WO2021164360A1 - 一种显示模组和显示装置 - Google Patents

一种显示模组和显示装置 Download PDF

Info

Publication number
WO2021164360A1
WO2021164360A1 PCT/CN2020/131142 CN2020131142W WO2021164360A1 WO 2021164360 A1 WO2021164360 A1 WO 2021164360A1 CN 2020131142 W CN2020131142 W CN 2020131142W WO 2021164360 A1 WO2021164360 A1 WO 2021164360A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
binding
display panel
display area
display module
Prior art date
Application number
PCT/CN2020/131142
Other languages
English (en)
French (fr)
Inventor
贺佐正
胡治晋
熊源
江庆军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021164360A1 publication Critical patent/WO2021164360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Definitions

  • This application relates to the field of display technology, and more specifically to a display module and a display device.
  • the screen-to-body ratio is the ratio of the screen area to the entire machine area.
  • a binding area is provided in the non-display area of the display screen (that is, the display panel).
  • the binding area and the flexible circuit board are connected by anisotropic conductive adhesive.
  • the anisotropic conductive adhesive in the bonding process has a problem of aggregation of conductive particles, which leads to short circuits, which affects the yield of the bonding process and the reliability of product applications.
  • the present application provides a display module and a display device to solve the problem of aggregation of anisotropic conductive adhesive conductive particles during the bonding process, and improve the bonding yield and product application reliability.
  • an embodiment of the present application provides a display module, including:
  • a display panel the display panel includes a display area and a non-display area surrounding the display area; the display panel also includes a support column located in the non-display area and a plurality of first binding boards, wherein the support column is located at the first binding board away from the display area
  • the flexible circuit board includes a plurality of second binding boards, and the second binding board is connected to the first binding board through anisotropic conductive glue.
  • a support column is provided in the non-display area, and the support column is located on a side of the first binding board away from the display area.
  • the supporting column can act on the flexible circuit board at the edge of the display panel.
  • the supporting function prevents the pressure head from tilting due to the impact of the torque when the pressure is present, which causes the gap between the flexible circuit board and the edge of the panel to become smaller, and prevents the anisotropic conductive adhesive from overflowing, thereby causing particle aggregation problems.
  • the space between two adjacent support pillars can be used as an overflow channel for the anisotropic conductive adhesive to further reduce binding
  • the conductive particles gather and short-circuit the risk, which improves the yield of the bonding process.
  • the display panel includes a base substrate.
  • the distance between the surface of the first binding plate on the side away from the base substrate and the base substrate is H1
  • the distance of the support column away from the base substrate is one
  • the distance between the surface of the side and the base substrate is H2, where ⁇ H1-H2 ⁇ 2 ⁇ m.
  • the height difference between the support column and the first binding board satisfies a certain range, which can prevent the height of the support column from being too high, resulting in excessive support, and making the binding process between the first binding board and the second binding board
  • the contact performance of conductive particles in the anisotropic conductive adhesive becomes worse; at the same time, it can ensure that an overflow channel is formed between adjacent support pillars to avoid the narrowing of the gap between the flexible circuit board and the edge of the display panel, which may cause the conductive particles to gather. Short circuit.
  • the supporting column and the second binding plate overlap.
  • the anisotropic conductive adhesive between the support column and the second binding plate can overflow the glue in the gap between the adjacent second binding plates, and at the same time Glue can be overflowed in the gap between adjacent support columns, increasing the glue overflow channel.
  • the support column and the second binding plate are in one-to-one correspondence.
  • the supporting column is connected to the first binding plate.
  • the uniformity of the stress of the anisotropic conductive adhesive can be ensured, and the uniform overflow of the anisotropic conductive adhesive can be further ensured, and the aggregation of conductive particles can be effectively avoided.
  • the edge of the support column on the side away from the display area is spaced a certain distance from the edge of the display panel.
  • the first binding board is usually 50-100 ⁇ m away from the edge of the panel in the panel design. Adding support pillars in this space will not affect the frame of the display panel, and at the same time, ensure that the support pillars and the panel are separated The edges are separated by a certain distance, the cutting process will not cut to the support column, and the cutting thickness in the panel cutting process will not be increased, which can prevent the poor cutting from affecting the panel performance or the support performance of the support column on the second binding board.
  • the plurality of support columns are arranged along the first direction, and the cross-sectional shape of the support columns parallel to the first direction is any one of rectangle, trapezoid, and triangle.
  • the supporting column at least includes a first insulating layer, and the first insulating layer is in contact with the anisotropic conductive adhesive. Therefore, it is ensured that the surface layer of the support column is not conductive, the risk of ion accumulation and short circuit is reduced, and the risk of electrostatic damage can also be reduced.
  • a driving chip is fixed on the flexible circuit board.
  • an embodiment of the present application further provides a display device, including the display module provided in any embodiment of the present application.
  • a support column is arranged in the non-display area, and the support column is located on a side of the first binding board away from the display area.
  • the supporting column can act on the flexible circuit board at the edge of the display panel.
  • the supporting function prevents the pressure head from tilting due to the impact of the torque when the pressure is present, which causes the gap between the flexible circuit board and the edge of the panel to become smaller, and prevents the anisotropic conductive adhesive from overflowing, thereby causing particle aggregation problems.
  • the space between two adjacent support pillars can be used as an overflow channel for the anisotropic conductive adhesive.
  • the overflow channel of the anisotropic conductive adhesive can be increased, thereby reducing the risk of conductive particles gathering and short-circuiting in the bonding process, and improving the bonding process yield and product application reliability.
  • FIG. 1 is a simplified schematic diagram of a bonding process of a display module in the related art
  • FIG. 2 is a schematic diagram of a display module provided by an embodiment of the application.
  • Fig. 3 is a schematic cross-sectional view at the position of the tangent line A-A' in Fig. 2;
  • Fig. 4 is a schematic cross-sectional view at the position of the tangent line B-B' in Fig. 2;
  • Figure 5 is the second schematic cross-sectional view at the position of the tangent line A-A' in Figure 2;
  • FIG. 6 is a partial schematic diagram of an optional implementation manner of a display module provided by an embodiment of this application.
  • Fig. 7 is the third schematic diagram of the cross section at the position of the tangent line A-A' in Fig. 2;
  • Figure 8 is the second schematic cross-sectional view at the position of the tangent line B-B' in Figure 2;
  • FIG. 9 is a schematic cross-sectional view of another alternative implementation of the display module provided by the embodiment of the application.
  • FIG. 10 is a schematic cross-sectional view of another alternative implementation of the display module provided by the embodiment of the application.
  • FIG. 11 is a schematic cross-sectional view of another alternative implementation of the display module provided by the embodiment of the application.
  • FIG. 12 is a schematic diagram of a display device provided by an embodiment of the application.
  • FIG. 1 is a simplified schematic diagram of a bonding process of a display module in the related art.
  • a display panel 100' is shown, and the bonding board 2'on the non-display area 1'of the display panel 100', Flexible circuit board 3', anisotropic conductive adhesive 4', binding indenter 5'.
  • the width of the non-display area 1'of the display panel is narrowed.
  • the width of the binding indenter 5' will exceed the non-display area 1'of the display panel, causing the indenter 5'to exert force
  • Torque is generated in the bonding process of the related technology, and the indenter 5'is inclined during the original pressing, which causes the gap between the flexible circuit board 3'and the display panel 100' to be smaller at the edge position (at the position 6'in the figure), which is different. Reflow of the square conductive adhesive 4'overflow is blocked, causing the conductive particles to gather and cause a short circuit, which affects the yield of the binding process.
  • the conventional technical means used by those skilled in the art is to replace the material of the anisotropic conductive adhesive, or to adjust the process parameters in the bonding process.
  • the design of the width of the non-display area reaches the limit value, the replacement of the anisotropic conductive adhesive material and the adjustment of the binding process parameters have reached the bottleneck.
  • the embodiments of the present application provide a display module and a display device. Support pillars are provided in the non-display area. The support pillars can be used to support the flexible circuit board during the binding process, thereby increasing the cost of the anisotropic conductive adhesive.
  • the overflow glue channel reduces the risk of conductive particles gathering in the bonding process and improves the yield of the bonding process.
  • FIG. 2 is a schematic diagram of a display module provided by an embodiment of the application
  • FIG. 3 is a schematic cross-sectional view 1 at the position of the tangent line A-A' in FIG. 2
  • FIG. 4 is a schematic cross-sectional diagram 1 at the location of the tangent line B-B' in FIG.
  • the display module includes: a display panel 100, the display panel 100 includes a display area 11 and a non-display area 22 surrounding the display area 11; the display panel also includes a support column 33 located in the non-display area 22 and a plurality of A binding board 44, wherein the first binding board 44 is a metal plate exposed by the non-display area 22, and the first binding board 44 is electrically connected to the signal wires in the display panel.
  • the supporting column 33 is located on a side of the first binding plate 44 away from the display area 11.
  • the display panel in the embodiment of the present application may be a liquid crystal display panel or an organic light emitting display panel. The embodiment of the present application does not limit the type of the display panel.
  • the flexible circuit board 200 as shown in FIGS. 3 and 4, the flexible circuit board 200 includes a plurality of second binding boards 66, and the second binding boards 66 are connected to the first binding 44 boards through anisotropic conductive adhesive 77. connect.
  • the second binding board 66 is an exposed golden finger of the flexible circuit board 200, and the golden finger is electrically connected to the circuit traces in the flexible circuit board.
  • the display panel includes a supporting structure.
  • the support structure is located in the display area of the display panel, and the support structure is located between the array substrate and the color filter substrate, and the support structure is used to support the cell thickness of the liquid crystal cell.
  • the support structure in the display area is used to support the mask during the organic layer evaporation process; or in some technologies, the support structure is used to relieve the stress on the sub-pixels and avoid display The phenomenon that part of the panel cannot be displayed.
  • a support column is provided in the non-display area, and the support column is located on a side of the first binding plate away from the display area.
  • the supporting column can act on the flexible circuit board at the edge of the display panel.
  • the supporting function prevents the indenter from tilting due to the impact of the torque during the original pressure, which causes the gap between the flexible circuit board and the edge of the panel to become smaller, and prevents the anisotropic conductive adhesive from overflowing, thereby causing particle aggregation problems.
  • the space between two adjacent support pillars can be used as an overflow channel for the anisotropic conductive adhesive.
  • the overflow channel of the anisotropic conductive adhesive can be increased, thereby reducing the risk of conductive particles gathering and short-circuiting in the bonding process, and improving the bonding process yield and product application reliability.
  • FIG. 5 is the second cross-sectional schematic diagram at the position of the tangent line A-A' in FIG. 2.
  • the display panel includes a base substrate 101. In the direction perpendicular to the base substrate 101, the distance between the surface of the first binding plate 44 and the base substrate 101 away from the base substrate 101 is H1, The distance between the surface of the supporting column 33 on the side away from the base substrate 101 and the base substrate 101 is H2, where ⁇ H1-H2 ⁇ 2 ⁇ m.
  • FIG. 5 only uses the display panel as a liquid crystal display panel for illustration, showing the array layer 102, the liquid crystal molecular layer 103 and the color filter substrate 104 on the base substrate 101. The thin film transistor 1021 in the array layer 102 is also shown.
  • the first binding board 44 is connected to the signal lead 1022 through the via hole, and the signal lead 1022 is electrically connected to the corresponding signal line in the display panel.
  • ⁇ H1-H2 ⁇ 2 ⁇ m that is, the absolute value of the height difference between the support column and the first binding plate is not more than 2 ⁇ m.
  • the supporting column may be higher than the first binding plate by a certain length, or the supporting column may be shorter than the first binding plate by a certain length. It may also be that the height of the support column is approximately the same as the height of the first binding plate.
  • the particle size of the conductive particles in the anisotropic conductive adhesive is about 3.5 ⁇ m.
  • the design can be combined with the size of the conductive particles, and the height difference between the support column and the first binding plate meets a certain range , It can avoid that the height of the support column is too high, resulting in the transition support of the support column, which makes the contact performance of the conductive particles in the anisotropic conductive adhesive between the first binding plate and the second binding plate deteriorate during the binding process, and Affect the electrical connection performance between the first binding board and the second binding board; at the same time, it can ensure that the overflow channel is formed between the adjacent support columns to avoid the narrowing of the gap between the flexible circuit board and the edge of the display panel.
  • the aggregation of conductive particles causes a short circuit.
  • the supporting column 33 and the second binding plate 66 overlap.
  • the support column 33 can support the flexible circuit board at the position corresponding to the second binding board 66.
  • the anisotropic conductive adhesive between the support column and the second binding board is pressed, and the anisotropic conductive adhesive
  • the glue can overflow in the gap between the adjacent second binding boards, and can overflow the glue in the gap between the adjacent support pillars, which increases the overflow channel and effectively avoids the edge of the flexible circuit board and the display panel.
  • the anisotropic conductive adhesive between the conductive particles is subject to the risk of short-circuiting when the conductive particles are squeezed, which improves the bonding yield.
  • the supporting column 33 and the second binding plate 66 correspond one to one.
  • the support column and the second binding plate are in one-to-one correspondence and are aligned, and the size relationship between the width of the support column and the width of the second binding plate is different in this application. Make a limit. In the cross-sectional view, there may be a certain dislocation between the supporting column and the second binding plate corresponding to each other.
  • FIG. 6 is a partial schematic diagram of an optional implementation manner of the display module provided by the embodiment of the application.
  • the supporting column 33 and the first binding plate 44 are connected.
  • the support column can support the flexible circuit board to prevent the anisotropic conductive glue between the edge of the display panel and the flexible circuit board from being squeezed and overflowing the glue, causing the conductive particles to gather and short-circuit;
  • the uniformity of the stress of the anisotropic conductive adhesive can be ensured, and the uniform overflow of the anisotropic conductive adhesive can be further ensured, and the aggregation of conductive particles can be effectively avoided.
  • the support column 44 and the first binding plate 44 are separated by a certain distance.
  • the gap between the support column and the first binding plate can also be used as an overflow channel.
  • the separation distance between the support column and the first binding plate can be designed according to specific design requirements and the manufacturing process of the support column.
  • FIG. 7 is the third schematic cross-sectional view at the position of the tangent line A-A' in FIG. 2.
  • the edge of the support column 33 on the side away from the display area 11 is spaced apart from the display panel 100 by a certain distance.
  • the first binding board is usually 50-100 ⁇ m away from the edge of the panel in the panel design.
  • Adding support pillars in this space will not affect the frame of the display panel, and at the same time, ensure that the support pillars and the panel are separated The edges are separated by a certain distance, the cutting process will not cut to the support column, and the cutting thickness in the panel cutting process will not be increased, which can prevent the poor cutting from affecting the panel performance or the support performance of the support column on the second binding board.
  • the plurality of support columns are arranged along the first direction, and the cross-sectional shape of the support columns parallel to the first direction is any one of a rectangle, a trapezoid, and a triangle.
  • the cross-sectional shape of the support column as shown in FIG. 4 is rectangular.
  • FIG. 8 FIG.
  • the direction x is arranged, and the cross-sectional shape of the support column 33 parallel to the first direction x is a trapezoid.
  • the trapezoid can be a regular trapezoid or an inverted trapezoid.
  • the cross-sectional shape of the support column may also be other polygons. In practice, the shape of the support column can be selected according to specific process requirements.
  • FIG. 9 is a schematic cross-sectional view of another alternative implementation of the display module provided by the embodiment of the application.
  • a driving chip 201 is fixed on the flexible circuit board 200.
  • the driving chip 201 is fixed on the flexible circuit board, and the driving chip can be bent to the back of the display panel along with the flexible circuit board, which reduces the space of the non-display area and further narrows the frame.
  • the anisotropic conductive adhesive between the edge of the display panel and the flexible circuit board during the bonding process is more likely to be squeezed and overflowed after reflow, causing the conductive particles to aggregate.
  • the glue overflow channel can be added between the edge of the display panel and the flexible circuit board, so as to avoid the aggregation of conductive particles caused by the overflow glue. While achieving further narrowing of the frame, the yield rate of the bonding process is also ensured.
  • the driving chip is fixed in the non-display area of the display panel, and the driving chip is on the side of the first binding board close to the display area.
  • the drawings are not shown here.
  • the material of the support column in this application includes at least one of inorganic materials and organic materials.
  • the support column can be manufactured in the same process as part of the film structure of the display panel, or the manufacturing process of the support column can be additionally added.
  • the supporting column in this application at least includes a first insulating layer, the first insulating layer is in contact with the anisotropic conductive adhesive, so as to ensure that the surface layer of the supporting column is not conductive, and the first insulating layer can ensure that the supporting column and the anisotropic conductive adhesive are in contact with each other. Insulation between. It reduces the risk of ion accumulation and short circuit, and can also reduce the risk of electrostatic damage.
  • the supporting column may be composed of a single film layer, or may be formed by stacking multiple film layers.
  • the support pillars can be completed in the same process as part of the film structure of the display panel. Only the shape of the mask in the process needs to be designed, and the support pillars can be manufactured without adding additional processes. The process is relatively simple.
  • FIG. 10 is a schematic cross-sectional view of another alternative implementation of the display module provided in an embodiment of the application.
  • the display panel includes a base substrate 101, where the base substrate 101 may be a flexible substrate or a rigid substrate.
  • the display panel also includes an array layer 106, a display layer 107, and a packaging structure 108 on the base substrate 101.
  • the array layer 106 includes a pixel circuit, and the pixel circuit includes a plurality of thin film transistors 1061 (shown schematically in the figure).
  • the thin film transistor 1061 includes a semiconductor layer, a gate, a source and a drain, all of which are not shown.
  • a gate insulating layer 1062 is provided between the semiconductor layer and the gate.
  • the gate and capacitor metal in the driving transistor are used in the pixel circuit.
  • the layers (not shown) overlap to form a storage capacitor. Therefore, an insulating layer 1063 is provided between the gate and the capacitor metal layer, an insulating layer 1064 is provided between the capacitor metal layer and the source and drain, and a planarization layer 1065 is provided on the source and drain.
  • the display layer 107 includes a pixel defining layer 1071 and a plurality of light emitting devices 1072.
  • the pixel defining layer 1071 is used to space adjacent light emitting devices 1072.
  • the light emitting device 1072 includes an anode 7, a light emitting layer 8, and a cathode 9.
  • the thin film transistor 1061 is electrically connected.
  • the packaging structure 108 is used to package the display layer 107 to isolate water and oxygen and ensure the service life of the light-emitting device.
  • the packaging structure 108 can be a thin-film packaging, including at least one organic packaging layer and at least one inorganic packaging layer; the packaging structure 108 can be a rigid packaging, and the packaging glass is bonded to the array layer through packaging glue to encapsulate the display layer in a closed space Inside.
  • FIG. 10 also shows that the first binding board 44 is connected to the signal lead 1022 through the via hole, and the signal lead 1022 is electrically connected to the corresponding signal line in the display panel.
  • the signal lead 1022 can be located on the same metal layer as the source and drain of the thin film transistor 1061, or it can be located on the same metal layer as the gate of the thin film transistor 1061.
  • the signal lead 1022 can also be made of multiple layers of metal, which is not done here in this application. limited.
  • the support pillars and the pixel definition layer are manufactured in the same process.
  • the support column and the planarization layer are manufactured in the same process.
  • the display panel further includes a support layer located in the display area, and the support layer is located on the pixel definition layer.
  • the support layer can support the packaging cover.
  • the support column and the support layer can also be manufactured in the same process.
  • the support pillars may also be composed of the above-mentioned gate insulating layer, insulating layer, insulating layer, planarization layer, pixel definition layer, and support. At least two film layers in the layer are made by stacking.
  • the support column is made by stacking multiple film layers, and the multiple film layers include metal layers, as long as it is ensured that the film layer near the anisotropic conductive adhesive on the outer side of the support column is an insulating layer (defined in this application as the first An insulating layer) is sufficient to ensure the insulation between the supporting column and the anisotropic conductive adhesive.
  • FIG. 11 is a schematic cross-sectional view of another alternative implementation of the display module provided by the embodiment of the application.
  • the display panel includes a base substrate 101, an array layer 102 located on the base substrate 101, a liquid crystal molecular layer 103 and a color filter substrate 104.
  • the array layer 102 includes a plurality of thin film transistors 1021, and also includes a pixel electrode 1024 and a common electrode 1023.
  • the pixel electrode 1024 is electrically connected to the thin film transistor 1021. After voltage is applied to the pixel electrode 1024 and the common electrode 1023, the deflection of liquid crystal molecules is controlled. Electric field.
  • the thin film transistor 1021 includes a semiconductor layer, a gate, a source and a drain, all of which are not shown.
  • a gate insulating layer 1025 is provided between the semiconductor layer and the gate, and an interlayer is provided between the gate and the source and drain.
  • the insulating layer 1026 is provided with a planarization layer 1027 on the source and drain electrodes.
  • An insulating layer 1028 is also provided between the pixel electrode 1024 and the common electrode 1023.
  • the relative positions of the pixel electrode 1024 and the common electrode 1023 in the figure are only for illustration. In another embodiment, the positions of the pixel electrode 1024 and the common electrode 1023 can be interchanged.
  • the supporting pillar 33 and the planarization layer 1027 can be manufactured in the same process.
  • the supporting pillar 33 may be composed of the above-mentioned gate insulating layer 1025, interlayer insulating layer 1026, planarization layer 1027, and insulating layer. At least two film layers in the layer 1028 are made by stacking.
  • a manufacturing process of an organic film layer or an inorganic film layer may be additionally added to make the support column.
  • FIG. 12 is a schematic diagram of a display device provided in an embodiment of the present application.
  • the display device includes the display module 10 provided in any embodiment of the present application.
  • the specific structure of the display module 10 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the display device shown in FIG. 12 is only for schematic illustration, and the display device may be any electronic device with a display function, such as a mobile phone, a tablet computer, a notebook computer, an electronic paper book, or a television.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供一种显示模组和显示装置。显示模组包括显示面板和柔性电路板,显示面板包括显示区和包围显示区的非显示区;显示面板还包括位于非显示区的支撑柱和多个第一绑定板,其中,支撑柱位于第一绑定板远离显示区的一侧;柔性电路板,柔性电路板包括多个第二绑定板,第二绑定板通过异方性导电胶与第一绑定板连接。本申请实施例支撑柱能够在显示面板的边缘对柔性电路板起到支撑作用,防止由于绑定压力造成柔性电路板与面板边缘的间隙变小。而且在相邻的两个支撑柱之间的空间能够作为异方性导电胶的溢胶通道,降低绑定工艺中导电粒子聚集短路的风险,提高了绑定工艺良率以及产品应用可靠性。

Description

一种显示模组和显示装置 技术领域
本申请涉及显示技术领域,更具体的涉及一种显示模组和显示装置。
背景技术
随着电子技术的发展,电子产品成为人们生活工作中必不可少的工具,比如手机、平板电脑等,用户在使用电子产品时不断的追求流畅的使用体验,同时对产品的视觉体验也要求越来越高,所以高屏占比逐渐成为各大厂商研究的重点。屏占比即为屏幕面积与整机面积的比例,为了提高屏占比,提升产品竞争力,需要减少显示屏的非显示区的宽度。通常情况下,在显示屏(也即显示面板)的非显示区设置有绑定区,绑定区与柔性电路板通过异方性导电胶相连接,当非显示区的宽度变窄之后,在绑定工艺中的异方性导电胶存在导电粒子聚集问题,导致短路,影响绑定工艺的良率及产品应用可靠性。
发明内容
有鉴于此,本申请提供一种显示模组和显示装置,以解决绑定工艺中异方性导电胶导电粒子聚集问题,提升绑定良率及产品应用可靠性。
第一方面,本申请实施例提供一种显示模组,包括:
显示面板,显示面板包括显示区和包围显示区的非显示区;显示面板还包括位于非显示区的支撑柱和多个第一绑定板,其中,支撑柱位于第一绑定板远离显示区的一侧;
柔性电路板,柔性电路板包括多个第二绑定板,第二绑定板通过异方性导电胶与第一绑定板连接。
本申请实施例中在非显示区设置有支撑柱,且支撑柱位于第一绑定板的远离显示区的一侧。在绑定工艺中,由于非显示区的宽度较窄,导致本压压头的施力中心落在面板非显示区的边缘或者外部时,支撑柱能够在显示面板的边缘对柔性电路板起到支撑作用,防止由于本压时,受扭矩影响压头产生倾斜,造成柔性电路板与面板边缘的间隙变小,阻挡异方性导电胶溢胶,从而产生粒子聚聚问题。而且在柔性电路板和显示面板边缘之间的异方性导电胶受挤压后,在相邻的两个支撑柱之间的空间能够作为异方性导电胶的溢胶通道,进一步降低绑定工艺中导电粒子聚集短路的风险,提高了绑定工艺良率。
进一步的,显示面板包括衬底基板,在垂直于衬底基板方向上,第一绑定板的远离衬底基板一侧的表面距衬底基板的距离为H1,支撑柱的远离衬底基板一侧的表面距衬底基板的距离为H2,其中,∣H1-H2∣≤2μm。支撑柱和第一绑定板之间的高度差满足一定范围,能够避免支撑柱的高度过高,导致支撑度过度支撑,而使得绑定工艺中第一绑定板和第二绑定板之间的异方性导电胶中导电粒子接触性能变差;同时也能够保证在相邻的支撑柱之间形成溢胶通道,避免在柔性电路板和显示面板边缘的间隙变窄造成导电粒子聚集引起短路。
可选的,在垂直于显示面板方向上,支撑柱和第二绑定板交叠。在绑定工艺中,支撑柱和第二绑定板之间的异方性导电胶受压力后,异方性导电胶能够在相邻的第二绑定板之间的空隙内溢胶,同时能够在相邻的支撑柱之间的空隙内溢胶,增加了溢胶通道。
可选的,支撑柱和第二绑定板一一对应。任意一个第二绑定板与显示面板边缘之间均有支撑柱对其支撑,柔性电路板与显示面板边缘之间的异方性导电胶受压力后能够均匀地溢胶。
可选的,支撑柱和第一绑定板相连接。在绑定工艺制程中,能 够保证异方性导电胶受力均匀性,进一步确保异方性导电胶均匀溢胶,有效避免导电粒子聚集。
可选的,支撑柱的远离显示区一侧的边缘与显示面板的边缘间隔一定距离。考虑到切割精度和静电的影响,面板设计中通常第一绑定板距离面板边缘有50~100μm的距离,在此空间内增加支撑柱不会影响显示面板的边框,同时保证支撑柱与面板的边缘间隔一定距离,切割工艺不会切割到支撑柱,则不会增加面板切割工艺中的切割厚度,能够避免切割不良影响面板性能或者支撑柱对第二绑定板的支撑性能。
可选的,多个支撑柱沿第一方向排列,支撑柱的与第一方向平行的截面形状为矩形、梯形、三角形中任意一种。
可选的,支撑柱至少包括第一绝缘层,第一绝缘层与异方性导电胶相接触。从而保证支撑柱的表面层不导电,降低了离子聚集短路的风险,也能够降低静电损伤风险。
可选的,柔性电路板上固定有驱动芯片。
第二方面,本申请实施例还提供一种显示装置,包括本申请任意实施例提供的显示模组。
本申请提供的显示模组和显示装置,具有如下有益效果:
在非显示区设置有支撑柱,且支撑柱位于第一绑定板的远离显示区的一侧。在绑定工艺中,由于非显示区的宽度较窄,导致本压压头的施力中心落在面板非显示区的边缘或者外部时,支撑柱能够在显示面板的边缘对柔性电路板起到支撑作用,防止由于本压时,受扭矩影响压头产生倾斜,造成柔性电路板与面板边缘的间隙变小,阻挡异方性导电胶溢胶,从而产生粒子聚聚问题。而且在柔性电路板和显示面板边缘之间的异方性导电胶受挤压后,在相邻的两个支撑柱之间的空间能够作为异方性导电胶的溢胶通道,本申请实施例能够增加异方性导电胶的溢胶通道,从而降低绑定工艺中导电粒子聚集短路的风险,提高了绑定工艺良率及产品应用可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为相关技术中一种显示模组的绑定工艺简化示意图;
图2为本申请实施例提供的显示模组示意图;
图3为图2中切线A-A'位置处截面示意图一;
图4为图2中切线B-B'位置处截面示意图一;
图5为图2中切线A-A'位置处截面示意图二;
图6为本申请实施例提供的显示模组的一种可选实施方式局部示意图;
图7为图2中切线A-A'位置处截面示意图三;
图8为图2中切线B-B'位置处截面示意图二;
图9为本申请实施例提供的显示模组的另一种可选实施方式截面示意图;
图10为本申请实施例提供的显示模组的另一种可选实施方式截面示意图;
图11为本申请实施例提供的显示模组的另一种可选实施方式截面示意图;
图12为本申请实施例提供的显示装置示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
图1为相关技术中一种显示模组的绑定工艺简化示意图,如图1所示,示出了显示面板100',显示面板100'的非显示区1'上的绑定板2',柔性电路板3',异方性导电胶4',绑定压头5'。为了提高屏占比,显示面板的非显示区1'的宽度变窄,在绑定工艺中绑定压头5'的宽度会超出显示面板的非显示区1',导致压头5'施力中心位置位于非显示区1'之外,根据力矩公式M=L*F,其中,M为力矩,L为力臂,F为压力。相关技术的绑定工艺中产生力矩,本压时压头5'倾斜,导致柔性电路板3'和显示面板100'的绑定在边缘位置间隙变小(图中6'位置处),从而异方性导电胶4'溢胶受阻回流导致导电粒子聚集引起短路,影响绑定工艺的良率。
为了解决粒子聚集问题,本领域技术人员采用的惯用技术手段为替换异方性导电胶的制作材料,或者调节绑定工艺制程中的工艺参数等方式。而当非显示区的宽度设计达到极限值时,异方性导电胶制作材料的替换以及绑定工艺参数的调整已达到瓶颈。基于上述问题,本申请实施例提供一种显示模组和显示装置,在非显示区设置支撑柱,绑定工艺中支撑柱能够用于支撑柔性电路板,从而增大了异方性导电胶的溢胶通道,降低绑定工艺中导电粒子聚集的风险,提高绑定工艺良率。
图2为本申请实施例提供的显示模组示意图,图3为图2中切线A-A'位置处截面示意图一,图4为图2中切线B-B'位置处截面示意图一。
如图2所示,显示模组包括:显示面板100,显示面板100包括显示区11和包围显示区11的非显示区22;显示面板还包括位于非显示区22的支撑柱33和多个第一绑定板44,其中,第一绑定板 44为非显示区22暴露的金属板,第一绑定板44与显示面板中的信号走线电连接。其中,支撑柱33位于第一绑定板44远离显示区11的一侧。本申请实施例中显示面板可以为液晶显示面板也可以为有机发光显示面板。本申请的实施例对于显示面板的类型不做限定。
柔性电路板200,如图3和图4所示的,柔性电路板200包括多个第二绑定板66,第二绑定板66通过异方性导电胶77与第一绑定44板相连接。第二绑定板66为柔性电路板200暴露的金手指,金手指与柔性电路板中的电路走线电连接。
在相关技术中显示面板包括支撑结构。以液晶显示面板为例,支撑结构位于显示面板的显示区,且支撑结构位于阵列基板和彩膜基板之间,支撑结构用于支撑液晶盒的盒厚。以有机发光显示面板为例,位于显示区的支撑结构用于支撑有机层蒸镀过程中的掩膜板;或者在某些技术中,支撑结构用于缓解作用在子像素上的应力,避免显示面板局部无法显示的现象。
而本申请实施例中在非显示区设置有支撑柱,且支撑柱位于第一绑定板的远离显示区的一侧。在绑定工艺中,由于非显示区的宽度较窄,导致本压压头的施力中心落在面板非显示区的边缘或者外部时,支撑柱能够在显示面板的边缘对柔性电路板起到支撑作用,防止由于本压时,受扭矩影响压头产生倾斜,造成柔性电路板与面板边缘的间隙变小,阻挡异方性导电胶溢胶,从而产生粒子聚集问题。而且在柔性电路板和显示面板边缘之间的异方性导电胶受挤压后,在相邻的两个支撑柱之间的空间能够作为异方性导电胶的溢胶通道,本申请实施例能够增加异方性导电胶的溢胶通道,从而降低绑定工艺中导电粒子聚集短路的风险,提高了绑定工艺良率以及产品应用可靠性。
进一步的,在一种实施例中,图5为图2中切线A-A'位置处截面示意图二。如图5所示,显示面板包括衬底基板101,在垂直于衬底基板101方向上,第一绑定板44的远离衬底基板101一侧的表面距衬底基板101的距离为H1,支撑柱33的远离衬底基板101 一侧的表面距衬底基板101的距离为H2,其中,∣H1-H2∣≤2μm。图5仅以显示面板为液晶显示面板进行示意,示出了衬底基板101之上的阵列层102、液晶分子层103和彩膜基板104。还示意出了阵列层102中的薄膜晶体管1021。第一绑定板44通过过孔连接到信号引线1022,信号引线1022再与显示面板中相应的信号线电连接。
本申请实施例中∣H1-H2∣≤2μm,也即支撑柱与第一绑定板之间的高度差的绝对值不大于2μm。可以是支撑柱比第一绑定板高出一定长度,或者也可以是支撑柱比第一绑定板矮一定长度。也可以是支撑柱的高度和第一绑定板的高度大致相同。在绑定工艺中,通过本压压头施加压力,异方性导电胶受压力后,其中的导电粒子在垂直方向上相接触连接,从而实现第一绑定板和第二绑定板的连接。实际应用中异方性导电胶中的导电粒子粒径为3.5μm左右,本申请实施例中可以结合导电粒子粒径尺寸进行设计,支撑柱和第一绑定板之间的高度差满足一定范围,能够避免支撑柱的高度过高,导致支撑柱过渡支撑,而使得绑定工艺中第一绑定板和第二绑定板之间的异方性导电胶中导电粒子接触性能变差,而影响第一绑定板和第二绑定板之间的电连接性能;同时也能够保证在相邻的支撑柱之间形成溢胶通道,避免在柔性电路板和显示面板边缘的间隙变窄造成导电粒子聚集引起短路。
继续参考图4示意的,在垂直于显示面板的方向e上,支撑柱33和第二绑定板66交叠。支撑柱33能够在第二绑定板66对应的位置处支撑柔性电路板,在绑定工艺中,支撑柱和第二绑定板之间的异方性导电胶受压力后,异方性导电胶能够在相邻的第二绑定板之间的空隙内溢胶,同时能够在相邻的支撑柱之间的空隙内溢胶,增加了溢胶通道,有效避免柔性电路板和显示面板边缘之间的异方性导电胶受挤压后导电粒子聚集短路的风险,提高了绑定良率。
继续参考图4示意的,本申请实施例中支撑柱33和第二绑定板66一一对应。则在绑定工艺中,任意一个第二绑定板与显示面板边缘之间均有支撑柱对其支撑,柔性电路板与显示面板边缘之间的异 方性导电胶受压力后能够均匀地溢胶,有效避免导电粒子聚集。
需要说明的是,图4示意的截面图中,支撑柱和第二绑定板一一对应且对齐,而本申请中对于支撑柱的宽度和第二绑定板的宽度之间的大小关系不做限定。在截面图中,相互对应的支撑柱和第二绑定板之间可以存在一定的位错。
在一种实施例中,图6为本申请实施例提供的显示模组的一种可选实施方式局部示意图。如图6所示,支撑柱33和第一绑定板44相连接。在显示面板边缘位置,支撑柱能够对柔性电路板进行支撑,避免显示面板边缘和柔性电路板之间的异方性导电胶受挤压后回流溢胶导致导电粒子聚集而短路;同时,在绑定工艺制程中,能够保证异方性导电胶受力均匀性,进一步确保异方性导电胶均匀溢胶,有效避免导电粒子聚集。
在另一种实施例中,如图2所示的,支撑柱44和第一绑定板44之间间隔一定距离。在绑定工艺中,支撑柱和第一绑定板之间的间隙也能够作为溢胶通道。在实际显示面板制作中可以根据具体的设计需求、以及支撑柱的制作工艺来设计支撑柱与第一绑定板之间的间隔距离。
在一种实施例中,图7为图2中切线A-A'位置处截面示意图三。如图7所示,如图中区域5的示意,支撑柱33的远离显示区11一侧的边缘与显示面板100间隔一定距离。考虑到切割精度和静电的影响,面板设计中通常第一绑定板距离面板边缘有50~100μm的距离,在此空间内增加支撑柱不会影响显示面板的边框,同时保证支撑柱与面板的边缘间隔一定距离,切割工艺不会切割到支撑柱,则不会增加面板切割工艺中的切割厚度,能够避免切割不良影响面板性能或者支撑柱对第二绑定板的支撑性能。
本申请实施例中,多个支撑柱沿第一方向排列,支撑柱的与第一方向平行的截面形状为矩形、梯形、三角形中任意一种。如图4中示意的支撑柱的截面形状为矩形,可选的,如图8所示,图8为图2中切线B-B'位置处截面示意图二,示意出了多个支撑柱33沿 第一方向x排列,支撑柱33的与第一方向x平行的截面形状为梯形。其中,梯形可以为正梯形或者倒梯形。在一些实施方式中,支撑柱的截面形状也可以为其他多边形。在实际中对于支撑柱的形状可以根据具体的工艺需求进行选择。
在一种实施例中,图9为本申请实施例提供的显示模组的另一种可选实施方式截面示意图,如图9所示,柔性电路板200上固定有驱动芯片201。该实施方式中,将驱动芯片201固定在柔性电路板上,驱动芯片能够随柔性电路板弯折到显示面板的背面,减少了非显示区的空间,进一步窄化边框。在该种情况下,非显示区的宽度进一步窄化后,在绑定工艺中显示面板边缘和柔性电路板之间的异方性导电胶更容易受挤压后回流溢胶导致导电粒子聚集。而本申请增加支撑柱的设计后,能够在显示面板边缘和柔性电路板之间增加溢胶通道,避免回流溢胶导致导电粒子聚集。实现进一步窄化边框的同时也保证了绑定工艺的良率。
在另一种实施例中,本申请实施例提供的显示模组中,驱动芯片固定在显示面板的非显示区,驱动芯片为与第一绑定板的靠近显示区的一侧。在此不再附图示意。
本申请中支撑柱的制作材料包括无机材料、有机材料中至少一种。支撑柱可以与显示面板的部分膜层结构在同一个工艺制程中制作,也可以额外增加支撑柱的制作工艺。
本申请中支撑柱至少包括第一绝缘层,第一绝缘层与异方性导电胶相接触,从而保证支撑柱的表面层不导电,第一绝缘层能够保证支撑柱与异方性导电胶之间的绝缘。降低了离子聚集短路的风险,也能够降低静电损伤风险。支撑柱可以有由单一膜层组成,也可以由多膜层堆叠而成。支撑柱可以与显示面板的部分膜层结构在同一工艺制程中完成,仅需要对工艺制程中的掩膜板的形状进行设计,不需要增加额外的工艺制程即能实现支撑柱的制作,工艺相对简单。
以显示面板为有机发光显示面板为例,图10为本申请实施例提供的显示模组的另一种可选实施方式截面示意图。如图10所示,显 示面板包括衬底基板101,其中衬底基板101可以为柔性基板也可以为刚性基板。显示面板还包括位于衬底基板101之上的阵列层106、显示层107和封装结构108,阵列层106包括像素电路,像素电路中包括多个薄膜晶体管1061(图中仅做示意性表示),薄膜晶体管1061包括半导体层、栅极、源极和漏极,均未标示出,在半导体层和栅极之间设置有栅极绝缘层1062,在像素电路中驱动晶体管中的栅极与电容金属层(未示出)交叠形成存储电容。所以在栅极与电容金属层之间设置有绝缘层1063,在电容金属层与源极和漏极之间设置有绝缘层1064,在源极和漏极之上设置有平坦化层1065。显示层107包括像素定义层1071和多个发光器件1072,像素定义层1071用于间隔相邻的发光器件1072,其中发光器件1072包括阳极7、发光层8和阴极9,阳极7通过过孔与薄膜晶体管1061电连接。其中,封装结构108为用于对显示层107进行封装,以隔绝水氧,保证发光器件的使用寿命。封装结构108可以为薄膜封装,包括至少一层有机封装层和至少一层无机封装层;封装结构108可以为刚性封装,通过封装胶将封装玻璃与阵列层粘结,将显示层封装在密闭空间内。
图10中还示意出了第一绑定板44通过过孔与信号引线1022,信号引线1022再与显示面板中相应的信号线电连接。信号引线1022可以与薄膜晶体管1061的源极和漏极位于同一金属层,也可以与薄膜晶体管1061的栅极位于同一金属层,信号引线1022也可以采用多层金属制作,本申请在此不做限定。
可选的,支撑柱与像素定义层在同一个工艺制程中制作完成。
可选的,支撑柱与平坦化层在同一个工艺制程中制作完成。
在一些实施例中,显示面板还包括位于显示区的支撑层,支撑层位于像素定义层之上,在刚性封装结构中,支撑层能够对封装盖板起到支撑作用。支撑柱也可以与支撑层在同一个工艺制程中制作完成。
可选的,结合第一绑定板的结构、以及为了匹配第一绑定板的高度,支撑柱也可以由上述栅极绝缘层、绝缘层、绝缘层、平坦化 层、像素定义层、支撑层中的至少两个膜层堆叠制作。
在一些实施例中,支撑柱由多个膜层堆叠制作,且多个膜层包括金属层,只要保证支撑柱中外侧的靠近异方性导电胶的膜层为绝缘层(本申请定义为第一绝缘层)即可,以保证支撑柱与异方性导电胶之间的绝缘。
以显示面板为液晶显示面板为例,图11为本申请实施例提供的显示模组的另一种可选实施方式截面示意图。如图11所示,显示面板包括衬底基板101、位于衬底基板101之上的阵列层102、液晶分子层103和彩膜基板104。其中,阵列层102包括多个薄膜晶体管1021,还包括像素电极1024、公共电极1023,像素电极1024与薄膜晶体管1021电连接,分别在像素电极1024和公共电极1023施加电压之后,形成控制液晶分子偏转的电场。薄膜晶体管1021包括半导体层、栅极、源极和漏极,均未标示出,在半导体层和栅极之间设置有栅极绝缘层1025,在栅极和源漏极之间设置有层间绝缘层1026,在源极和漏极之上设置有平坦化层1027。在像素电极1024和公共电极1023之间还设置有绝缘层1028。图中像素电极1024和公共电极1023的相对位置仅作示意,在另一种实施例中,像素电极1024和公共电极1023的位置可以互换。
在显示面板为液晶显示面板时,支撑柱33可以与平坦化层1027在同一个工艺制程中制作完成。可选的,结合第一绑定板44的结构、以及为了匹配第一绑定板44的高度,支撑柱33可以由上述栅极绝缘层1025、层间绝缘层1026、平坦化层1027、绝缘层1028中的至少两个膜层堆叠制作。可选的,也可以额外增加有机膜层或者无机膜层的制作工艺来制作支撑柱。
基于同一发明构思,本申请实施例还提供一种显示装置,图12为本申请实施例提供的显示装置示意图,如图12所示,显示装置包括本申请任意实施例提供的显示模组10。其中,显示模组10的具体结构已经在上述实施例中进行了详细说明,此处不再赘述。当然,图12所示的显示装置仅仅为示意说明,该显示装置可以是例如手机、 平板计算机、笔记本电脑、电纸书或电视机等任何具有显示功能的电子设备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种显示模组,其特征在于,包括:
    显示面板,所述显示面板包括显示区和包围所述显示区的非显示区;所述显示面板还包括位于所述非显示区的支撑柱和多个第一绑定板,其中,所述支撑柱位于所述第一绑定板远离所述显示区的一侧;
    柔性电路板,所述柔性电路板包括多个第二绑定板,所述第二绑定板通过异方性导电胶与所述第一绑定板连接。
  2. 根据权利要求1所述的显示模组,其特征在于,
    所述显示面板包括衬底基板,在垂直于所述衬底基板方向上,所述第一绑定板的远离所述衬底基板一侧的表面距所述衬底基板的距离为H1,所述支撑柱的远离所述衬底基板一侧的表面距所述衬底基板的距离为H2,其中,∣H1-H2∣≤2μm。
  3. 根据权利要求1所述的显示模组,其特征在于,
    在垂直于所述显示面板方向上,所述支撑柱和所述第二绑定板交叠。
  4. 根据权利要求3所述的显示模组,其特征在于,
    所述支撑柱和所述第二绑定板一一对应。
  5. 根据权利要求1所述的显示模组,其特征在于,
    所述支撑柱和所述第一绑定板相连接。
  6. 根据权利要求1所述的显示模组,其特征在于,
    所述支撑柱的远离所述显示区一侧的边缘与所述显示面板的边缘间隔一定距离。
  7. 根据权利要求1所述的显示模组,其特征在于,
    多个所述支撑柱沿第一方向排列,所述支撑柱的与所述第一方向平行的截面形状为矩形、梯形、三角形中任意一种。
  8. 根据权利要求1所述的显示模组,其特征在于,
    所述支撑柱至少包括第一绝缘层,所述第一绝缘层与所述异方性导电胶相接触。
  9. 根据权利要求1所述的显示模组,其特征在于,
    所述柔性电路板上固定有驱动芯片。
  10. 一种显示装置,其特征在于,包括权利要求1至9任一项所述的显示模组。
PCT/CN2020/131142 2020-02-21 2020-11-24 一种显示模组和显示装置 WO2021164360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010108164.1 2020-02-21
CN202010108164.1A CN113296319A (zh) 2020-02-21 2020-02-21 一种显示模组和显示装置

Publications (1)

Publication Number Publication Date
WO2021164360A1 true WO2021164360A1 (zh) 2021-08-26

Family

ID=77317559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131142 WO2021164360A1 (zh) 2020-02-21 2020-11-24 一种显示模组和显示装置

Country Status (2)

Country Link
CN (1) CN113296319A (zh)
WO (1) WO2021164360A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782255A (zh) * 2021-09-27 2021-12-10 维沃移动通信有限公司 导电胶膜和显示装置
CN113782553A (zh) * 2021-09-01 2021-12-10 吉安市木林森显示器件有限公司 巨量转移Micro LED模块、显示屏及制造方法
CN113838379A (zh) * 2021-09-24 2021-12-24 合肥维信诺科技有限公司 显示面板组件、显示面板、电子设备及显示面板制作方法
CN114185210A (zh) * 2021-12-03 2022-03-15 武汉华星光电技术有限公司 阵列基板及显示面板
CN114286620A (zh) * 2021-12-28 2022-04-05 霸州市云谷电子科技有限公司 用于显示模组绑定的绑定装置及绑定方法
CN114460773A (zh) * 2022-01-27 2022-05-10 武汉华星光电技术有限公司 一种待切割显示面板、显示面板和显示装置
CN114527589A (zh) * 2022-03-02 2022-05-24 武汉华星光电技术有限公司 绑定装置及显示面板的制作方法
CN114698231A (zh) * 2022-03-18 2022-07-01 武汉华星光电半导体显示技术有限公司 电路板及显示模组
CN114779505A (zh) * 2022-03-30 2022-07-22 绵阳惠科光电科技有限公司 显示面板、显示装置及绑定检测方法
WO2023226092A1 (zh) * 2022-05-25 2023-11-30 武汉华星光电半导体显示技术有限公司 显示模组及移动终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980509B (zh) * 2022-06-14 2024-03-19 昆山国显光电有限公司 绑定连接结构、绑定连接结构的制备方法和显示模组
CN115331582B (zh) * 2022-08-31 2023-12-26 京东方科技集团股份有限公司 集成nfc线圈的显示模组、显示装置以及制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297963A (zh) * 2014-11-05 2015-01-21 深圳市华星光电技术有限公司 一种用于防止acf胶溢出到显示区的引线结构及方法
US20150098043A1 (en) * 2013-10-03 2015-04-09 Japan Display Inc. Liquid crystal display device
US20180124924A1 (en) * 2016-10-28 2018-05-03 Samsung Display Co., Ltd. Press apparatus and pressing method thereof
CN208270895U (zh) * 2018-06-28 2018-12-21 云谷(固安)科技有限公司 一种显示装置
CN109188790A (zh) * 2018-09-13 2019-01-11 京东方科技集团股份有限公司 基板及其制作方法、显示装置
CN110687728A (zh) * 2019-09-27 2020-01-14 维沃移动通信有限公司 一种显示模组及终端设备
CN210073851U (zh) * 2019-08-27 2020-02-14 云谷(固安)科技有限公司 柔性基板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853729B2 (ja) * 2002-11-22 2006-12-06 埼玉日本電気株式会社 フレキシブルプリント配線板の接続構造及び接続方法
JP4240474B2 (ja) * 2004-02-23 2009-03-18 東北パイオニア株式会社 熱圧着装置および熱圧着方法
CN101435922A (zh) * 2007-11-13 2009-05-20 上海广电Nec液晶显示器有限公司 液晶显示器电路基板结构及使用其制造液晶显示器的方法
KR101972449B1 (ko) * 2013-01-24 2019-04-25 엘지디스플레이 주식회사 액정표시장치
CN203746444U (zh) * 2014-03-18 2014-07-30 成都京东方光电科技有限公司 一种各向异性导电胶膜及显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150098043A1 (en) * 2013-10-03 2015-04-09 Japan Display Inc. Liquid crystal display device
CN104297963A (zh) * 2014-11-05 2015-01-21 深圳市华星光电技术有限公司 一种用于防止acf胶溢出到显示区的引线结构及方法
US20180124924A1 (en) * 2016-10-28 2018-05-03 Samsung Display Co., Ltd. Press apparatus and pressing method thereof
CN208270895U (zh) * 2018-06-28 2018-12-21 云谷(固安)科技有限公司 一种显示装置
CN109188790A (zh) * 2018-09-13 2019-01-11 京东方科技集团股份有限公司 基板及其制作方法、显示装置
CN210073851U (zh) * 2019-08-27 2020-02-14 云谷(固安)科技有限公司 柔性基板和显示装置
CN110687728A (zh) * 2019-09-27 2020-01-14 维沃移动通信有限公司 一种显示模组及终端设备

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782553A (zh) * 2021-09-01 2021-12-10 吉安市木林森显示器件有限公司 巨量转移Micro LED模块、显示屏及制造方法
CN113838379A (zh) * 2021-09-24 2021-12-24 合肥维信诺科技有限公司 显示面板组件、显示面板、电子设备及显示面板制作方法
CN113782255A (zh) * 2021-09-27 2021-12-10 维沃移动通信有限公司 导电胶膜和显示装置
CN114185210A (zh) * 2021-12-03 2022-03-15 武汉华星光电技术有限公司 阵列基板及显示面板
CN114286620A (zh) * 2021-12-28 2022-04-05 霸州市云谷电子科技有限公司 用于显示模组绑定的绑定装置及绑定方法
CN114286620B (zh) * 2021-12-28 2024-04-02 霸州市云谷电子科技有限公司 用于显示模组绑定的绑定装置及绑定方法
CN114460773B (zh) * 2022-01-27 2023-09-26 武汉华星光电技术有限公司 一种待切割显示面板、显示面板和显示装置
CN114460773A (zh) * 2022-01-27 2022-05-10 武汉华星光电技术有限公司 一种待切割显示面板、显示面板和显示装置
CN114527589A (zh) * 2022-03-02 2022-05-24 武汉华星光电技术有限公司 绑定装置及显示面板的制作方法
CN114527589B (zh) * 2022-03-02 2023-12-12 武汉华星光电技术有限公司 绑定装置及显示面板的制作方法
CN114698231A (zh) * 2022-03-18 2022-07-01 武汉华星光电半导体显示技术有限公司 电路板及显示模组
CN114698231B (zh) * 2022-03-18 2024-01-23 武汉华星光电半导体显示技术有限公司 电路板及显示模组
CN114779505A (zh) * 2022-03-30 2022-07-22 绵阳惠科光电科技有限公司 显示面板、显示装置及绑定检测方法
WO2023226092A1 (zh) * 2022-05-25 2023-11-30 武汉华星光电半导体显示技术有限公司 显示模组及移动终端

Also Published As

Publication number Publication date
CN113296319A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2021164360A1 (zh) 一种显示模组和显示装置
CN110888276B (zh) 液晶显示面板
US11126044B1 (en) Display device comprising a flip chip film connected to a connecting surface of a plurality of bonding pins and manufacturing method thereof
JP5311531B2 (ja) 半導体チップの実装された表示パネル
US7548297B2 (en) Liquid crystal display device and method for manufacturing the same
CN104412315B (zh) 显示装置
WO2007039959A1 (ja) 配線基板及びそれを備えた表示装置
WO2020037770A1 (zh) 基板及显示装置
CN113193017B (zh) 显示面板和显示装置
WO2020199518A1 (zh) 显示面板及其制造方法
WO2023088168A1 (zh) 阵列基板、显示面板及其制作方法
JP5613635B2 (ja) 表示装置
US11937445B2 (en) Display panel and display device
US11696474B2 (en) Display device
JP2009036937A (ja) 液晶表示装置およびその製造方法
US11353755B2 (en) Display device
JP2007193153A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
KR20090027580A (ko) 표시 패널, 표시 패널 모듈 및 전자기기
US20240027855A1 (en) Display panel and display terminal
CN114428427A (zh) 显示面板及显示装置
WO2023050473A1 (zh) 显示面板及显示装置
WO2020062510A1 (zh) 成盒结构、显示面板及显示装置
TWI548909B (zh) 矽基液晶顯示模組之晶圓級組裝結構及其製造方法
CN108761937A (zh) 阵列基板及其制作方法
WO2024020729A1 (zh) 显示面板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919976

Country of ref document: EP

Kind code of ref document: A1