WO2021169941A1 - 一种矿用链条钢及其制造方法 - Google Patents

一种矿用链条钢及其制造方法 Download PDF

Info

Publication number
WO2021169941A1
WO2021169941A1 PCT/CN2021/077430 CN2021077430W WO2021169941A1 WO 2021169941 A1 WO2021169941 A1 WO 2021169941A1 CN 2021077430 W CN2021077430 W CN 2021077430W WO 2021169941 A1 WO2021169941 A1 WO 2021169941A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
mining
strength
chain steel
rolling
Prior art date
Application number
PCT/CN2021/077430
Other languages
English (en)
French (fr)
Inventor
高加强
赵四新
王维
章军
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to BR112022016824A priority Critical patent/BR112022016824A2/pt
Priority to MX2022010591A priority patent/MX2022010591A/es
Priority to KR1020227028750A priority patent/KR20220129609A/ko
Priority to JP2022550659A priority patent/JP7497447B2/ja
Priority to EP21760437.0A priority patent/EP4089197A4/en
Priority to US17/800,800 priority patent/US20230235435A1/en
Publication of WO2021169941A1 publication Critical patent/WO2021169941A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0087Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for chains, for chain links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21LMAKING METAL CHAINS
    • B21L11/00Making chains or chain links of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to high-strength steel, in particular to a high-strength and tough mining chain steel and a manufacturing method thereof.
  • High-strength and tough steel bars are usually used in high-safety machinery and structural parts.
  • mining circular chains are the key vulnerable parts of coal mining machinery. They should have high strength, high toughness, wear resistance, corrosion resistance and high fatigue. Performance, etc.
  • Mn-Cr-Ni-Mo series alloy steel is widely used in construction machinery, automobiles, bridges, marine equipment and other fields because of its good strength and toughness. Its safe use strength level is generally 900 ⁇ 1000MPa, while the higher strength level steel Application can not only make the equipment lighter, but also save resources, so the high strength of alloy steel is the inevitable trend of future development. However, as the strength of steel increases, the difficulty of processing and manufacturing increases, and its susceptibility to hydrogen embrittlement is bound to increase. Microstructure refinement, microalloying, grain boundary strengthening and the addition of alloying elements can greatly reduce the hydrogen-induced delayed fracture sensitivity of high-strength steels.
  • the highest strength level of steel for circular chain for mining is 1180MPa
  • the mechanical performance indicators are: yield strength R eL ⁇ 1060MPa, tensile strength R m ⁇ 1180MPa, elongation A ⁇ 10%, reduction of area Z ⁇ 50%, Charpy Impact energy A kv ⁇ 60J.
  • the highest-strength grade mining chain steel in use by China's coal mining machinery is quenched and tempered (880°C quenched + 400°C tempered).
  • the mechanical performance indicators are: yield strength R eL ⁇ 980MPa, tensile strength R m ⁇ 1180MPa, elongation A ⁇ 10%, reduction of area Z ⁇ 50%, Charpy impact energy A kU ⁇ 40J.
  • Mn-Cr-Ni-Mo series alloy steel chains are subject to heavy loads and dynamic impacts, and are prone to stress corrosion, severely brittle fractures can occur, causing huge economic losses and even safety accidents.
  • the purpose of the present invention is to provide a high-strength and toughness mine chain steel and its manufacturing method.
  • the high-strength steel has good impact toughness, elongation and area shrinkage, is resistant to stress corrosion cracking and has good weather resistance and wear resistance. It can be used in applications requiring high-strength and tough steel such as engineering machinery and marine engineering.
  • a kind of high-strength and toughness chain steel for mining its composition mass percentages are: C: 0.20 ⁇ 0.28%, Si: 0.01 ⁇ 0.40%, Mn: 0.50 ⁇ 1.50%, P ⁇ 0.015%, S ⁇ 0.005%, Cr: 0.30 ⁇ 2.00%, Ni: 0.50 ⁇ 2.00%, Mo: 0.10 ⁇ 0.80%, Cu: 0.01 ⁇ 0.30%, Al: 0.01 ⁇ 0.05%, Nb: 0.001 ⁇ 0.10%, V: 0.001 ⁇ 0.10%, H ⁇ 0.00018%, N ⁇ 0.0150%, O ⁇ 0.0020%, the balance is Fe and unavoidable impurities; and,
  • microalloying element coefficient r M/N is: 1.0 ⁇ 9.9;
  • J H ([P]+[Sn]+[As]+[Pb]+[Sb]+[Bi])*([Si]+[Mn])*10000.
  • [Al], [Nb], [V], [N], etc. in the formulas of the present invention represent the mass percentages of the corresponding elements in the steel.
  • [Al], [Nb], [V ], [N], etc. are the values before the percent sign. For example, if the Al content in Example 1 is 0.020%, the value should be 0.020 instead of 0.00020. The substitution of other elements can be deduced by analogy. ,No longer.
  • B Preferably, among the unavoidable impurities, B ⁇ 0.0010%, Ti ⁇ 0.003%, and Ca ⁇ 0.005%.
  • the microstructure of the high-strength and toughness mining chain steel of the present invention is tempered martensite, a small amount of bainite and retained austenite, wherein the volume content of bainite is less than or equal to 10%.
  • the high-strength and toughness mining chain steel of the present invention has a yield strength R p0.2 ⁇ 1000MPa, a tensile strength R m ⁇ 1200MPa, an elongation rate A ⁇ 12%, a section reduction rate Z ⁇ 50%, and a Charpy impact energy A kv ⁇ 60J, hydrogen embrittlement coefficient ⁇ (Z) ⁇ 15%.
  • C can improve the hardenability of steel and make the steel form a phase transformation structure with higher hardness during the quenching and cooling process.
  • Increasing the C content will increase the hard phase ratio and increase the hardness of the steel material, but will result in a decrease in toughness. Too low C content will result in low content of phase transformation structures such as martensite and bainite, and high tensile strength cannot be obtained.
  • the C content is set to 0.20 to 0.28%.
  • Si is beneficial to strength improvement in steel.
  • a proper amount of Si can avoid the formation of coarse carbides during tempering, but a higher Si content will reduce the impact toughness of the steel.
  • the present invention adopts a low Si component system, and the Si content is set to be 0.01 to 0.40%.
  • Mn mainly exists in the form of solid solution in steel. It can improve the hardenability of steel, form a high-strength low-temperature phase transformation structure during quenching, and the obtained steel has good wear resistance. Too high Mn content will lead to the formation of more retained austenite, reduce the yield strength of the steel, and easily lead to center segregation.
  • the Mn content is set to 0.50 to 1.50%.
  • the P content is set as: ⁇ 0.015%.
  • S will segregate in steel and form more sulfide inclusions, reducing impact resistance.
  • the S content is set as: ⁇ 0.005%.
  • Cr can improve the hardenability of steel, form a hardened martensite structure, and increase the strength of steel. If the Cr content is too high, coarse carbides will be formed and the impact performance will be reduced. In the present invention, the Cr content is set to 0.30 to 2.00%.
  • Ni exists in the steel as a solid solution, which can improve the low-temperature impact performance of the steel.
  • an excessively high Ni content will cause the retained austenite content in the steel to be too high, thereby reducing the strength of the steel.
  • the Ni content is set to 0.50% to 2.00%.
  • Mo can dissolve in the steel and help to improve the hardenability of the steel and increase the strength of the steel. Tempering at a higher temperature will form fine carbides to further increase the strength of the steel. Considering the cost of the precious alloy Mo element, in the present invention, the Mo content is set to 0.10 to 0.80%.
  • the Cu can increase the strength of steel and is beneficial to improve the corrosion resistance of steel. If the Cu content is too high, it will be concentrated in the grain boundary during heating, causing the grain boundary to weaken and cause cracking. In the present invention, the Cu content is set to 0.01 to 0.30%.
  • Al forms fine AlN precipitates in steel, which can inhibit the growth of austenite grains. Too high Al content will lead to the formation of larger Al oxides, and coarse AlN hard inclusions will reduce the impact toughness and fatigue properties of the steel.
  • the Al content is set to be 0.01 to 0.05%.
  • Nb is added to steel to form fine precipitated phases, which can inhibit the recrystallization of steel and can refine grains. If the Nb content is too high, coarse NbC particles will be formed during the smelting process, which will reduce the impact toughness. Grain refinement plays an important role in improving the mechanical properties of steel, especially the strength and toughness. At the same time, grain refinement also helps reduce the hydrogen embrittlement sensitivity of steel.
  • the Nb content is set to 0.001 to 0.10%.
  • V can form precipitates with C or N in steel to increase the strength of steel. If the content of C and V is too high, coarse VC particles will be formed. In the present invention, the V content is set to be 0.001 to 0.10%.
  • the Ti content is set as: ⁇ 0.003%.
  • the content of B is controlled to be less than or equal to 0.0010%.
  • Ca element to steel can improve the size and morphology of sulfide inclusions and avoid deterioration of impact toughness.
  • Ca element is easy to form inclusions and affect the fatigue performance of the final product. Control the Ca content to: ⁇ 0.005%.
  • N is an interstitial atom and also an MX-type precipitate-forming element.
  • the N content in the composition design of the present invention as: ⁇ 0.015%. Control the ratio of the content of microalloying elements Al, Nb, V to the N content, and define the coefficient of microalloying elements r M/N : 1.0 ⁇ 9.9,
  • the microalloying coefficient is related to the nano-scale precipitates.
  • a higher microalloying coefficient will result in the presence of coarse precipitates in the steel, which cannot play a precipitation strengthening effect. Instead, it will cause the adverse effects of similar inclusions and reduce the fatigue strength.
  • a lower microalloy coefficient will result in a smaller number of precipitates, which cannot achieve the effect of dispersion strengthening.
  • the microalloying element coefficient r M/N is 1.0 to 6.0.
  • Sn, Sb, As, Bi, Pb and other trace elements segregate to the grain boundary at the tempering temperature, which weakens the intergranular bonding force. Mn and Si can promote the segregation of harmful elements and increase embrittlement. And Sn, Sb, As, Bi, Pb and other elements are harmful to the environment. In the present invention, As: ⁇ 0.05%, Pb: ⁇ 0.05%, Sn: ⁇ 0.02%, Sb: ⁇ 0.01%, Bi: ⁇ 0.01 %. And considering the influence of P, define the harmful element coefficient J H ⁇ 500;
  • J H ([P]+[Sn]+[As]+[Pb]+[Sb]+[Bi])*([Si]+[Mn])*10000.
  • H will accumulate at defects in steel, and hydrogen-induced delayed fracture will occur in steel with a tensile strength level of more than 1000MPa.
  • the tensile strength exceeds 1200 MPa, and the H content is controlled to be less than or equal to 0.00018%.
  • N forms nitrides or carbonitrides in the steel to refine the austenite grains, but too high N content will form coarse grains, which will not play the role of grain refinement. It acts as interstitial atoms in Enrichment at grain boundaries and defects will reduce impact toughness.
  • the N content is controlled within: ⁇ 0.0150%.
  • O and Al in the steel form oxides and composite oxides. In order to ensure the uniformity of the steel structure, low-temperature impact energy and fatigue performance, in the present invention, the content of O is controlled as follows: ⁇ 0.0020%.
  • Ceq carbon equivalent
  • the atmospheric corrosion resistance index I value is: ⁇ 7.0.
  • the microstructure of the high-strength and toughness mining chain steel of the present invention is tempered martensite, a small amount of bainite and retained austenite.
  • the previous chain steel is a low-temperature tempered martensite structure, and the chemical composition designed by the present invention makes full use of the influence of various alloying elements and microalloying elements on the phase transformation and microstructure. After quenching + tempering heat treatment, it forms The multiphase microstructure of tempered martensite, a small amount of bainite and retained austenite.
  • the method for manufacturing high-strength and toughness mining chain steel of the present invention includes smelting, casting, heating, forging or rolling, quenching heat treatment and tempering heat treatment steps; in the heating process, the heating temperature is 1050-1250°C, The holding time is 3 ⁇ 24h; in the forging or rolling process, the final rolling temperature or final forging temperature is ⁇ 800°C; the heating temperature of quenching heat treatment is 850 ⁇ 1000°C, and the holding time is 60 ⁇ 240min. After austenitizing, water is used Quenching treatment; the tempering temperature of tempering heat treatment is 350 ⁇ 550°C, the holding time is 60 ⁇ 240min, air cooling or water cooling after tempering.
  • the smelting may adopt electric furnace smelting or converter smelting, and undergo refining and vacuum treatment.
  • the casting adopts die casting or continuous casting.
  • the heating temperature of the intermediate billet is 1050 ⁇ 1250°C, and the holding time is 3 ⁇ 24h.
  • the billet is discharged from the heating furnace and then rolled after being descaled by high-pressure water, and air cooling or slow cooling is adopted after the rolling.
  • the high-strength and toughness mining chain steel of the present invention has a yield strength R p0.2 ⁇ 1000MPa, a tensile strength R m ⁇ 1200MPa, an elongation rate A ⁇ 12%, a section reduction rate Z ⁇ 50%, and a Charpy impact energy A kv ⁇ 60J, hydrogen embrittlement coefficient ⁇ (Z) ⁇ 15%.
  • Such high-strength and tough steels have good strength, plasticity and toughness, as well as good weather resistance and stress corrosion resistance.
  • the high-strength and toughness mining chain steel of the present invention can be used in applications requiring high-strength bars such as mining, and the size range of the bars is ⁇ 50-170mm.
  • the high-strength and toughness mining chain steel of the present invention is fully austenitized by heating at 1050°C to 1250°C.
  • Al, Nb, V carbides and nitrides and carbonitrides, Cr and Mo carbides are partially or completely dissolved in austenite.
  • Al, Nb and V form fine precipitates.
  • Mn, Cr and Mo dissolved in austenite can improve the hardenability of steel and increase the hardness and strength of martensite.
  • Under the condition of final rolling or final forging temperature ⁇ 800°C a complex matrix structure with refined martensite, a small amount of bainite and retained austenite is formed, and there are fine dispersed precipitates.
  • the steel After the steel is rolled or forged, it is heated to 850 ⁇ 1000°C for heat preservation and then quenched. Fully austenitizing is achieved during this heat preservation process. During the heating process, the precipitates of the carbide forming elements Al, Nb, V, Cr and Mo partially dissolve, and the undissolved precipitates pin the grain boundaries and inhibit the coarse austenite grains (austenite grain size ⁇ 6 ). During the quenching and cooling process, the alloying elements in solid solution in austenite make the steel have high strength and good toughness. The quenched steel is subjected to tempering heat treatment at 350-550°C. Al, Nb, V, Cr and Mo will form fine precipitates with C and N, which improves the strength and ductility of the steel. Within the quenching + tempering temperature range of the present invention, the steel can be guaranteed to have good strong plasticity and toughness, which is beneficial to the processing and use of bars, such as the production of high-performance mining chains by forging or welding.
  • the "Alloy steel composition and chain products fabricated in such alloy steel" disclosed in US patent US006146583 has the following composition: C: 0.15 to 0.28%, Cr: 0.2 to 1.0%, Mo: 0.1 to 1.0%, Ni: 0.3 to 1.5% , V: 0.05-0.2%, the balance is Fe and unavoidable impurities, the strength can reach 800MPa, and it has stress corrosion resistance. After forging, welding and heat treatment, a high-strength chain is formed.
  • the present invention has different Cu content in the composition, and the present invention optimizes the content of C, N and alloying elements such as Mn, Cr, Ni, Mo and microalloying elements Al, V, Nb and other elements.
  • the invention utilizes the design of C, Ni and Cu elements, combined with the optimization of Mn, Cr, Mo and other elements, to form a complex microstructure of tempered martensite and a small amount of bainite and retained austenite. And the mechanical properties are obviously better than the patent.
  • Chinese Patent Publication No. CN103276303A discloses "a high-strength mining chain steel and its preparation method", its composition is: C: 0.21 ⁇ 0.25%, Mn: 0.20 ⁇ 0.25%, Si: 0.15 ⁇ 0.35%, Cr: 0.40 ⁇ 0.65%, Ni: 0.60 ⁇ 0.70%, Cu: 0.07 ⁇ 0.15%, Alt: 0.02 ⁇ 0.05%, N ⁇ 0.012%, S ⁇ 0.015%, P ⁇ 0.015%, the balance is Fe.
  • the preparation method includes: electric furnace or converter smelting process, out-of-furnace refining process, billet continuous casting process and heating rolling process to obtain straight bars with a specification of ⁇ 20-50mm, and then obtain high-strength mining chain steel after annealing.
  • the present invention has completely different contents of Cr, Mn, Ni, and Mo in the composition, and the present invention optimizes the composition range of C, Cu, Al, Nb, V, etc., and limits the contents of N and Ca.
  • the alloy element range of the present invention a microstructure of tempered martensite and retained austenite is formed, which has high strength and toughness mechanical properties.
  • H in the environment will be adsorbed to cause delayed cracking, and large-size high-strength steel bars are more sensitive to hydrogen. Therefore, the H element in the steel is limited in the present invention.
  • the tensile strength of the present invention is R m ⁇ 1200MPa
  • the yield strength R p0.2 is ⁇ 1000MPa
  • the impact energy A kv ⁇ 60J is the impact energy A kv ⁇ 60J.
  • the strength grade of the present invention is better than that of the patent, and it has excellent impact toughness and stress corrosion cracking resistance.
  • the present invention develops high-strength and tough steel by rationally designing the chemical composition and combining the optimization process.
  • the rolled or forged bar After quenching, the rolled or forged bar adopts a tempering heat treatment process to form tempered martensite and a small amount of bainite and residues.
  • composition and process design of the steel are reasonable, and the process window is loose, and mass commercial production can be realized on the bar or high-speed wire production line.
  • the steel produced by the present invention has a yield strength R p0.2 ⁇ 1000MPa, a tensile strength R m ⁇ 1200MPa, an elongation A ⁇ 12%, a reduction of area Z ⁇ 50%, and a Charpy impact energy A kv ⁇ 60J.
  • the engineering field usually adopts the change of elongation under environmental conditions to reflect the stress corrosion tendency.
  • the present invention refers to the requirements of Det Norske Veritas for hydrogen embrittlement sensitivity in accordance with GB/T2975-2018 "Steel and Steel Product Mechanical Performance Test Sampling Position and Sample Preparation ⁇ Prepare a circular cross-section sample with a diameter of 10mm.
  • the tensile test is carried out according to the national standard GB/T 228.1, the strain rate is ⁇ 0.0003/s, the reduction of area Z is obtained, and the hydrogen embrittlement coefficient ⁇ (Z) is defined to evaluate the stress corrosion resistance of the steel:
  • the hydrogen embrittlement coefficient ⁇ (Z) of the steel produced by the invention is less than or equal to 15%, and has good stress corrosion resistance.
  • Figure 1 is a metallographic photo of the microstructure of round steel in Example 2 of the present invention (magnification 500 times);
  • Figure 2 is a metallographic photograph of the microstructure of the chain prepared in Example 2 of the present invention (magnification 500 times).
  • composition of the round steel examples and comparative examples of the present invention are shown in Table 1.
  • the high-strength and tough steels of Examples 1 to 7 of the present invention and Comparative Examples 1 to 3, and the composition coefficients are shown in Table 2. It can be seen that the ratio coefficient r M/N of the microalloying elements Al, Nb, V content and the N content of the examples is in the range of 1.0 ⁇ 9.9; carbon equivalent Ceq ⁇ 0.80; harmful element coefficient J H ⁇ 500.
  • the implementation is the same as in Example 1, wherein the heating temperature is 1080°C, the holding time is 3h, the final rolling temperature is 880°C, and the intermediate billet size is 220 ⁇ 220 mm.
  • the intermediate billet is heated to 1120°C, the holding time is 3h, the final rolling temperature is 850°C, and the finished bar specification is ⁇ 75mm.
  • Air cooling after rolling Quenching heating temperature is 870°C, heating time is 100min, tempering temperature is 550°C, tempering time is 60min, water cooling after tempering.
  • the implementation is the same as in Example 1, wherein the heating temperature is 1120°C, the holding time is 8h, the final rolling temperature is 940°C, and the intermediate billet size is 260 ⁇ 260 mm.
  • the intermediate billet is heated to 1200°C, the holding time is 5h, the final rolling temperature is 880°C, and the finished bar specification is ⁇ 100mm.
  • Air cooling after rolling Quenching heating temperature is 890°C, heating time is 150min, tempering temperature is 430°C, tempering time is 100min, air cooling after tempering.
  • the implementation is the same as in Example 1, wherein the heating temperature is 1250°C, the holding time is 14h, hot continuous rolling is formed, the final rolling temperature is 900°C, and the finished bar specification is ⁇ 150mm. Air cooling after rolling. Quenching heating temperature is 990°C, heating time is 210min, tempering temperature is 350°C, tempering time is 180min, water cooling after tempering.
  • the chemical composition shown in Table 1 it is smelted in a converter, refined and vacuum treated, and then cast into a steel ingot.
  • the heating temperature is 1180°C
  • the holding time is 3.5h
  • the final rolling temperature is 980°C
  • the intermediate billet size is 280 ⁇ 280mm.
  • the intermediate billet is heated to 1250°C
  • the holding time is 12h
  • the final rolling temperature is 950°C
  • the finished bar specification is ⁇ 160mm.
  • the quenching heating temperature is 900°C
  • the heating time is 210min
  • the tempering temperature is 450°C
  • the tempering time is 190min. After tempering, it is water-cooled.
  • the implementation mode is the same as that in Example 5, in which the heating temperature is 1220°C, the holding time is 24h, the forging is formed, the final forging temperature is 920°C, and the finished bar specification is ⁇ 170mm. Air-cooled after forging.
  • the quenching heating temperature is 920°C
  • the heating time is 240min
  • the tempering temperature is 420°C
  • the tempering time is 240min. After tempering, it is air-cooled.
  • the implementation mode is the same as in Example 2, wherein the heating temperature is 1080°C, the holding time is 3h, the final rolling temperature is 880°C, and the intermediate billet size is 220 ⁇ 220mm.
  • the intermediate billet is heated to 1100°C, the holding time is 3h, the final rolling temperature is 850°C, and the finished bar specification is ⁇ 65mm.
  • Air cooling after rolling The quenching heating temperature is 880°C, the heating time is 150min, the tempering temperature is 400°C, and the tempering time is 100min. After tempering, it is water-cooled.
  • the comparative example 1 contains high Nb, the microalloy coefficient is 10.1, the precipitation strengthening effect is poor, the strength is low, the impact toughness is low, and the fatigue life is short;
  • the comparative example 2 contains high P content and harmful elements The coefficient is 678, the atmospheric corrosion resistance coefficient is 5.3, the impact toughness and stress corrosion cracking resistance are poor, and the hydrogen embrittlement coefficient is high; the high content of S in Comparative Example 3 results in poor impact toughness.
  • the yield strength of the high-strength and tough steel materials in Examples 1-7 of the present invention are all R p0.2 ⁇ 1000MPa, tensile strength R m ⁇ 1200MPa, elongation A ⁇ 12%, reduction of area Z ⁇ 50%, Charpy impact Work A kv ⁇ 60J, hydrogen embrittlement coefficient ⁇ (Z) ⁇ 15%.
  • Example 6 due to the one-time heating and rolling process and the large bar size, the structure compactness is slightly worse. Compared with other examples, the strength and impact performance are reduced; in Example 7, due to atmospheric corrosion resistance The coefficient is relatively low, resulting in a slightly inferior effect on impact toughness, hydrogen embrittlement coefficient, and anti-corrosion cracking performance compared with other embodiments.
  • the microstructure of the round steel prepared in Example 2 and the mining chain prepared in Example 2 as raw materials were studied.
  • the optical microscope photos are shown in Figure 1 and Figure 2. It can be seen from the figure that the microstructure of the round steel is tempered martensite and a small amount of bainite and retained austenite, while the microstructure of the chain obtained by further preparing the round steel prepared in Example 2 is refined Tempered martensite and a small amount of bainite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Gears, Cams (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

一种矿用链条钢及其制造方法,其成分质量百分比为:C:0.20~0.28%、Si:0.01~0.40%、Mn:0.50~1.50%、P≤0.015%、S≤0.005%、Cr:0.30~2.00%、Ni:0.50~2.00%、Mo:0.10~0.80%、Cu:0.01~0.30%、Al:0.01~0.05%、Nb:0.001~0.10%、V:0.001~0.10%、H≤0.00018%、N≤0.0150%、O≤0.0020%,余量为Fe和不可避免的杂质。制造过程包括冶炼及精炼和真空处理、浇铸、加热、锻造或轧制,以及淬火和回火热处理等工序。该链条钢具有较高的强度和良好的冲击韧性、延伸率及断面收缩率,可抗应力腐蚀开裂并有良好的耐候性、耐磨性和抗疲劳性能,可用于工程机械及海洋工程等需要高强韧钢材的场合。

Description

一种矿用链条钢及其制造方法 技术领域
本发明涉及高强度钢材,具体涉及一种高强韧矿用链条钢及其制造方法。
背景技术
高强韧钢棒材通常应用于高安全性机械及结构类部件,如矿用圆环链是煤矿机械的关键易损件,应具有高强度、高韧型、耐磨损、耐腐蚀及高疲劳性能等。
国内外对高强韧钢材有较多的研究,通常选取适当的化学成分,采用控制轧制控制冷却或淬火+回火工艺,生产高强韧钢材。采用控轧控冷方式生产高强度钢材,由于在轧制和冷却过程中控制难度较大,影响钢力学性能的整体均匀性。采用淬火+回火工艺生产高强度钢材,通过优化合金元素和碳元素的含量,提高钢的淬透性,使钢在冷却过程中形成马氏体组织。以马氏体为主的高强度钢材位错密度大,导致冲击韧性较差,而且在拉伸过程中出现微小缺陷如微裂纹的情况下会迅速断裂失效,断裂韧性较低。
Mn-Cr-Ni-Mo系合金钢因具有良好的强韧性而广泛应用于工程机械、汽车、桥梁、海洋装备等领域,其安全使用强度级别一般处于900~1000MPa,而更高强度级别钢的应用,不仅可以使得装备轻量化,而且还可以节约资源,故合金钢的高强度化是未来发展的必然趋势。然而,随着钢强度级别的提高,加工制造难度增大,其氢脆敏感性势必会增加。通过组织细化、微合金化、晶界强化及添加合金元素能够很大程度地降低高强度钢的氢致延迟断裂敏感性。
最新国家标准GB/T 10560-2017(《矿用焊接圆环链用钢》)中低硅含量的Mn-Cr-Ni-Mo成分体系中,矿用圆环链用钢最高强度级别为1180MPa,调质(880℃淬火+430℃回火)后力学性能指标为:屈服强度R eL≥1060MPa,抗拉强度R m≥1180MPa,延伸率A≥10%,断面收缩率 Z≥50%,夏比冲击功A kv≥60J。中国煤矿机械在用的最高强度级别矿用链用钢调质态(880℃淬火+400℃回火)力学性能指标为:屈服强度R eL≥980MPa,抗拉强度R m≥1180MPa,延伸率A≥10%,断面收缩率Z≥50%,夏比冲击功A kU≥40J。
针对潮湿的矿井环境条件,Mn-Cr-Ni-Mo系合金钢链条承受大载荷以及动态冲击,容易出现应力腐蚀,严重地可发生脆性断裂,造成巨大的经济损失甚至出现安全事故。
发明内容
本发明的目的在于提供一种高强韧矿用链条钢及其制造方法,该高强度钢材具有良好的冲击韧性和延伸率及面缩率,可抗应力腐蚀开裂并有良好的耐候性、耐磨性和抗疲劳性能,可用于工程机械及海洋工程等需要高强韧钢材的场合。
为达到上述目的,本发明的技术方案是:
一种高强韧矿用链条钢,其成分质量百分比为:C:0.20~0.28%、Si:0.01~0.40%、Mn:0.50~1.50%、P≤0.015%、S≤0.005%、Cr:0.30~2.00%、Ni:0.50~2.00%、Mo:0.10~0.80%、Cu:0.01~0.30%、Al:0.01~0.05%、Nb:0.001~0.10%、V:0.001~0.10%、H≤0.00018%、N≤0.0150%、O≤0.0020%,余量为Fe和不可避免的杂质;且,
微合金元素系数r M/N的范围为:1.0~9.9;
r M/N=([Al]/2+[Nb]/7+[V]/4)/[N];
微量元素As:≤0.05%,Pb:≤0.05%,Sn:≤0.02%,Sb:≤0.01%,Bi:≤0.01%,有害元素系数J H≤500,
J H=([P]+[Sn]+[As]+[Pb]+[Sb]+[Bi])*([Si]+[Mn])*10000。
另外需要说明的是,本发明各公式中的[Al]、[Nb]、[V]、[N]等等表示钢中相应元素的质量百分比,公式中[Al]、[Nb]、[V]、[N]等等代入的数值是百分号前的数值,例如实施例1中Al的含量为0.020%,则代入的数值应当为0.020,而不是0.00020,其他元素的代入情况以此类推,不再赘述。
优选的,所述不可避免的杂质中,B≤0.0010%、Ti≤0.003%、Ca≤0.005%。
本发明所述高强韧矿用链条钢的显微组织为回火马氏体、少量贝氏体及残留奥氏体,其中,贝氏体的体积含量≤10%。
本发明所述高强韧矿用链条钢的屈服强度R p0.2≥1000MPa,抗拉强度R m≥1200MPa,延伸率A≥12%,断面收缩率Z≥50%,夏比冲击功A kv≥60J,氢脆系数η(Z)≤15%。
在本发明所述链条钢的成分设计中:
C可以提高钢材的淬透性,使钢在淬火冷却过程中形成硬度较高的相变组织。C含量提高,则会提高硬质相比例,提高钢材的硬度,但会导致韧性下降。C含量太低,会导致相变组织如马氏体及贝氏体含量低,无法获得较高的抗拉强度。本发明中,设定C含量为0.20~0.28%。
Si在钢中有益于强度提升。适量的Si在回火时可避免形成粗大的碳化物,但较高的Si含量会降低钢材的冲击韧性。本发明采用低Si成分体系,设定Si含量为:0.01~0.40%。
Mn在钢中主要以固溶形式存在。可提高钢的淬透性,淬火时形成高强度的低温相变组织,所得钢材具有良好的耐磨性。Mn含量过高会导致形成较多的残留奥氏体,降低钢的屈服强度,并容易导致中心偏析。本发明中,设定Mn含量为:0.50~1.50%。
P在钢中晶界处偏聚,会降低晶界结合能,恶化钢的冲击韧性。本发明中,设定P含量为:≤0.015%。S在钢中会发生偏聚,且形成较多的硫化物夹杂,降低抗冲击性能。本发明中,设定S含量为:≤0.005%。
Cr可以提高钢的淬透性,形成硬化的马氏体组织,提高钢材强度。Cr含量过高,会形成粗大的碳化物,降低冲击性能。本发明中,设定Cr含量为:0.30~2.00%。
Ni在钢中以固溶形式存在,可提高钢的低温冲击性能。但过高的Ni含量会导致钢材中的残留奥氏体含量过高,而降低钢的强度,本发明中,设定Ni含量为:0.50~2.00%。
Mo可在钢中固溶,并有利于提高钢的淬透性,提高钢材强度。在较高的温度回火,会形成细小的碳化物进一步提高钢的强度。考虑贵重合金 Mo元素的成本,本发明中,设定Mo含量为:0.10~0.80%。
Cu可以提高钢材的强度,并有利于提高钢材的耐腐蚀能力。如果Cu含量过高,在加热过程中会富集在晶界,导致晶界弱化以致开裂。本发明中,设定Cu含量为:0.01~0.30%。
Al在钢中形成细小的AlN析出物,可抑制奥氏体晶粒长大。Al含量过高会导致较大的Al的氧化物形成,粗大的AlN硬质夹杂会降低钢的冲击韧性和疲劳性能。本发明中,设定Al含量为:0.01~0.05%。
Nb加入钢中,形成细小析出相,起到对钢再结晶的抑制作用,可以细化晶粒。Nb含量过高则在冶炼过程中会形成粗大的NbC颗粒,反而降低冲击韧性。晶粒细化在提高钢的力学性能尤其是强度和韧性方面有重要的作用,同时,晶粒细化还有助于降低钢的氢脆敏感性。本发明中,设定Nb含量为:0.001~0.10%。
V在钢中可与C或N形成析出物,提高钢的强度。如果C和V含量过高,则会形成粗大的VC颗粒。本发明中,设定V含量为:0.001~0.10%。
Ti加入钢中,可以形成细小析出相,但Ti含量过高则在冶炼过程中会形成粗大的带棱角的TiN颗粒,降低冲击韧性。本发明中,设定Ti含量为:≤0.003%。
由于B元素容易偏聚,控制B含量为:≤0.0010%。
Ca元素添加到钢中,可以改善硫化物夹杂的尺寸和形貌,避免冲击韧性恶化,但是Ca元素容易形成夹杂物而影响最终产品的疲劳性能,控制Ca含量为:≤0.005%。
N为间隙原子,同时也是MX型析出物形成元素,为了避免N元素在钢中富集,需要本发明成分设计中,设定N含量为:≤0.015%。控制微合金元素Al、Nb、V的含量与N含量比例关系,定义微合金元素系数r M/N:1.0~9.9,
r M/N=([Al]/2+[Nb]/7+[V]/4)/[N]。
微合金系数与纳米尺度的析出物相关,较高的微合金系数会导致钢中存有粗大的析出物,无法起到析出强化作用,反而会导致类似夹杂物的不利影响,使得疲劳强度下降。而较低的微合金系数则会导致析出物数量较 少,无法起到弥散强化的效果。优选地,微合金元素系数r M/N:1.0~6.0。
Sn、Sb、As、Bi、Pb等微量元素在回火温度下向晶界偏析,使晶间结合力减弱,Mn和Si可促进有害元素的偏析,使脆化加剧。且Sn、Sb、As、Bi、Pb等元素对环境有害,本发明中,设定As:≤0.05%,Pb:≤0.05%,Sn:≤0.02%,Sb:≤0.01%,Bi:≤0.01%。并考虑P的影响,定义有害元素系数J H≤500;
J H=([P]+[Sn]+[As]+[Pb]+[Sb]+[Bi])*([Si]+[Mn])*10000。
H会在钢中缺陷处聚集,抗拉强度级别超过1000MPa钢中,会发生氢致延迟断裂。本发明中,抗拉强度超过1200MPa,H含量控制为:≤0.00018%。N在钢中形成氮化物或碳氮化物,起到细化奥氏体晶粒的作用,但过高的N含量会形成粗大的颗粒,起不到细化晶粒的作用,作为间隙原子在晶界及缺陷处富集,会降低冲击韧性。本发明中,N含量控制在:≤0.0150%。O与钢中的Al形成氧化物以及复合氧化物等,为保证钢组织均匀性、低温冲击功和疲劳性能,本发明中,O含量控制为:≤0.0020%。
进一步地,为了满足矿用链钢的焊接场合的需求,需控制钢材碳当量(Ceq),Ceq为:≤0.80;
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Ni]+[Cu])/15。
为了进一步保证矿用链钢耐候性,提高抗应力腐蚀开裂性能,耐大气腐蚀性指数I值为:≥7.0。
I=26.0[Cu]+3.9[Ni]+1.2[Cr]+1.5[Si]+17.3[P]-7.3[Cu][Ni]-9.1[Ni][P]-33.4[Cu] 2
本发明所述高强韧矿用链条钢的显微组织为回火马氏体、少量贝氏体及残留奥氏体。
通常认为不同组织对氢脆敏感性从大到小的排序为,原始马氏体>低温回火的马氏体>带有原始马氏***向的回火屈氏体>贝氏体>回火索氏体(高温回火)。以往的链条钢为低温回火马氏体组织,而采用本发明设计的化学成分,充分利用各种合金元素及微合金元素对相变和微观组织的影响,经淬火+回火热处理后,形成回火马氏体和少量贝氏体及残留奥 氏体的复相微观组织。同时控制C、P、S、N、O和H的含量,保证钢的强度、冲击韧性、延伸率和塑性等,生产具有超高强韧性和强塑性匹配的高强韧矿用链条钢材,并具有良好的耐候性、耐磨性和抗应力腐蚀性能及抗疲劳性能等。
本发明所述的高强韧矿用链条钢的制造方法,其包括冶炼、浇铸、加热、锻造或轧制、淬火热处理和回火热处理工序;所述加热过程中,加热温度为1050~1250℃,保温时间3~24h;所述锻造或轧制过程中,终轧温度或终锻温度≥800℃;淬火热处理的加热温度为850~1000℃,保温时间60~240min,奥氏体化后采用水淬处理;回火热处理的回火温度为350~550℃,保温时间60~240min,回火后空冷或水冷。
优选的,所述冶炼可以采用电炉冶炼或转炉冶炼,并经过精炼及真空处理。
优选的,所述浇铸采用模铸或连铸。
优选的,所述锻造过程中,直接锻造至最终成品尺寸;所述轧制过程中,采用钢坯直接轧制到最终成品尺寸;或者采用钢坯轧制到指定的中间坯尺寸,再进行加热和轧制到最终成品尺寸,中间坯加热温度为1050~1250℃,保温时间3~24h。
优选的,所述轧制过程中,钢坯出加热炉经高压水除鳞后开始轧制,轧制后采用空冷或缓冷。
本发明所述高强韧矿用链条钢的屈服强度R p0.2≥1000MPa,抗拉强度R m≥1200MPa,延伸率A≥12%,断面收缩率Z≥50%,夏比冲击功A kv≥60J,氢脆系数η(Z)≤15%。此类高强韧钢材具有良好的强度、塑性和韧性以及良好的耐候性和抗应力腐蚀性能。
本发明所述高强韧矿用链条钢可以用于采矿等需要高强度棒材的场合,棒材的尺寸规格范围为Φ50~170mm。
本发明所述高强韧矿用链条钢在1050℃~1250℃加热完全奥氏体化。加热过程中,Al、Nb、V的碳化物和氮化物及碳氮化物、Cr和Mo的碳化物部分或全部溶解于奥氏体中,在随后的轧制/锻造和冷却过程中,Al、Nb、V形成细小的析出物。固溶在奥氏体中的Mn、Cr和Mo可以提高钢的淬透性,并提高马氏体的硬度和强度。在终轧或终锻温度≥800℃ 的条件下,形成具有细化的马氏体和少量贝氏体及残留奥氏体的复相基体组织,且有细小弥散的析出物。
钢材轧制或锻造后加热到850~1000℃保温后淬火。在该保温过程中实现充分奥氏体化。加热过程中,碳化物形成元素Al、Nb、V、Cr和Mo的析出物部分溶解,未溶解的析出物钉扎晶界,抑制奥氏体晶粒粗大(奥氏体晶粒度≥6级)。在淬火冷却过程中,固溶在奥氏体中的合金元素使得钢材具有高强度和良好的韧性。淬火后的钢在350~550℃做回火热处理,Al、Nb、V、Cr和Mo会和C、N形成细小的析出物,提高了钢的强度和塑韧性匹配。在本发明所述淬火+回火温度范围内,可保证钢具有良好的强塑性和韧性,有利于棒材的加工和使用,如经锻造或焊接生产高性能的矿用链。
本发明与现有专利对比:
美国专利US006146583公开的“Alloy steel composition and chain products fabricated in such alloy steel”,其成分为:C:0.15~0.28%,Cr:0.2~1.0%,Mo:0.1~1.0%,Ni:0.3~1.5%,V:0.05~0.2%,余量为Fe和不可避免杂质,强度可以达到800MPa等级,并具有耐应力腐蚀性能,经过锻造和焊接及热处理形成高强韧链条。
本发明与该专利相比:成分中Cu含量不同,且本发明优化了C、N含量和合金元素如Mn、Cr、Ni、Mo等及微合金元素Al、V、Nb等元素含量。本发明利用C、Ni和Cu元素的设计,结合Mn、Cr、Mo等元素的优化,形成了回火马氏体和少量贝氏体及残留奥氏体的复相微观组织。且力学性能明显优于该专利。
中国专利公开号CN103276303A公开了“一种高强度矿用链条钢及其制备方法”,其成分为:C:0.21~0.25%,Mn:0.20~0.25%,Si:0.15~0.35%,Cr:0.40~0.65%,Ni:0.60~0.70%,Cu:0.07~0.15%,Alt:0.02~0.05%,N≤0.012%,S≤0.015%,P≤0.015%,余量为Fe。制备方法包括;电炉或转炉冶炼工序、炉外精炼工序、钢坯连铸工序和加热轧制工序,得到规格Φ20~50mm的直条,退火后得到高强度矿用链条钢。
本发明与该专利相比:成分中Cr、Mn、Ni、Mo含量完全不同,且本发明优化了C、Cu、Al、Nb、V等成分范围,且限定了N、Ca含量。 采用本发明所述的合金元素范围,形成回火马氏体及残留奥氏体的微观组织,具有高强韧的力学性能。对于抗拉强度超过1000MPa的高强度钢而言,会吸附环境中的H导致延迟开裂,对大规格高强钢棒材则对氢更为敏感,因此本发明中限定了钢中H元素,但是该专利中并无此要求,因此本发明的耐应力腐蚀性能及耐延迟开裂性能优于该专利所述钢种。该专利用于制造Φ20~50mm的直条,而本发明可以制造Φ50~170mm的棒材,适用规格更大且更为广泛。因此本发明从成分和组织与工艺设计等方面与该专利的技术路线完全不同。本发明的抗拉强度R m≥1200MPa,屈服强度R p0.2≥1000MPa,冲击功A kv≥60J,本发明的强度等级优于该专利,且具有优异的冲击韧性和抗应力腐蚀开裂性能。
本发明的有益效果:
1、本发明通过合理设计化学成分并结合优化工艺,开发出高强韧钢材,轧制或锻造好的棒材在淬火后采用回火热处理工艺,形成回火马氏体和少量贝氏体及残留奥氏体的组织,以及细小弥散的析出物。
2、钢材的成分和工艺设计合理,工艺窗口宽松,可以在棒材或高速线材产线上实现批量商业化生产。
3、本发明生产的钢材屈服强度R p0.2≥1000MPa,抗拉强度R m≥1200MPa,延伸率A≥12%,断面收缩率Z≥50%,夏比冲击功A kv≥60J。
工程领域通常采用环境条件下延伸率变化来反映应力腐蚀倾向,本发明参考挪威船级社对氢脆敏感性的要求按照GB/T 2975-2018《钢及钢产品力学性能试验取样位置及试样制备》制备圆形截面试样,试样直径为10mm。并按国标GB/T 228.1进行拉伸试验,应变速率≤0.0003/s,获得断面收缩率Z,并定义氢脆系数η(Z)来评价钢材的抗应力腐蚀性能:
η(Z)=(Z 1-Z 2)/Z 1×100%
其中:Z 1-250℃烘烤2h去氢处理后的圆钢拉伸试验断面收缩率;
Z 2-圆钢拉伸试验断面收缩率。
当氢脆系数η(Z)越小,应力腐蚀倾向则越小。本发明生产的钢材氢脆系数η(Z)≤15%,有良好的抗应力腐蚀性能。
附图说明
图1为本发明实施例2圆钢的微观组织金相照片(放大倍数500倍);
图2为本发明实施例2制备链条的微观组织金相照片(放大倍数500倍)。
具体实施方式
以下用实施例结合附图对本发明作更详细的描述。这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。
本发明所述圆钢实施例及对比例的成分见表1。本发明实施例1~7的高强韧钢及对比例1~3,成分系数见表2,可见实施例微合金元素Al、Nb、V的含量与N含量比值系数r M/N的范围在1.0~9.9;碳当量Ceq≤0.80;有害元素系数J H≤500。
本发明实施例和对比例的制造方法见表3,制备试样进行力学性能测试,实施例和对比例的测试结果见表4。
按照GB/T 2975-2018《钢及钢产品力学性能试验取样位置及试样制备》制备样品,按照GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》进行拉伸试验,并采用GB/T 229-2007《金属材料夏比摆锤冲击试验方法》测试室温冲击韧性,对3个试样进行了测试,冲击功得到了3个值。
实施例1
按表1所示的化学成分电炉冶炼,精炼和真空处理后浇铸成连铸坯,将连铸坯加热至1050℃,保温时间4h;钢坯出加热炉经高压水除鳞后开始轧制,终轧温度为850℃,中间坯尺寸200×200mm。中间坯加热至1050℃,保温时间24h,出炉经高压水除鳞后开始轧制,终轧温度800℃,成品棒材规格为φ50mm。轧制后堆冷。淬火加热温度为850℃,加热时间为60min,回火温度为390℃,回火时间为90min,回火后空冷。
实施例2
实施方式同实施例1,其中加热温度为1080℃,保温时间3h,终轧温度为880℃,中间坯尺寸220×220mm。中间坯加热至1120℃,保温时 间3h,终轧温度850℃,成品棒材规格为φ75mm。轧制后空冷。淬火加热温度为870℃,加热时间为100min,回火温度为550℃,回火时间为60min,回火后水冷。
实施例3
实施方式同实施例1,其中加热温度为1120℃,保温时间8h,终轧温度为940℃,中间坯尺寸260×260mm。中间坯加热至1200℃,保温时间5h,终轧温度880℃,成品棒材规格为φ100mm。轧制后空冷。淬火加热温度为890℃,加热时间为150min,回火温度为430℃,回火时间为100min,回火后空冷。
实施例4
实施方式同实施例1,其中加热温度为1250℃,保温时间14h,热连轧成形,终轧温度为900℃,成品棒材规格为φ150mm。轧制后空冷。淬火加热温度为990℃,加热时间为210min,回火温度为350℃,回火时间为180min,回火后水冷。
实施例5
按表1所示的化学成分转炉冶炼,精炼和真空处理后浇铸成钢锭,加热温度为1180℃,保温时间3.5h,终轧温度为980℃,中间坯尺寸280×280mm。中间坯加热至1250℃,保温时间12h,终轧温度950℃,成品棒材规格为φ160mm。轧制后缓冷。淬火加热温度为900℃,加热时间为210min,回火温度为450℃,回火时间为190min,回火后水冷。
实施例6
实施方式同实施例5,其中加热温度为1220℃,保温时间24h,锻造成形,终锻温度为920℃,成品棒材规格为φ170mm。锻制后空冷。淬火加热温度为920℃,加热时间为240min,回火温度为420℃,回火时间为240min,回火后空冷。
实施例7
实施方式同实施例2,其中加热温度为1080℃,保温时间3h,终轧温度为880℃,中间坯尺寸220×220mm。中间坯加热至1100℃,保温时间3h,终轧温度850℃,成品棒材规格为φ65mm。轧制后空冷。淬火加热温度为880℃,加热时间为150min,回火温度为400℃,回火时间为100min,回火后水冷。
对比例1~3来自不同厂家的商品材,热处理工艺参考供应商推荐参数,参见表3。
从表4可以看出,对比例1含Nb较高、微合金系数为10.1,析出强化效果差,强度低,冲击韧性低,疲劳寿命较短;对比例2中P含量较高,且有害元素系数为678,耐大气腐蚀系数为5.3,冲击韧性和抗应力腐蚀开裂差,氢脆系数较高;对比例3中S含量较高,导致冲击韧性较差。
而本发明实施例1-7中的高强韧钢材的屈服强度均R p0.2≥1000MPa,抗拉强度R m≥1200MPa,延伸率A≥12%,断面收缩率Z≥50%,夏比冲击功A kv≥60J,氢脆系数η(Z)≤15%。实施例6中由于采用一次性加热轧制成材工艺,并且棒材规格较大,造成组织致密性略差,相对于其他实施例,强度和冲击性能有所下降;实施例7中由于耐大气腐蚀系数较低,导致冲击韧性和氢脆系数及抗应腐蚀开裂性能等相对于其他实施例效果稍差。
对实施例2制备的圆钢和以实施例2作为原料制备的矿用链条进行微观组织研究,光学显微镜照片见图1、图2。从图中可以看出,圆钢的微观组织是回火马氏体和少量贝氏体及残留奥氏体,而采用实施例2制备的圆钢进一步制备得到的链条的微观组织是细化的回火马氏体和少量贝氏体。
Figure PCTCN2021077430-appb-000001
Figure PCTCN2021077430-appb-000002
Figure PCTCN2021077430-appb-000003
Figure PCTCN2021077430-appb-000004

Claims (10)

  1. 一种矿用链条钢,其成分质量百分比为:C:0.20~0.28%、Si:0.01~0.40%、Mn:0.50~1.50%、P≤0.015%、S≤0.005%、Cr:0.30~2.00%、Ni:0.50~2.00%、Mo:0.10~0.80%、Cu:0.01~0.30%、Al:0.01~0.05%、Nb:0.001~0.10%、V:0.001~0.10%、H≤0.00018%、N≤0.0150%、O≤0.0020%,余量为Fe和不可避免的杂质;且,
    微合金元素系数r M/N的范围为:1.0~9.9,
    r M/N=([Al]/2+[Nb]/7+[V]/4)/[N];
    微量元素As:≤0.05%,Pb:≤0.05%,Sn:≤0.02%,Sb:≤0.01%,Bi:≤0.01%,有害元素系数J H≤500,
    J H=([P]+[Sn]+[As]+[Pb]+[Sb]+[Bi])*([Si]+[Mn])*10000。
  2. 如权利要求1所述的矿用链条钢,其特征在于,控制Ceq≤0.80,
    Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Ni]+[Cu])/15。
  3. 如权利要求1所述的矿用链条钢,其特征在于,耐大气腐蚀指数I≥7.0,
    I=26.0[Cu]+3.9[Ni]+1.2[Cr]+1.5[Si]+17.3[P]-7.3[Cu][Ni]-9.1[Ni][P]-33.4[Cu] 2
  4. 如权利要求1所述的矿用链条钢,其特征在于,所述不可避免的杂质中,B≤0.0010%、Ti≤0.003%、Ca≤0.005%。
  5. 如权利要求1~4中任一项所述的矿用链条钢,其特征在于,所述矿用链条钢的显微组织为回火马氏体、贝氏体及残留奥氏体。
  6. 如权利要求1~4中任一项所述的矿用链条钢,其特征在于,所述矿用链条钢的屈服强度R p0.2≥1000MPa,抗拉强度R m≥1200MPa,延伸率A≥12%,断面收缩率Z≥50%,夏比冲击功A kv≥60J,氢脆系数η(Z)≤15%。
  7. 一种权利要求1~6任何一项所述的矿用链条钢的制造方法,其特征是,包括冶炼、浇铸、加热、锻造或轧制、淬火热处理和回火热处理工序;所述加热过程中,加热温度为1050~1250℃,保温时间3~24h;所述锻造或轧制过程中,终轧温度或终锻温度≥800℃;淬火热处理的加热温度为850~1000℃,保温时间60~240min,奥氏体化后采用水淬处理;回火热处理的回火温度为350~550℃,保温时间60~240min,回火后空冷或水冷。
  8. 如权利要求7所述的矿用链条钢的制造方法,其特征是,所述冶炼包括电炉冶炼或转炉冶炼,并进行精炼及真空处理;所述浇铸采用模铸或连铸。
  9. 如权利要求7所述的矿用链条钢的制造方法,其特征是,所述锻造过程中,直接锻造至最终成品尺寸;所述轧制过程中,采用钢坯直接轧制到最终成品尺寸;或者采用钢坯轧制到指定的中间坯尺寸,再进行加热和轧制到最终成品尺寸,中间坯加热温度为1050~1250℃,保温时间3~24h。
  10. 如权利要求7或9所述的矿用链条钢的制造方法,其特征是,所述轧制过程中,钢坯出加热炉经高压水除鳞后开始轧制,轧制后采用空冷或缓冷。
PCT/CN2021/077430 2020-02-28 2021-02-23 一种矿用链条钢及其制造方法 WO2021169941A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112022016824A BR112022016824A2 (pt) 2020-02-28 2021-02-23 Aço para cadeia de mineração e método de fabricação deste
MX2022010591A MX2022010591A (es) 2020-02-28 2021-02-23 Acero para cadena de mineria y metodo de fabricacion del mismo.
KR1020227028750A KR20220129609A (ko) 2020-02-28 2021-02-23 광산 체인용 스틸 및 그 제조방법
JP2022550659A JP7497447B2 (ja) 2020-02-28 2021-02-23 採掘チェーン用鋼およびその製造方法
EP21760437.0A EP4089197A4 (en) 2020-02-28 2021-02-23 CHAIN STEEL FOR USE IN MINING AND METHOD FOR ITS MANUFACTURE
US17/800,800 US20230235435A1 (en) 2020-02-28 2021-02-23 Steel for mining chain and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010129796.6A CN113322409B (zh) 2020-02-28 2020-02-28 一种高强韧矿用链条钢及其制造方法
CN202010129796.6 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021169941A1 true WO2021169941A1 (zh) 2021-09-02

Family

ID=77412659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077430 WO2021169941A1 (zh) 2020-02-28 2021-02-23 一种矿用链条钢及其制造方法

Country Status (8)

Country Link
US (1) US20230235435A1 (zh)
EP (1) EP4089197A4 (zh)
JP (1) JP7497447B2 (zh)
KR (1) KR20220129609A (zh)
CN (1) CN113322409B (zh)
BR (1) BR112022016824A2 (zh)
MX (1) MX2022010591A (zh)
WO (1) WO2021169941A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789474A (zh) * 2021-09-14 2021-12-14 鞍钢股份有限公司 一种经济型非开挖钻杆用无缝钢管及其制造方法
CN113862568A (zh) * 2021-09-23 2021-12-31 天津钢管制造有限公司 煤矿勘探放水用无缝钢管及制造方法
CN113957358A (zh) * 2021-10-12 2022-01-21 北京科技大学 抗拉强度大于2200MPa高强度热成形钢基板及制备方法
CN113957341A (zh) * 2021-10-16 2022-01-21 宝鼎重工有限公司 炉水循环泵用泵壳体锻件及制作方法
CN114000034A (zh) * 2021-11-02 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 一种低屈强比高强贝氏体钢轨及其生产方法
CN114032472A (zh) * 2021-11-02 2022-02-11 西京学院 一种新型无钴马氏体时效钢及其强韧化处理工艺
CN114540716A (zh) * 2022-03-04 2022-05-27 马鞍山钢铁股份有限公司 一种壁厚≥600mm高强韧高寿命水下采油树阀体用钢及其热处理方法和生产方法
CN114574762A (zh) * 2022-03-04 2022-06-03 马鞍山钢铁股份有限公司 一种在高废钢比下冶炼的高强韧耐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN114592153A (zh) * 2021-11-22 2022-06-07 宝山钢铁股份有限公司 一种具有优良耐候性能的高强度钢材及其制造方法
CN114635081A (zh) * 2022-02-11 2022-06-17 包头钢铁(集团)有限责任公司 一种高品质圆环链盘条的生产方法
CN114774630A (zh) * 2022-04-21 2022-07-22 河南中原特钢装备制造有限公司 低成本低合金超高强钢及其制造方法
CN114875322A (zh) * 2022-05-18 2022-08-09 湖南华菱涟钢特种新材料有限公司 钢材及其制备方法
CN114990450A (zh) * 2022-06-30 2022-09-02 马鞍山钢铁股份有限公司 一种高耐磨弹性车轮用轮箍及其热处理工艺
CN115161439A (zh) * 2022-07-20 2022-10-11 国家能源集团新疆能源有限责任公司 链条制造方法以及通过该方法获得的链条
CN115233089A (zh) * 2022-05-16 2022-10-25 季华实验室 一种柔轮用特殊钢及其制备工艺
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
WO2023160613A1 (zh) * 2022-02-23 2023-08-31 上海茵矩材料科技有限公司 一种系泊链钢及生产方法以及系泊链及生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048665B (zh) 2020-08-17 2022-03-22 莱芜钢铁集团银山型钢有限公司 一种极地海洋工程用钢板及其制备方法
CN114959443B (zh) * 2022-03-17 2023-09-12 宝山钢铁股份有限公司 一种耐海水腐蚀高强度钢材、圆钢及其制造方法
CN115125445B (zh) * 2022-06-28 2023-08-11 宝山钢铁股份有限公司 一种具有良好强韧性的高强钢及其制造方法
CN115094204A (zh) * 2022-07-18 2022-09-23 重庆齿轮箱有限责任公司 中碳合金钢的一种热处理方法
WO2024022531A1 (zh) * 2022-07-29 2024-02-01 宝山钢铁股份有限公司 一种耐腐蚀性耐磨钢板及其制造方法
CN115369319B (zh) * 2022-08-05 2023-08-29 张家口三信同达机械制造有限公司 一种可焊高强高韧耐磨材料及其热处理工艺
CN115747630B (zh) * 2022-08-30 2023-09-12 张家港海锅新能源装备股份有限公司 一种深海采油装备管道连接器用钢及其锻造方法
CN115838897A (zh) * 2022-11-18 2023-03-24 莱芜钢铁集团银山型钢有限公司 一种415hb级泥沙输送管道用马氏体耐磨耐蚀钢管及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146583A (en) 1995-12-20 2000-11-14 Parsons Chain Company Limited Alloy steel composition and chain products fabricated in such alloy steel
CN1490426A (zh) * 2002-10-16 2004-04-21 天津航道勘察设计研究院 疏浚机具用耐磨铸造合金及其制备方法
KR100823598B1 (ko) * 2006-10-24 2008-04-21 주식회사 포스코 등방성이 우수한 고탄소강 및 그 제조방법
CN102747299A (zh) * 2012-07-23 2012-10-24 西华大学 高寒地区铁路辙叉高性能贝氏体耐磨钢及制造方法
CN103276303A (zh) 2013-06-07 2013-09-04 南京钢铁股份有限公司 一种高强度矿用链条钢及其制备方法
KR20150002956A (ko) * 2013-06-27 2015-01-08 현대제철 주식회사 라인파이프용 후강판 및 그 제조 방법
KR20150050701A (ko) * 2013-10-30 2015-05-11 현대제철 주식회사 유정용 강관 및 그 제조 방법
CN106854738A (zh) * 2015-12-08 2017-06-16 重庆葛利兹模具技术有限公司上海分公司 一种易切削塑料模具钢及其热处理方法
CN108004469A (zh) * 2017-12-08 2018-05-08 北京科技大学 一种低合金高韧性q-p-t耐磨钢板及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526847B2 (zh) * 1972-05-19 1977-02-25
SE515623C2 (sv) 2000-02-14 2001-09-10 Ovako Steel Ab Kättingstål
CN101397636B (zh) 2007-09-25 2010-12-01 宝山钢铁股份有限公司 一种高强韧性矿用圆环链用钢及其制造方法
JP5235452B2 (ja) * 2008-02-28 2013-07-10 新日鐵住金ステンレス株式会社 耐食性と耐磨耗性に優れる織機部材用マルテンサイト系ステンレス鋼とその鋼帯の製造方法
CN102453841A (zh) * 2010-10-22 2012-05-16 江阴兴澄特种钢铁有限公司 海洋采油平台r4s级系泊链条用钢及其制造方法
CN102534423B (zh) * 2012-02-29 2016-01-20 宝山钢铁股份有限公司 高强度钢板及其制造方法
CN102747303B (zh) * 2012-06-29 2015-01-21 宝山钢铁股份有限公司 一种屈服强度1100MPa级高强度钢板及其制造方法
CN103667953B (zh) * 2013-11-28 2016-09-28 江苏亚星锚链股份有限公司 一种低环境裂纹敏感性超高强韧性海洋系泊链钢及其制造方法
JP6439248B2 (ja) 2013-12-18 2018-12-19 新日鐵住金株式会社 打ち抜き性に優れる中・高炭素鋼板およびその製造方法
CN106521316B (zh) * 2016-11-15 2018-08-07 江阴兴澄特种钢铁有限公司 一种紧固件用高淬透性中碳低合金圆钢及其制造方法
JP7062973B2 (ja) 2018-01-26 2022-05-09 日本製鉄株式会社 係留チェーン用鋼および係留チェーン
CN109136737A (zh) * 2018-06-20 2019-01-04 宝山钢铁股份有限公司 一种抗拉强度1100MPa级超高强韧钢及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146583A (en) 1995-12-20 2000-11-14 Parsons Chain Company Limited Alloy steel composition and chain products fabricated in such alloy steel
CN1490426A (zh) * 2002-10-16 2004-04-21 天津航道勘察设计研究院 疏浚机具用耐磨铸造合金及其制备方法
KR100823598B1 (ko) * 2006-10-24 2008-04-21 주식회사 포스코 등방성이 우수한 고탄소강 및 그 제조방법
CN102747299A (zh) * 2012-07-23 2012-10-24 西华大学 高寒地区铁路辙叉高性能贝氏体耐磨钢及制造方法
CN103276303A (zh) 2013-06-07 2013-09-04 南京钢铁股份有限公司 一种高强度矿用链条钢及其制备方法
KR20150002956A (ko) * 2013-06-27 2015-01-08 현대제철 주식회사 라인파이프용 후강판 및 그 제조 방법
KR20150050701A (ko) * 2013-10-30 2015-05-11 현대제철 주식회사 유정용 강관 및 그 제조 방법
CN106854738A (zh) * 2015-12-08 2017-06-16 重庆葛利兹模具技术有限公司上海分公司 一种易切削塑料模具钢及其热处理方法
CN108004469A (zh) * 2017-12-08 2018-05-08 北京科技大学 一种低合金高韧性q-p-t耐磨钢板及其制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789474A (zh) * 2021-09-14 2021-12-14 鞍钢股份有限公司 一种经济型非开挖钻杆用无缝钢管及其制造方法
CN113862568A (zh) * 2021-09-23 2021-12-31 天津钢管制造有限公司 煤矿勘探放水用无缝钢管及制造方法
CN113957358A (zh) * 2021-10-12 2022-01-21 北京科技大学 抗拉强度大于2200MPa高强度热成形钢基板及制备方法
CN113957341A (zh) * 2021-10-16 2022-01-21 宝鼎重工有限公司 炉水循环泵用泵壳体锻件及制作方法
CN114000034A (zh) * 2021-11-02 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 一种低屈强比高强贝氏体钢轨及其生产方法
CN114032472A (zh) * 2021-11-02 2022-02-11 西京学院 一种新型无钴马氏体时效钢及其强韧化处理工艺
CN114032472B (zh) * 2021-11-02 2023-02-07 西京学院 一种无钴马氏体时效钢及其强韧化处理工艺
CN114592153A (zh) * 2021-11-22 2022-06-07 宝山钢铁股份有限公司 一种具有优良耐候性能的高强度钢材及其制造方法
CN114635081A (zh) * 2022-02-11 2022-06-17 包头钢铁(集团)有限责任公司 一种高品质圆环链盘条的生产方法
WO2023160613A1 (zh) * 2022-02-23 2023-08-31 上海茵矩材料科技有限公司 一种系泊链钢及生产方法以及系泊链及生产方法
CN114574762B (zh) * 2022-03-04 2022-11-08 马鞍山钢铁股份有限公司 一种在高废钢比下冶炼的高强韧耐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN114574762A (zh) * 2022-03-04 2022-06-03 马鞍山钢铁股份有限公司 一种在高废钢比下冶炼的高强韧耐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN114540716A (zh) * 2022-03-04 2022-05-27 马鞍山钢铁股份有限公司 一种壁厚≥600mm高强韧高寿命水下采油树阀体用钢及其热处理方法和生产方法
CN114774630A (zh) * 2022-04-21 2022-07-22 河南中原特钢装备制造有限公司 低成本低合金超高强钢及其制造方法
CN114774630B (zh) * 2022-04-21 2024-05-03 河南中原特钢装备制造有限公司 低成本低合金超高强钢及其制造方法
CN115233089A (zh) * 2022-05-16 2022-10-25 季华实验室 一种柔轮用特殊钢及其制备工艺
CN114875322A (zh) * 2022-05-18 2022-08-09 湖南华菱涟钢特种新材料有限公司 钢材及其制备方法
CN114990450A (zh) * 2022-06-30 2022-09-02 马鞍山钢铁股份有限公司 一种高耐磨弹性车轮用轮箍及其热处理工艺
CN114990450B (zh) * 2022-06-30 2023-08-11 马鞍山钢铁股份有限公司 一种高耐磨弹性车轮用轮箍及其热处理工艺
CN115161439A (zh) * 2022-07-20 2022-10-11 国家能源集团新疆能源有限责任公司 链条制造方法以及通过该方法获得的链条
CN115161439B (zh) * 2022-07-20 2023-11-24 国家能源集团新疆能源有限责任公司 链条制造方法以及通过该方法获得的链条
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法

Also Published As

Publication number Publication date
KR20220129609A (ko) 2022-09-23
CN113322409A (zh) 2021-08-31
MX2022010591A (es) 2022-09-07
EP4089197A1 (en) 2022-11-16
JP7497447B2 (ja) 2024-06-10
JP2023515115A (ja) 2023-04-12
EP4089197A4 (en) 2023-07-26
CN113322409B (zh) 2022-06-28
BR112022016824A2 (pt) 2022-10-11
US20230235435A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2021169941A1 (zh) 一种矿用链条钢及其制造方法
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
CN103882330B (zh) 一种低屈强比超高强度非调质钢板及其生产方法
WO2020238851A1 (zh) 一种钢、棒材及棒材的制造方法
WO2007074984A1 (en) High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same
WO2022152158A1 (zh) 一种高强韧易切削非调质圆钢及其制造方法
WO2019119725A1 (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN102796967A (zh) 一种800MPa经济型耐腐蚀高强度钢板
CN114592153A (zh) 一种具有优良耐候性能的高强度钢材及其制造方法
CN114134431B (zh) 一种方坯连铸连轧2000Mpa级高强高韧高淬透性弹簧钢及其制造方法
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
CN111748737B (zh) 一种冷裂纹敏感系数≤0.25的易焊接超高强钢及生产方法
CN115125445B (zh) 一种具有良好强韧性的高强钢及其制造方法
CN114134387B (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
AU2020455074A1 (en) 800 MPa construction machinery medium-manganese medium-thickness steel and manufacturing method therefor
RU2801655C1 (ru) Сталь для цепей горнодобывающего оборудования и способ её изготовления
CN111321346A (zh) 一种具有优异耐氢致延迟断裂性能的超高强度弹簧钢及其生产方法
CN103981437A (zh) 一种高强度、高韧性合金钢、制备方法及其在钢构中的应用
CN115386783B (zh) 一种屈服强度1000MPa级超高强钢板及其制备方法
CN117344206A (zh) 高强度钢及其制造方法
CN118064796A (zh) 一种焊接性能优良的超高强钢及其制造方法
CN117535583A (zh) 一种850MPa级高延伸率调质钢板及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021760437

Country of ref document: EP

Effective date: 20220809

ENP Entry into the national phase

Ref document number: 2022550659

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016824

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022016824

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220823