度扰动,本次的角度扰动分别与频率差绝对值、角度差呈正相关。
在一些实施例中,扰动确定模块302被配置为通过公式θ=θ′+f*n确定本次的角度扰动,θ表示本次的角度扰动,θ′表示角度差,f表示频率差绝对值,n表示预设的系数。
在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,如果发生孤岛效应,角度扰动的绝对值会一直增大,且累加值的增幅也会越来越大。因此,如果孤岛效应导致电网侧无法将逆变器交流端电流的角度进行有效限制,导致逆变器交流端电压的频率和角度产生较为轻微的变化,并网逆变器也能够将这种轻微的变化放大而检测出孤岛效应。
在一些实施例中,扰动确定模块302还被配置为:在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,根据频率差绝对值确定本次的角度扰动,本次的角度扰动与频率差绝对值呈正相关。
在一些实施例中,扰动确定模块302被配置为通过公式θ=f*n确定本次的角度扰动,θ表示本次的角度扰动,f表示频率差绝对值,n表示预设的系数。
发明人考虑到,传统的主动检测方式所施加的角度扰动,会对发电质量产生较大 影响。因此,在并网逆变器交流端电压的频率稳定在额定频率附近的情况下,不再在上一次施加的角度扰动基础上计算角度扰动(相当于将θ′赋值为0),因此能够在主动检测孤岛效应的过程中降低对发电质量的影响,在缩小孤岛检测的检测盲区的同时兼顾发电质量。
在一些实施例中,预设频率区间为包含电网电压的额定频率的连续区间。
在一些实施例中,扰动确定模块302还被配置为:在角度扰动大于第一阈值的情况下,用第一阈值替代角度扰动的取值;在角度扰动小于第二阈值的情况下,用第二阈值替代角度扰动的取值,第二阈值小于第一阈值。
通过对角度扰动进行限幅,能够避免突然施加过大的角度扰动,导致发电质量严重恶化甚至造成***严重损坏,从而进一步降低主动式孤岛检测对发电质量的影响,提升了主动式孤岛检测过程的安全性。
上述实施例中,通过逆变器交流端电压的实时频率和实时角度同时引入主动式孤岛检测中,能够有效缩小孤岛检测的检测盲区,提升孤岛检测的可靠性和准确性。
本公开还包括一种非瞬时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现前述任意一些实施例中的孤岛检测方法。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种孤岛检测方法,包括:
    获取并网逆变器交流端电压的角度和频率;
    根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动;
    将所述角度扰动与并网逆变器交流端电压的角度相加,获得角度加和;
    在所述角度加和大于预设值的情况下,检测到发生孤岛效应。
  2. 根据权利要求1所述的孤岛检测方法,还包括:
    在所述角度加和不大于预设值的情况下,根据所述角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
  3. 根据权利要求1所述的孤岛检测方法,其中,所述根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动包括:
    确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值;
    在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差,并根据所述频率差绝对值和所述角度差确定本次的所述角度扰动,本次的所述角度扰动分别与所述频率差绝对值、所述角度差呈正相关。
  4. 根据权利要求3所述的孤岛检测方法,其中,通过公式θ=θ′+f*n确定本次的所述角度扰动,θ表示本次的所述角度扰动,θ′表示所述角度差,f表示所述频率差绝对值,n表示预设的系数。
  5. 根据权利要求3所述的孤岛检测方法,其中,所述根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动还包括:
    在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,根据所述频率差绝对值确定本次的所述角度扰动,本次的所述角度扰动与所述频率差绝对值呈正相关。
  6. 根据权利要求5所述的孤岛检测方法,其中,通过公式θ=f*n确定本次的所述角度扰动,θ表示本次的所述角度扰动,f表示所述频率差绝对值,n表示预设的系数。
  7. 根据权利要求3至6任一项所述的孤岛检测方法,其中,所述预设频率区间为包含电网电压的额定频率的连续区间。
  8. 根据权利要求3至6任一项所述的孤岛检测方法,其中,所述根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动还包括:
    在所述角度扰动大于第一阈值的情况下,用第一阈值替代所述角度扰动的取值;
    在角度扰动小于第二阈值的情况下,用第二阈值替代所述角度扰动的取值,第二阈值小于第一阈值。
  9. 一种并网逆变器,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求1至8中任一项所述的孤岛检测方法。
  10. 根据权利要求9所述的并网逆变器,还包括:
    锁相环,被配置为检测并网逆变器交流端电压的角度;
    频率检测器,被配置为检测并网逆变器交流端电压的频率。
  11. 根据权利要求9或10所述的并网逆变器,还包括:
    电压环调节器,被配置为根据并网逆变器的母线电压的参考值和实际值,输出电压环调节信号;
    乘法器,被配置为将所述角度加和的余弦值与电压环调节信号相乘;
    电流环调节器,被配置为根据乘法器的输出信号和并网侧电流值,输出并网逆变器交流端电流。
  12. 一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求1至8中任一项所述的孤岛检测方法。
  13. 一种孤岛检测装置,包括:
    信号获取模块,被配置为获取并网逆变器交流端电压的角度和频率;
    扰动确定模块,被配置为根据并网逆变器交流端电压的角度和频率,确定向并网逆变器交流端电流施加的角度扰动;
    角度加和模块,被配置为将所述角度扰动与并网逆变器交流端电压的角度相加,获得角度加和;
    孤岛检测模块,被配置为在所述角度加和大于预设值的情况下,检测到发生孤岛 效应。
  14. 根据权利要求13所述的孤岛检测装置,还包括电流确定模块,被配置为:在所述角度加和不大于预设值的情况下,根据所述角度加和的余弦值与电压环调节器输出的电压环调节信号,确定并网逆变器交流端电流。
  15. 根据权利要求13所述的孤岛检测装置,其中,所述扰动确定模块被配置为:
    确定本次获取并网逆变器交流端电压的频率与上一次获取并网逆变器交流端电压的频率之间的频率差绝对值;
    在本次获取并网逆变器交流端电压的频率不处于预设频率区间内的情况下,确定本次获取并网逆变器交流端电压的角度与上一次获取并网逆变器交流端电压的角度之间的角度差,并根据所述频率差绝对值和所述角度差确定本次的所述角度扰动,本次的所述角度扰动分别与所述频率差绝对值、所述角度差呈正相关。
  16. 根据权利要求15所述的孤岛检测装置,其中,所述扰动确定模块被配置为通过公式θ=θ′+f*n确定本次的所述角度扰动,θ表示本次的所述角度扰动,θ′表示所述角度差,f表示所述频率差绝对值,n表示预设的系数。
  17. 根据权利要求15所述的孤岛检测装置,其中,所述扰动确定模块还被配置为:在本次获取并网逆变器交流端电压的频率处于预设频率区间内的情况下,根据所述频率差绝对值确定本次的所述角度扰动,本次的所述角度扰动与所述频率差绝对值呈正相关。
  18. 根据权利要求17所述的孤岛检测装置,其中,所述扰动确定模块被配置为通过公式θ=f*n确定本次的所述角度扰动,θ表示本次的所述角度扰动,f表示所述频率差绝对值,n表示预设的系数。
  19. 根据权利要求15至18任一项所述的孤岛检测装置,其中,所述预设频率区间为包含电网电压的额定频率的连续区间。
  20. 根据权利要求15至18任一项所述的孤岛检测装置,其中,所述扰动确定模块还被配置为:在所述角度扰动大于第一阈值的情况下,用第一阈值替代所述角度扰动的取值;在角度扰动小于第二阈值的情况下,用第二阈值替代所述角度扰动的取值,第二阈值小于第一阈值。
PCT/CN2020/128735 2020-03-23 2020-11-13 孤岛检测方法、装置、并网逆变器及计算机可读存储介质 WO2021189873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010207996.9 2020-03-23
CN202010207996.9A CN111337777B (zh) 2020-03-23 2020-03-23 孤岛检测方法、装置、并网逆变器及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021189873A1 true WO2021189873A1 (zh) 2021-09-30

Family

ID=71182516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128735 WO2021189873A1 (zh) 2020-03-23 2020-11-13 孤岛检测方法、装置、并网逆变器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111337777B (zh)
WO (1) WO2021189873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805541A (zh) * 2024-02-29 2024-04-02 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337777B (zh) * 2020-03-23 2021-01-12 珠海格力电器股份有限公司 孤岛检测方法、装置、并网逆变器及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038970A2 (en) * 2001-10-26 2003-05-08 Youtility, Inc. Anti-islanding techniques for distributed power generation
CN104090195A (zh) * 2014-07-31 2014-10-08 阳光电源股份有限公司 一种孤岛检测方法和装置
CN106877395A (zh) * 2017-03-13 2017-06-20 西安交通大学 一种综合频率和相位信息的光伏并网逆变器孤岛检测方法
CN110376483A (zh) * 2019-07-01 2019-10-25 浙江大学 一种基于特定频率母线电压正反馈的直流孤岛检测方法
CN110514952A (zh) * 2018-05-21 2019-11-29 上海储瑞能源科技有限公司 一种基于无功电流与电压频率反馈的孤岛检测方法
CN111337777A (zh) * 2020-03-23 2020-06-26 珠海格力电器股份有限公司 孤岛检测方法、装置、并网逆变器及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931219B (zh) * 2010-08-24 2013-02-06 西安交通大学 一种基于相位偏移的自抗扰孤岛检测方法
CN103257298B (zh) * 2013-05-14 2015-08-26 合肥工业大学 基于参数自适应Sandia频率偏移法的并网逆变器孤岛检测方法
CN104734176B (zh) * 2013-12-23 2016-09-21 阳光电源股份有限公司 一种孤岛检测方法及装置
CN104034985B (zh) * 2014-06-23 2017-01-18 珠海格力电器股份有限公司 一种孤岛检测方法及***
CN104730396A (zh) * 2015-04-07 2015-06-24 国家电网公司 用于电力***的孤岛检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038970A2 (en) * 2001-10-26 2003-05-08 Youtility, Inc. Anti-islanding techniques for distributed power generation
CN104090195A (zh) * 2014-07-31 2014-10-08 阳光电源股份有限公司 一种孤岛检测方法和装置
CN106877395A (zh) * 2017-03-13 2017-06-20 西安交通大学 一种综合频率和相位信息的光伏并网逆变器孤岛检测方法
CN110514952A (zh) * 2018-05-21 2019-11-29 上海储瑞能源科技有限公司 一种基于无功电流与电压频率反馈的孤岛检测方法
CN110376483A (zh) * 2019-07-01 2019-10-25 浙江大学 一种基于特定频率母线电压正反馈的直流孤岛检测方法
CN111337777A (zh) * 2020-03-23 2020-06-26 珠海格力电器股份有限公司 孤岛检测方法、装置、并网逆变器及计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805541A (zh) * 2024-02-29 2024-04-02 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置
CN117805541B (zh) * 2024-02-29 2024-05-03 西安千帆翼数字能源技术有限公司 储能变流器孤岛检测方法、保护方法及相关装置

Also Published As

Publication number Publication date
CN111337777A (zh) 2020-06-26
CN111337777B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2021189873A1 (zh) 孤岛检测方法、装置、并网逆变器及计算机可读存储介质
CN105431992B (zh) 太阳能发电用逆变器的控制装置
JP6163494B2 (ja) 電力変換器、および電力変換器を制御する方法
WO2021012915A1 (zh) 无通信海上风电场经柔性直流***并网的有功频率控制方法及***
TW201315083A (zh) 用於市電併聯之同步調整的下降控制系統
CN104734176B (zh) 一种孤岛检测方法及装置
CN104300812A (zh) 一种三相电压型pwm整流器直接功率自抗扰控制方法
CN104578134B (zh) 一种最大功率点跟踪方法和***
Wang et al. Data-driven probabilistic small signal stability analysis for grid-connected PV systems
Markovic et al. Impact of inverter-based generation on islanding detection schemes in distribution networks
Ashour et al. Matlab/Simulink implementation & simulation of islanding detection using passive methods
CN109075740A (zh) 太阳能发电***
Niu et al. Autonomous micro-grid operation by employing weak droop control and PQ control
CN106124890B (zh) 一种光伏并网发电***的反孤岛检测方法
CN110492592A (zh) 直流微电网***运行控制方法和装置
Ding et al. A novel islanding detection based on adaptive active current disturbance
Tang et al. Research on 2 nd harmonic impedance measurement based active islanding detection method
CN108551164B (zh) 一种直流微电网电压稳定控制方法和装置
CN115954923A (zh) 海上风电柔性直流输电***故障穿越方法及装置
Sirjani et al. Combining two techniques to develop a novel islanding detection method for distributed generation units
JP6423757B2 (ja) 周波数検出装置、周波数検出方法、および、検出された周波数を用いるインバータ装置
CN113030618B (zh) 一种发电***的孤岛检测方法、装置及发电***
KR101451008B1 (ko) 계통 동기화 제어를 위한 제어장치, 제어방법, 기록매체
CN104601110A (zh) 一种在线检测光伏电池组件特性参数的方法
Al-Wadie et al. Simulation of islanding detection scheme based on fast angle estimation method for grid connected photovoltaic systems using ADALINE technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926682

Country of ref document: EP

Kind code of ref document: A1