WO2007026812A1 - Conductive paste and wiring board using same - Google Patents

Conductive paste and wiring board using same Download PDF

Info

Publication number
WO2007026812A1
WO2007026812A1 PCT/JP2006/317198 JP2006317198W WO2007026812A1 WO 2007026812 A1 WO2007026812 A1 WO 2007026812A1 JP 2006317198 W JP2006317198 W JP 2006317198W WO 2007026812 A1 WO2007026812 A1 WO 2007026812A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
silver powder
resin
wiring
powder
Prior art date
Application number
PCT/JP2006/317198
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kasuga
Kohei Shimoda
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2007026812A1 publication Critical patent/WO2007026812A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon

Definitions

  • the present invention relates to a conductive paste used when forming a conductor wiring on a substrate, and a wiring substrate formed using the conductive paste.
  • Conductive pastes containing powders of metals such as silver are widely used in various electronic device parts because they exhibit good electrical conductivity.
  • This type of conductive paste is used to form conductor wiring on wiring boards.
  • a conductive base is applied in a predetermined pattern onto a substrate such as a ceramic or glass substrate using a method such as screen printing. Then, the applied conductive paste is sintered at a high temperature to form conductor wiring in a predetermined pattern on the substrate.
  • the conductive paste a conductive paste containing a thermosetting resin, a curing agent, a metal powder, and a solvent is often used.
  • silver powder having various shapes is used as the metal powder.
  • the flaky silver powder is used. Are preferably used.
  • Patent Document 1 includes silver powder (A), carbon powder (B), binder (C) and solvent (D) as main components, and silver powder (A) and carbon powder (B).
  • the weight ratio of AZB is 99.9 / 0.1 to 93Z7, and the ratio of silver powder (A) and carbon powder (B) to binder (C) is weight ratio (A + B )
  • Conductive pastes with a ZC of 83Z17 to 93Z7 have been proposed.
  • the ratio of the viscosity (V) at a shear rate of 2 s ec _1 measured at 25 ° C using an E-type rotational viscometer to the viscosity (V) at a shear rate of 20 s ec _1 (V / V) has a fold change (thixotropic property) of 3.3 or less.
  • the conductive film formed using this conductive paste has a volume resistivity of less than 1 X 10 " 4 ⁇ 'cm, and a highly conductive conductor wiring can be obtained. Compared with, the amount of silver powder contained in the conductive paste can be reduced, so that the leveling property of the conductive paste is improved and the workability when printing the wiring pattern is improved.
  • Patent Document 1 Japanese Patent No. 2802622
  • the blending amount of silver powder is kept low in order to make the degree of change to 3.3 or less. For this reason, the volume resistivity of the conductive paste itself has to be high.
  • the degree of variability is 3.3 or less, it is not possible to increase the film thickness with high leveling properties. For this reason, the wiring resistance of the conductor wiring must be increased. Therefore, the conventional conductive paste could not obtain high conductivity, and could not cope with wiring applications requiring low wiring resistance.
  • the wiring width Z wiring interval has been miniaturized to 100/100 ⁇ m or less, and it is required to form such a fine pattern with high accuracy.
  • the conventional conductive paste has a low degree of change, there is a drawback in that the conductive paste drips immediately after the conductive paste is applied by screen printing. In other words, the conventional conductive paste has a low printing characteristic, so a fine pattern (less than 100 m ) could not be formed with high accuracy.
  • An object of the present invention is to provide a conductive paste capable of accurately forming a fine pattern having high conductivity and a wiring board using the same.
  • an E-type rotational viscometer is used in a conductive paste containing silver powder, carbon powder, Linder's resin and a solvent as main components.
  • the degree of change expressed as the ratio (V / V) to the viscosity (V) at m is 3.4 or more
  • the viscosity (V) at a rotational speed of lrpm is 600 Pa's or less.
  • the silver powder is composed of scaly silver powder having an average particle diameter of 0.5 to 20 ⁇ m and spherical silver powder having an average particle diameter of 50 nm or less. It is preferable. In that case, by using a scaly silver powder having an average particle diameter of 0.5 to 20 m, the contact resistance between the silver powders is reduced, and the conductivity of the conductor wiring and the like is further improved. In addition, since clogging of the screen plate is suppressed, printing defects such as fading and cutting can be suppressed.
  • a spherical silver powder having an average particle diameter of 50 nm or less fine patterns that do not cause printing defects such as blurring, cutting, and blurring can be repeatedly and favorably printed.
  • the packing density of the silver powder is increased, the conductivity of the conductor wiring and the like is further improved.
  • the blending ratio of the flaky silver powder and the spherical silver powder is preferably 99: 1 to 80:20 by weight.
  • the packing The degree of printing can be improved, and printing defects such as blurring, cutting, and bleeding can be prevented.
  • the scaly silver powder can reduce the contact resistance between the silver powders and improve the conductivity of the conductor wiring.
  • the primary particle diameter of the carbon powder is 50 nm or less and the BET specific surface area is 50 m 2 / g or more. In that case, the agglomeration of carbon powder is prevented. That is, since the high dispersibility of the carbon powder is maintained, the carbon powder can be uniformly dispersed in the paste. Therefore, in the conductor wiring, since the local increase in volume resistance is suppressed, the conductivity can be increased. In addition, it is possible to appropriately maintain the degree of change for accurately forming a fine pattern having high conductivity.
  • the blending ratio of silver powder and carbon powder is 99.99 by weight.
  • the blending ratio of silver powder and binder resin is preferably 85:15 to 97: 3 by weight. In this case, it is possible to maintain good workability at the time of printing while maintaining high conductivity due to the effect of improving conductivity and the degree of fluctuation for forming a fine pattern having high conductivity.
  • the noinder resin includes epoxy resin, polyester resin, polyimide resin, polyamideimide resin, polyesterimide resin, phenol resin, or these resins. A mixture is preferred. In that case, a resin suitable for the purpose of use, use environment, curing temperature and the like can be appropriately selected as a binder resin while maintaining good workability and low wiring resistance during printing.
  • a wiring board including wiring formed by printing the conductive paste on the board.
  • the width of the wiring is preferably 100 m or less. In this case, it is not necessary to set the widths of all the wirings on the wiring board to 100 / zm or less.
  • the conductive paste of the present invention contains silver powder, carbon powder, binder resin and solvent as main components.
  • the conductive paste of the present invention uses an E-type rotational viscometer and measured at 25 ° C using rotor No. 7 at a rotational speed of lrpm (V) and a viscosity at a rotational speed of lOrpm (V )
  • lrpm lOrpm ratio (thixotropic) expressed as a ratio (V / V) is 3.4 or more (preferably 4.
  • the volume resistivity of the conductive paste can be lowered.
  • the wiring resistance of the conductor wiring can be lowered by increasing the film thickness. Therefore, a conductor wiring having high conductivity and low wiring resistance can be formed.
  • this conductive paste when a fine pattern is formed on a substrate using a screen printing method, it is possible to effectively suppress the occurrence of sagging or bleeding after the conductive paste is applied. . Therefore, it is possible to accurately form a fine pattern of lOO / zm or less while maintaining the leveling property. Therefore, workability during printing is improved.
  • the conductive paste of the present invention uses an E-type rotational viscometer, and rotor No. at 25 ° C.
  • Viscosity (V) at a rotational speed of lrpm measured using 7 is 600 Pa's or less (preferably,
  • the conductive filler metal powder such as silver powder, platinum powder, gold powder, copper powder, nickel powder and palladium powder, and carbon powder such as carbon black and graphite powder are used.
  • metal powder such as silver powder, platinum powder, gold powder, copper powder, nickel powder and palladium powder, and carbon powder such as carbon black and graphite powder.
  • carbon powder such as carbon black and graphite powder.
  • a conductive filler obtained by adding a small amount of carbon powder to silver powder as a main component is used from the viewpoint of conductivity and cost.
  • the silver powder of the present invention two types of scale-like silver powder and spherical silver powder are used.
  • scale-like silver powder the size of one direction (thickness direction) out of three directions (length direction, width direction, thickness direction) orthogonal to each other is the other two directions (length direction, width direction)
  • the maximum value of the particle size is about 1Z2 or less, in particular, a flat (scale-like) silver powder of 1Z50 to 1Z5 is used, and a silver powder having an average particle diameter of 0.5 m to 50 m should be used. it can. Average particle size is 0.
  • Average particle size refers to 50% particle size (D)
  • the particle size distribution can be measured using a particle size distribution measuring apparatus (Nikkiso Co., Ltd., Nanotrac (registered trademark) particle size distribution measuring apparatus UPA-EX150) applying the laser Doppler method.
  • a particle size distribution measuring apparatus Nikkiso Co., Ltd., Nanotrac (registered trademark) particle size distribution measuring apparatus UPA-EX150
  • the average particle size of the scaly silver powder reduces the contact resistance to further improve the conductivity of the conductor wiring, and causes printing defects such as blurring and cutting due to clogging of the screen plate. From the viewpoint of prevention, it is particularly preferably 0.5 to 20 m.
  • the flaky silver powder is produced by a conventionally known method such as a liquid phase reduction method or a vapor phase growth method.
  • the ratio of the minor axis to the major axis is 1Z1 to: LZ2, a true sphere or an oval sphere, and the average particle diameter measured using the particle size distribution measuring apparatus is 1 ⁇ m.
  • the following silver powder is used. When the average particle diameter exceeds 1 ⁇ m, the packing density of the silver powder cannot be increased by the spherical silver powder, and as a result, the conductivity of the conductor wiring is lowered.
  • the average particle size of the spherical silver powder allows fine patterns to be repeatedly printed without causing printing defects such as blurring, cutting, and blurring.
  • the conductive density of the conductor wiring can be increased by increasing the packing density of the silver powder.
  • the thickness is particularly preferably 50 nm or less, and further preferably 20 nm or less.
  • the lower limit of the average particle diameter of the spherical silver powder is not particularly limited. However, theoretically, a powder having a minimum particle size having conductivity as a metal can be used. In practice, it is preferable to use a silver powder having an average particle size of 1 nm or more.
  • the spherical silver powder is produced by a conventionally known method such as a liquid phase reduction method or a vapor phase growth method. In order to form a spherical silver powder having a uniform particle diameter, it is particularly preferable to use a so-called liquid layer reduction method in which silver ions are reduced in a dispersion medium such as water to deposit spherical silver.
  • silver nitrate is dissolved in a liquid in which an equal amount of pure water and ethanol are mixed.
  • L-ascorbic acid is dissolved as a reducing agent, and polyacrylic acid is dissolved as a dispersing agent. The dispersant is used to prevent the fine particles from aggregating by slowly advancing the precipitation reaction of the silver fine particles by the reduction reaction.
  • the solution in which the reducing agent and the dispersing agent are dissolved is stirred while being kept at 25 ° C., and the silver nitrate solution prepared previously is added dropwise to the solution little by little. In this way, silver fine particles are precipitated in the solution. As a result, spherical silver powder having an average particle diameter of 20 nm is obtained.
  • the blending ratio of the flaky silver powder and the spherical silver powder improves the packing density by the spherical silver powder and prevents printing defects such as blurring, cutting and blurring, and From the viewpoint of lowering the contact resistance with the flake silver powder and further improving the conductivity of the conductor wiring, the weight ratio is preferably 99: 1 to 80:20.
  • the average particle size of the primary particles of the carbon powder is 50 nm or less from the viewpoint of preventing the aggregation of the carbon powder and maintaining high dispersibility. ⁇ 40 nm is preferred
  • the BET specific surface area of the carbon powder suppresses a local increase in volume resistance by uniformly dispersing the carbon powder in the conductive paste, and also has a fine pattern having high conductivity. From the standpoint of maintaining an appropriate degree of variation for accurately forming the film, it is 50 m 2 Zg or more.
  • the upper limit of the BET specific surface area is not particularly limited, but is preferably 1300 m 2 / g or less. Upper limit value of BET specific surface area If this value is exceeded, the average particle size of the carbon powder becomes too small, making it difficult to handle without agglomeration.
  • silver powder that is, scaly silver
  • the blending ratio of the powder, the spherical silver powder and the carbon powder is preferably 99.9: 0.1 to 97: 3 by weight.
  • the weight ratio is higher than 3% by weight, it may lead to poor conductivity.
  • An organic insulating resin is used as the binder resin.
  • As its organic insulating resin In view of remaining in the conductive film even after the heat treatment, it is preferable to use a heat-resistant resin.
  • heat-resistant resins include fluorine resin, polyimide resin, polyamideimide resin, polyesterimide resin, polyester resin, polyethersulfone resin, polyetherolene resin, polyetheretherketone resin, and polyether resin. Benzimidazole resin, polybenzoxazole resin, polyphenylene sulfide resin, bismaleimide resin, epoxy resin
  • a heat-resistant resin suitable for the purpose of use, use environment, curing temperature, etc. is appropriately selected as the binder resin while maintaining good workability during printing and maintaining low wiring resistance. can do.
  • heat-resistant resins include epoxy resins, polyester resin resins, polyimide resins, polyamide imide resins, polyester imide resins, phenol resins, and mixtures thereof.
  • epoxy resins polyphenol type epoxy resins (bisphenol A type, F type, AD type, etc.), phenol and talesol type epoxy resins (novolak type, etc.), polyol glycidyl ethers.
  • thermosetting epoxies such as epoxy resin, polyacid glycidyl ester epoxy resin, polyamine glycidylamine epoxy resin, alicyclic epoxy resin and heterocyclic epoxy resin
  • bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable.
  • silver powder that is, scaly silver powder and spherical silver powder
  • the blending ratio with the binder resin is preferably 85:15 to 97: 3 by weight.
  • the blending ratio of silver powder is lower than 85% by weight, the effect of improving conductivity by silver powder cannot be exhibited.
  • the blending ratio of silver powder is higher than 97% by weight, the blending amount of Norder resin is too small compared to the blending amount of silver powder, so the workability when screen-printing the conductive paste is reduced. .
  • the conductive paste of the present invention may contain a curing agent, a solvent, other additives, and the like for curing the binder resin.
  • Epoxy resin For example, amine curing agents, polyaminoamide curing agents, acid and acid anhydrides curing agents, basic active hydrogenated compounds, tertiary amines, imidazoles, etc. From the curing agents, those suitable for epoxy resin can be appropriately selected.
  • the hardener for polyester include various conventionally known hardeners such as isocyanate compounds such as hexamethylene diisocyanate-based curing agents and polyisocyanate-based curing agents. Those suitable for polyester can be appropriately selected.
  • the conductive paste has a low heat-resistant temperature, and is preferably cured in a temperature range of 200 ° C or lower in consideration of use in combination with a base material or a chip. For this reason, it is preferable to use a curing agent that can cure the binder resin at a temperature of 200 ° C or lower. In this case, the curing agent is theoretically only required to be mixed with the binder resin.
  • the solvent a solvent that can dissolve the binder resin and does not corrode the substrate to which the conductive paste is applied is used.
  • a solvent having low volatility drying resistance is improved and workability during printing is improved. Therefore, from the viewpoint of maintaining these characteristics, organic solvents such as butyl carbitol, butyl carbitol acetate, terpineol, and jetyl phthalate are preferable.
  • plasticizers include phthalic acid derivatives, isophthalic acid derivatives, tetrahydrophthalic acid derivatives, adipic acid derivatives, maleic acid derivatives, fumaric acid derivatives, trimellitic derivatives, pyromellitic derivatives, stearic acid derivatives, oleic acid derivatives, itacones. Acid derivatives , Ricinol derivatives, hydrogenated castor oil and derivatives thereof are preferably used.
  • the conductive paste of the present invention is suitably used when an electric circuit such as wiring or electrode having high conductivity is formed on a base material (glass base material or the like). Specifically, the conductive paste of the present invention is applied onto a substrate in a predetermined pattern using a conventionally known printing method (particularly preferably screen printing), and the applied conductive paste is applied. By baking at a high temperature, a wiring board provided with electrical circuits such as desired wirings and electrodes can be obtained.
  • the conductive paste of the present invention it is possible to improve workability and printing characteristics during printing and to form a fine pattern having high conductivity with high accuracy.
  • the conductive paste of the present invention is based on a fine pattern with a high conductivity and a width of 100 m or less when manufacturing a wiring board having a plurality of wirings on a substrate. It is suitably used when forming on a material.
  • Viscosity (V) is measured and the degree of change expressed as the viscosity ratio (V / V) (Titaso
  • Viscosity is measured using an E-type rotational viscometer (Toki Sangyo Co., Ltd., TV-20 type viscometer (TVE-20H)) at room temperature (25 ° C) using rotor No. 7. under Measured with
  • the adjusted conductive paste was applied on a glass substrate (Asahi Glass Co., Ltd., PD200) with a width of 50 mm and a length of 80 mm to produce a film body.
  • the film body was dried and the solvent in the film body was volatilized.
  • the film body was put in a thermostatic bath and baked at 200 ° C. for 30 minutes.
  • the volume resistivity of the obtained electrically conductive film was measured using the resistivity meter (Mitsubishi Chemical Corporation make, brand name Loresta).
  • the volume resistivity is 5.0 ⁇ 10 " 5 ⁇ 'cm as the standard value. If the volume resistivity is below the standard value, it is judged that the conductivity is good, and the volume resistivity exceeds the standard value. Was determined to have poor conductivity.
  • the printing characteristics of the conductive paste were evaluated. Specifically, the wiring after screen printing was visually observed for the presence of defects such as cuts, fading, dripping and blurring. In this case, the printing characteristics of the conductive paste were evaluated based on the following two criteria: ⁇ : no defects were found and printing characteristics were good, X: defects were found, and printing characteristics were poor.
  • the wiring resistance of the obtained conductor wiring was measured using a four-terminal method. In this case, with respect to the wiring resistance, 3. ⁇ is taken as the reference value. did. These results are shown in Table 1.
  • the type and amount of flaky silver powder (trade name: AgC-239, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.), spherical silver powder, and bisphenol Type A epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name Epicoat 125) 6, molecular weight 53000, and Japan Epoxy Resin Co., Ltd., trade name Epicoat 1010, molecular weight 5500), epoxy resin hardener (trade name Sunmide LH210, manufactured by Air Products Japan), carbon powder (Lion Co., Ltd., trade name Ketjen Black EC30 0J) was mixed and kneaded using three rolls to prepare a conductive paste. No abnormalities in the appearance of the prepared conductive paste were observed.
  • the type and amount of flaky silver powder (trade name: AgC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd.), spherical silver powder, and bisphenol Type A epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name Epicoat 125 6, molecular weight 53000, and Japan Epoxy Resin Co., Ltd., trade name Epicoat 1010, molecular weight 5500) and epoxy resin hardener ( Air Products Japan Co., Ltd., trade name Sunmide LH210) and carbon powder (Lion Corporation, trade name Carbon ECP600JD) are mixed and kneaded using three rolls to adjust the conductive paste. did. No abnormalities in appearance were observed for the adjusted conductive paste.
  • Example 1 Using the same method as in Example 1 above, except that carbon powder (product name: Carbon ECP600JD, manufactured by Lion Corporation) is not blended, the conductive paste is adjusted to form the conductive film and conductor wiring. did. The variability, volume resistivity, printing characteristics, and wiring resistance were each evaluated. The results are shown in Table 1. With regard to the prepared conductive paste, no abnormalities in appearance were observed.
  • carbon powder product name: Carbon ECP600JD, manufactured by Lion Corporation
  • Examples 1 to 3 in any case of Comparative Examples 1 and 2, the volume resistivity is less than or equal 5.0 ⁇ 10 _5 ⁇ 'cm of standard values. However, in Examples 1 to 3, the degree of change expressed as the ratio of the viscosity at the rotation speed lrpm to the viscosity at the rotation speed lOrpm is 3.4 or more, and the viscosity at the rotation speed lrpm is 600 Pa's or less. , Force, wiring The resistance was below the reference value (3 ⁇ ⁇ ), indicating good wiring resistance. On the other hand, in the case of Comparative Example 1, the wiring resistance exceeded the reference value (3.0 ⁇ ), and it was strong that good wiring resistance could not be obtained.
  • Comparative Example 2 since the wiring was cut, it was impossible to measure the wiring resistance. That is, in the case of Comparative Example 2, the wiring resistance was greater than in the case of Examples 1 to 3 and Comparative Example 1. From the above results, it was confirmed that when the conductive pastes of Examples 1 to 3 were used, the conductive paste had high conductivity and the wiring resistance of the conductor wiring could be lowered.
  • the conductor wiring could be easily formed. Specifically, while maintaining the optimum leveling properties, a fine pattern with a width of 100 m could be formed with high precision, and excellent printing characteristics were obtained for the conductive paste. On the other hand, in the case of Comparative Example 1, the wiring was blurred and the wiring defect was confirmed. Further, in the case of Comparative Example 2, the wiring was cut and a wiring defect was confirmed.
  • Comparative Example 1 unlike the case of Example 1, the conductive paste does not contain carbon powder. In this case, the local increase in volume resistance is not suppressed, and the fluctuation is not maintained at a desired value (ie, 3.4 or higher). For this reason, it is considered that good wiring resistance and ease of forming wiring cannot be obtained. In Comparative Example 2, since the viscosity (V) at a rotation speed of lrpm is larger than 600 Pa's, the conductive paste is screened.

Abstract

Provided are a conductive paste by which a fine pattern having high conductivity is highly accurately formed, and a wiring board using such conductive paste. The conductive paste includes silver powder, carbon powder, a binder resin and a solvent as main ingredients. A thixotropy expressed as a ratio (V1rpm/V10rpm) of a viscosity (V1rpm) at a number of rotations of 1rpm to a viscosity (V10rpm) at a number or rotations of 10rpm measured at 25°C by using an E-type rotating viscometer is 3.4 or more, and a viscosity (V1rpm) at a number of rotation of 1rpm is 600Pa·s or less.

Description

明 細 書  Specification
導電性ペーストおよびそれを用いた配線基板  Conductive paste and wiring board using the same
技術分野  Technical field
[0001] 本発明は、基板上に導体配線を形成する際に用いられる導電性ペースト、および その導電性ペーストを用いて形成される配線基板に関する。  The present invention relates to a conductive paste used when forming a conductor wiring on a substrate, and a wiring substrate formed using the conductive paste.
背景技術  Background art
[0002] 銀等の金属の粉末を含む導電性ペーストは、良好な導電性を示すことから、様々な 電子機器部品に広く使用されている。この種の導電性ペーストは、配線基板の導体 配線を形成するために使用されている。導体配線を形成するには、まず、導電性べ 一ストが、スクリーン印刷法等の方法を用いて、セラミックやガラス基板等の基板上に 所定のパターンで塗布される。そして、塗布された導電性ペーストを高温で焼結する ことによって、導体配線が所定のパターンで基板上に形成される。  [0002] Conductive pastes containing powders of metals such as silver are widely used in various electronic device parts because they exhibit good electrical conductivity. This type of conductive paste is used to form conductor wiring on wiring boards. In order to form the conductor wiring, first, a conductive base is applied in a predetermined pattern onto a substrate such as a ceramic or glass substrate using a method such as screen printing. Then, the applied conductive paste is sintered at a high temperature to form conductor wiring in a predetermined pattern on the substrate.
[0003] 導電性ペーストとして、熱硬化性榭脂、硬化剤、金属粉末、及び溶剤を含む導電 性ペーストがよく使用される。また、金属粉末として、種々の形状を有する銀粉末が 使用されるが、特に、金属粉末同士の接触面積を大きくして、導体配線の導電性を 向上させるとの観点から、鱗片状の銀粉末が好適に使用される。  [0003] As the conductive paste, a conductive paste containing a thermosetting resin, a curing agent, a metal powder, and a solvent is often used. In addition, silver powder having various shapes is used as the metal powder. In particular, from the viewpoint of improving the conductivity of the conductor wiring by increasing the contact area between the metal powders, the flaky silver powder is used. Are preferably used.
[0004] 一般に、導体配線の導電性を高くすることが求められており、そのためには、導電 性ペースト自体の導電性を向上させる必要がある。また、電子機器部品の高密度化 が求められており、そのためには、微細な配線パターン (ファインパターン)を効率良 く形成する必要がある。そこで、導電性ペーストの導電性を向上させ、かつファインパ ターンを効率良く形成できる導電性ペーストが提案されている。  [0004] Generally, it is required to increase the conductivity of the conductor wiring, and for this purpose, it is necessary to improve the conductivity of the conductive paste itself. In addition, there is a demand for higher density electronic component parts. To that end, it is necessary to efficiently form fine wiring patterns (fine patterns). Thus, a conductive paste has been proposed that can improve the conductivity of the conductive paste and can efficiently form fine patterns.
[0005] 例えば、特許文献 1では、銀粉末 (A)、カーボン粉 (B)、結合剤 (C)および溶剤 (D )を主成分として含み、銀粉末 (A)とカーボン粉 (B)との配合割合が、重量比 AZB で 99. 9/0. 1〜93Z7であり、銀粉末 (A)及びカーボン粉 (B)と結合剤(C)との配 合割合力 重量比 (A+B) ZCで 83Z17〜93Z7である導電性ペーストが提案され ている。この導電性ペーストによれば、 E型回転粘度計を用いて 25°Cで測定したずり 速度 2sec _1における粘度 (V )と、ずり速度 20sec _1における粘度 (V )との比 (V /V )として表される摇変度 (チクソ性)が 3. 3以下である。この導電性ペーストは、[0005] For example, Patent Document 1 includes silver powder (A), carbon powder (B), binder (C) and solvent (D) as main components, and silver powder (A) and carbon powder (B). The weight ratio of AZB is 99.9 / 0.1 to 93Z7, and the ratio of silver powder (A) and carbon powder (B) to binder (C) is weight ratio (A + B ) Conductive pastes with a ZC of 83Z17 to 93Z7 have been proposed. According to this conductive paste, the ratio of the viscosity (V) at a shear rate of 2 s ec _1 measured at 25 ° C using an E-type rotational viscometer to the viscosity (V) at a shear rate of 20 s ec _1 (V / V) has a fold change (thixotropic property) of 3.3 or less. This conductive paste
20 20
銀粉末に少量のカーボン粉を配合して生成される。この導電性ペーストを用いて形 成された導電膜の体積抵抗率は 1 X 10"4 Ω ' cm未満であり、高い導電性を有する 導体配線を得ることができる。また、従来の導電性ペーストと比べて、導電性ペースト に含まれる銀粉末の配合量を少なくできるため、導電性ペーストのレべリング性が向 上し、かつ配線パターンを印刷する際の作業性が向上する。 It is produced by blending a small amount of carbon powder with silver powder. The conductive film formed using this conductive paste has a volume resistivity of less than 1 X 10 " 4 Ω 'cm, and a highly conductive conductor wiring can be obtained. Compared with, the amount of silver powder contained in the conductive paste can be reduced, so that the leveling property of the conductive paste is improved and the workability when printing the wiring pattern is improved.
特許文献 1:特許第 2802622号公報  Patent Document 1: Japanese Patent No. 2802622
発明の開示  Disclosure of the invention
[0006] 一般に、導体配線の配線抵抗を低く抑えるには、配線幅を広くして導体配線を形 成することが効果的である。しかし、配線幅を狭くすることが強く求められている中で、 設計上、配線幅を広くすることは困難な場合が多い。このため、配線抵抗を低くする には、導電性ペーストの体積抵抗率を下げることに加え、配線の膜厚を厚くして導電 性ペーストを塗布する必要がある。また、導体配線の導電性を高くするには、導電性 ペーストを十分に焼結する必要もある。しかし、乾燥及び焼結時に、導電性ペースト は収縮するため、焼結後の膜厚みは、塗布時の膜厚みの約 20%程度にまで減少し てしまう。この収縮を抑えるには、導電性ペーストに含まれる金属粉末の配合量を増 やすことが効果的である。  [0006] In general, in order to keep the wiring resistance of the conductor wiring low, it is effective to form the conductor wiring by increasing the wiring width. However, while there is a strong demand to reduce the wiring width, it is often difficult to increase the wiring width by design. For this reason, in order to reduce the wiring resistance, it is necessary to apply the conductive paste while increasing the thickness of the wiring in addition to lowering the volume resistivity of the conductive paste. Moreover, in order to increase the conductivity of the conductor wiring, it is necessary to sinter the conductive paste sufficiently. However, since the conductive paste shrinks during drying and sintering, the film thickness after sintering is reduced to about 20% of the film thickness during coating. In order to suppress this shrinkage, it is effective to increase the amount of the metal powder contained in the conductive paste.
[0007] しかし、従来の導電性ペーストでは、摇変度を 3. 3以下にするため、銀粉末の配合 量が低く抑えられている。このため、導電性ペースト自体の体積抵抗率が高くならざ るを得ない。また、揺変度が 3. 3以下であるために、レべリング性が高ぐ膜厚みを大 きくすることができない。このため、導体配線の配線抵抗は高くならざるを得ない。よ つて、従来の導電性ペーストでは、高い導電性を得ることができず、低い配線抵抗を 要する配線用途に対応できな力つた。  [0007] However, in the conventional conductive paste, the blending amount of silver powder is kept low in order to make the degree of change to 3.3 or less. For this reason, the volume resistivity of the conductive paste itself has to be high. In addition, since the degree of variability is 3.3 or less, it is not possible to increase the film thickness with high leveling properties. For this reason, the wiring resistance of the conductor wiring must be increased. Therefore, the conventional conductive paste could not obtain high conductivity, and could not cope with wiring applications requiring low wiring resistance.
[0008] 近年、配線幅 Z配線間隔が、 100/100 μ m以下にまで微細化しており、このよう なファインパターンを精度良く形成することが要求されている。しかし、従来の導電性 ペーストでは、その摇変度が低いため、スクリーン印刷によって導電性ペーストを塗 布した後、導電性ペーストがすぐに垂れてしまうといった欠点がある。つまり、従来の 導電性ペーストでは、その印刷特性が低いことから、ファインパターン(100 m以下 )を精度良く形成することができな力つた。 [0008] In recent years, the wiring width Z wiring interval has been miniaturized to 100/100 μm or less, and it is required to form such a fine pattern with high accuracy. However, since the conventional conductive paste has a low degree of change, there is a drawback in that the conductive paste drips immediately after the conductive paste is applied by screen printing. In other words, the conventional conductive paste has a low printing characteristic, so a fine pattern (less than 100 m ) Could not be formed with high accuracy.
[0009] 本発明の目的は、高い導電性を有するファインパターンを精度良く形成することの できる導電性ペーストおよびそれを用いた配線基板を提供することにある。  [0009] An object of the present invention is to provide a conductive paste capable of accurately forming a fine pattern having high conductivity and a wiring board using the same.
[0010] 上記の課題を解決するため、本発明の第一の態様によれば、銀粉末、カーボン粉 、ノ インダー榭脂および溶剤を主成分として含む導電性ペーストにおいて、 E型回転 粘度計を用いて 25°Cで測定した回転数 lrpmにおける粘度 (V )と、回転数 lOrp  [0010] In order to solve the above problems, according to a first aspect of the present invention, an E-type rotational viscometer is used in a conductive paste containing silver powder, carbon powder, Linder's resin and a solvent as main components. Viscosity (V) at rotation speed lrpm measured at 25 ° C and rotation speed lOrp
lrpm  lrpm
mにおける粘度 (V )との比 (V /V )として表される摇変度が 3. 4以上で  The degree of change expressed as the ratio (V / V) to the viscosity (V) at m is 3.4 or more
1 Orpm 1 rpm 1 Orpm  1 Orpm 1 rpm 1 Orpm
あり、回転数 lrpmにおける粘度 (V )が 600Pa' s以下である。  Yes, the viscosity (V) at a rotational speed of lrpm is 600 Pa's or less.
lrpm  lrpm
[0011] 上記のように構成したことにより、銀粉末の配合量を抑える必要がなくなり、導電性 ペーストの体積抵抗率を低くすることができる。また、膜厚を大きくすることもできるた め、その分、導体配線の配線抵抗を低くすることができる。従って、高い導電性を有 し、低 、配線抵抗の導体配線を形成することができる。  [0011] By configuring as described above, it is not necessary to suppress the blending amount of the silver powder, and the volume resistivity of the conductive paste can be lowered. Further, since the film thickness can be increased, the wiring resistance of the conductor wiring can be lowered accordingly. Therefore, it is possible to form a conductor wiring having high conductivity and low wiring resistance.
[0012] また、スクリーン印刷法を用いてファインパターンを形成する場合、塗布された導電 性ペーストに垂れやにじみが発生することを効果的に抑制できる。このため、レベリン グ性を良好に維持しつつ、 100 m以下のファインパターンを精度良く形成すること ができる。さらに、スクリーン版力も導電性ペーストが抜け易くなるため、印刷時の作 業性が向上する。  [0012] In addition, when a fine pattern is formed using a screen printing method, it is possible to effectively suppress the occurrence of dripping or bleeding in the applied conductive paste. Therefore, it is possible to accurately form a fine pattern of 100 m or less while maintaining good leveling properties. In addition, the screen plate strength makes it easier for the conductive paste to come off, improving the workability during printing.
[0013] 上記の導電性ペーストにおいて、銀粉末は、 0. 5 m〜20 μ mの平均粒径を有す る鱗片状銀粉末と、 50nm以下の平均粒子径を有する球状銀粉末とからなることが 好ましい。その場合、 0. 5 m〜20 mの平均粒径を有する鱗片状銀粉末を使用 することで、銀粉末同士の接触抵抗が小さくなり、導体配線等の導電性がさらに向上 する。また、スクリーン版の目詰まりが抑止されるため、かすれや切れ等の印刷不良も 抑止できる。また、平均粒子径 50nm以下の球状銀粉末を使用することで、かすれ、 切れ、にじみ等の印刷不良を発生させることなぐファインパターンを繰り返し良好に 印刷することができる。また、銀粉末の充填密度が高められるため、導体配線等の導 電性がさらに向上する。  [0013] In the above conductive paste, the silver powder is composed of scaly silver powder having an average particle diameter of 0.5 to 20 μm and spherical silver powder having an average particle diameter of 50 nm or less. It is preferable. In that case, by using a scaly silver powder having an average particle diameter of 0.5 to 20 m, the contact resistance between the silver powders is reduced, and the conductivity of the conductor wiring and the like is further improved. In addition, since clogging of the screen plate is suppressed, printing defects such as fading and cutting can be suppressed. Further, by using a spherical silver powder having an average particle diameter of 50 nm or less, fine patterns that do not cause printing defects such as blurring, cutting, and blurring can be repeatedly and favorably printed. In addition, since the packing density of the silver powder is increased, the conductivity of the conductor wiring and the like is further improved.
[0014] 上記導電性ペーストにお 、て、鱗片状銀粉末と球状銀粉末との配合割合は、重量 比で 99 : 1〜80: 20であることが好ましい。その場合、球状銀粉末によつて、充填密 度を向上させ、かつ、かすれ、切れ、にじみ等の印刷不良を防止できる。また、鱗片 状銀粉末によつて、銀粉末同士の接触抵抗を低減し、導体配線の導電性を向上させ ることがでさる。 [0014] In the conductive paste, the blending ratio of the flaky silver powder and the spherical silver powder is preferably 99: 1 to 80:20 by weight. In that case, the packing The degree of printing can be improved, and printing defects such as blurring, cutting, and bleeding can be prevented. In addition, the scaly silver powder can reduce the contact resistance between the silver powders and improve the conductivity of the conductor wiring.
[0015] 上記導電性ペーストにおいて、カーボン粉の一次粒子の平均粒径が 50nm以下で あるとともに、 BET比表面積が 50m2/g以上であることが好ましい。その場合、カー ボン粉の凝集作用が防止される。つまり、カーボン粉の高分散性が維持されるため、 ペースト中にカーボン粉を均一に分散させることができる。よって、導体配線にあって は、局所的な体積抵抗の上昇が抑制されるため、その導電性を高くすることができる 。また、高い導電性を有するファインパターンを精度良く形成するための摇変度を適 切に維持することもできる。 [0015] In the conductive paste, it is preferable that the primary particle diameter of the carbon powder is 50 nm or less and the BET specific surface area is 50 m 2 / g or more. In that case, the agglomeration of carbon powder is prevented. That is, since the high dispersibility of the carbon powder is maintained, the carbon powder can be uniformly dispersed in the paste. Therefore, in the conductor wiring, since the local increase in volume resistance is suppressed, the conductivity can be increased. In addition, it is possible to appropriately maintain the degree of change for accurately forming a fine pattern having high conductivity.
[0016] 上記導電性ペーストにおいて、銀粉末とカーボン粉との配合割合が重量比で 99.  [0016] In the conductive paste, the blending ratio of silver powder and carbon powder is 99.99 by weight.
9 : 0. 1〜97 : 3であるとともに、銀粉末とバインダー榭脂との配合割合が重量比で 85 : 15〜97 : 3であることが好ましい。その場合、導電性の向上効果による高い導電性 と、高 ヽ導電性を有するファインパターンを形成するための揺変度とを維持しつつ、 印刷時の作業性を良好に維持することができる。  9: 0.1 to 97: 3, and the blending ratio of silver powder and binder resin is preferably 85:15 to 97: 3 by weight. In this case, it is possible to maintain good workability at the time of printing while maintaining high conductivity due to the effect of improving conductivity and the degree of fluctuation for forming a fine pattern having high conductivity.
[0017] 上記導電性ペーストにお!/、て、ノインダー榭脂は、エポキシ榭脂、ポリエステル榭 脂、ポリイミド榭脂、ポリアミドイミド榭脂、ポリエステルイミド榭脂、フエノール榭脂、ま たはこれらの混合物であることが好ましい。その場合、印刷時の作業性および低い配 線抵抗を良好に維持しつつ、使用目的、使用環境、硬化温度等に適する榭脂をバイ ンダー榭脂として適宜選択することができる。  [0017] In the above-mentioned conductive paste, the noinder resin includes epoxy resin, polyester resin, polyimide resin, polyamideimide resin, polyesterimide resin, phenol resin, or these resins. A mixture is preferred. In that case, a resin suitable for the purpose of use, use environment, curing temperature and the like can be appropriately selected as a binder resin while maintaining good workability and low wiring resistance during printing.
[0018] 上記の課題を解決するため、本発明の第二の態様によれば、上記の導電性ペース トを基板上に印刷して形成された配線を備える配線基板が提供される。その場合、印 刷時の作業性および印刷特性を向上させ、かつ高 、導電性を有するファインパター ンを精度良く形成することができる。  [0018] In order to solve the above problems, according to a second aspect of the present invention, there is provided a wiring board including wiring formed by printing the conductive paste on the board. In this case, it is possible to improve the workability and printing characteristics during printing, and to form a fine pattern having high conductivity with high accuracy.
[0019] 上記配線基板において、配線の幅は 100 m以下であることが好ましい。この場合 、配線基板上の全ての配線の幅を 100 /z m以下にする必要はなぐ一部の配線の幅 力 μ m以下であればよい。 In the above wiring board, the width of the wiring is preferably 100 m or less. In this case, it is not necessary to set the widths of all the wirings on the wiring board to 100 / zm or less.
発明を実施するための最良の形態 [0020] 以下に、本発明の好適な実施形態について説明する。本発明の導電性ペーストは 、銀粉末、カーボン粉、バインダー榭脂および溶剤を主成分として含む。また、本発 明の導電性ペーストは、 E型回転粘度計を使用し、 25°Cでローター No. 7を用いて 測定した回転数 lrpmにおける粘度 (V )と、回転数 lOrpmにおける粘度 (V ) BEST MODE FOR CARRYING OUT THE INVENTION [0020] Hereinafter, preferred embodiments of the present invention will be described. The conductive paste of the present invention contains silver powder, carbon powder, binder resin and solvent as main components. In addition, the conductive paste of the present invention uses an E-type rotational viscometer and measured at 25 ° C using rotor No. 7 at a rotational speed of lrpm (V) and a viscosity at a rotational speed of lOrpm (V )
lrpm lOrpm との比 (V /V )として表される摇変度 (チクソ性)が 3. 4以上 (好ましくは、 4.  lrpm lOrpm ratio (thixotropic) expressed as a ratio (V / V) is 3.4 or more (preferably 4.
lrpm lOrpm  lrpm lOrpm
0以上)である。この場合、銀粉末の配合量を抑える必要がないため、導電性ペース トの体積抵抗率を低くすることができる。また、膜厚を大きくして、導体配線の配線抵 抗を低くすることもできる。従って、高い導電性を有し、低い配線抵抗の導体配線を 形成することができる。  0 or more). In this case, since it is not necessary to suppress the amount of silver powder, the volume resistivity of the conductive paste can be lowered. In addition, the wiring resistance of the conductor wiring can be lowered by increasing the film thickness. Therefore, a conductor wiring having high conductivity and low wiring resistance can be formed.
[0021] また、この導電性ペーストによれば、スクリーン印刷法を用いて基板上にファインパ ターンを形成する際、導電性ペーストが塗布された後に垂れやにじみが発生すること を効果的に抑制できる。従って、レべリング性を良好に維持しつつ、 lOO /z m以下の ファインパターンを精度良く形成することができる。よって、印刷時の作業性が向上す る。  [0021] Further, according to this conductive paste, when a fine pattern is formed on a substrate using a screen printing method, it is possible to effectively suppress the occurrence of sagging or bleeding after the conductive paste is applied. . Therefore, it is possible to accurately form a fine pattern of lOO / zm or less while maintaining the leveling property. Therefore, workability during printing is improved.
[0022] また、本発明の導電性ペーストは、 E型回転粘度計を使用し、 25°Cでローター No.  [0022] The conductive paste of the present invention uses an E-type rotational viscometer, and rotor No. at 25 ° C.
7を用いて測定した回転数 lrpmにおける粘度 (V )が 600Pa' s以下 (好ましくは、  Viscosity (V) at a rotational speed of lrpm measured using 7 is 600 Pa's or less (preferably,
lrpm  lrpm
450Pa' s以下)である。これは、導電性ペーストの粘度が高すぎると、スクリーン印刷 する際にスクリーン版力 導電性ペーストが抜け難くなり、印刷時の作業性が低下す るためである。  450 Pa's or less). This is because when the viscosity of the conductive paste is too high, the screen printing force conductive paste is difficult to come off during screen printing, and the workability during printing is reduced.
[0023] 導電性フイラ一として、銀粉末、白金粉末、金粉末、銅粉末、ニッケル粉末およびパ ラジウム粉末等の金属粉末や、カーボンブラック、グラフアイト粉等のカーボン粉が使 用される。本発明では、導電性やコスト等の観点から、主成分としての銀粉末にカー ボン粉を少量加えた導電性フィラーが使用される。  [0023] As the conductive filler, metal powder such as silver powder, platinum powder, gold powder, copper powder, nickel powder and palladium powder, and carbon powder such as carbon black and graphite powder are used. In the present invention, a conductive filler obtained by adding a small amount of carbon powder to silver powder as a main component is used from the viewpoint of conductivity and cost.
[0024] 本発明の銀粉末として、鱗片状銀粉末と球状銀粉末との 2種類が使用される。この うち、鱗片状銀粉末として、互いに直交する 3方向(長さ方向、幅方向、厚み方向)の うち 1方向(厚み方向)の大きさが、他の 2方向(長さ方向、幅方向)の大きさの最大値 の約 1Z2以下、特に、 1Z50〜1Z5である平板状 (鱗片状)の銀粉末が使用され、 0. 5 m〜50 mの平均粒径を有する銀粉末を用いることができる。平均粒径が 0. 5 μ m未満である場合、鱗片状銀粉末によつて、銀粉末同士の接触抵抗を小さくでき ず、その結果、導体配線の導電性が低下する。また、平均粒子径が 50 mを超える 場合、スクリーン印刷時に、鱗片状銀粉末力 Sスクリーン版のメッシュに目詰まりし、力 すれや切れ等の印刷不良が生じる虞がある。平均粒子径は、 50%粒径 (D )を指し [0024] As the silver powder of the present invention, two types of scale-like silver powder and spherical silver powder are used. Of these, as scale-like silver powder, the size of one direction (thickness direction) out of three directions (length direction, width direction, thickness direction) orthogonal to each other is the other two directions (length direction, width direction) The maximum value of the particle size is about 1Z2 or less, in particular, a flat (scale-like) silver powder of 1Z50 to 1Z5 is used, and a silver powder having an average particle diameter of 0.5 m to 50 m should be used. it can. Average particle size is 0. When it is less than 5 μm, the contact resistance between the silver powders cannot be reduced by the scaly silver powder, and as a result, the conductivity of the conductor wiring is lowered. Also, if the average particle diameter exceeds 50 m, the screen-like silver powder force S screen plate meshes during screen printing, which may cause printing defects such as wrinkling or cutting. Average particle size refers to 50% particle size (D)
50 50
、レーザードップラー法を応用した粒度分布測定装置(日機装 (株)製、ナノトラック( 登録商標)粒度分布測定装置 UPA—EX150)等を用いて測定することができる。 The particle size distribution can be measured using a particle size distribution measuring apparatus (Nikkiso Co., Ltd., Nanotrac (registered trademark) particle size distribution measuring apparatus UPA-EX150) applying the laser Doppler method.
[0025] また、鱗片状銀粉末の平均粒径は、接触抵抗を小さくして導体配線の導電性をさら に向上させること、並びに、スクリーン版への目詰まりによるかすれや切れ等の印刷 不良を防止するとの観点から、 0. 5 m〜20 mであることが特に好ましい。鱗片状 銀粉末は、液相還元法、気相成長法等、従来より知られた方法を用いて製造される。  [0025] In addition, the average particle size of the scaly silver powder reduces the contact resistance to further improve the conductivity of the conductor wiring, and causes printing defects such as blurring and cutting due to clogging of the screen plate. From the viewpoint of prevention, it is particularly preferably 0.5 to 20 m. The flaky silver powder is produced by a conventionally known method such as a liquid phase reduction method or a vapor phase growth method.
[0026] 球状銀粉末として、短径と長径との比が 1Z1〜: LZ2である真球状又は楕円球状を 有し、かつ上記の粒度分布測定装置を用いて測定した平均粒径が 1 μ m以下である 銀粉末が用いられる。平均粒径が 1 μ mを超える場合、球状銀粉末によつて、銀粉末 の充填密度を高くできず、その結果、導体配線の導電性が低下する。  [0026] As the spherical silver powder, the ratio of the minor axis to the major axis is 1Z1 to: LZ2, a true sphere or an oval sphere, and the average particle diameter measured using the particle size distribution measuring apparatus is 1 μm. The following silver powder is used. When the average particle diameter exceeds 1 μm, the packing density of the silver powder cannot be increased by the spherical silver powder, and as a result, the conductivity of the conductor wiring is lowered.
[0027] 球状銀粉末の平均粒径は、かすれ、切れ、にじみ等の印刷不良を生じることなぐ ファインパターンを繰り返し印刷することができ、また、銀粉末の充填密度を高くして 導体配線の導電性をさらに向上させるとの観点から、 50nm以下であることが特に好 ましぐ 20nm以下であることがさらに好ましい。  [0027] The average particle size of the spherical silver powder allows fine patterns to be repeatedly printed without causing printing defects such as blurring, cutting, and blurring. Also, the conductive density of the conductor wiring can be increased by increasing the packing density of the silver powder. From the viewpoint of further improving the properties, the thickness is particularly preferably 50 nm or less, and further preferably 20 nm or less.
[0028] また、球状銀粉末の平均粒径の下限は、特に限定されない。しかし、理論上は、金 属としての導電性を有する最小粒径の粉末を使用することができ、実用上は、平均 粒径が lnm以上である銀粉末を使用することが好ましい。球状銀粉末は、液相還元 法、気相成長法等、従来より知られた方法を用いて製造される。粒径の揃った球状 の銀粉末を形成するには、水等の分散媒体中で銀イオンを還元して球状の銀を析 出させる、所謂、液層還元法を用いることが特に好ましい。  [0028] Further, the lower limit of the average particle diameter of the spherical silver powder is not particularly limited. However, theoretically, a powder having a minimum particle size having conductivity as a metal can be used. In practice, it is preferable to use a silver powder having an average particle size of 1 nm or more. The spherical silver powder is produced by a conventionally known method such as a liquid phase reduction method or a vapor phase growth method. In order to form a spherical silver powder having a uniform particle diameter, it is particularly preferable to use a so-called liquid layer reduction method in which silver ions are reduced in a dispersion medium such as water to deposit spherical silver.
[0029] 具体的には、水、又は水及び低級アルコールの混合物に水溶性の銀ィ匕合物を溶 解した後、これに、還元剤及び表面処理剤を溶解した水溶液を加え、 30°C以下で攪 拌することにより、球状銀粉末を作製することができる。  [0029] Specifically, after dissolving a water-soluble silver compound in water or a mixture of water and lower alcohol, an aqueous solution in which a reducing agent and a surface treatment agent are dissolved is added thereto, and 30 ° Spherical silver powder can be produced by stirring at C or lower.
[0030] まず、等量の純水とエタノールとを混合した液に硝酸銀を溶解する。次に、アンモ- ァ水をカ卩えて pHを 11. 3に調整し、その溶液を透明にする。次に、等量の純水とエタ ノールとを混合した液を別に準備する。そして、その別の混合液中に、還元剤として L —ァスコルビン酸を溶解し、分散剤としてポリアクリル酸を溶解する。分散剤は、還元 反応による銀の微粒子の析出反応を緩やかに進行させることで、微粒子が凝集する ことを防止するために用いられる。続いて、還元剤と分散剤とを溶解した溶液を 25°C に保ちながら攪拌し、先に調整された硝酸銀溶液を溶液中に少しずつ滴下する。こ のようにして、溶液中に、銀の微粒子を析出させる。その結果、平均粒径が 20nmの 球状の銀粉末が得られる。 [0030] First, silver nitrate is dissolved in a liquid in which an equal amount of pure water and ethanol are mixed. Next, Ammo Add water and adjust the pH to 11.3 to make the solution clear. Next, prepare another liquid that is a mixture of equal volumes of pure water and ethanol. In the other mixed solution, L-ascorbic acid is dissolved as a reducing agent, and polyacrylic acid is dissolved as a dispersing agent. The dispersant is used to prevent the fine particles from aggregating by slowly advancing the precipitation reaction of the silver fine particles by the reduction reaction. Subsequently, the solution in which the reducing agent and the dispersing agent are dissolved is stirred while being kept at 25 ° C., and the silver nitrate solution prepared previously is added dropwise to the solution little by little. In this way, silver fine particles are precipitated in the solution. As a result, spherical silver powder having an average particle diameter of 20 nm is obtained.
[0031] また、鱗片状銀粉末と球状銀粉末との配合割合は、球状銀粉末によつて充填密度 を向上させ、かつ、かすれ、切れ、にじみ等の印刷不良を防止すること、並びに、鱗 片状銀粉末によつて接触抵抗を低くし、かつ導体配線の導電性を一層向上させると の観点から、重量比で 99 : 1〜80: 20であることが好ましい。  [0031] Further, the blending ratio of the flaky silver powder and the spherical silver powder improves the packing density by the spherical silver powder and prevents printing defects such as blurring, cutting and blurring, and From the viewpoint of lowering the contact resistance with the flake silver powder and further improving the conductivity of the conductor wiring, the weight ratio is preferably 99: 1 to 80:20.
[0032] また、カーボン粉の一次粒子の平均粒径は、カーボン粉の凝集を防止し、高分散 性を維持するとの観点から、 50nm以下であり、 ΙΟηπ!〜 40nmであることが好ましい  [0032] The average particle size of the primary particles of the carbon powder is 50 nm or less from the viewpoint of preventing the aggregation of the carbon powder and maintaining high dispersibility. ~ 40 nm is preferred
[0033] カーボン粉の BET比表面積は、導電性ペースト中にカーボン粉を均一に分散させ ることで、体積抵抗の局所的な上昇を抑制すること、並びに、高い導電性を有するフ ァインパターンを精度良く形成するための摇変度を適切に維持するとの観点から、 5 0m2Zg以上である。また、 BET比表面積の上限は、特に限定されないが、 1300m2 /g以下であることが好ましい。 BET比表面積の上限値力この値を超えると、カーボ ン粉の平均粒径が小さくなりすぎるため、凝集させずに取り扱うことが困難になる。 [0033] The BET specific surface area of the carbon powder suppresses a local increase in volume resistance by uniformly dispersing the carbon powder in the conductive paste, and also has a fine pattern having high conductivity. From the standpoint of maintaining an appropriate degree of variation for accurately forming the film, it is 50 m 2 Zg or more. The upper limit of the BET specific surface area is not particularly limited, but is preferably 1300 m 2 / g or less. Upper limit value of BET specific surface area If this value is exceeded, the average particle size of the carbon powder becomes too small, making it difficult to handle without agglomeration.
[0034] また、導電性の向上効果による高い導電性と、高い導電性を有するファインパター ンを精度良く形成するための揺変度とを維持するとの観点から、銀粉末 (即ち、鱗片 状銀粉末と球状銀粉末)とカーボン粉との配合割合は、重量比で 99. 9 : 0. 1〜97: 3であることが好ましい。カーボン粉の配合割合が 0. 1重量%よりも低い場合、カーボ ン粉による導電性の向上効果が発揮されない。一方、重量比が 3重量%よりも高い場 合、導電性の悪ィ匕を招くことがある。  [0034] In addition, from the viewpoint of maintaining high conductivity due to the effect of improving conductivity and the degree of fluctuation for accurately forming a fine pattern having high conductivity, silver powder (that is, scaly silver The blending ratio of the powder, the spherical silver powder) and the carbon powder is preferably 99.9: 0.1 to 97: 3 by weight. When the blending ratio of the carbon powder is lower than 0.1% by weight, the effect of improving the conductivity by the carbon powder is not exhibited. On the other hand, if the weight ratio is higher than 3% by weight, it may lead to poor conductivity.
[0035] バインダー榭脂として、有機絶縁性榭脂が使用される。その有機絶縁性榭脂として 、熱処理後にも導電膜中に残存させることを考慮し、耐熱性榭脂を用いることが好ま しい。耐熱性榭脂として、例えば、フッ素榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、ポ リエステルイミド榭脂、ポリエステル榭脂、ポリエーテルスルホン榭脂、ポリエーテノレケ トン榭脂、ポリエーテルエーテルケトン樹脂、ポリべンズイミダゾール榭脂、ポリべンズ ォキサゾール樹脂、ポリフエ-レンスルフイド樹脂、ビスマレイミド榭脂、エポキシ榭脂 [0035] An organic insulating resin is used as the binder resin. As its organic insulating resin In view of remaining in the conductive film even after the heat treatment, it is preferable to use a heat-resistant resin. Examples of heat-resistant resins include fluorine resin, polyimide resin, polyamideimide resin, polyesterimide resin, polyester resin, polyethersulfone resin, polyetherolene resin, polyetheretherketone resin, and polyether resin. Benzimidazole resin, polybenzoxazole resin, polyphenylene sulfide resin, bismaleimide resin, epoxy resin
、フエノール榭脂、フエノキシ榭脂等が挙げられる。これら耐熱性榭脂は、それぞれ単 独で使用してもよぐ又は 2種以上を組み合わせて使用してもよい。 , Phenol resin, phenoxy resin and the like. These heat-resistant coagulants may be used alone or in combination of two or more.
[0036] また、印刷時の作業性を良好に維持し、かつ配線抵抗を低く維持しつつ、使用目 的、使用環境、硬化温度等に適した耐熱性榭脂を、バインダー榭脂として適宜選択 することができる。このような耐熱性榭脂として、例えば、エポキシ榭脂、ポリエステノレ 榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、ポリエステルイミド榭脂、フエノール榭脂、 またはこれらの混合物等が挙げられる。 [0036] Further, a heat-resistant resin suitable for the purpose of use, use environment, curing temperature, etc. is appropriately selected as the binder resin while maintaining good workability during printing and maintaining low wiring resistance. can do. Examples of such heat-resistant resins include epoxy resins, polyester resin resins, polyimide resins, polyamide imide resins, polyester imide resins, phenol resins, and mixtures thereof.
[0037] また、エポキシ榭脂として、ポリフエノール型エポキシ榭脂(ビスフエノール A型、 F型 、 AD型等)、フエノールおよびタレゾール型エポキシ榭脂(ノボラック型等)、ポリオ一 ルのグルシジルエーテル型エポキシ榭脂、ポリアッシドのグリシジルエステル型ェポ キシ榭脂、ポリアミンのグリシジルァミン型エポキシ榭脂、脂環式エポキシ榭脂および 複素環式エポキシ榭脂等の、種々のタイプの熱硬化性エポキシ榭脂等が挙げられ、 特に、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂が好ましい [0037] In addition, as epoxy resins, polyphenol type epoxy resins (bisphenol A type, F type, AD type, etc.), phenol and talesol type epoxy resins (novolak type, etc.), polyol glycidyl ethers. Various types of thermosetting epoxies such as epoxy resin, polyacid glycidyl ester epoxy resin, polyamine glycidylamine epoxy resin, alicyclic epoxy resin and heterocyclic epoxy resin In particular, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable.
[0038] また、導電性の向上効果による高い導電性を適切に維持しつつ、印刷時の作業性 を良好に維持するとの観点から、銀粉末 (即ち、鱗片状銀粉末と球状銀粉末)とバイ ンダー榭脂との配合割合は、重量比で 85 : 15〜97: 3であることが好ましい。銀粉末 の配合割合が 85重量%よりも低い場合、銀粉末による導電性の向上効果が発揮さ れない。一方、銀粉末の配合割合が 97重量%よりも高い場合、銀粉末の配合量に 比べてノ インダー榭脂の配合量が少なすぎるため、導電性ペーストをスクリーン印刷 する際の作業性が低下する。 [0038] Further, from the viewpoint of maintaining good workability during printing while maintaining high conductivity due to the effect of improving conductivity, silver powder (that is, scaly silver powder and spherical silver powder) The blending ratio with the binder resin is preferably 85:15 to 97: 3 by weight. When the blending ratio of silver powder is lower than 85% by weight, the effect of improving conductivity by silver powder cannot be exhibited. On the other hand, when the blending ratio of silver powder is higher than 97% by weight, the blending amount of Norder resin is too small compared to the blending amount of silver powder, so the workability when screen-printing the conductive paste is reduced. .
[0039] また、本発明の導電性ペーストは、上述した成分以外にも、バインダー榭脂を硬化 させるための硬化剤、溶剤、その他添加剤等を含有することができる。エポキシ榭脂 用硬化剤として、例えば、アミン系硬化剤、ポリアミノアミド系硬化剤、酸および酸無 水物系硬化剤、塩基性活性水素化化合物、第 3アミン類、イミダゾール類等、従来公 知の種々の硬化剤の中から、エポキシ榭脂に適したものを適宜選択することができる 。また、ポリエステル用硬ィ匕剤として、例えば、へキサメチレンジイソシァネート系硬化 剤、ポリイソシァネート系硬化剤等のイソシァネートイ匕合物等、従来公知の種々の硬 ィ匕剤の中から、ポリエステルに適したものを適宜選択することができる。 [0039] In addition to the components described above, the conductive paste of the present invention may contain a curing agent, a solvent, other additives, and the like for curing the binder resin. Epoxy resin For example, amine curing agents, polyaminoamide curing agents, acid and acid anhydrides curing agents, basic active hydrogenated compounds, tertiary amines, imidazoles, etc. From the curing agents, those suitable for epoxy resin can be appropriately selected. Examples of the hardener for polyester include various conventionally known hardeners such as isocyanate compounds such as hexamethylene diisocyanate-based curing agents and polyisocyanate-based curing agents. Those suitable for polyester can be appropriately selected.
[0040] 導電性ペーストは、耐熱温度が低!、基材やチップ等と組み合わせて用いることを考 慮すれば、 200°C以下の温度域で硬化させることが好ましい。この理由から、 200°C 以下の温度でバインダー榭脂を硬化させることのできる硬化剤を使用することが好ま しい。この場合、硬化剤は、理論上は、バインダー榭脂と当量分だけ配合すればよい [0040] The conductive paste has a low heat-resistant temperature, and is preferably cured in a temperature range of 200 ° C or lower in consideration of use in combination with a base material or a chip. For this reason, it is preferable to use a curing agent that can cure the binder resin at a temperature of 200 ° C or lower. In this case, the curing agent is theoretically only required to be mixed with the binder resin.
[0041] 溶剤として、バインダー榭脂を溶かすことができ、導電性ペーストが塗布される基材 を腐食させないものが用いられる。また、溶剤として、揮発性の低いものを用いること により、耐乾燥性が向上し、印刷時の作業性が向上する。従って、これらの特性を維 持する観点から、ブチルカルビトール、ブチルカルビトールアセテート、ターピネオ一 ル、フタル酸ジェチル等の有機溶媒が好適である。また、スクリーン印刷法を用いて ファインパターンを形成する際、例えば、ブチルカルビトールアセテート、ターピネオ ール等のように、 200°C以上の沸点を有し、揮発し難い有機溶媒を用いることが好ま しい。これら高沸点の有機溶媒を使用することで、スクリーン印刷法を用いてファイン ノ ターンを形成するときに、導電性ペーストが乾燥し難くなり、スクリーン版に目詰まり が発生することを抑止できる。そのため、連続印刷を行う場合であっても、ファインパ ターンを精度良く形成することができる。 [0041] As the solvent, a solvent that can dissolve the binder resin and does not corrode the substrate to which the conductive paste is applied is used. In addition, by using a solvent having low volatility, drying resistance is improved and workability during printing is improved. Therefore, from the viewpoint of maintaining these characteristics, organic solvents such as butyl carbitol, butyl carbitol acetate, terpineol, and jetyl phthalate are preferable. In addition, when forming a fine pattern using a screen printing method, it is preferable to use an organic solvent that has a boiling point of 200 ° C. or higher and hardly volatilizes, such as butyl carbitol acetate and terpineol. That's right. By using these high-boiling organic solvents, it is possible to prevent clogging of the screen plate from becoming difficult to dry the conductive paste when the fine pattern is formed using the screen printing method. Therefore, a fine pattern can be formed with high accuracy even when continuous printing is performed.
[0042] また、導電性ペーストのレオ口ジーを調整するため、従来より用いられるレべリング 剤、可塑剤等の各種添加剤を使用することもできる。例えば、スクリーン印刷法により 連続印刷を行う場合、可塑剤を添加することにより、導電性ペーストの耐乾燥性が向 上する。可塑剤として、例えば、フタル酸誘導体、イソフタル酸誘導体、テトラヒドロフ タル酸誘導体、アジピン酸誘導体、マレイン酸誘導体、フマル酸誘導体、トリメリット誘 導体、ピロメリット誘導体、ステアリン酸誘導体、ォレイン酸誘導体、ィタコン酸誘導体 、リシノール誘導体、水素添加ヒマシ油およびその誘導体が好適に使用される。 [0042] In addition, various additives such as leveling agents and plasticizers that have been used in the past can be used in order to adjust the rheo guage of the conductive paste. For example, when continuous printing is performed by the screen printing method, adding a plasticizer improves the drying resistance of the conductive paste. Examples of plasticizers include phthalic acid derivatives, isophthalic acid derivatives, tetrahydrophthalic acid derivatives, adipic acid derivatives, maleic acid derivatives, fumaric acid derivatives, trimellitic derivatives, pyromellitic derivatives, stearic acid derivatives, oleic acid derivatives, itacones. Acid derivatives , Ricinol derivatives, hydrogenated castor oil and derivatives thereof are preferably used.
[0043] 本発明の導電性ペーストは、基材 (ガラス基材等)上に、高 ヽ導電性を有する配線 や電極等の電気回路を形成する場合に好適に使用される。具体的には、従来より知 られた印刷法 (特に、好ましくはスクリーン印刷)を用いて、本発明の導電性ペースト を基材上に所定のパターユングで塗布し、塗布された導電性ペーストを高温で焼成 することにより、所望の配線や電極等の電気回路を備える配線基板が得られる。  [0043] The conductive paste of the present invention is suitably used when an electric circuit such as wiring or electrode having high conductivity is formed on a base material (glass base material or the like). Specifically, the conductive paste of the present invention is applied onto a substrate in a predetermined pattern using a conventionally known printing method (particularly preferably screen printing), and the applied conductive paste is applied. By baking at a high temperature, a wiring board provided with electrical circuits such as desired wirings and electrodes can be obtained.
[0044] また、本発明の導電性ペーストによれば、印刷時の作業性および印刷特性を向上 させ、かつ高い導電性を有するファインパターンを精度良く形成することもできる。つ まり、本発明の導電性ペーストは、複数の配線を基材上に備える配線基板を製造す る場合、具体的には、導電性が高ぐ配線の幅が 100 m以下のファインパターンを 基材上に形成する場合に好適に使用される。 [0044] Further, according to the conductive paste of the present invention, it is possible to improve workability and printing characteristics during printing and to form a fine pattern having high conductivity with high accuracy. In other words, the conductive paste of the present invention is based on a fine pattern with a high conductivity and a width of 100 m or less when manufacturing a wiring board having a plurality of wirings on a substrate. It is suitably used when forming on a material.
実施例  Example
[0045] 以下に、本発明を実施例、比較例に基づいて説明する。本発明は、これらの実施 例に限定されず、これらの実施例を本発明の趣旨に基づいて変形、変更することが でき、それらは、本発明の範囲からは除外されない。  [0045] Hereinafter, the present invention will be described based on examples and comparative examples. The present invention is not limited to these examples, and these examples can be modified and changed based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
[0046] (実施例 1)  [Example 1]
表 1に示す量のブチルカルビトールアセテートに、表 1に示す種類および量の鱗片 状銀粉末 (福田金属箔粉工業 (株)製、商品名 AgC— L)と、球状銀粉末と、ポリエス テル (ュ-チカ (株)製、商品名 UE— 3500、分子量 30000)と、ポリエステル用硬化 剤 (旭化成ケミカルズ (株)製、商品名デユラネート MF— K60X)と、カーボン粉 (ライ オン (株)製、商品名カーボン ECP600JD)とを混合し、三本のロールを用いて混練 して、導電性ペーストを調整した。調整された導電性ペーストについて、外観上の異 常は観察されな力つた。  Into the amount of butyl carbitol acetate shown in Table 1, flaky silver powder of the type and amount shown in Table 1 (trade name: AgC-L, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.), spherical silver powder, and polyester (Product name: UE-3500, molecular weight 30000, manufactured by UCHIKA CORPORATION), curing agent for polyester (product name: deuranate MF—K60X, manufactured by Asahi Kasei Chemicals Corporation) and carbon powder (product of Lion Co., Ltd. The product name carbon ECP600JD) was mixed and kneaded using three rolls to prepare a conductive paste. No abnormalities in the appearance of the adjusted conductive paste were observed.
[0047] (揺変度評価)  [0047] (Evaluation of fluctuation)
調整された導電性ペーストの回転数 lrpmにおける粘度 (V )と回転数 lOrpmに  Viscosity (V) at rotation speed lrpm and rotation speed lOrpm of the adjusted conductive paste
lrpm  lrpm
おける粘度 (V )とを測定し、粘度比 (V /V )として表される摇変度 (チタソ  Viscosity (V) is measured and the degree of change expressed as the viscosity ratio (V / V) (Titaso
1 Orpm 1 rpm 1 Orpm  1 Orpm 1 rpm 1 Orpm
性)を求めた。粘度は、 E型回転粘度計 (東機産業 (株)製、 TV— 20型粘度計 コン プレートタイプ (TVE— 20H) )を使用し、ローター No. 7を用いて常温(25°C)の下 で測定した。 Sex). Viscosity is measured using an E-type rotational viscometer (Toki Sangyo Co., Ltd., TV-20 type viscometer (TVE-20H)) at room temperature (25 ° C) using rotor No. 7. under Measured with
[0048] (体積抵抗率評価)  [0048] (Volume resistivity evaluation)
ドクターブレードを用いて、調整された導電性ペーストを、ガラス基材 (旭硝子 (株) 製、 PD200)上に幅 50mm X長さ 80mmで塗布して、膜体を作製した。次に、その 膜体を乾燥して、同膜体中の溶剤を揮発させた後、恒温槽に入れて、 200°Cで 30分 間焼成した。そして、得られた導電膜の体積抵抗率を、抵抗率測定計 (三菱化学 (株 )製、商品名ロレスタ)を用いて測定した。導電膜の評価では、体積抵抗率について 5 . 0 Χ 10"5 Ω 'cmを基準値とし、その基準値以下である場合には導電性が良好であ ると判定し、基準値を上回る場合には導電性不良であると判定した。 Using a doctor blade, the adjusted conductive paste was applied on a glass substrate (Asahi Glass Co., Ltd., PD200) with a width of 50 mm and a length of 80 mm to produce a film body. Next, the film body was dried and the solvent in the film body was volatilized. Then, the film body was put in a thermostatic bath and baked at 200 ° C. for 30 minutes. And the volume resistivity of the obtained electrically conductive film was measured using the resistivity meter (Mitsubishi Chemical Corporation make, brand name Loresta). In the evaluation of the conductive film, the volume resistivity is 5.0 Χ 10 " 5 Ω'cm as the standard value. If the volume resistivity is below the standard value, it is judged that the conductivity is good, and the volume resistivity exceeds the standard value. Was determined to have poor conductivity.
[0049] (印刷特性評価)  [0049] (Printing characteristic evaluation)
スクリーン印刷機 (ニューロング (株)製、 LS— 150TVA)を使用して、調整された導 電性ペーストをガラス基材 (旭硝子 (株)製、 PD200)上に塗布し、配線幅 100 m、 スペース幅 100 m、長さ 25mmの配線パターンを印刷した。この場合、 SUS400メ ッシュ (径 23 m、 目開き 41 μ m)のスクリーン版 (東京プロセスサービス (株)製)を 使用した。  Using a screen printer (Neurong Co., Ltd., LS-150TVA), apply the adjusted conductive paste on the glass substrate (Asahi Glass Co., Ltd., PD200), and the wiring width is 100 m. A wiring pattern with a space width of 100 m and a length of 25 mm was printed. In this case, a screen version (manufactured by Tokyo Process Service Co., Ltd.) of SUS400 mesh (diameter 23 m, mesh opening 41 μm) was used.
[0050] 次に、導電性ペーストの印刷特性を評価した。具体的には、スクリーン印刷後の配 線について、切れ、かすれ、垂れ、にじみ等の欠陥の有無を目視により観察した。こ の場合、〇:欠陥が見られず、印刷特性が良好である、 X:欠陥が見られ、印刷特性 が不良である、との 2つの基準で、導電性ペーストの印刷特性を評価した。  [0050] Next, the printing characteristics of the conductive paste were evaluated. Specifically, the wiring after screen printing was visually observed for the presence of defects such as cuts, fading, dripping and blurring. In this case, the printing characteristics of the conductive paste were evaluated based on the following two criteria: ○: no defects were found and printing characteristics were good, X: defects were found, and printing characteristics were poor.
[0051] (配線抵抗評価)  [0051] (Wiring resistance evaluation)
四端子法を用いて、得られた導体配線の配線抵抗を測定した。この場合、配線抵 抗について 3. Ο Ωを基準値とし、この基準値以下である場合には配線抵抗が良好で あると判定し、基準値を上回る場合には配線抵抗が不良であると判定した。これらの 結果を表 1に示す。  The wiring resistance of the obtained conductor wiring was measured using a four-terminal method. In this case, with respect to the wiring resistance, 3. ΟΩ is taken as the reference value. did. These results are shown in Table 1.
[0052] (実施例 2)  [0052] (Example 2)
表 1に示す量のブチルカルビトールアセテートに、表 1に示す種類および量の鱗片 状銀粉末 (福田金属箔粉工業 (株)製、商品名 AgC— 239)と、球状銀粉末と、ビスフ ェノール A型のエポキシ榭脂(ジャパンエポキシレジン (株)製、商品名ェピコート 125 6、分子量 53000、およびジャパンエポキシレジン (株)製、商品名ェピコート 1010、 分子量 5500)と、エポキシ榭脂用硬化剤 (エアープロダクツジャパン (株)製、商品名 サンマイド LH210)と、カーボン粉 (ライオン (株)製、商品名ケッチェンブラック EC30 0J)とを混合し、三本のロールを用いて混練して、導電性ペーストを調整した。調整さ れた導電性ペーストについて、外観上の異常は観察されな力つた。 To the amount of butyl carbitol acetate shown in Table 1, the type and amount of flaky silver powder (trade name: AgC-239, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.), spherical silver powder, and bisphenol Type A epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name Epicoat 125) 6, molecular weight 53000, and Japan Epoxy Resin Co., Ltd., trade name Epicoat 1010, molecular weight 5500), epoxy resin hardener (trade name Sunmide LH210, manufactured by Air Products Japan), carbon powder (Lion Co., Ltd., trade name Ketjen Black EC30 0J) was mixed and kneaded using three rolls to prepare a conductive paste. No abnormalities in the appearance of the prepared conductive paste were observed.
[0053] そして、上述の実施例 1と同じ方法を用いて、導電膜および導体配線を形成し、揺 変度、体積抵抗率、印刷特性および配線抵抗をそれぞれ評価した。それらの結果を 表 1に示す。  [0053] Then, using the same method as in Example 1 above, a conductive film and a conductor wiring were formed, and the degree of variation, volume resistivity, printing characteristics, and wiring resistance were evaluated. The results are shown in Table 1.
[0054] (実施例 3)  [Example 3]
表 1に示す量のブチルカルビトールアセテートに、表 1に示す種類および量の鱗片 状銀粉末 (福田金属箔粉工業 (株)製、商品名 AgC— 239)と、球状銀粉末と、ビスフ ェノール A型のエポキシ榭脂(ジャパンエポキシレジン (株)製、商品名ェピコート 125 6、分子量 53000、およびジャパンエポキシレジン (株)製、商品名ェピコート 1010、 分子量 5500)と、エポキシ榭脂用硬化剤 (エアープロダクツジャパン (株)製、商品名 サンマイド LH210)と、カーボン粉 (ライオン (株)製、商品名カーボン ECP600JD)と を混合し、三本のロールを用いて混練して、導電性ペーストを調整した。調整された 導電性ペーストについて、外観上の異常は観察されな力つた。  To the amount of butyl carbitol acetate shown in Table 1, the type and amount of flaky silver powder (trade name: AgC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd.), spherical silver powder, and bisphenol Type A epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name Epicoat 125 6, molecular weight 53000, and Japan Epoxy Resin Co., Ltd., trade name Epicoat 1010, molecular weight 5500) and epoxy resin hardener ( Air Products Japan Co., Ltd., trade name Sunmide LH210) and carbon powder (Lion Corporation, trade name Carbon ECP600JD) are mixed and kneaded using three rolls to adjust the conductive paste. did. No abnormalities in appearance were observed for the adjusted conductive paste.
[0055] そして、上述の実施例 1と同じ方法を用いて、導電膜および導体配線を形成し、揺 変度、体積抵抗率、印刷特性および配線抵抗をそれぞれ評価した。それらの結果を 表 1に示す。  [0055] Then, using the same method as in Example 1 above, a conductive film and conductor wiring were formed, and the degree of variation, volume resistivity, printing characteristics, and wiring resistance were evaluated. The results are shown in Table 1.
[0056] (比較例 1)  [0056] (Comparative Example 1)
カーボン粉 (ライオン (株)製、商品名カーボン ECP600JD)を配合しな 、こと以外 は、上述の実施例 1と同じ方法を用いて、導電性ペーストを調整し、導電膜および導 体配線を形成した。そして、揺変度、体積抵抗率、印刷特性および配線抵抗をそれ ぞれ評価した。それらの結果を表 1に示す。調整された導電性ペーストについて、外 観上の異常は観察されな力つた。  Using the same method as in Example 1 above, except that carbon powder (product name: Carbon ECP600JD, manufactured by Lion Corporation) is not blended, the conductive paste is adjusted to form the conductive film and conductor wiring. did. The variability, volume resistivity, printing characteristics, and wiring resistance were each evaluated. The results are shown in Table 1. With regard to the prepared conductive paste, no abnormalities in appearance were observed.
[0057] (比較例 2)  [0057] (Comparative Example 2)
表 1に示す量のブチルカルビトールアセテートに、表 1に示す種類および量の鱗片 状銀粉末 (福田金属箔粉工業 (株)製、商品名 AgC— L)と、球状銀粉末と、ビスフ ノール A型のエポキシ榭脂(ジャパンエポキシレジン (株)製、商品名ェピコート 1256 、分子量 53000、およびジャパンエポキシレジン (株)製、商品名ェピコート 1010、 分子量 5500)と、エポキシ榭脂用硬化剤 (エアープロダクツジャパン (株)製、商品名 サンマイド LH210)と、カーボン粉 (ライオン (株)製、商品名カーボン ECP600JD)と を混合し、三本のロールを用いて混練して、導電性ペーストを調整した。調整された 導電性ペーストについて、外観上の異常は観察されな力つた。 The amount and scale of butyl carbitol acetate shown in Table 1 Silver powder (made by Fukuda Metal Foil Powder Co., Ltd., trade name AgC-L), spherical silver powder, and bisphenol A type epoxy resin (made by Japan Epoxy Resin Co., Ltd., trade name Epicoat 1256, molecular weight 53000 and Japan Epoxy Resin Co., Ltd., trade name Epicoat 1010, molecular weight 5500), epoxy resin hardener (trade name Sunmide LH210, manufactured by Air Products Japan Ltd.), carbon powder (Lion Corporation) Manufactured and trade name carbon ECP600JD) and kneaded using three rolls to prepare a conductive paste. No abnormalities in appearance were observed for the adjusted conductive paste.
[0058] そして、上述の実施例 1と同じ方法を用いて、導電膜および導体配線を形成し、揺 変度、体積抵抗率、印刷特性および配線抵抗をそれぞれ評価した。それらの結果を 表 1に示す。  [0058] Then, using the same method as in Example 1 above, conductive films and conductor wirings were formed, and variability, volume resistivity, printing characteristics, and wiring resistance were evaluated. The results are shown in Table 1.
[0059] [表 1] [0059] [Table 1]
ϊ。。οοε: ϊ. . οοε:
¾瞓。ε9 00:  ¾ 瞓. ε9 00:
Figure imgf000015_0001
表 1の結果から、実施例 1〜3、比較例 1〜2のいずれの場合も、体積抵抗率が基 準値の 5.0Χ10_5Ω 'cm以下であった。しかしながら、実施例 1〜3の場合、回転数 lrpmにおける粘度と回転数 lOrpmにおける粘度との比として表される揺変度が 3. 4以上であり、かつ回転数 lrpmにおける粘度が 600Pa's以下であり、し力も、配線 抵抗が基準値 (3. Ο Ω )以下であり、良好な配線抵抗を示した。一方、比較例 1の場 合、配線抵抗が基準値 (3. 0 Ω )を上回り、良好な配線抵抗が得られな力つた。また、 比較例 2の場合、配線に切れが生じていたため、配線抵抗を測定できな力 た。即ち 、比較例 2の場合、配線抵抗は、実施例 1〜3、比較例 1の場合よりも大き力つた。以 上の結果より、実施例 1〜3の導電性ペーストを使用すれば、高い導電性を有し、導 体配線の配線抵抗を低くできることが確認された。
Figure imgf000015_0001
From the results of Table 1, Examples 1 to 3, in any case of Comparative Examples 1 and 2, the volume resistivity is less than or equal 5.0Χ10 _5 Ω 'cm of standard values. However, in Examples 1 to 3, the degree of change expressed as the ratio of the viscosity at the rotation speed lrpm to the viscosity at the rotation speed lOrpm is 3.4 or more, and the viscosity at the rotation speed lrpm is 600 Pa's or less. , Force, wiring The resistance was below the reference value (3 Ο Ω), indicating good wiring resistance. On the other hand, in the case of Comparative Example 1, the wiring resistance exceeded the reference value (3.0 Ω), and it was strong that good wiring resistance could not be obtained. In Comparative Example 2, since the wiring was cut, it was impossible to measure the wiring resistance. That is, in the case of Comparative Example 2, the wiring resistance was greater than in the case of Examples 1 to 3 and Comparative Example 1. From the above results, it was confirmed that when the conductive pastes of Examples 1 to 3 were used, the conductive paste had high conductivity and the wiring resistance of the conductor wiring could be lowered.
[0061] また、実施例 1〜3の場合、導体配線を容易に形成することができた。詳しくは、最 適なレべリング性を維持しつつ、 100 m幅のファインパターンを精度良く形成でき、 導電性ペーストについて優れた印刷特性が得られた。一方、比較例 1の場合、配線 ににじみが生じ、それによる配線不良が確認された。また、比較例 2の場合、配線に 切れが生じ、それによる配線不良が確認された。  [0061] Further, in Examples 1 to 3, the conductor wiring could be easily formed. Specifically, while maintaining the optimum leveling properties, a fine pattern with a width of 100 m could be formed with high precision, and excellent printing characteristics were obtained for the conductive paste. On the other hand, in the case of Comparative Example 1, the wiring was blurred and the wiring defect was confirmed. Further, in the case of Comparative Example 2, the wiring was cut and a wiring defect was confirmed.
[0062] また、比較例 1の場合、実施例 1の場合とは異なり、導電性ペーストにはカーボン粉 が配合されていない。この場合、体積抵抗の局所的な上昇が抑制されず、また、揺 変度も所望の値 (即ち、 3. 4以上)に維持されない。そのため、良好な配線抵抗およ び配線の形成し易さが得られなカゝつたものと考えられる。また、比較例 2の場合、回転 数 lrpmにおける粘度 (V )が 600Pa' sよりも大きいため、導電性ペーストをスクリ  [0062] Further, in the case of Comparative Example 1, unlike the case of Example 1, the conductive paste does not contain carbon powder. In this case, the local increase in volume resistance is not suppressed, and the fluctuation is not maintained at a desired value (ie, 3.4 or higher). For this reason, it is considered that good wiring resistance and ease of forming wiring cannot be obtained. In Comparative Example 2, since the viscosity (V) at a rotation speed of lrpm is larger than 600 Pa's, the conductive paste is screened.
lrpm  lrpm
ーン印刷する際、スクリーン版力 導電性ペーストが抜け難くなり、また、レべリング性 が著しく低下して配線に切れが生じ易くなる。そのため、良好な配線抵抗および配線 の形成し易さが得られな力つたものと考えられる。  When performing screen printing, it is difficult for the screen paste power conductive paste to come off, and the leveling property is remarkably lowered, and the wiring is likely to be cut. For this reason, it is considered that good wiring resistance and ease of forming wiring could not be obtained.
産業上の利用可能性  Industrial applicability
[0063] 本発明の活用例としては、高い導電性を要する配線基板に電気回路を形成する際 に用いられる導電性ペーストが挙げられる。 [0063] As an application example of the present invention, there is a conductive paste used when an electric circuit is formed on a wiring board requiring high conductivity.

Claims

請求の範囲 The scope of the claims
[1] 銀粉末、カーボン粉、バインダー榭脂および溶剤を主成分として含む導電性ペースト において、 E型回転粘度計を用いて 25°Cで測定した回転数 lrpmにおける粘度 (V  [1] In a conductive paste containing silver powder, carbon powder, binder resin and solvent as main components, viscosity at rpm of lrpm measured at 25 ° C using an E-type rotational viscometer (V
lr lr
)と、回転数 lOrpmにおける粘度 (V )との比 (V /V )として表される揺 pm lOrpm lrpm lOrpm ) And the ratio (V / V) of the viscosity (V) at the rotational speed lOrpm. Pm lOrpm lrpm lOrpm
変度が 3. 4以上であり、前記回転数 lrpmにおける粘度 (V )が 600Pa ' s以下で  The degree of change is 3.4 or more, and the viscosity (V) at the rpm of 1 rpm is 600 Pa's or less.
lrpm  lrpm
あることを特徴とする導電性ペースト。  A conductive paste characterized by being.
[2] 前記銀粉末は、 0. 5 μ m〜20 μ mの平均粒径を有する鱗片状銀粉末と、 50nm以 下の平均粒径を有する球状銀粉末とからなることを特徴とする請求の範囲 1に記載 の導電性ペースト。 [2] The silver powder is composed of a scaly silver powder having an average particle diameter of 0.5 μm to 20 μm and a spherical silver powder having an average particle diameter of 50 nm or less. The conductive paste according to claim 1.
[3] 前記鱗片状銀粉末と前記球状銀粉末との配合割合は、重量比で 99: 1〜80: 20で あることを特徴とする請求の範囲 2に記載の導電性ペースト。  [3] The conductive paste according to claim 2, wherein the mixture ratio of the flaky silver powder and the spherical silver powder is 99: 1 to 80:20 in weight ratio.
[4] 前記カーボン粉の一次粒子の平均粒径が 50nm以下であるとともに、 BET比表面積 が 50m2Zg以上であることを特徴とする請求の範囲 1乃至請求の範囲 3のいずれか 一項に記載の導電性ペースト。 [4] The average particle diameter of the primary particles of the carbon powder is 50 nm or less and the BET specific surface area is 50 m 2 Zg or more. The conductive paste as described.
[5] 前記銀粉末と前記カーボン粉との配合割合が重量比で 99. 9 : 0. 1〜97 : 3であると ともに、前記銀粉末と前記バインダー榭脂との配合割合が重量比で 85 : 15〜97 : 3 であることを特徴とする請求の範囲 1乃至請求の範囲 4のいずれか一項に記載の導 電性ペースト。 [5] The blending ratio of the silver powder and the carbon powder is 99.9: 0.1 to 97: 3 by weight, and the blending ratio of the silver powder and the binder resin is by weight. The conductive paste according to any one of claims 1 to 4, wherein 85:15 to 97: 3.
[6] 前記バインダー榭脂は、エポキシ榭脂、ポリエステル榭脂、ポリイミド榭脂、ポリアミド イミド榭脂、ポリエステルイミド榭脂、フエノール榭脂のいずれか、またはこれらの混合 物であることを特徴とする請求の範囲 1乃至請求の範囲 5のいずれか一項に記載の 導電性ペースト。  [6] The binder resin is an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, a polyesterimide resin, a phenol resin, or a mixture thereof. The conductive paste according to any one of claims 1 to 5.
[7] 請求の範囲 1乃至請求の範囲 6のいずれか一項に記載の導電性ペーストを基材上 に印刷して形成された配線を備えることを特徴とする配線基板。  [7] A wiring board comprising a wiring formed by printing the conductive paste according to any one of claims 1 to 6 on a base material.
[8] 前記配線の幅は 100 μ m以下であることを特徴とする請求の範囲 7に記載の配線基 板。  [8] The wiring board according to claim 7, wherein the width of the wiring is 100 μm or less.
PCT/JP2006/317198 2005-09-02 2006-08-31 Conductive paste and wiring board using same WO2007026812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005254385A JP4929653B2 (en) 2005-09-02 2005-09-02 Conductive paste and wiring board using the same
JP2005-254385 2005-09-02

Publications (1)

Publication Number Publication Date
WO2007026812A1 true WO2007026812A1 (en) 2007-03-08

Family

ID=37808895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317198 WO2007026812A1 (en) 2005-09-02 2006-08-31 Conductive paste and wiring board using same

Country Status (3)

Country Link
JP (1) JP4929653B2 (en)
TW (1) TW200717544A (en)
WO (1) WO2007026812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077447A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057443A (en) * 2008-06-04 2011-05-11 Lg化学株式会社 Metallic paste composition for formation of an electrode, and Ag-C composite electrodes and silicon solar cells using the same
JP2010021371A (en) 2008-07-10 2010-01-28 Fujitsu Ltd Printed wiring board, wiring manufacturing method, and conductive paste
WO2010122918A1 (en) * 2009-04-24 2010-10-28 住友電気工業株式会社 Substrate for printed wiring board, printed wiring board, and methods for producing same
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
JP2011228481A (en) * 2010-04-20 2011-11-10 Sumitomo Electric Printed Circuit Inc Conductive paste, flexible printed-wiring board and electronic equipment
JP5833298B2 (en) * 2010-09-03 2015-12-16 株式会社ノリタケカンパニーリミテド Method for manufacturing solar cell and electrode forming paste material used in the method
KR102011523B1 (en) * 2011-03-18 2019-08-16 스미토모 세이카 가부시키가이샤 Metal paste composition
JP6900148B2 (en) * 2013-10-22 2021-07-07 昭和電工マテリアルズ株式会社 Silver paste and semiconductor devices using it
KR101935272B1 (en) * 2013-10-31 2019-01-04 쇼와 덴코 가부시키가이샤 Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern
CN106134299B (en) 2014-03-20 2018-10-23 住友电气工业株式会社 Printed wiring board substrate, printed wiring board and the method for manufacturing printed wiring board substrate
JP6585032B2 (en) 2014-03-27 2019-10-02 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
US10703924B2 (en) * 2014-05-30 2020-07-07 Electroninks Writeables, Inc. Conductive ink for a rollerball pen and conductive trace formed on a substrate
WO2016117575A1 (en) 2015-01-22 2016-07-28 住友電気工業株式会社 Substrate for printed wiring board, printed wiring board, and method for manufacturing printed wiring board
JP7057738B2 (en) * 2018-08-21 2022-04-20 Dowaテクノロジー株式会社 Manufacturing method of copper sulfide powder and copper sulfide powder
CN110519914A (en) * 2019-08-28 2019-11-29 刘明炜 A kind of conductive structure and its preparation method and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159905A (en) * 1987-12-15 1989-06-22 Toyobo Co Ltd Conductive paste
JP2000348537A (en) * 1999-03-31 2000-12-15 Lion Corp Conductive paste, manufacture thereof, and conductive auxiliary agent for secondary battery
JP2001311034A (en) * 2000-04-28 2001-11-09 Mikuni Color Ltd Conductive high concentration carbon black dispersion for electrophotography and method for producing the same, and composition comprising the same
JP2005044771A (en) * 2003-07-10 2005-02-17 Toyobo Co Ltd Conductive paste
JP2005078967A (en) * 2003-09-01 2005-03-24 Toyobo Co Ltd Conductive paste
JP2005093105A (en) * 2003-09-12 2005-04-07 Asahi Glass Co Ltd Conductive structure and its manufacturing method
JP2005129303A (en) * 2003-10-22 2005-05-19 Denso Corp Conductor composition, and mounting substrate using conductor composition, as well as mounting structure
JP2005259546A (en) * 2004-03-12 2005-09-22 Toyobo Co Ltd Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685344B2 (en) * 1992-03-31 1994-10-26 信越ポリマー株式会社 Method for manufacturing heat seal connector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159905A (en) * 1987-12-15 1989-06-22 Toyobo Co Ltd Conductive paste
JP2000348537A (en) * 1999-03-31 2000-12-15 Lion Corp Conductive paste, manufacture thereof, and conductive auxiliary agent for secondary battery
JP2001311034A (en) * 2000-04-28 2001-11-09 Mikuni Color Ltd Conductive high concentration carbon black dispersion for electrophotography and method for producing the same, and composition comprising the same
JP2005044771A (en) * 2003-07-10 2005-02-17 Toyobo Co Ltd Conductive paste
JP2005078967A (en) * 2003-09-01 2005-03-24 Toyobo Co Ltd Conductive paste
JP2005093105A (en) * 2003-09-12 2005-04-07 Asahi Glass Co Ltd Conductive structure and its manufacturing method
JP2005129303A (en) * 2003-10-22 2005-05-19 Denso Corp Conductor composition, and mounting substrate using conductor composition, as well as mounting structure
JP2005259546A (en) * 2004-03-12 2005-09-22 Toyobo Co Ltd Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2005294254A (en) * 2004-03-12 2005-10-20 Sumitomo Electric Ind Ltd Conductive silver paste and electromagnetic wave shielding member using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077447A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
CN103947304A (en) * 2011-11-24 2014-07-23 昭和电工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
CN103947304B (en) * 2011-11-24 2016-03-23 昭和电工株式会社 Conductive pattern formation method and to be penetrated by illumination or microwave heating forms the conductive pattern formation composition of conductive pattern

Also Published As

Publication number Publication date
JP4929653B2 (en) 2012-05-09
JP2007066824A (en) 2007-03-15
TW200717544A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2007026812A1 (en) Conductive paste and wiring board using same
JP3858902B2 (en) Conductive silver paste and method for producing the same
JP4934993B2 (en) Conductive paste and wiring board using the same
EP1339073B1 (en) Electroconductive metal paste and method for production thereof
US20110140162A1 (en) Conductive adhesive and led substrate using the same
JP4972955B2 (en) Conductive paste and printed wiring board using the same
KR100678533B1 (en) Conductive powder and method for preparing the same
JP5999220B2 (en) Silver powder
JP5819712B2 (en) Heat curable conductive paste composition
JP2007194122A (en) Conductive paste and wiring board using it
JP2016110939A (en) Conductive paste, and wiring board and solid electrolytic capacitor prepared with the conductive paste
JP3879749B2 (en) Conductive powder and method for producing the same
JP3955805B2 (en) Conductive paste composition
JP5881613B2 (en) Conductive composition and method for forming conductive film
JP6488156B2 (en) Conductive paste
JPS6131454A (en) Electrically-conductive copper paste composition
JP6737873B2 (en) Photo-sintering of polymer thick film copper conductor composition
CN104425054B (en) Conductive paste and the base material with conducting film
JP4774750B2 (en) Conductive paste and wiring board using the same
WO2022059608A1 (en) Stretchable conductive paste and film
EP3872143A1 (en) Conductive ink, use thereof, and method for producing electronic circuit using the same
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material
JP2021143226A (en) Metal paste and electrode paste for forming end face
JP5052857B2 (en) Conductive composition, conductor using the same, and method for forming conductive circuit
JP2021143227A (en) Metal paste and electrode paste for forming end face

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797158

Country of ref document: EP

Kind code of ref document: A1