WO2021189716A1 - 一种显式磁梁驱动阵列阀承台切割机 - Google Patents

一种显式磁梁驱动阵列阀承台切割机 Download PDF

Info

Publication number
WO2021189716A1
WO2021189716A1 PCT/CN2020/101177 CN2020101177W WO2021189716A1 WO 2021189716 A1 WO2021189716 A1 WO 2021189716A1 CN 2020101177 W CN2020101177 W CN 2020101177W WO 2021189716 A1 WO2021189716 A1 WO 2021189716A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
valve
bearing platform
drive module
drive
Prior art date
Application number
PCT/CN2020/101177
Other languages
English (en)
French (fr)
Inventor
白顺科
崔群
杨正翔
Original Assignee
南京工业职业技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业职业技术大学 filed Critical 南京工业职业技术大学
Publication of WO2021189716A1 publication Critical patent/WO2021189716A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/01Means for holding or positioning work
    • B26D7/018Holding the work by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H7/00Apparatus or processes for cutting, or otherwise severing, specially adapted for the cutting, or otherwise severing, of textile materials

Definitions

  • the invention relates to the field of industrial equipment, in particular to an explicit magnetic beam drive array valve bearing platform cutting machine.
  • the cutting machine In clothing, shoemaking, home textiles and other industries, desktop cutting machines are widely used to cut sheet-like flexible materials such as cloth, leather, and fur.
  • the cutting machine In order to ensure the cutting quality of flexible sheets, the cutting machine generally uses the suction effect of the suction fan under the bearing platform to absorb the sheet on the bearing platform.
  • the soft surface material cutting equipment generally adopts an open grid type.
  • the bearing platform is provided with a semi-closed chamber under the bearing platform.
  • the grille is covered with a breathable soft material such as non-woven fabric.
  • the bottom of the chamber is connected with a high-power exhaust fan through a pipe.
  • the cutter head can use laser, wire saw, vibrating knife and other tools.
  • This design uses negative pressure adsorption force to absorb the soft surface material on the platform to ensure the cutting quality, but the surface material of different shapes usually cannot be used for the grid
  • the bearing platform is tightly covered, causing air leakage during the adsorption process. Even if the face material can cover the grille platform tightly, the slits produced after the face material is cut will also cause air leakage and reduce the effect of negative pressure adsorption.
  • the current cutting machine generally divides the air extraction chamber at the bottom of the grid-type cap into multiple independent compartments, which are respectively connected to the exhaust fan through a solenoid valve.
  • the control system is dynamically opened according to the current position of the cutting head
  • the solenoid valve connected to the compartment adjacent to the cutter head under the bearing platform can reduce the leakage of the bearing platform in the negative pressure adsorption and reduce the power of the exhaust fan.
  • hundreds of solenoid valves must be used. It brings the disadvantages of complex control system, high equipment manufacturing and maintenance costs, and high operating noise.
  • the purpose of the present invention is to provide an explicit magnetic beam-driven array valve bearing platform cutting machine, which solves the technical problems of local negative pressure adsorption and fixation for soft sheets and energy-saving technology in desktop cutting machines widely used in the manufacturing industry.
  • the embodiment of the present invention provides an explicit magnetic beam drive array valve bearing platform cutting machine, which includes a frame, a bearing platform, an X-axis drive module, a transition column, a Y-axis drive module, a cutter head, a valve drive module, and Exhaust fan.
  • X-axis drive module includes X-axis guide rail, X-axis motor, X-axis coupling, X-axis main end seat, X-axis auxiliary end seat, X-axis screw and X-axis threaded slider, X-axis main end seat and X-axis
  • the auxiliary end seats are separately arranged at the two ends of the X-axis guide rail.
  • the two ends of the X-axis screw are respectively supported on the X-axis main end block and the X-axis auxiliary end block through bearings.
  • the X-axis threaded slider sleeved on the X-axis screw can be Slidingly supported on the X-axis guide rail, the X-axis motor is fixed on the outside of the X-axis main end seat and the motor shaft is connected to the drive end of the X-axis screw through an X-axis coupling;
  • Y-axis drive module includes Y-axis base, Y-axis guide rail, Y-axis motor, Y-axis main synchronous wheel, Y-axis auxiliary synchronous wheel, Y-axis synchronous belt, Y-axis slider and cutter head flange plate, Y-axis guide rail is fixed On the Y-axis base, the Y-axis timing belt surrounds the Y-axis main timing wheel and the Y-axis secondary timing wheel that are respectively provided at both ends of the Y-axis base through bearings.
  • the Y-axis slider connected in series to the Y-axis timing belt is slidably set on On the Y-axis guide rail, the Y-axis motor is located at one end of the Y-axis base and is coaxially connected with the Y-axis main synchronous wheel;
  • the bearing platform is set above the frame.
  • Two sets of X-axis drive modules are set on the front and rear underneath the bearing platform.
  • the cutter head is set on the Y-axis slider through the cutter head flange plate.
  • the bearing platform includes a bearing platform enclosure, a valve block array layer, a grid and a non-woven fabric.
  • the valve block array layer, the grid and the non-woven fabric are laminated from bottom to top and are supported by the platform bottom plate.
  • the bearing platform is surrounded by the enclosure plate.
  • the valve block array layer is composed of valve blocks embedded in the bearing platform bottom plate in a two-dimensional array.
  • the gas collecting channel formed between the valve block array layer and the bearing platform bottom plate is connected to the exhaust fan through the gas collecting pipe;
  • the plane shape of the block is a rectangle with the long side parallel to the X axis and a single-layer transverse partition is arranged inside.
  • the upper part of the valve blocks is laterally isolated and the lower part is provided with an omnidirectional through passage.
  • the bell-shaped valve is arranged on the single-layer transverse partition.
  • the lower right side of the plate; the round hole-shaped ball plug seat with a diameter larger than the diameter of the ball plug is set in the thicker step on the upper right side of the valve block corresponding to the position of the valve; the ball plug is a ferromagnetic sphere covered with rubber and is limited It can swim between the ball block seat and the valve.
  • valve drive module includes a valve drive seat and a valve drive magnet.
  • the valve drive magnet is embedded in the valve drive seat.
  • the X-axis motor, the Y-axis motor, the cutter head, the valve drive electromagnet, and the exhaust fan are connected to the controller.
  • the bearing platform of the cutting machine in the present invention adopts a composite structure composed of a bottom plate, a valve block array layer, a grid, and a non-woven fabric to divide the bearing platform into
  • the suction styles are independent of each other.
  • the valve drive module controls the opening and closing of the valve block in the bearing platform with the movement of the cutter head, which can realize the dynamic gating of the local area in the bearing platform and the exhaust fan, thereby limiting the effective suction section of the bearing platform In the limited area near the current position of the cutter head, the air leakage during the suction process is reduced, so that the negative pressure suction effect of the partial area of the cap is realized with a lower power.
  • the invention has the advantages of simple structure, low manufacturing cost, good negative pressure adsorption effect, low noise, low energy consumption in production and operation, and the like.
  • Fig. 1 is a schematic diagram of the overall structure of an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view in the X-axis direction of an embodiment of the present invention.
  • Fig. 3 is a partial detailed view at A1 in Fig. 1.
  • Fig. 4 is a partial detailed view at A2 in Fig. 2.
  • Fig. 5 is a partial detailed view at A3 in Fig. 2.
  • Figure 6 is a detailed structural cross-sectional view of the bearing platform of the present invention.
  • Cap wall 20 valve block array layer 21, grille 22, non-woven fabric 23, air collection pipe 24, gas collection channel 25, cap bottom plate 210, valve block 211, ball plug seat 2111, air vent 2112, valve 2113 , The ball blocked 2114.
  • X-axis guide rail 31 X-axis motor 32, X-axis coupling 33, X-axis main end seat 34, X-axis auxiliary end seat 35, X-axis screw 36, X-axis threaded slider 37.
  • Y-axis base 50 Y-axis guide rail 51, Y-axis motor 52, Y-axis main synchronous wheel 53, Y-axis auxiliary synchronous wheel 54, Y-axis synchronous belt 55, Y-axis slider 56, and tool head flange plate 57.
  • Valve drive seat 71 valve drive magnet 72.
  • the flexible surface material 100 The flexible surface material 100.
  • This embodiment includes a frame 1, a bearing platform 2, an X-axis drive module 3, a transition column 4, a Y-axis drive module 5, a cutter head 6, a valve drive module 7, Exhaust fan 8 and controller 9.
  • the X-axis drive module 3 includes an X-axis guide rail 31, an X-axis motor 32, an X-axis coupling 33, an X-axis main end seat 34, an X-axis auxiliary end seat 35, an X-axis screw 36 and an X-axis threaded slider 37,
  • the X-axis main end seat 34 and the X-axis secondary end seat 35 are separately provided at the two ends of the X-axis guide rail 31.
  • the two ends of the X-axis screw 36 are respectively supported on the X-axis primary end seat 34 and the X-axis secondary end seat 35 through bearings.
  • the X-axis threaded slider 37 sleeved on the X-axis screw 36 is slidably supported on the X-axis guide rail 31, the X-axis motor 32 is fixed on the outside of the X-axis main end seat 34, and the motor shaft is connected to the X-axis coupling 33 The drive end of the X-axis screw 36 is connected;
  • Y-axis drive module 5 includes Y-axis base 50, Y-axis guide rail 51, Y-axis motor 52, Y-axis main synchronous wheel 53, Y-axis auxiliary synchronous wheel 54, Y-axis synchronous belt 55, Y-axis slider 56 and cutter head
  • the flange plate 57, the Y-axis guide rail 51 are fixed on the Y-axis base 50, and the Y-axis synchronous belt 55 surrounds the Y-axis main synchronous wheel 53 and the Y-axis auxiliary synchronous wheel 54 which are respectively provided at both ends of the Y-axis base 50 through bearings, and are connected in series
  • the Y-axis slider 56 of the Y-axis timing belt 55 is slidably arranged on the Y-axis guide rail 51, and the Y-axis motor 52 is arranged at one end of the Y-axis base 50 and is coaxially connected with the Y-axis main synchronous wheel 53;
  • the bearing platform 2 is installed above the frame 1, the X-axis drive module 3 is installed in two sets on the front and rear under the bearing platform 2, and the front and rear ends of the Y-axis drive module 5 are respectively supported on the front and rear X by means of transition posts 4 On the X-axis threaded slider 37 of each shaft drive module 3, the cutter head 6 is set on the Y-axis slider 56 through the cutter head flange plate 57.
  • the bearing platform 2 includes a bearing platform enclosure 20, a valve block array layer 21, a grid 22, and a non-woven fabric 23.
  • the valve block array layer 21, the grid 22 and the non-woven fabric 23 are laminated from bottom to top in order and formed by the bearing After the platform bottom plate 210 is supported, it is surrounded by the platform enclosure plate 20.
  • the valve block array layer 21 is composed of valve blocks 211 embedded in the platform bottom plate 210 in a two-dimensional array.
  • the valve block array layer 21 and the platform bottom plate 210 are formed between
  • the air collecting channel 25 is connected to the exhaust fan 8 through the air collecting pipe 24; the planar shape of the valve block 211 is a rectangle with the long side parallel to the X axis and a single-layer transverse partition is arranged inside.
  • the upper part of the valve block is laterally isolated and the lower part is provided An omnidirectional passage.
  • the bell-shaped valve 2113 is located on the lower right side of the single-layer transverse partition; the round hole-shaped ball plug seat 2111 with a diameter larger than that of the ball plug 2114 is located on the upper right side of the valve block and the position of the valve 2113 In the corresponding thicker step; the ball plug 2114 is a ferromagnetic sphere covered with rubber and is limited to swim between the ball plug seat 2111 and the valve 2113.
  • the valve drive module 7 includes a valve drive seat 71 and a valve drive magnet 72.
  • the valve drive magnet 72 is embedded in the valve drive seat 71.
  • the two ends of the valve drive seat 71 are respectively supported above the bearing platform 2 through the transition posts 4 on the front and rear sides. .
  • the X-axis motor 32, the Y-axis motor 52, the cutter head 6, and the exhaust fan 8 are connected to the controller 9.
  • the X-axis drive module 3 and the Y-axis drive module 5 can adopt standard parts or customized parts, and the cutter head 6 can adopt standard parts such as laser cutting heads, wire saws or vibrating cutter heads or customized according to needs.
  • the controller 9 can be developed and manufactured by a general or special controller platform.
  • the grille 22 and the valve drive seat 71 are made of non-magnetic aluminum alloy, the base plate 210 is made of steel; the valve drive magnet 72 is made of permanent magnets;
  • the ball plug 2114 can be made of a round ball made of ferromagnetic material and wrapped with rubber.
  • the body of the valve block 211 can be made of engineering plastic or non-magnetic aluminum alloy casting, and other parts are made of metal materials.
  • the working process of the equipment is as follows:
  • the flexible surface material 100 is spread flat on the platform 2 to start the cutting process.
  • the exhaust fan 8 also starts to draw air, and the air above the bearing platform 2 is sucked into the air collecting channel 25 at the bottom of the bearing platform 2 through the surface material 100, the non-woven fabric 23, the grille 22, and the valve block array layer 21 and collected into the air collecting pipe. 24, it is drawn away by the exhaust fan 8, so that a negative pressure is generated between the face material 100 and the platform 2 and the face material is adsorbed and attached to the platform 2 to prevent the face material from moving during the cutting process.
  • the ball block 2114 in the valve block 211 near the cutter head in the bearing platform 2 Attracted by the valve drive magnet 72, it moves up to the ball blocking seat 2111 to open the valve 2113, where the upper part of the valve block communicates with the air collection channel 25 through the vent 2112, and the valve 2113, where the air flow rate down through the bearing platform is the largest. Therefore, the negative pressure adsorption force of the belt-shaped local area on the bearing platform 2 near the cutter head is also the largest, and the ball plug 2114 in the valve block 211 far from the cutter head 6 in the bearing platform 2 resides in the valve 2113 under the action of gravity. Blocking the airflow channel, as a result, the negative pressure adsorption on the bearing platform 2 is mainly limited to the band-shaped area being cut near the cutter head, so the exhaust power consumption of the exhaust fan can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

一种显式磁梁驱动阵列阀承台切割机,涉及工业设备领域,包括机架(1)、承台(2)、X轴驱动模组(3)、过渡柱(4)、Y轴驱动模组(5)、刀头(6)、阀驱模组(7)、抽风机(8)和控制器(9),切割机的承台(2)采用由磁力驱动的阀块阵列层(21)、格栅(22)和无纺布(23)组成的复合构造将承台(2)分隔成彼此相对独立开关的吸风格,在承台(2)上方随Y轴驱动模组(5)运动的磁力驱动梁通过对承台(2)中阀块(211)的气门(2113)的开关控制实现承台(2)中带状局部区域阀块(211)与抽风机(8)的动态选通,将承台(2)的有效吸风截面限制在刀头(6)附近的带状区域,从而以较低的抽风功率实现承台(2)局部区域的负压吸附效果。该显式磁梁驱动阵列阀承台切割机具有结构简单、制造成本低、负压吸附效果好、噪音小、生产运行耗能低等优点。

Description

一种显式磁梁驱动阵列阀承台切割机 技术领域
本发明涉及工业设备领域,具体涉及一种显式磁梁驱动阵列阀承台切割机。
背景技术
在服装、制鞋、家纺等行业,台式切割机广泛被用于切割布料、皮革、皮草等片状柔性材料。为保证柔性片材的切割质量,切割机一般利用抽风机在其承台下方产生的负压吸附效应将片材吸附在承台上,目前软性面材切割设备普遍采用开敞的格栅式承台并在承台下方设有半封闭的腔室,同时在格栅上覆盖透气性软性材料如无纺布,而该腔室的底部通过管道与大功率抽风机连接,切割机的切割刀头可以采用激光、线锯、振动刀等工具,这种设计利用负压吸附力将软性面材吸附在承台上以保证切割加工质量,但形状各异的面材通常不能将格栅承台覆盖严实而造成吸附过程中的漏气。即便面材能够将格栅承台覆盖严实,但面材切割后产生的切缝也将造成漏气而导致负压吸附效果降低。目前的切割机一般将格栅式承台下部的抽气腔室分隔成多个独立的隔仓并分别通过电磁阀与抽风机相连,在切割过程中控制***根据切割刀头的当前位置动态开启承台下方与刀头邻近的隔仓连通的电磁阀,这种方式可以降低承台在负压吸附中的漏气从而降低抽风机的功率,但因此需要采用的数以百计的电磁阀必然带来控制***复杂、设备制造和维护成本高、运行噪音大等缺点。
还有一类切割机设计方案采用随切割刀头运动而动态开合的遮罩帘,这种设计在一定程度上减小了切割过程中承台的漏气,有助于减少承台下部的独立隔舱数量,减少了电磁阀和抽风机功率因而降低了设备成本、控制***复杂度、生产运行噪音和能耗,但是动态开合的遮罩帘设计仍然存在设备结构复杂的缺点。
为解决目前的柔性片材切割设备存在的上述不足,需要一种结构更简单、制造成本更低、负压吸附效果好、噪音低、生产运行耗能少的切割机。
发明内容
本发明的目的是提供一种显式磁梁驱动阵列阀承台切割机,解决制造行业广泛应用的台式切割机中对于软性片材的局部负压吸附固定以及节能技术问题。
本发明实施例提供了一种显式磁梁驱动阵列阀承台切割机,包括机架、承台、X轴驱动模组、过渡柱、Y轴驱动模组、刀头、阀驱模组和抽风机。
X轴驱动模组包括X轴导轨、X轴电机、X轴联轴器、X轴主端座、X轴副端座、X轴螺杆和X轴螺纹滑块,X轴主端座和X轴副端座分设于X轴导轨的两端,X轴螺杆的两端分别通过轴承支撑于X轴主端座和X轴副端座上,套设于X轴螺杆上的X轴螺纹滑块可滑动地支撑于X轴导轨上,X轴电机固定于X轴主端座外侧并且电机轴通过X轴联轴器与X轴螺杆的驱动端连接;
Y轴驱动模组包括Y轴底座、Y轴导轨、Y轴电机、Y轴主同步轮、Y轴副同步轮、Y轴同步带、Y轴滑块和刀头法兰板,Y轴导轨固定于Y轴底座上,Y轴同步带环绕分别通过轴承设于Y轴底座两端的Y轴主同步轮和Y轴副同步轮,串接于Y轴同步带的Y轴滑块可滑动地设于Y轴导轨上,Y轴电机设于Y轴底座的一端且与Y轴主同步轮以共轴连接;
承台设于机架上方,X轴驱动模组分两套设于承台下方前后侧,Y轴驱动模组的前后两端分别借助过渡柱支撑于前后两侧的X轴驱动模组上各自的X轴螺纹滑块上,刀头通过刀头法兰板设于Y轴滑块上。
进一步地,承台包括承台围板、阀块阵列层、格栅和无纺布,阀块阵列层、格栅和无纺布从下到上依次叠层组成并通过承台底板支撑后由承台围板包绕,阀块阵列层由阀块按二维阵列嵌入在承台底板上组成,阀块阵列层和承台底板之间形成的集气通道通过集气管与抽风机连接;阀块的平面形状为长边平行于X轴的长方形且内部设有单层横向隔板,阀块之间上部横向隔离而下部设有全向贯通的通道,喇叭口形的气门设于单层横向隔板的右侧下部;直径大于球堵的直径的圆孔形球堵座设于阀块右侧上部与气门的位置对应的加厚台阶中;球堵是外裹橡胶的铁磁性球体且被局限可游动于球堵座与气门之间。
进一步地,阀驱模组包括阀驱座、阀驱磁铁,阀驱磁铁嵌入在阀驱座中,阀驱座的两端分别通过前后两侧的过渡柱支撑于承台上方。
进一步地,X轴电机、Y轴电机、刀头、阀驱电磁铁、抽风机与控制器相连。
与现有技术相比,本发明实施例能够获得的有益效果如下:本发明中切割机的承台采用由底板、阀块阵列层、格栅、无纺布组成的复合构造将承台分隔成彼此相对独立开关的吸风格,阀驱模组随刀头运动对承台中阀块的气门的开关控制可以实现承台中局部区域与抽风机的动态选通,从而将承台的有效吸风截面限制在刀头当前位置附近的有限区域内以减少吸风过程中的漏气,从而以较低的功率 实现承台局部区域的负压吸附效果。本发明具有结构简单、制造成本低、负压吸附效果好、噪音小、生产运行耗能低等优点。
附图说明
图1本发明实施例的整体构造示意图。
图2本发明实施例的X轴方向剖视图。
图3图1中A1处的局部详图。
图4图2中A2处的局部详图。
图5图2中A3处的局部详图。
图6本发明中承台的构造剖面详图。
图中:机架1,承台2,X轴驱动模组3,过渡柱4,Y轴驱动模组5,刀头6,阀驱模组7,抽风机8,控制器9。
承台围板20,阀块阵列层21,格栅22,无纺布23,集气管24,集气通道25,承台底板210,阀块211,球堵座2111,疏气孔2112,气门2113,球堵2114。
X轴导轨31,X轴电机32,X轴联轴器33,X轴主端座34,X轴副端座35,X轴螺杆36,X轴螺纹滑块37。
Y轴底座50,Y轴导轨51,Y轴电机52,Y轴主同步轮53,Y轴副同步轮54,Y轴同步带55,Y轴滑块56,刀头法兰板57。
阀驱座71,阀驱磁铁72。
柔性面材100。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本发明实施例参阅图1-6,本实施例包括机架1、承台2、X轴驱动模组3、过渡柱4、Y轴驱动模组5、刀头6、阀驱模组7、抽风机8和控制器9。
X轴驱动模组3包括X轴导轨31、X轴电机32、X轴联轴器33、X轴主端座34、X轴副端座35、X轴螺杆36和X轴螺纹滑块37,X轴主端座34和X轴副端座35分设于X轴导轨31的两端,X轴螺杆36的两端分别通过轴承支撑于X轴 主端座34和X轴副端座35上,套设于X轴螺杆36上的X轴螺纹滑块37可滑动地支撑于X轴导轨31上,X轴电机32固定于X轴主端座34外侧并且电机轴通过X轴联轴器33与X轴螺杆36的驱动端连接;
Y轴驱动模组5包括Y轴底座50、Y轴导轨51、Y轴电机52、Y轴主同步轮53、Y轴副同步轮54、Y轴同步带55、Y轴滑块56和刀头法兰板57,Y轴导轨51固定于Y轴底座50上,Y轴同步带55环绕分别通过轴承设于Y轴底座50两端的Y轴主同步轮53和Y轴副同步轮54,串接于Y轴同步带55的Y轴滑块56可滑动地设于Y轴导轨51上,Y轴电机52设于Y轴底座50的一端且与Y轴主同步轮53以共轴连接;
承台2设于机架1上方,X轴驱动模组3分两套设于承台2下方前后侧,Y轴驱动模组5的前后两端分别借助过渡柱4支撑于前后两侧的X轴驱动模组3各自的X轴螺纹滑块37上,刀头6通过刀头法兰板57设于Y轴滑块56上。
承台2包括承台围板20、阀块阵列层21、格栅22和无纺布23,阀块阵列层21、格栅22和无纺布23从下到上依次叠层组成并通过承台底板210支撑后由承台围板20包绕,阀块阵列层21由阀块211按二维阵列嵌入在承台底板210上组成,阀块阵列层21和承台底板210之间形成的集气通道25通过集气管24与抽风机8连接;阀块211的平面形状为长边平行于X轴的长方形且内部设有单层横向隔板,阀块之间上部横向隔离而下部设有全向贯通的通道,喇叭口形的气门2113设于单层横向隔板的右侧下部;直径大于球堵2114的直径的圆孔形球堵座2111设于阀块右侧上部与气门2113的位置对应的加厚台阶中;球堵2114是外裹橡胶的铁磁性球体且被局限可游动于球堵座2111与气门2113之间。
阀驱模组7包括阀驱座71、阀驱磁铁72,阀驱磁铁72嵌入在阀驱座71中,阀驱座71的两端分别通过前后两侧的过渡柱4支撑于承台2上方。
X轴电机32、Y轴电机52、刀头6、抽风机8与控制器9相连。
在上述实施例的构造中,X轴驱动模组3、Y轴驱动模组5可以采用标准件或定制件,刀头6根据需要可以采用激光切割头、线锯或振动刀头等标准件或定制件,控制器9可选用通用或专用的控制器平台开发制作,格栅22和阀驱座71采用非导磁性铝合金制作,承台底板210采用钢材制作;阀驱磁铁72采用永磁铁制作;球堵2114可采用铁磁性材料制作的圆球外裹橡胶做成,阀块211的本 体可以采用工程塑料或非导磁性铝合金铸造,其他部件采用金属材料制作。
设备的工作过程如下:
参阅图1-6,在生产操作时,将柔性面材100展平铺在承台2上即可开始切割加工。此时抽风机8也开始抽风,承台2上方的空气通过面材100、无纺布23、格栅22、阀块阵列层21被吸入承台2底部的集气通道25并汇集到集气管24而被抽风机8抽走,从而在面材100与承台2之间产生负压而将面材吸附贴合在承台2上以避免面材在切割过程中发生移动。随着刀头6在承台2上按设计的加工轨迹运动,当阀驱模组7随刀头运动到某个位置时,承台2中在刀头附近的阀块211中的球堵2114被阀驱磁铁72吸引上移至球堵座2111而开启气门2113,此处阀块的上部通过疏气孔2112、气门2113与集气通道25相通,此处穿越承台向下的空气流速最大,所以承台2上在刀头附近的带状局部区域的负压吸附力也最大,而承台2中远离刀头6的阀块211中的球堵2114在重力作用下驻留在气门2113中而堵塞气流通道,如此一来,承台2上的负压吸附主要局限于刀头附近正在被切割的带状区域,因此可以大幅降低抽风机的抽风功率能耗。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (4)

  1. 一种显式磁梁驱动阵列阀承台切割机,其特征在于:包括机架(1)、承台(2)、X轴驱动模组(3)、过渡柱(4)、Y轴驱动模组(5)、刀头(6)、阀驱模组(7)和抽风机(8);
    承台(2)设于机架(1)上方,X轴驱动模组(3)分两套设于承台(2)下方前后侧,Y轴驱动模组(5)的前后两端分别借助过渡柱(4)支撑于前后两侧的X轴驱动模组(3)内各自的X轴螺纹滑块(37)上并通过X轴驱动模组(3)实现其X轴方向水平往复移动,刀头(6)通过Y轴驱动模组(5)内的刀头法兰板(57)设于Y轴驱动模组(5)内的Y轴滑块(56)上,刀头(6)能够通过Y轴驱动模组(5)实现Y轴方向水平往复移动;
    承台(2)包括承台围板(20)、阀块阵列层(21)、格栅(22)和无纺布(23),阀块阵列层(21)、格栅(22)和无纺布(23)从下到上依次叠层组成并通过承台底板(210)支撑后由承台围板(20)包绕,阀块阵列层(21)由阀块(211)按二维阵列嵌入在承台底板(210)上组成,阀块阵列层(21)和承台底板(210)之间形成的集气通道(25)通过集气管(24)与抽风机(8)连接;阀块(211)的平面形状为长边平行于X轴的长方形且内部设有单层横向隔板,阀块(211)之间上部横向隔离而下部设有全向贯通的通道,喇叭口形的气门(2113)设于单层横向隔板的右侧下部;直径大于球堵(2114)的直径的圆孔形球堵座(2111)设于阀块右侧上部与气门(2113)的位置对应的加厚台阶中;球堵(2114)是外裹橡胶的铁磁性球体且被局限可游动于球堵座(2111)与气门(2113)之间;
    阀驱模组(7)包括阀驱座(71)、阀驱磁铁(72),阀驱磁铁(72)嵌入在阀驱座(71)中,阀驱座(71)的两端分别通过前后两侧的过渡柱(4)支撑于承台(2)上方。
  2. 根据权利要求1所述的一种显式磁梁驱动阵列阀承台切割机,其特征在于:X轴驱动模组(3)包括X轴导轨(31)、X轴电机(32)、X轴联轴器(33)、X轴主端座(34)、X轴副端座(35)、X轴螺杆(36)和X轴螺纹滑块(37),X轴主端座(34)和X轴副端座(35)分设于X轴导轨(31)的两端,X轴螺杆(36)的两端分别通过轴承支撑于X轴主端座(34)和X轴副端座(35)上,套设于X轴螺杆(36)上的X轴螺纹滑块(37)可滑动地支撑于X轴导轨(31)上, X轴电机(32)固定于X轴主端座(34)外侧并且电机轴通过X轴联轴器(33)与X轴螺杆(36)的驱动端连接。
  3. 根据权利要求2所述的一种显式磁梁驱动阵列阀承台切割机,其特征在于:Y轴驱动模组(5)包括Y轴底座(50)、Y轴导轨(51)、Y轴电机(52)、Y轴主同步轮(53)、Y轴副同步轮(54)、Y轴同步带(55)、Y轴滑块(56)和刀头法兰板(57),Y轴导轨(51)固定于Y轴底座(50)上,Y轴同步带(55)环绕分别通过轴承设于Y轴底座(50)两端的Y轴主同步轮(53)和Y轴副同步轮(54),串接于Y轴同步带(55)的Y轴滑块(56)可滑动地设于Y轴导轨(51)上,Y轴电机(52)设于Y轴底座(50)的一端且与Y轴主同步轮(53)以共轴连接。
  4. 根据权利要求3所述的一种显式磁梁驱动阵列阀承台切割机,其特征在于:X轴电机(32)、Y轴电机(52)、刀头(6)、抽风机(8)与控制器(9)相连。
PCT/CN2020/101177 2020-03-25 2020-07-10 一种显式磁梁驱动阵列阀承台切割机 WO2021189716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010216957.5 2020-03-25
CN202010216957.5A CN111391004B (zh) 2020-03-25 2020-03-25 一种显式磁梁驱动阵列阀承台切割机

Publications (1)

Publication Number Publication Date
WO2021189716A1 true WO2021189716A1 (zh) 2021-09-30

Family

ID=71416817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101177 WO2021189716A1 (zh) 2020-03-25 2020-07-10 一种显式磁梁驱动阵列阀承台切割机

Country Status (2)

Country Link
CN (1) CN111391004B (zh)
WO (1) WO2021189716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438743A (zh) * 2020-03-25 2020-07-24 南京工业职业技术学院 一种多用途阵列阀承台切割机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391002B (zh) * 2020-03-25 2024-04-26 南京工业职业技术学院 一种隐式磁耦驱动阵列阀承台切割机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844461A (en) * 1973-04-09 1974-10-29 Gerber Scientific Instr Co Precise indexing apparatus and method
US4444078A (en) * 1982-02-04 1984-04-24 Gerber Garment Technology, Inc. Apparatus for cutting sheet material
CN105751284A (zh) * 2016-05-16 2016-07-13 南京工业职业技术学院 一种带卷扬帘的切割机
CN109571607A (zh) * 2018-11-24 2019-04-05 深圳市格调家私有限公司 多层自动裁机
CN111391001A (zh) * 2020-03-25 2020-07-10 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台
CN211867963U (zh) * 2020-03-25 2020-11-06 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台切割机
CN211867965U (zh) * 2020-03-25 2020-11-06 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204076348U (zh) * 2013-11-30 2015-01-07 范圣园 一种应用于模板切割机和平板喷切机上的分区吸风的装置
US10821547B2 (en) * 2017-01-23 2020-11-03 Kun Shan Theta Micro Co., Ltd. Automatic step steel plate cutting and welding device, and method thereof
CN209778648U (zh) * 2019-03-26 2019-12-13 深圳市卓耀科技有限公司 磁悬浮视觉异形玻璃切割机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844461A (en) * 1973-04-09 1974-10-29 Gerber Scientific Instr Co Precise indexing apparatus and method
US4444078A (en) * 1982-02-04 1984-04-24 Gerber Garment Technology, Inc. Apparatus for cutting sheet material
CN105751284A (zh) * 2016-05-16 2016-07-13 南京工业职业技术学院 一种带卷扬帘的切割机
CN109571607A (zh) * 2018-11-24 2019-04-05 深圳市格调家私有限公司 多层自动裁机
CN111391001A (zh) * 2020-03-25 2020-07-10 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台
CN211867963U (zh) * 2020-03-25 2020-11-06 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台切割机
CN211867965U (zh) * 2020-03-25 2020-11-06 南京工业职业技术学院 一种显式磁梁驱动阵列阀承台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438743A (zh) * 2020-03-25 2020-07-24 南京工业职业技术学院 一种多用途阵列阀承台切割机

Also Published As

Publication number Publication date
CN111391004B (zh) 2024-06-25
CN111391004A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021189714A1 (zh) 一种显式磁梁驱动阵列阀承台
WO2021189713A1 (zh) 一种多用途阵列阀承台切割机
WO2021189716A1 (zh) 一种显式磁梁驱动阵列阀承台切割机
WO2021189715A1 (zh) 一种阵列阀承台
CN111391003B (zh) 一种隐式阵列阀承台切割机
CN105818203B (zh) 一种带同步帘的切割机
CN203122277U (zh) 擦玻璃机器人
CN211867965U (zh) 一种显式磁梁驱动阵列阀承台
CN206245009U (zh) 一种大圆机高效除毛絮装置
CN111391002B (zh) 一种隐式磁耦驱动阵列阀承台切割机
CN111391000A (zh) 一种隐式滑梁驱动阵列阀承台
CN105751285B (zh) 一种带滑排帘的切割机
CN211867964U (zh) 一种阵列阀承台
CN211867960U (zh) 一种隐式磁耦驱动阵列阀承台切割机
CN109594206A (zh) 一种用于加工领口/袖口的缝纫设备及方法
CN211867963U (zh) 一种显式磁梁驱动阵列阀承台切割机
CN105751284A (zh) 一种带卷扬帘的切割机
CN105881633A (zh) 一种带收放帘的切割机
CN211867959U (zh) 一种隐式滑梁驱动阵列阀承台
CN215638415U (zh) 一种羽绒生产加工用除杂烘干装置
CN205817993U (zh) 一种带同步帘的切割机
CN208759719U (zh) 一种节能的且具有机器视觉的切割机
CN220485980U (zh) 一种大圆机吸毛装置
CN214769668U (zh) 一种预包装用激光灼烧打标除烟装置
CN209706286U (zh) 一种纤维纺丝车间通风***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927310

Country of ref document: EP

Kind code of ref document: A1