WO2021182034A1 - Electroconductive paste and electroconductive pattern using same - Google Patents

Electroconductive paste and electroconductive pattern using same Download PDF

Info

Publication number
WO2021182034A1
WO2021182034A1 PCT/JP2021/005749 JP2021005749W WO2021182034A1 WO 2021182034 A1 WO2021182034 A1 WO 2021182034A1 JP 2021005749 W JP2021005749 W JP 2021005749W WO 2021182034 A1 WO2021182034 A1 WO 2021182034A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
conductive paste
electroconductive
pattern
conductive
Prior art date
Application number
PCT/JP2021/005749
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 中谷
孝輔 辻
賢 松村
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN202180016102.0A priority Critical patent/CN115136257A/en
Priority to JP2022505866A priority patent/JPWO2021182034A1/ja
Priority to KR1020227031110A priority patent/KR20220147611A/en
Publication of WO2021182034A1 publication Critical patent/WO2021182034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to, for example, a conductive paste used for forming a conductive pattern such as an electrode of an electronic device and a conductive pattern using the conductive paste.
  • semiconductor elements semiconductor elements such as ICs and LSIs on metal pieces called lead frames and fixing them, forming circuits on substrates by printing, etc., or forming electrodes for electronic components such as capacitors.
  • conductive pastes are used for various purposes.
  • the conductive paste has less variation in line width, and circuit patterns can be printed with high accuracy. Even in the circuit pattern, it is required to have high electrical conductivity and thermal conductivity, high migration resistance, and excellent workability by having appropriate viscosity and fluidity. There is.
  • Patent Document 1 silver fine particles having an average primary particle diameter of 10 nm or more and 200 nm or less are added to silver particles having an average particle diameter of 0.5 ⁇ m or more to reduce the fluidity of the conductive paste.
  • a conductive paste that can form a conductive film wiring having a low volume resistance by suppressing the particles, and has improved adhesion to a substrate and printability.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2019-102273
  • three types of fillers containing nanoparticles are used so as to have an appropriate viscosity that can maintain a fine wire shape while maintaining an electrically low resistance.
  • a conductive paste in which a decrease in viscosity is suppressed is disclosed.
  • An object of the present invention is to provide a conductive paste having excellent workability by having an appropriate viscosity and fluidity, and a conductive pattern (circuit pattern) using the conductive paste.
  • the present inventors are effective in suppressing the occurrence of line width variation and migration due to bleeding during printing, and are conductive for realizing high electrical conductivity and excellent workability.
  • the above-mentioned problems were solved by adding silver-coated silica powder to the base of silver-coated copper flakes as the conductive paste. We have found that we can solve the problem, and have completed the present invention.
  • a conductive paste containing silver-coated copper flakes, silver-coated silica powder, and a conductive pattern using the same are provided.
  • the conductive paste of the present invention may further contain a binder resin, a solvent, and a curing agent.
  • the conductive paste of the present invention is a composition formed into a paste by adding silver-coated copper flakes and silver-coated silica powder, and a binder resin to them. As long as the silver-coated copper flakes, the silver-coated silica powder, and the binder resin are contained, other components such as a solvent and a defoaming agent may be contained as needed, as long as the effects of the present invention are not impaired. good.
  • the silver-coated copper flakes used in the present invention are not particularly limited as long as they are silver-coated flake-shaped copper powders, and known ones can be used.
  • the volume average particle size (D 50 ) of the silver-coated copper flakes is preferably 1.0 ⁇ m or more and 50 ⁇ m or less, and more preferably 2.0 ⁇ m or more and 20 ⁇ m or less. In particular, when the volume average particle size (D 50 ) of the silver-coated copper flakes is 2.0 ⁇ m or more and 20.0 ⁇ m or less, it becomes extremely easy to deal with fine lines when drawing a circuit.
  • the copper powder coated with silver spherical or substantially spherical copper powder or flake-shaped copper powder is known, but it suppresses the decrease of electrical contacts after circuit formation and increases the electrical resistance. From the viewpoint of suppressing, it is preferable to use silver-coated copper flakes in the present invention.
  • the silver-coated copper flakes may be completely coated with silver, or the copper may be partially exposed. It is preferable to completely cover with silver because the specific resistance value becomes small.
  • the blending amount of the silver-coated copper flakes is preferably 10% by volume or more and 40% by volume or less, and more preferably 30% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste. When the blending amount of the silver-coated copper flakes is 10% by volume or more and 40% by volume or less, workability can be improved by having an appropriate viscosity and fluidity while keeping the specific resistance value low.
  • the silver-coated silica powder used in the present invention is not particularly limited as long as it is a silver-coated silica powder, and known ones can be used.
  • the volume average particle size (D 50 ) of the silver-coated silica powder is preferably 0.050 ⁇ m or more and 50.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the volume average particle size (D 50 ) of the silver-coated silica powder is 0.1 ⁇ m or more and 5.0 ⁇ m or less, the specific resistance value can be suppressed low by achieving a high filling rate.
  • the silver-coated silica powder may be completely coated with silver, or the silica may be partially exposed. It is preferable to completely cover with silver because the specific resistance value becomes small.
  • the blending amount of the silver-coated silica powder is preferably in the range of 99: 1 to 15:85, preferably in the range of 99: 1 to 20:80, in the volume ratio of the silver-coated copper flakes and the silver-coated silica powder. More preferred.
  • the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is in the range of 99: 1 to 15:85, the fluidity of the obtained conductive paste becomes particularly suitable, and the variation of the lines during printing becomes small. In addition, the electrical conductivity and migration resistance of the formed circuit pattern are also improved. Further, the shape of the silver-coated silica powder can be used without particular limitation as long as it is a particle. If it is in the form of particles, it is particularly preferably used because it has excellent fluidity.
  • thermosetting resin examples include epoxy resin, phenol resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide.
  • thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyester, or polyamide in which a functional group remains at the terminal may be used in combination with a curing agent.
  • the resin binder may be blended in a ratio of 30% by volume or more and 60% by volume or less with respect to the total non-volatile content of the conductive paste. preferable.
  • the solvent used for the conductive paste of the present invention is not particularly limited. It can be appropriately selected depending on the solubility of the resin to be used, the type of printing method, and the like.
  • Examples of the solvent of the present invention include one or two kinds such as ester solvent, ketone solvent, glycol ether solvent, aliphatic solvent, alicyclic solvent, aromatic solvent, alcohol solvent, water and the like. An example is a mixture of the above.
  • ester solvent examples include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, dimethyl carbonate and the like.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, cyclohexanenon and the like.
  • Glycol ether-based solvents include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, and other monoethers such as acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and propylene. Examples thereof include glycol monomethyl ether, propylene glycol monoethyl ether and the like, and acetate esters of these monoethers.
  • examples of the aliphatic solvent include n-heptane, n-hexane, isohexane, isoheptane and the like.
  • examples of the alicyclic solvent include methylcyclohexane, ethylcyclohexane, cyclohexane and the like.
  • aromatic solvents include toluene, xylene, tetralin and the like.
  • alcohol-based solvents (excluding the above-mentioned glycol ether-based solvents) include ethanol, propanol, butanol and the like.
  • the conductive paste of the present invention has excellent workability because it has an appropriate viscosity and an appropriate fluidity, and has excellent line width variation and can print a circuit pattern with high accuracy. In addition to being effective, it also has an excellent effect of having high electrical conductivity and high migration resistance even in a printed conductive pattern.
  • the conductive paste according to the embodiment of the present invention and the conductive paste of the comparative example were produced under the following raw materials and conditions (see “Table 1”).
  • Table 1 65.1 g of Toyaltec Filler (registered trademark) / TFM-C05F (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 6 ⁇ m as silver-coated copper flakes, and volume average particle diameter as silver-coated silica powder.
  • Example 1 0.29 g of Toyal Tech Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with (D 50 ) of 2 ⁇ m, and 12 of Elitel (registered trademark) / UE-3210 (manufactured by Unitica) as a binder resin. .0 g, 1.7 g of blocked isocyanate (product name: 7992, manufactured by Baxenden) as a curing agent, and 24.9 g of a mixed solvent in which ethylcarbitol acetate and isophorone are mixed at a weight ratio of 16: 9 as a solvent. Then, the conductive paste of Example 1 was produced by kneading with a disper and three rolls.
  • Example 2 Same as Example 1 except that 0.57 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 ⁇ m was blended as the silver-coated silica powder.
  • the conductive paste of Example 2 was produced under the conditions.
  • Example 3 Same as Example 1 except that 1.2 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 ⁇ m was blended as the silver-coated silica powder.
  • the conductive paste of Example 3 was produced under the conditions.
  • Example 4 Same as Example 1 except that 2.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 ⁇ m was blended as the silver-coated silica powder.
  • the conductive paste of Example 4 was produced under the conditions.
  • Example 5 25.9 g of Toyaltec Filler (registered trademark) / TFM-C05F (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 6 ⁇ m as silver-coated copper flakes, and volume average particle diameter as silver-coated silica powder.
  • the conductive paste of Example 5 was prepared under the same conditions as in Example 1 except that 32.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume of 2 ⁇ m (D 50) was blended. I made it.
  • Comparative Example 1 The conductive paste of Comparative Example 1 was produced under the same conditions as in Example 1 except that the silver-coated silica powder was not blended.
  • Comparative Example 2 47.9 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 2 ⁇ m was blended as silver-coated silica powder without blending silver-coated copper flakes. Except for this, the conductive paste of Comparative Example 2 was produced under the same conditions as in Example 1.
  • Comparative Example 3 7.9 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 2 ⁇ m was blended as silver-coated silica powder without blending silver-coated copper flakes. Except for this, the conductive paste of Comparative Example 3 was produced under the same conditions as in Example 1.
  • Comparative Example 4 Examples except that 2.3 g of spherical silver powder (product name: HXR-Ag, manufactured by Nippon Atomize Processing Co., Ltd.) having a volume average particle diameter (D 50 ) of 5.7 ⁇ m was blended as an alternative to the silver-coated silica powder.
  • the conductive paste of Comparative Example 4 was produced under the same conditions as in 1.
  • Comparative Example 5 As an alternative to silver-coated copper flakes, 65.1 g of silver flakes with a volume average particle diameter (D 50 ) of 4.8 ⁇ m (product name: TCG-1 manufactured by Tokuri Kagaku Kenkyusho Co., Ltd.) were used as silver-coated silica powder. , Comparative Example under the same conditions as in Example 1 except that 2.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 ⁇ m was blended. The conductive paste of No. 5 was produced.
  • Toyaltec Filler registered trademark
  • TFM-S02P manufactured by Toyo Aluminum K.K.
  • Comparative Example 6 As an alternative to silver-coated copper flakes, 65.1 g of silver flakes with a volume average particle size (D 50 ) of 4.8 ⁇ m (product name: TCG-1 is manufactured by Tokuriki Kagaku Kenkyusho Co., Ltd.) are blended and silver-coated silica. The conductive paste of Comparative Example 6 was produced under the same conditions as in Example 1 except that no powder was blended.
  • Table 1 shows the addition amount (g) of each component blended in the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 and the blending ratio (Vol%) of each component to the total non-volatile content of the conductive paste.
  • circuit pattern (conductive pattern) Using the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6, the material is stainless steel, the number of screen meshes is 325 mesh, the emulsion thickness is 10 ⁇ m, the line width is 100 ⁇ m, and the distance between each line is 100 ⁇ m.
  • a screen printing machine product name: DP-320 type screen printing machine, manufactured by Neurongue Precision Industry Co., Ltd.
  • the sheet on which the circuit pattern was printed was dried at 150 ° C. for 30 minutes to prepare a circuit pattern for evaluation.
  • Viscosity In order to investigate the relationship between the workability and bleeding property of the conductive paste, the viscosities of the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 were measured with a B-type viscometer (model number). : DV2THBCJ0, manufactured by Brookfield Co., Ltd.) was measured under the conditions of a temperature of 25 ° C. and a rotation speed of 0.5 rpm. The results are shown in Table 2.
  • the variation in the line width of the circuit pattern is preferable as the value of 3 ⁇ is smaller, but if the value of 3 ⁇ exceeds 50 ⁇ m, adjacent lines may be short-circuited when energized, etc. It was evaluated as “defective), and when it was 50 ⁇ m or less, it was evaluated as “ ⁇ ” (good). When a short circuit (contact) was observed in a part of adjacent lines from the beginning of circuit pattern formation, it was evaluated as "x" (defective) regardless of the value of 3 ⁇ . The above results are shown in Table 2.
  • FIG. 1 a photomicrograph of the circuit pattern produced using the conductive paste of Example 4 is shown in FIG. 1
  • a photomicrograph of the circuit pattern produced using the conductive paste of Comparative Example 1 is shown in FIG.
  • FIG. 2 and FIG. 3 show a photomicrograph of a circuit pattern produced using the conductive paste of Comparative Example 3.
  • the migration resistance of the circuit pattern is determined by holding each evaluation circuit pattern of the upper technique under the conditions of 85 ° C., humidity 85%, and applied voltage 50V, and measuring the time until a short circuit occurs. Was evaluated by. The presence or absence of a short circuit in the circuit pattern was confirmed using a migration tester (product name: MODEL MIG-87B, manufactured by IMV Co., Ltd.).
  • the migration resistance indicates that the longer the time until the circuit pattern is short-circuited, the better the migration resistance.
  • the case where the time until the short-circuit occurs is 800 hours or more is defined as “ ⁇ ”. "(Good) was evaluated, and when it was less than 800 hours, it was evaluated as” x "(bad). The above results are shown in Table 2.
  • the specific resistance value ( ⁇ ⁇ cm) of the circuit pattern is for evaluation made in a 4.8 cm ⁇ 4.8 cm square shape with a material of polyester resin, 280 screen meshes, and an emulsion thickness of 9 microns.
  • the conductive paste was printed on a PET film and dried at 150 ° C. for 30 minutes to form a coating film.
  • the thickness of the coating film was confirmed by measuring with a Digimatic standard outside micrometer (trade name: IP65 COOLANT PROOF Micrometer, manufactured by Mitutoyo Co., Ltd.). It was confirmed by measuring with a 4-probe type surface resistance measuring instrument (trade name: Loresta GP, manufactured by Mitsubishi Analytech Co., Ltd.).
  • the conductor layer is the value obtained by inputting the dimensions of the printed matter, the average thickness of the printed matter, and the coordinates of the measurement points into the above-mentioned 4-probe type surface resistivity measuring device and automatically calculating them. / Conductive pattern) specific resistance value.
  • the size of the printed matter refers to the dimension consisting of the maximum length and the maximum width of the pattern of the predetermined shape of the printed matter. Resistivity indicates that the smaller the better, 2.0 if ⁇ exhibited the following 10 -4 ⁇ ⁇ cm was evaluated as " ⁇ " (good), contrary to 2.0 ⁇ 10 - A case larger than 4 ⁇ ⁇ cm was evaluated as “x” (defective). The above results are shown in Table 2.
  • Table 2 shows the evaluation of the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 and the circuit patterns (conductive patterns) produced using them.
  • the conductive paste of the present invention is based on silver-coated copper flakes, to which silver-coated silica powder is added. By doing so, good results can be obtained in any of the evaluations of "line width variation", “migration resistance” and “specific resistance value” of the printed circuit pattern (conductive pattern), and as a result, good results can be obtained. There is little variation in line width, it is possible to print a conductive pattern with high accuracy, and even in the printed conductive pattern, it has high electrical and thermal conductivity, high migration resistance, and 30 Pa. -It was found that excellent workability was provided by having a viscosity of s or more and 70 Pa ⁇ s or less.
  • the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is preferably in the range of 99: 1 to 15:85.
  • the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is in the range of 99: 1 to 90:10, as in the conductive paste, more excellent migration resistance can be obtained.
  • the blending amount of the silver-coated copper flakes was set to 10% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste, so that the printed circuit pattern could be used.
  • the variation in line width is small, excellent migration resistance and conductivity can be obtained, and workability can be improved by having an appropriate viscosity and fluidity while keeping the specific resistance value low.
  • the blending amount of the silver-coated copper flakes is 30% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste, more excellent migration resistance can be obtained. It turned out to be obtained.
  • a resin binder is added in an amount of 30% by volume or more based on the total non-volatile content of the conductive paste. It was found that it is effective to mix in a ratio of 60% by volume or less.
  • the conductive pastes of Examples 1 to 5 were printed so that the volume average particle diameter (D 50 ) of the silver-coated copper flakes was preferably 1.0 ⁇ m or more and 50 ⁇ m or less, and more preferably 2.0 ⁇ m or more and 20 ⁇ m or less. It was found that there is little variation in line width in the circuit pattern, and it is extremely easy to deal with thin lines when drawing the circuit pattern.
  • D 50 volume average particle diameter
  • the volume average particle diameter (D 50 ) of the silver-coated silica powder is preferably 0.050 ⁇ m or more and 50.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less. It was found that, by achieving a high filling rate, the specific resistance value was kept low, and the variation in line width was reduced even in the printed circuit pattern.
  • circuit pattern in which a plurality of lines are printed at intervals of about 100 ⁇ m using the conductive paste of the present invention, adjacent lines are connected to each other because the variation in line width is small. It was found that a circuit pattern with no short circuit (contact) and excellent electrical conductivity of each line can be obtained.

Abstract

The purpose of the present invention is to provide: an electroconductive paste which is capable of printing an electroconductive pattern with high accuracy, said electroconductive pattern being suppressed in variation in the line width, and which enables the printed electroconductive pattern to have high electrical conductivity, high thermal conductivity, high migration resistance and the like; and an electroconductive pattern which uses this electroconductive paste. The present invention provides: an electroconductive paste containing silver-coated copper flakes and a silver-coated silica powder, said electroconductive paste being obtained by adding a silver-coated silica powder to silver-coated copper flakes serving as a base material; and an electroconductive pattern which uses this electroconductive paste. In addition, this electroconductive paste may additionally contain a binder resin, a solvent and a curing agent.

Description

導電ペーストおよびそれを用いた導電パターンConductive paste and conductive pattern using it
 本発明は、例えば、電子デバイスの電極などの導電パターンを形成するために用いられる導電ペーストおよびそれを用いた導電パターンに関する。 The present invention relates to, for example, a conductive paste used for forming a conductive pattern such as an electrode of an electronic device and a conductive pattern using the conductive paste.
 IC、LSI等の半導体素子(半導体チップ)をリードフレームと呼ばれる金属片に載置し固定したり、印刷等により基板に回路を形成したり、或いはコンデンサなどの電子部品の電極を形成するため等に、多様な用途に導電ペーストが用いられている。 For mounting semiconductor elements (semiconductor chips) such as ICs and LSIs on metal pieces called lead frames and fixing them, forming circuits on substrates by printing, etc., or forming electrodes for electronic components such as capacitors. In addition, conductive pastes are used for various purposes.
 また、近年の半導体チップの集積度の向上、回路基板の回路の高密度化に伴い、導電ペーストには、線幅のバラつきが少なく、高い精度で回路パターンの印刷が可能であり、また印刷された回路パターンにおいても、電気伝導性および熱伝導性が高く、高い耐マイグレーション性を有しており、そして適度な粘度や流動性を有することにより優れた作業性を備えていることが求められている。 In addition, with the recent improvement in the degree of integration of semiconductor chips and the increase in the density of circuits on circuit boards, the conductive paste has less variation in line width, and circuit patterns can be printed with high accuracy. Even in the circuit pattern, it is required to have high electrical conductivity and thermal conductivity, high migration resistance, and excellent workability by having appropriate viscosity and fluidity. There is.
 例えば、特開2012-18783号公報(特許文献1)では、平均粒子径0.5μm以上の銀粒子に平均一次粒子径10nm以上200nm以下の銀微粒子を添加して導電ペーストの流動性の低下を抑制することにより、体積抵抗率が低い導電膜の配線を形成することができ、且つ基板に対する密着性や印刷性を向上させた導電ペーストが開示されている。 For example, in Japanese Patent Application Laid-Open No. 2012-18783 (Patent Document 1), silver fine particles having an average primary particle diameter of 10 nm or more and 200 nm or less are added to silver particles having an average particle diameter of 0.5 μm or more to reduce the fluidity of the conductive paste. Disclosed is a conductive paste that can form a conductive film wiring having a low volume resistance by suppressing the particles, and has improved adhesion to a substrate and printability.
 また、特開2019-102273号公報(特許文献2)では、電気的に低い抵抗を維持したまま、細線形状を維持できるだけの適正な粘度を有するように、ナノ粒子を含む3種類のフィラーを使用することにより、粘度の低下を抑制した導電ペーストが開示されている。 Further, in Japanese Patent Application Laid-Open No. 2019-102273 (Patent Document 2), three types of fillers containing nanoparticles are used so as to have an appropriate viscosity that can maintain a fine wire shape while maintaining an electrically low resistance. By doing so, a conductive paste in which a decrease in viscosity is suppressed is disclosed.
 しかしながら、特許文献1および2に記載の導電ペーストでは、ナノサイズのフィラーの分散が難しく、流動性が高くなり易い傾向がある。流動性が高過ぎる場合、印刷後に導電ペーストが滲んでしまい、線幅にバラつきが生じ、その結果回路のショートの原因となるという問題があった。また、これらの導電ペーストを用いて形成した導電パターンは、必ずしも高い耐マイグレーション性を有していないという問題もあった。 However, in the conductive pastes described in Patent Documents 1 and 2, it is difficult to disperse the nano-sized filler, and the fluidity tends to be high. If the fluidity is too high, the conductive paste will bleed after printing, and the line width will vary, resulting in a short circuit. Further, there is also a problem that the conductive pattern formed by using these conductive pastes does not necessarily have high migration resistance.
 また、銀粒子などの導電性粉体は充填量が多くなると分散し難くなり、それ故、従来のフレーク状(または扁平状)の銀粉や球状銀粉等を高充填した組成物は、外観不良が生じ易く、また接着強度や作業性が低下するなどの問題もあった。 In addition, conductive powder such as silver particles becomes difficult to disperse as the filling amount increases. Therefore, a composition highly packed with conventional flaky (or flat) silver powder, spherical silver powder, or the like has a poor appearance. There are also problems such as easy occurrence and deterioration of adhesive strength and workability.
特開2012-18783号公報Japanese Unexamined Patent Publication No. 2012-18783 特開2019-102273号公報Japanese Unexamined Patent Publication No. 2019-102273
 そこで、本発明は、線幅のバラつきが少なく、高い精度で導電パターンの印刷が可能であり、また印刷された導電パターンにおいても、電気伝導性が高く、高い耐マイグレーション性を有しており、そして適度な粘度や流動性を有することにより優れた作業性を備えた導電ペーストおよびそれを用いた導電パターン(回路パターン)を提供することを目的とする。 Therefore, the present invention has little variation in line width, can print a conductive pattern with high accuracy, and also has high electrical conductivity and high migration resistance even in the printed conductive pattern. An object of the present invention is to provide a conductive paste having excellent workability by having an appropriate viscosity and fluidity, and a conductive pattern (circuit pattern) using the conductive paste.
 本発明者らは、上記課題に鑑み、印刷時の滲みによる線幅のバラつきやマイグレーションの発生を抑制するのに有効であり、そして高い電気伝導性や優れた作業性を実現するための導電性粉体の種類、形状および異なる導電性粉体との組み合わせ等について鋭意検討を重ねた結果、導電ペーストとして、銀被覆銅フレークをベースとして、これに銀被覆シリカ粉を添加することで上記の課題を解決できることを見出し、本発明を完成するに至った。 In view of the above problems, the present inventors are effective in suppressing the occurrence of line width variation and migration due to bleeding during printing, and are conductive for realizing high electrical conductivity and excellent workability. As a result of diligent studies on the type and shape of the powder and the combination with different conductive powders, the above-mentioned problems were solved by adding silver-coated silica powder to the base of silver-coated copper flakes as the conductive paste. We have found that we can solve the problem, and have completed the present invention.
 すなわち、本発明によれば、銀被覆銅フレークと、銀被覆シリカ粉とを含む導電ペーストおよびそれを用いた導電パターンが提供される。また、本発明の導電ペーストは、さらにバインダー樹脂と、溶剤と、そして硬化剤とを含んでいてもよい。 That is, according to the present invention, a conductive paste containing silver-coated copper flakes, silver-coated silica powder, and a conductive pattern using the same are provided. Further, the conductive paste of the present invention may further contain a binder resin, a solvent, and a curing agent.
 本発明の導電ペーストは、銀被覆銅フレークおよび銀被覆シリカ粉と、そしてそれらへバインダー樹脂を加えることによりペースト状に成形された組成物である。銀被覆銅フレークと銀被覆シリカ粉とバインダー樹脂とを含んでいれば、本発明の効果が損なわれない範囲で、必要に応じて他に溶剤、消泡剤など他の成分を含んでいてもよい。 The conductive paste of the present invention is a composition formed into a paste by adding silver-coated copper flakes and silver-coated silica powder, and a binder resin to them. As long as the silver-coated copper flakes, the silver-coated silica powder, and the binder resin are contained, other components such as a solvent and a defoaming agent may be contained as needed, as long as the effects of the present invention are not impaired. good.
 本発明で用いられる銀被覆銅フレークは、銀で被覆されたフレーク状の銅粉であれば、特に限定されることなく、公知のものを使用することができる。銀被覆銅フレークの体積平均粒子径(D50)は1.0μm以上50μm以下であることが好ましく、2.0μm以上20μm以下であることがより好ましい。特に銀被覆銅フレークの体積平均粒子径(D50)が2.0μm以上20.0μm以下であれば、回路を描画する際細線への対応が極めて容易となる。なお、銀で被覆する銅粉としては、球状または略球状の銅粉またはフレーク状の銅粉が知られているが、回路形成後の電気的接点の減少を抑制し、電気的抵抗の増大を抑える観点から、本発明では銀被覆の銅フレークを用いることが好ましい。 The silver-coated copper flakes used in the present invention are not particularly limited as long as they are silver-coated flake-shaped copper powders, and known ones can be used. The volume average particle size (D 50 ) of the silver-coated copper flakes is preferably 1.0 μm or more and 50 μm or less, and more preferably 2.0 μm or more and 20 μm or less. In particular, when the volume average particle size (D 50 ) of the silver-coated copper flakes is 2.0 μm or more and 20.0 μm or less, it becomes extremely easy to deal with fine lines when drawing a circuit. As the copper powder coated with silver, spherical or substantially spherical copper powder or flake-shaped copper powder is known, but it suppresses the decrease of electrical contacts after circuit formation and increases the electrical resistance. From the viewpoint of suppressing, it is preferable to use silver-coated copper flakes in the present invention.
 また、銀被覆銅フレークは、銀で完全に被覆されていてもよいし、一部銅が露出していてもよい。銀で完全に被覆されている方が、比抵抗値が小さくなるために好適である。銀被覆銅フレークの配合量は、導電ペーストの全不揮発分に対して10体積%以上40体積%以下であることが好ましく、30体積%以上40体積%以下であれば、より好ましい。銀被覆銅フレークの配合量が10体積%以上40体積%以下であれば、比抵抗値を低く抑えながら、適度な粘度や流動性を有することにより作業性の向上を図ることができる。 Further, the silver-coated copper flakes may be completely coated with silver, or the copper may be partially exposed. It is preferable to completely cover with silver because the specific resistance value becomes small. The blending amount of the silver-coated copper flakes is preferably 10% by volume or more and 40% by volume or less, and more preferably 30% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste. When the blending amount of the silver-coated copper flakes is 10% by volume or more and 40% by volume or less, workability can be improved by having an appropriate viscosity and fluidity while keeping the specific resistance value low.
 本発明に用いられる銀被覆シリカ粉は、銀で被覆されたシリカ粉であれば、特に限定されることなく、公知のものを使用することができる。銀被覆シリカ粉の体積平均粒子径(D50)は0.050μm以上50.0μm以下であることが好ましく、0.1μm以上5.0μm以下であることがより好ましい。特に銀被覆シリカ粉の体積平均粒子径(D50)が0.1μm以上5.0μm以下であれば、高い充填率を達成することにより比抵抗値を低く抑えることができる。 The silver-coated silica powder used in the present invention is not particularly limited as long as it is a silver-coated silica powder, and known ones can be used. The volume average particle size (D 50 ) of the silver-coated silica powder is preferably 0.050 μm or more and 50.0 μm or less, and more preferably 0.1 μm or more and 5.0 μm or less. In particular, when the volume average particle size (D 50 ) of the silver-coated silica powder is 0.1 μm or more and 5.0 μm or less, the specific resistance value can be suppressed low by achieving a high filling rate.
 また、銀被覆シリカ粉は、銀で完全に被覆されていてもよいし、一部シリカが露出していてもよい。銀で完全に被覆されている方が、比抵抗値が小さくなるために好適である。銀被覆シリカ粉の配合量は、銀被覆銅フレークと銀被覆シリカ粉の体積比が99:1から15:85の範囲であることが好ましく、99:1から20:80の範囲であることがより好ましい。 Further, the silver-coated silica powder may be completely coated with silver, or the silica may be partially exposed. It is preferable to completely cover with silver because the specific resistance value becomes small. The blending amount of the silver-coated silica powder is preferably in the range of 99: 1 to 15:85, preferably in the range of 99: 1 to 20:80, in the volume ratio of the silver-coated copper flakes and the silver-coated silica powder. More preferred.
 銀被覆銅フレークと銀被覆シリカ粉の体積比が99:1から15:85の範囲であれば、得られた導電ペーストの流動性が特に好適となり、印刷した際の線のバラつきが小さくなると伴に、形成された回路パターンの電気伝導性や耐マイグレーション性も向上する。また、銀被覆シリカ粉の形状は、粒子であれば特に限定されることなく使用することができる。粒子状であれば、流動性に優れるため、特に好適に用いられる。 When the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is in the range of 99: 1 to 15:85, the fluidity of the obtained conductive paste becomes particularly suitable, and the variation of the lines during printing becomes small. In addition, the electrical conductivity and migration resistance of the formed circuit pattern are also improved. Further, the shape of the silver-coated silica powder can be used without particular limitation as long as it is a particle. If it is in the form of particles, it is particularly preferably used because it has excellent fluidity.
 なお、本願明細書において「から」、「~」を用いて示された数値(比率)範囲は、「から」、「~」の前後に記載される数値(比率)をそれぞれ最小値(比率)および最大値(比率)として含む範囲を示している。 In the specification of the present application, the numerical value (ratio) range indicated by using "kara" and "-" is the minimum value (ratio) of the numerical values (ratio) before and after "kara" and "-", respectively. And the range included as the maximum value (ratio) is shown.
 本発明に用いられるバインダー樹脂としては、特に限定されることなく公知の樹脂を使用することができる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドなどが挙げられる。また、末端に官能基が残存したポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエステル、ポリアミド等の熱可塑性樹脂を硬化剤と併せて使用してもよい。 As the binder resin used in the present invention, a known resin can be used without particular limitation. Examples of the thermosetting resin include epoxy resin, phenol resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide. Further, a thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyester, or polyamide in which a functional group remains at the terminal may be used in combination with a curing agent.
 スクリーン印刷のような各種印刷法に適した作業性や印刷性を実現させるために、樹脂バインダーを、導電ペーストの全不揮発分に対して30体積%以上60体積%以下の比率で配合することが好ましい。 In order to realize workability and printability suitable for various printing methods such as screen printing, the resin binder may be blended in a ratio of 30% by volume or more and 60% by volume or less with respect to the total non-volatile content of the conductive paste. preferable.
 本発明の導電性ペーストに用いられる溶剤に、特に限定はない。使用する樹脂の溶解性や印刷方法等の種類に応じて、適宜選択することができる。本発明の溶剤の例としては、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、脂環族系溶剤、芳香族系溶剤、アルコール系溶剤、水等の1 種または2種以上を混合したものが挙げられる。 The solvent used for the conductive paste of the present invention is not particularly limited. It can be appropriately selected depending on the solubility of the resin to be used, the type of printing method, and the like. Examples of the solvent of the present invention include one or two kinds such as ester solvent, ketone solvent, glycol ether solvent, aliphatic solvent, alicyclic solvent, aromatic solvent, alcohol solvent, water and the like. An example is a mixture of the above.
 なお、エステル系溶剤の例としては、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸アミル、乳酸エチル、炭酸ジメチル等が挙げられる。ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトンベンゼン、ジイソブチルケトン、ジアセトンアルコール、イソホロン、シクロヘキサンノン等が挙げられる。グリコールエーテル系溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル等、これらモノエーテル類の酢酸エステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等や、これらモノエーテル類の酢酸エステル等が挙げられる。 Examples of the ester solvent include ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, dimethyl carbonate and the like. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone benzene, diisobutyl ketone, diacetone alcohol, isophorone, cyclohexanenon and the like. Glycol ether-based solvents include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, and other monoethers such as acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and propylene. Examples thereof include glycol monomethyl ether, propylene glycol monoethyl ether and the like, and acetate esters of these monoethers.
 他方、脂肪族系溶剤の例としては、n-ヘプタン、n-ヘキサン、イソヘキサン、イソヘプタン等が挙げられる。脂環族系溶剤の例としては、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘキサン等が挙げられる。芳香族系溶剤の例としては、トルエン、キシレン、テトラリン等が挙げられる。アルコール系溶剤(上述のグリコールエーテル系溶剤を除く)の例としては、エタノール、プロパノール、ブタノール等が挙げられる。 On the other hand, examples of the aliphatic solvent include n-heptane, n-hexane, isohexane, isoheptane and the like. Examples of the alicyclic solvent include methylcyclohexane, ethylcyclohexane, cyclohexane and the like. Examples of aromatic solvents include toluene, xylene, tetralin and the like. Examples of alcohol-based solvents (excluding the above-mentioned glycol ether-based solvents) include ethanol, propanol, butanol and the like.
 また、上述した本発明の導電ペーストを用いてPET樹脂シート上に、直線状の複数のラインを100μm程度の間隔を空けて印刷した回路パターンにおいては、線幅のバラつきが小さいために隣り合うライン同士が短絡(接触)することがなく、また、各ラインの電気伝導性にも優れた回路パターンを得ることができる。 Further, in a circuit pattern in which a plurality of linear lines are printed on a PET resin sheet using the above-mentioned conductive paste of the present invention at intervals of about 100 μm, adjacent lines are adjacent because the variation in line width is small. It is possible to obtain a circuit pattern in which the circuits do not short-circuit (contact) with each other and the electrical conductivity of each line is excellent.
 本発明の導電ペーストは、適度な粘度、適度な流動性を有するために優れた作業性を備えており、そして線幅のバラつきが少なく、高い精度で回路パターンの印刷が可能であるという優れた効果を奏すると共に、印刷された導電パターンにおいても、電気伝導性が高く、高い耐マイグレーション性を有するという優れた効果を奏する。 The conductive paste of the present invention has excellent workability because it has an appropriate viscosity and an appropriate fluidity, and has excellent line width variation and can print a circuit pattern with high accuracy. In addition to being effective, it also has an excellent effect of having high electrical conductivity and high migration resistance even in a printed conductive pattern.
実施例4の導電ペーストを用いて印刷した回路パターン(導電パターン)の顕微鏡写真である。It is a micrograph of a circuit pattern (conductive pattern) printed using the conductive paste of Example 4. 比較例1の導電ペーストを用いて印刷した回路パターン(導電パターン)の顕微鏡写真である。It is a micrograph of a circuit pattern (conductive pattern) printed using the conductive paste of Comparative Example 1. 比較例3の導電ペーストを用いて印刷した回路パターン(導電パターン)の顕微鏡写真である。It is a micrograph of a circuit pattern (conductive pattern) printed using the conductive paste of Comparative Example 3.
 以下、本発明の一実施形態に係る導電ペーストおよびそれを用いた導電パターンについて、図面を参照しながら詳細に説明する。なお、本発明は、以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。 Hereinafter, the conductive paste according to the embodiment of the present invention and the conductive pattern using the conductive paste will be described in detail with reference to the drawings. The present invention is not limited to the examples shown below, and various modifications can be made without departing from the technical idea of the present invention.
1.導電ペーストの作製
 本発明の一実施形態に係る導電ペーストおよび比較例の導電ペーストは、以下の原料および条件にて製作した(「表1」参照)。
[実施例1]
 銀被覆銅フレークとして、体積平均粒子径(D50)が6μmのトーヤルテックフィラー(登録商標)/TFM‐C05F(東洋アルミニウム社製)を65.1g、銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を0.29g、バインダー樹脂として、エリーテル(登録商標)/UE‐3210(ユニチカ社製)を12.0g、硬化剤として、ブロックイソシアネート(製品名:7992、Baxenden社製)を1.7g、および溶剤として、エチルカルビトールアセテートとイソホロンを重量比16:9で混合した混合溶剤24.9gを配合し、そしてディスパーおよび3本ロールを用いて混錬して実施例1の導電ペーストを製作した。
1. 1. Production of Conductive Paste The conductive paste according to the embodiment of the present invention and the conductive paste of the comparative example were produced under the following raw materials and conditions (see “Table 1”).
[Example 1]
65.1 g of Toyaltec Filler (registered trademark) / TFM-C05F (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 6 μm as silver-coated copper flakes, and volume average particle diameter as silver-coated silica powder. 0.29 g of Toyal Tech Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with (D 50 ) of 2 μm, and 12 of Elitel (registered trademark) / UE-3210 (manufactured by Unitica) as a binder resin. .0 g, 1.7 g of blocked isocyanate (product name: 7992, manufactured by Baxenden) as a curing agent, and 24.9 g of a mixed solvent in which ethylcarbitol acetate and isophorone are mixed at a weight ratio of 16: 9 as a solvent. Then, the conductive paste of Example 1 was produced by kneading with a disper and three rolls.
[実施例2]
 銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を0.57g配合したこと以外は、実施例1と同じ条件にて実施例2の導電ペーストを製作した。
[Example 2]
Same as Example 1 except that 0.57 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 μm was blended as the silver-coated silica powder. The conductive paste of Example 2 was produced under the conditions.
[実施例3]
 銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を1.2g配合したこと以外は、実施例1と同じ条件にて実施例3の導電ペーストを製作した。
[Example 3]
Same as Example 1 except that 1.2 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 μm was blended as the silver-coated silica powder. The conductive paste of Example 3 was produced under the conditions.
[実施例4]
 銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を2.3g配合したこと以外は、実施例1と同じ条件にて実施例4の導電ペーストを製作した。
[Example 4]
Same as Example 1 except that 2.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 μm was blended as the silver-coated silica powder. The conductive paste of Example 4 was produced under the conditions.
[実施例5]
 銀被覆銅フレークとして、体積平均粒子径(D50)が6μmのトーヤルテックフィラー(登録商標)/TFM‐C05F(東洋アルミニウム社製)を25.9g、銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を32.3g配合したこと以外は、実施例1と同じ条件にて実施例5の導電ペーストを製作した。
[Example 5]
25.9 g of Toyaltec Filler (registered trademark) / TFM-C05F (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 6 μm as silver-coated copper flakes, and volume average particle diameter as silver-coated silica powder. The conductive paste of Example 5 was prepared under the same conditions as in Example 1 except that 32.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume of 2 μm (D 50) was blended. I made it.
[比較例1]
 銀被覆シリカ粉を配合しなかったこと以外は、実施例1と同じ条件にて比較例1の導電ペーストを製作した。
[Comparative Example 1]
The conductive paste of Comparative Example 1 was produced under the same conditions as in Example 1 except that the silver-coated silica powder was not blended.
[比較例2]
 銀被覆銅フレークを配合せず、銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を47.9g配合したこと以外は、実施例1と同じ条件にて比較例2の導電ペーストを製作した。
[Comparative Example 2]
47.9 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 2 μm was blended as silver-coated silica powder without blending silver-coated copper flakes. Except for this, the conductive paste of Comparative Example 2 was produced under the same conditions as in Example 1.
[比較例3]
 銀被覆銅フレークを配合せず、銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を7.9g配合したこと以外は、実施例1と同じ条件にて比較例3の導電ペーストを製作した。
[Comparative Example 3]
7.9 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) with a volume average particle diameter (D 50 ) of 2 μm was blended as silver-coated silica powder without blending silver-coated copper flakes. Except for this, the conductive paste of Comparative Example 3 was produced under the same conditions as in Example 1.
[比較例4]
 銀被覆シリカ粉の代替として、体積平均粒子径(D50)が5.7μmの球状銀粉(製品名:HXR‐Ag、日本アトマイズ加工株式会社製)を2.3g配合したこと以外は、実施例1と同じ条件にて比較例4の導電ペーストを製作した。
[Comparative Example 4]
Examples except that 2.3 g of spherical silver powder (product name: HXR-Ag, manufactured by Nippon Atomize Processing Co., Ltd.) having a volume average particle diameter (D 50 ) of 5.7 μm was blended as an alternative to the silver-coated silica powder. The conductive paste of Comparative Example 4 was produced under the same conditions as in 1.
[比較例5]
 銀被覆銅フレークの代替として、体積平均粒子径(D50)が4.8μmの銀フレーク(製品名:TCG‐1は株式会社徳力化学研究所社製)を65.1g、銀被覆シリカ粉として、体積平均粒子径(D50)が2μmのトーヤルテックフィラー(登録商標)/TFM‐S02P(東洋アルミニウム社製)を2.3g配合したこと以外は、実施例1と同じ条件にて比較例5の導電ペーストを製作した。
[Comparative Example 5]
As an alternative to silver-coated copper flakes, 65.1 g of silver flakes with a volume average particle diameter (D 50 ) of 4.8 μm (product name: TCG-1 manufactured by Tokuri Kagaku Kenkyusho Co., Ltd.) were used as silver-coated silica powder. , Comparative Example under the same conditions as in Example 1 except that 2.3 g of Toyaltec Filler (registered trademark) / TFM-S02P (manufactured by Toyo Aluminum K.K.) having a volume average particle diameter (D 50) of 2 μm was blended. The conductive paste of No. 5 was produced.
[比較例6]
 銀被覆銅フレークの代替として、体積平均粒子径(D50)が4.8μmの銀フレーク(製品名:TCG‐1は株式会社徳力化学研究所社製)を65.1g配合し、銀被覆シリカ粉を配合しなかったこと以外は、実施例1と同じ条件にて比較例6の導電ペーストを製作した。
[Comparative Example 6]
As an alternative to silver-coated copper flakes, 65.1 g of silver flakes with a volume average particle size (D 50 ) of 4.8 μm (product name: TCG-1 is manufactured by Tokuriki Kagaku Kenkyusho Co., Ltd.) are blended and silver-coated silica. The conductive paste of Comparative Example 6 was produced under the same conditions as in Example 1 except that no powder was blended.
 実施例1~5および比較例1~6の導電ペーストに配合した各成分の添加量(g)および導電ペーストの全不揮発分に対する各成分の配合比率(Vol%)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the addition amount (g) of each component blended in the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 and the blending ratio (Vol%) of each component to the total non-volatile content of the conductive paste.
Figure JPOXMLDOC01-appb-T000001
2.回路パターン(導電パターン)の作製
 実施例1~5および比較例1~6の導電ペーストを用いて、材質がステンレス製、スクリーンメッシュ数325メッシュ、乳剤厚み10μmの線幅100μm、各線の間隔100μmの回路パターンで作製されたスクリーン版を用いてスクリーン印刷機(製品名:DP‐320型スクリーン印刷機、ニューロング精密工業株式会社製)により、PET樹脂シート上に印刷した。続いて、回路パターンが印刷されたシートを、150℃で30分間乾燥させて評価用回路パターンを作製した。
2. Fabrication of circuit pattern (conductive pattern) Using the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6, the material is stainless steel, the number of screen meshes is 325 mesh, the emulsion thickness is 10 μm, the line width is 100 μm, and the distance between each line is 100 μm. Using the screen plate produced by the circuit pattern, printing was performed on a PET resin sheet by a screen printing machine (product name: DP-320 type screen printing machine, manufactured by Neurongue Precision Industry Co., Ltd.). Subsequently, the sheet on which the circuit pattern was printed was dried at 150 ° C. for 30 minutes to prepare a circuit pattern for evaluation.
3.導電ペーストおよび回路パターンの評価
(1)粘度
 導電ペーストの作業性および滲み性との関係を調べるため、実施例1~5および比較例1~6の導電ペーストの粘度を、B型粘度計(型番:DV2THBCJ0、ブルックフィールド社製)にて温度25℃、回転数0.5rpmの条件で測定した。その結果を表2に示す。
3. 3. Evaluation of Conductive Paste and Circuit Pattern (1) Viscosity In order to investigate the relationship between the workability and bleeding property of the conductive paste, the viscosities of the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 were measured with a B-type viscometer (model number). : DV2THBCJ0, manufactured by Brookfield Co., Ltd.) was measured under the conditions of a temperature of 25 ° C. and a rotation speed of 0.5 rpm. The results are shown in Table 2.
(2)線幅のバラつき
 実施例1~5および比較例1~6の導電ペーストを用いて作製した上記評価用回路パターンを、検査用顕微鏡(製品名:ECLIPSE L200、ニコン社製)を用いて、倍率50倍にて観察し、画像を撮影した。続いて、得られた画像を画像解析ソフト(製品名:Winroof 2018、三谷商事株式会社製)を用いて二値化処理を行った。二値化された画像から1000箇所の線幅を測定し、線幅のバラつきの指標となる3σの値を求めた。3σは標準偏差(σ)の3倍の区間を意味しており、正規分布であれば平均値±3σ範囲に約99.7%のサンプルが収まる。
(2) Variation in line width The above evaluation circuit pattern prepared using the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 was subjected to an inspection microscope (product name: ECLIPSE L200, manufactured by Nikon Corporation). The image was taken by observing at a magnification of 50 times. Subsequently, the obtained image was binarized using image analysis software (product name: Winroof 2018, manufactured by Mitani Corporation). The line widths at 1000 points were measured from the binarized image, and the value of 3σ, which is an index of the variation in the line widths, was obtained. 3σ means a section three times the standard deviation (σ), and if it is a normal distribution, about 99.7% of samples fit in the range of mean ± 3σ.
 回路パターンの線幅のバラつきは、その3σの値が小さいほど好ましいが、3σの値が50μmを超えると、通電時等おいて隣り合う線同士が短絡する可能性があることから「×」(不良)と評価し、50μm以下である場合を「〇」(良)と評価した。また、回路パターン形成当初から隣り合う線同士の一部において短絡(接触)が観察される場合は、3σの値に拠らず「×」(不良)と評価した。以上の結果を表2に示す。 The variation in the line width of the circuit pattern is preferable as the value of 3σ is smaller, but if the value of 3σ exceeds 50 μm, adjacent lines may be short-circuited when energized, etc. It was evaluated as “defective), and when it was 50 μm or less, it was evaluated as “〇” (good). When a short circuit (contact) was observed in a part of adjacent lines from the beginning of circuit pattern formation, it was evaluated as "x" (defective) regardless of the value of 3σ. The above results are shown in Table 2.
 なお、上述の各評価用回路パターンのうち、実施例4の導電ペーストを用いて作製した回路パターンの顕微鏡写真を図1に、比較例1の導電ペーストを用いて作製した回路パターンの顕微鏡写真を図2に、そして比較例3の導電ペーストを用いて作製した回路パターンの顕微鏡写真を図3に示した。 Of the above-mentioned circuit patterns for evaluation, a photomicrograph of the circuit pattern produced using the conductive paste of Example 4 is shown in FIG. 1, and a photomicrograph of the circuit pattern produced using the conductive paste of Comparative Example 1 is shown in FIG. FIG. 2 and FIG. 3 show a photomicrograph of a circuit pattern produced using the conductive paste of Comparative Example 3.
(3)耐マイグレーション性
 回路パターンの耐マイグレーション性は、上術の各評価用回路パターンを85℃、湿度85%、印加電圧50Vの条件で保持し、短絡が発生するまでの時間を測定することにより評価した。回路パターンの短絡の有無は、マイグレーションテスター(製品名:MODEL MIG-87B、IMV株式会社製)を用いて確認した。
(3) Migration resistance The migration resistance of the circuit pattern is determined by holding each evaluation circuit pattern of the upper technique under the conditions of 85 ° C., humidity 85%, and applied voltage 50V, and measuring the time until a short circuit occurs. Was evaluated by. The presence or absence of a short circuit in the circuit pattern was confirmed using a migration tester (product name: MODEL MIG-87B, manufactured by IMV Co., Ltd.).
 耐マイグレーション性は、回路パターンが短絡するまでの時間が長いほど耐マイグレーション性に優れていることを示し、本実施形態においては、短絡が発生するまでの時間が800時間以上である場合を「〇」(良)と評価し、800時間未満である場合を「×」(不良)と評価した。以上の結果を表2に示す。 The migration resistance indicates that the longer the time until the circuit pattern is short-circuited, the better the migration resistance. In the present embodiment, the case where the time until the short-circuit occurs is 800 hours or more is defined as “◯”. "(Good) was evaluated, and when it was less than 800 hours, it was evaluated as" x "(bad). The above results are shown in Table 2.
(4)比抵抗値
 回路パターンの比抵抗値(Ω・cm)は、材質がポリエステル樹脂、スクリーンメッシュ数280メッシュ、乳剤厚み9ミクロンで4.8cm×4.8cmの四角形状で作製した評価用スクリーン版を用い、導電ペーストをPETフィルム上に印刷し、150℃にて30分乾燥させたものについて塗膜を形成した。なお、塗膜の厚みはデジマチック標準外側マイクロメータ(商品名:IP65 COOLANT PROOF Micrometer、株式会社ミツトヨ社製)で測定することによって確認した。4探針式表面抵抗測定器(商品名:ロレスタGP、株式会社三菱アナリテック製)を用いて測定することにより確認した。各評価用回路パターンにおいて、それぞれ任意の5点を測定し、その平均値を比抵抗値とした。具体的には、印刷物の寸法、印刷物の平均厚み、測定点の座標を上記4探針式表面抵抗測定器にデータ入力し、自動的に計算させることにより得られる値を導電体層(回路パターン/導電パターン)の比抵抗値とした。
(4) Specific resistance value The specific resistance value (Ω · cm) of the circuit pattern is for evaluation made in a 4.8 cm × 4.8 cm square shape with a material of polyester resin, 280 screen meshes, and an emulsion thickness of 9 microns. Using a screen plate, the conductive paste was printed on a PET film and dried at 150 ° C. for 30 minutes to form a coating film. The thickness of the coating film was confirmed by measuring with a Digimatic standard outside micrometer (trade name: IP65 COOLANT PROOF Micrometer, manufactured by Mitutoyo Co., Ltd.). It was confirmed by measuring with a 4-probe type surface resistance measuring instrument (trade name: Loresta GP, manufactured by Mitsubishi Analytech Co., Ltd.). In each evaluation circuit pattern, 5 arbitrary points were measured, and the average value was used as the resistivity value. Specifically, the conductor layer (circuit pattern) is the value obtained by inputting the dimensions of the printed matter, the average thickness of the printed matter, and the coordinates of the measurement points into the above-mentioned 4-probe type surface resistivity measuring device and automatically calculating them. / Conductive pattern) specific resistance value.
 比抵抗値は、その値が小さいほど導電性に優れていることを示す。印刷物の寸法とは、印刷物が有する所定形状のパターンにおける最大長さと最大幅とからなる寸法をいう。比抵抗値は小さい方が良好であることを示し、2.0×10-4Ω・cm以下を示した場合を「〇」(良)であると評価し、逆に2.0×10-4Ω・cmより大きい場合を「×」(不良)と評価した。以上の結果を表2に示す。 The smaller the specific resistance value, the better the conductivity. The size of the printed matter refers to the dimension consisting of the maximum length and the maximum width of the pattern of the predetermined shape of the printed matter. Resistivity indicates that the smaller the better, 2.0 if × exhibited the following 10 -4 Ω · cm was evaluated as "〇" (good), contrary to 2.0 × 10 - A case larger than 4 Ω · cm was evaluated as “x” (defective). The above results are shown in Table 2.
 各評価用回路パターンの総合評価は、上述した「線幅のバラつき」、「耐マイグレーション性」および「比抵抗値」の評価において、いずれも「〇」を獲得したもののみを「〇」(良)と評価し、各評価の中で1つでも「×」があるものは総合評価においても「×」(不良)と評価した。 In the comprehensive evaluation of each evaluation circuit pattern, only those that obtained "○" in the above-mentioned evaluations of "line width variation", "migration resistance", and "specific resistance value" were "○" (good). ), And those with at least one "x" in each evaluation were evaluated as "x" (defective) in the overall evaluation.
 実施例1~5および比較例1~6の導電ペーストおよびそれらを用いて作製した回路パターン(導電パターン)の評価を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the evaluation of the conductive pastes of Examples 1 to 5 and Comparative Examples 1 to 6 and the circuit patterns (conductive patterns) produced using them.
Figure JPOXMLDOC01-appb-T000002
4.考察
 表2より、実施例1~5の導電ペーストと比較例1~6の導電ペーストとを比較すると、本発明の導電ペーストは、銀被覆銅フレークをベースとして、これに銀被覆シリカ粉を添加することにより、印刷された回路パターン(導電パターン)の「線幅のバラつき」、「耐マイグレーション性」および「比抵抗値」のいずれの評価においても良好な結果を得ることができ、その結果、線幅のバラつきが少なく、高い精度で導電パターンの印刷が可能であり、また印刷された導電パターンにおいても、電気伝導性および熱伝導性が高く、高い耐マイグレーション性を有しており、そして30Pa・s以上70Pa・s以下の粘度を有することにより優れた作業性を備えていることが判った。
4. Consideration Comparing the conductive pastes of Examples 1 to 5 with the conductive pastes of Comparative Examples 1 to 6 from Table 2, the conductive paste of the present invention is based on silver-coated copper flakes, to which silver-coated silica powder is added. By doing so, good results can be obtained in any of the evaluations of "line width variation", "migration resistance" and "specific resistance value" of the printed circuit pattern (conductive pattern), and as a result, good results can be obtained. There is little variation in line width, it is possible to print a conductive pattern with high accuracy, and even in the printed conductive pattern, it has high electrical and thermal conductivity, high migration resistance, and 30 Pa. -It was found that excellent workability was provided by having a viscosity of s or more and 70 Pa · s or less.
 特に実施例1~5の導電ペーストと比較例1~3の導電ペーストとの比較により、銀被覆銅フレークと銀被覆シリカ粉の体積比が、好ましくは99:1から15:85の範囲、より好ましくは99:1から20:80の範囲にあると、印刷された回路パターンにおいて、線幅のバラつきが小さく、優れた耐マイグレーション性および導電性を得ることができ、さらに実施例1~4の導電ペーストのように、銀被覆銅フレークと銀被覆シリカ粉の体積比が99:1から90:10の範囲であると、より優れた耐マイグレーション性を得られることが判った。 In particular, by comparing the conductive pastes of Examples 1 to 5 with the conductive pastes of Comparative Examples 1 to 3, the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is preferably in the range of 99: 1 to 15:85. Preferably, when it is in the range of 99: 1 to 20:80, the variation in line width is small in the printed circuit pattern, excellent migration resistance and conductivity can be obtained, and further, in Examples 1 to 4, It has been found that when the volume ratio of the silver-coated copper flakes to the silver-coated silica powder is in the range of 99: 1 to 90:10, as in the conductive paste, more excellent migration resistance can be obtained.
 また、実施例1~5の導電ペーストは、銀被覆銅フレークの配合量を、導電ペーストの全不揮発分に対して10体積%以上40体積%以下とすることによって、印刷された回路パターンにおいて、線幅のバラつきが小さく、優れた耐マイグレーション性および導電性を得ることができ、比抵抗値を低く抑えながら、適度の粘度や流動性を有することにより作業性の向上を図ることができる。さらに実施例1~4の導電ペーストのように、銀被覆銅フレークの配合量を、導電ペーストの全不揮発分に対して30体積%以上40体積%以下とすれば、より優れた耐マイグレーション性を得られることが判った。 Further, in the conductive pastes of Examples 1 to 5, the blending amount of the silver-coated copper flakes was set to 10% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste, so that the printed circuit pattern could be used. The variation in line width is small, excellent migration resistance and conductivity can be obtained, and workability can be improved by having an appropriate viscosity and fluidity while keeping the specific resistance value low. Further, as in the conductive pastes of Examples 1 to 4, if the blending amount of the silver-coated copper flakes is 30% by volume or more and 40% by volume or less with respect to the total non-volatile content of the conductive paste, more excellent migration resistance can be obtained. It turned out to be obtained.
 また、実施例1~5の導電ペーストにおいて、スクリーン印刷のような各種印刷法に適した作業性や印刷性を実現させるために樹脂バインダーを、導電ペーストの全不揮発分に対して30体積%以上60体積%以下の比率で配合することが有効であることが判った。 Further, in the conductive pastes of Examples 1 to 5, in order to realize workability and printability suitable for various printing methods such as screen printing, a resin binder is added in an amount of 30% by volume or more based on the total non-volatile content of the conductive paste. It was found that it is effective to mix in a ratio of 60% by volume or less.
 実施例1~5の導電ペーストは、銀被覆銅フレークの体積平均粒子径(D50)は、好ましくは1.0μm以上50μm以下、より好ましくは2.0μm以上20μm以下であると、印刷された回路パターンにおいて線幅のバラつきが少なく、回路パターンを描画する際細線への対応が極めて容易となることが判った。 The conductive pastes of Examples 1 to 5 were printed so that the volume average particle diameter (D 50 ) of the silver-coated copper flakes was preferably 1.0 μm or more and 50 μm or less, and more preferably 2.0 μm or more and 20 μm or less. It was found that there is little variation in line width in the circuit pattern, and it is extremely easy to deal with thin lines when drawing the circuit pattern.
 また、実施例1~5の導電ペーストは、銀被覆シリカ粉の体積平均粒子径(D50)は、好ましくは0.050μm以上50.0μm以下、より好ましくは0.1μm以上5.0μm以下であると、高い充填率を達成することにより比抵抗値を低く抑えながら、印刷された回路パターンにおいても線幅のバラつきが少なくなることが判った。 Further, in the conductive pastes of Examples 1 to 5, the volume average particle diameter (D 50 ) of the silver-coated silica powder is preferably 0.050 μm or more and 50.0 μm or less, and more preferably 0.1 μm or more and 5.0 μm or less. It was found that, by achieving a high filling rate, the specific resistance value was kept low, and the variation in line width was reduced even in the printed circuit pattern.
 また、図1~3より、本発明の導電ペーストを用いて複数のラインを100μm程度の間隔を空けて印刷した回路パターン(導電パターン)は、線幅のバラつきが小さいために隣り合うライン同士が短絡(接触)することがなく、また、各ラインの電気伝導性にも優れた回路パターンを得られることが判った。 Further, as shown in FIGS. 1 to 3, in the circuit pattern (conductive pattern) in which a plurality of lines are printed at intervals of about 100 μm using the conductive paste of the present invention, adjacent lines are connected to each other because the variation in line width is small. It was found that a circuit pattern with no short circuit (contact) and excellent electrical conductivity of each line can be obtained.
 L・・・印刷線
 G・・・隙間(PET樹脂シート)
 S・・・短絡部分(接触部分)
L ・ ・ ・ Print line G ・ ・ ・ Gap (PET resin sheet)
S ... Short-circuited part (contact part)

Claims (5)

  1.  銀被覆銅フレークと、銀被覆シリカ粉とを含んでいることを特徴とする導電ペースト。 A conductive paste characterized by containing silver-coated copper flakes and silver-coated silica powder.
  2.  前記銀被覆銅フレークと前記銀被覆シリカ粉の配合比が、体積比で99:1から15:85の範囲内であることを特徴とする請求項1に記載の導電ペースト。 The conductive paste according to claim 1, wherein the blending ratio of the silver-coated copper flakes and the silver-coated silica powder is in the range of 99: 1 to 15:85 in volume ratio.
  3.  前記銀被覆銅フレークの平均粒子径が2.0μm以上20.0μm以下であり、そして前記銀被覆シリカ粉の平均粒子径が0.1μm以上5.0μm以下であることを特徴とする請求項1または2に記載の導電ペースト。 Claim 1 is characterized in that the average particle size of the silver-coated copper flakes is 2.0 μm or more and 20.0 μm or less, and the average particle size of the silver-coated silica powder is 0.1 μm or more and 5.0 μm or less. Or the conductive paste according to 2.
  4.  導電ペーストの全不揮発分に対して、30体積%以上60体積%以下の配合量で樹脂バインダーをさらに含んでいることを特徴とする請求項1から3のいずれか1項に記載の導電ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the resin binder is further contained in an amount of 30% by volume or more and 60% by volume or less with respect to the total non-volatile content of the conductive paste.
  5.  請求項1から4のいずれか1項に記載の導電ペーストを用いて形成された導電パターン。 A conductive pattern formed by using the conductive paste according to any one of claims 1 to 4.
PCT/JP2021/005749 2020-03-11 2021-02-16 Electroconductive paste and electroconductive pattern using same WO2021182034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180016102.0A CN115136257A (en) 2020-03-11 2021-02-16 Conductive paste and conductive pattern using the same
JP2022505866A JPWO2021182034A1 (en) 2020-03-11 2021-02-16
KR1020227031110A KR20220147611A (en) 2020-03-11 2021-02-16 Conductive paste and conductive pattern using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041720 2020-03-11
JP2020-041720 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182034A1 true WO2021182034A1 (en) 2021-09-16

Family

ID=77672236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005749 WO2021182034A1 (en) 2020-03-11 2021-02-16 Electroconductive paste and electroconductive pattern using same

Country Status (5)

Country Link
JP (1) JPWO2021182034A1 (en)
KR (1) KR20220147611A (en)
CN (1) CN115136257A (en)
TW (1) TW202201430A (en)
WO (1) WO2021182034A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079457A (en) * 2010-09-30 2012-04-19 Taiyo Holdings Co Ltd Conductive paste and conductive pattern
JP2015026519A (en) * 2013-07-26 2015-02-05 京セラケミカル株式会社 Conductive resin composition and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547570B2 (en) 2010-07-07 2014-07-16 Dowaエレクトロニクス株式会社 Conductive paste
JP2019102273A (en) 2017-12-01 2019-06-24 株式会社カネカ Conductive paste composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079457A (en) * 2010-09-30 2012-04-19 Taiyo Holdings Co Ltd Conductive paste and conductive pattern
JP2015026519A (en) * 2013-07-26 2015-02-05 京セラケミカル株式会社 Conductive resin composition and semiconductor device

Also Published As

Publication number Publication date
CN115136257A (en) 2022-09-30
KR20220147611A (en) 2022-11-03
TW202201430A (en) 2022-01-01
JPWO2021182034A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP4934993B2 (en) Conductive paste and wiring board using the same
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
TWI622998B (en) Conductive composition and hardened product using the same
KR100681113B1 (en) Conductive paste
JP4972955B2 (en) Conductive paste and printed wiring board using the same
KR101275389B1 (en) Conductive paste and wiring board using same
WO2007026812A1 (en) Conductive paste and wiring board using same
JP2009070677A (en) Heat curing type conductive paste
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
TW201833940A (en) Conductive composition
WO2021182034A1 (en) Electroconductive paste and electroconductive pattern using same
CN106941018B (en) Heat-curable conductive paste
US8562808B2 (en) Polymer thick film silver electrode composition for use as a plating link
US11932771B2 (en) Stretchable conductive paste and film
JP2020166974A (en) Conductive composition, conductor, and electronic component
JP7070923B2 (en) Pastes for flexible electronic components, cured films for flexible electronic components, and flexible electronic components
KR101177084B1 (en) Conductive ink composite for forming build-up bump for multilayered PCB
JP2003068139A (en) Conductive paste
JP2009283362A (en) Conductive composition
JP2021170510A (en) Conductive resin composition for screen printing and printed wiring board
JPS61203502A (en) Conductive paste
JP2006216389A (en) Conductive paste and wiring board using it
JPS61203503A (en) Ag-pd based conductive paste
JPS61203504A (en) Conductive paste
JPH11293186A (en) Electroconductive coating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505866

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031110

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767670

Country of ref document: EP

Kind code of ref document: A1