WO2022236574A1 - 时域参数确定方法、终端设备及网络设备 - Google Patents

时域参数确定方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2022236574A1
WO2022236574A1 PCT/CN2021/092755 CN2021092755W WO2022236574A1 WO 2022236574 A1 WO2022236574 A1 WO 2022236574A1 CN 2021092755 W CN2021092755 W CN 2021092755W WO 2022236574 A1 WO2022236574 A1 WO 2022236574A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain parameter
terminal device
offset value
time
Prior art date
Application number
PCT/CN2021/092755
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180089175.2A priority Critical patent/CN116686235A/zh
Priority to PCT/CN2021/092755 priority patent/WO2022236574A1/zh
Priority to EP21941150.1A priority patent/EP4290974A4/en
Publication of WO2022236574A1 publication Critical patent/WO2022236574A1/zh
Priority to US18/457,322 priority patent/US20230403068A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service

Definitions

  • the present invention relates to the field of communication technology, in particular to a method for determining time domain parameters, terminal equipment and network equipment.
  • Non-terrestrial communication Non Terrestrial Network, NTN
  • NTN Non Terrestrial Network
  • TA timing advance
  • a K offset or TA is broadcast for each satellite beam, but since the value ranges of K offset and TA are large, each K offset and TA configuration needs to occupy more bit domains, and this configuration method requires a larger signal order overhead.
  • the embodiment of the present invention provides a method for determining time-domain parameters, terminal equipment and network equipment.
  • the configuration mode of the network equipment to the terminal equipment (configuration and transmission of time-domain parameter reference values and at least one time-domain parameter offset value), for a
  • the signaling overhead can be reduced.
  • the embodiment of the present invention provides a method for determining time-domain parameters, a terminal device and a network device.
  • the network device can indicate a time-domain parameter reference value and at least one time-domain parameter offset value to the terminal device, and determine the time-domain parameter accordingly , so that multiple different time-domain parameters can be configured through fewer bit fields, so that such a configuration method can reduce signaling overhead.
  • a method for determining time-domain parameters including: receiving configuration information sent by a network device; determining time-domain parameters according to the configuration information, where the configuration information includes: a time-domain parameter reference value and at least one time-domain parameter offset value .
  • a method for determining a time-domain parameter including: sending configuration information to a terminal device, the configuration information is used to determine the time-domain parameter, and the configuration information includes: a time-domain parameter reference value and at least one time-domain parameter offset value.
  • a terminal device including:
  • the receiving module is configured to receive the configuration information sent by the network device, the configuration information includes: time domain parameter reference value and at least one time domain parameter offset value
  • the processing module is configured to determine time-domain parameters according to configuration information.
  • a network device including:
  • the sending module is configured to send configuration information to the terminal device, the configuration information is used to determine time domain parameters, and the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • a terminal device including:
  • a receiver configured to receive configuration information sent by the network device
  • the processor is configured to determine time-domain parameters according to configuration information, where the configuration information includes: a time-domain parameter reference value and at least one time-domain parameter offset value.
  • a network device including:
  • the transmitter is configured to send configuration information to the terminal device, the configuration information is used to determine time domain parameters, and the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • a computer-readable storage medium including: computer instructions, which, when run on a computer, cause the computer to execute the method according to the above-mentioned first aspect or any optional implementation manner of the first aspect, Alternatively, perform the method of the second aspect or any optional implementation manner of the second aspect.
  • a computer program product including computer instructions.
  • the computer program product runs on a computer, the computer executes the computer instructions, so that the computer executes any optional one of the first aspect or the first aspect.
  • a chip the chip is coupled with the memory in the terminal device, so that the chip invokes the program instructions stored in the memory during operation, so that the terminal device executes any one of the optional functions of the first aspect or the first aspect above.
  • the method of the implementation manner of the second aspect, or the method of making the network device execute the second aspect or any optional implementation manner of the second aspect.
  • the network device can send configuration information to the terminal device, and the configuration information includes a time domain parameter reference value and at least one time domain parameter offset value, so that the terminal device can, according to the configuration information, Determine the time-domain parameters.
  • the terminal device can determine the corresponding multiple time-domain parameters, which can pass fewer bit fields Multiple different time-domain parameters are configured, so such a configuration method can reduce signaling overhead.
  • FIG. 1A is a first schematic diagram of a wireless communication system architecture provided by an embodiment of the present invention.
  • FIG. 1B is a second schematic diagram of the architecture of a wireless communication system provided by an embodiment of the present invention.
  • FIG. 1C is a third schematic diagram of the architecture of a wireless communication system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a transparent forwarding satellite network architecture provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a regenerative and forwarding satellite network architecture provided by an embodiment of the present invention.
  • FIG. 4 is a timing relationship 1 in an NTN system provided by an embodiment of the present invention.
  • FIG. 5 is timing relationship 2 in an NTN system provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a regenerative forwarding NTN architecture provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a transparent forwarding NTN architecture provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for determining time-domain parameters provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a hardware structure of a satellite provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention shall not be construed as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • 3GPP is researching NTN technology, which generally uses satellite communication to provide communication services to ground users. Compared with terrestrial cellular network communication, satellite communication has the following advantages:
  • Satellite communication is not restricted by the user's region.
  • general land communication cannot cover areas such as oceans, mountains, deserts, etc. that cannot be equipped with communication equipment or are not covered by communication due to sparse population.
  • satellite communication due to a Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • Satellite communication has great social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas.
  • the distance of satellite communication is long, and the cost of communication does not increase significantly with the increase of communication distance; finally, the stability of satellite communication is high, and it is not limited by natural disasters.
  • Communication satellites can be divided into low-Earth orbit (LEO) satellites, medium-Earth orbit (MEO) satellites, geosynchronous Earth orbit (Geostationary Earth orbit, GEO) satellites, high elliptical Orbit (high elliptical orbit, HEO) satellites and so on.
  • LEO low-Earth orbit
  • MEO medium-Earth orbit
  • GEO geosynchronous Earth orbit
  • HEO high elliptical Orbit
  • LEO low-Earth orbit
  • GEO geosynchronous Earth orbit
  • HEO high elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of the single-hop communication between the user equipment and the satellite is generally less than 20ms.
  • the maximum satellite visible time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirements for the transmission power of the user terminal are not high.
  • Satellites in geosynchronous orbit have an orbital altitude of 35786km and a period of 24 hours around the earth.
  • the signal propagation delay for single-hop communication between the user equipment and the satellite is typically 250ms.
  • satellites use multi-beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • a communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1A exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • FIG. 1B is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 may function as a base station, and the terminal device 1101 and the satellite 1102 may communicate directly. Under the system architecture, the satellite 1102 can be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • FIG. 1C is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • it includes a terminal device 1201 , a satellite 1202 and a base station 1203 , wireless communication can be performed between the terminal device 1201 and the satellite 1202 , and communication can be performed between the satellite 1202 and the base station 1203 .
  • the network formed among the terminal equipment 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be called a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • Fig. 1A-Fig. 1C are only illustrations of the systems to which this application is applicable.
  • the methods shown in the embodiments of this application can also be applied to other systems, for example, 5G communication systems, LTE communication systems, etc. , which is not specifically limited in this embodiment of the present application.
  • the wireless communication system shown in FIG. 1A-FIG. 1C may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc. , which is not limited in this embodiment of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with access network devices.
  • the access network device may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or an authorized auxiliary access long-term evolution (LAA- Evolved base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also called “small base station”), pico base station, access point (access point, AP), Transmission point (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolved base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions, and the network equipment and terminal equipment may be the specific equipment described in the embodiments of the present invention, which will not be repeated here
  • the communication device may also include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the technical solution of the embodiment of the present invention can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • the embodiments of the present invention may be applied to a non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, and may also be applied to a terrestrial communication network (Terrestrial Networks, TN) system.
  • NTN non-terrestrial communication network
  • TN terrestrial communication network
  • the communication system in the embodiment of the present invention may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent network deployment scenario
  • the communication system in this embodiment of the present invention may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered a shared spectrum; or, the communication system in this embodiment of the present invention may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, or configures and is indicated. configuration etc.
  • the indication information in this embodiment of the present invention includes physical layer signaling such as downlink control information (Downlink Control Information, DCI), radio resource control (Radio Resource Control, RRC) signaling, and media access control unit (Media At least one of Access Control Control Element, MAC CE).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Media At least one of Access Control Control Element, MAC CE Media At least one of Access Control Control Element
  • the high-level parameters or high-level signaling in the embodiment of the present invention include at least one of radio resource control (Radio Resource Control, RRC) signaling and media access control element (Media Access Control Control Element, MAC CE)
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • satellite network architectures considered by 3GPP, one is the satellite network architecture of transparent payload, and the other is the satellite network architecture of regenerative payload.
  • the satellite network (that is, the NTN network) may include the following network elements:
  • At least one gateway used to connect satellites and terrestrial public networks
  • Feeder link the link used for communication between the gateway and the satellite
  • Service link a link used for communication between terminal equipment and satellites
  • Satellite From the functions it provides, it can be divided into two types: transparent forwarding and regenerative forwarding.
  • transparent forwarding only provide the functions of radio frequency filtering, frequency conversion and amplification. Only provide transparent forwarding of signals, and will not change the waveform signal it forwards.
  • regenerating and retransmitting satellites In addition to providing the functions of radio frequency filtering, frequency conversion and amplification, it can also provide the functions of demodulation/decoding, routing/conversion, and encoding/modulation. It has some or all functions of the base station;
  • Inter-satellite link exists under the regenerative forwarding network architecture.
  • FIG. 2 is a schematic diagram of a transparent forwarding satellite network architecture, which includes: 5G access network (NG-RAN) composed of user equipment (UE), base station (gNB), satellite and ground gateway (NTN gateway) , 5G core network (5G core network, 5G CN) and data network.
  • the UE and gNB are connected through the new radio (new radio, NR) Uu interface (that is, the universal user network interface), the base station and the 5G core network (5G Core Network, 5G CN) are connected through the NG interface, and the 5G core network and data
  • the network (data network) is connected through the N6 interface.
  • the satellite and the terrestrial gateway form a remote radio unit (remote radio unit, RRU).
  • RRU remote radio unit
  • Fig. 3 is a schematic diagram of a regenerative and forwarding satellite network architecture, which includes: NG-RAN, 5G CN and data network composed of UE, satellite and ground gateway.
  • the UE is connected to the satellite through the NR Uu interface
  • the satellite is connected to the 5G CN through the NG interface
  • the 5G core network is connected to the data network through the N6 interface.
  • the satellite and the ground gateway are connected through the NG interface (that is, NG over SRI) running on the signal rate indicator (SRI) interface.
  • SRI signal rate indicator
  • the propagation delay of signal communication is usually less than 1 ms.
  • the propagation delay of signal communication is very large, ranging from tens of milliseconds to hundreds of milliseconds, depending on the satellite orbital height and The business type of satellite communication is related.
  • the timing relationship of the NTN system needs to be enhanced relative to the NR system.
  • the user equipment In the NTN system and the NR system, the user equipment (user equipment, UE) needs to consider the influence of the TA when performing uplink transmission. Since the propagation delay in the system is relatively large, the range of the TA value is also relatively large.
  • the terminal device When the terminal device is scheduled to perform uplink transmission in time slot n, the terminal device needs to consider the round trip transmission delay (Round Trip Time, RTT), and transmit in advance during the uplink transmission, so that the signal can be uplinked on the base station side when it reaches the base station side on the time slot n.
  • RTT Round Trip Time
  • the timing relationship in the NTN system may include two situations, as shown in Fig. 4 and Fig. 5 below respectively.
  • Case 1 is shown in Figure 4.
  • the downlink time slots of the network equipment are aligned with the uplink time slots, but there is no alignment between the downlink time slots of the terminal equipment and the uplink time slots of the terminal equipment.
  • the uplink transmission of the network device is aligned with the uplink time slot of the network device, and the terminal device needs to use a larger TA value.
  • a larger offset value also needs to be introduced.
  • the TA value can also be used to determine the K offset value.
  • the downlink time slots of the network equipment or the timing corresponding to the downlink time slots are represented as gNB DL in the figure;
  • the timing is represented as gNB UL in the figure;
  • the timing corresponding to the downlink time slot or downlink time slot of the terminal device is represented as UE DL in the figure;
  • the timing corresponding to the uplink time slot or uplink time slot of the terminal device is represented in the figure as UE UL.
  • Case 2 is shown in FIG. 5 , there is an offset value between the downlink time slot of the network device and the uplink time slot of the network device.
  • the terminal device if it is desired to align the uplink transmission of the terminal device with the uplink time slot of the network device, the terminal device only needs to use a smaller TA value. However, in this case, the network device may need additional scheduling complexity to handle the corresponding scheduling timing.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel, PDSCH
  • DCI Downlink Control Information
  • the DCI includes the indication information of K 0
  • the K 0 is used for Determine the time slot for transmitting the PDSCH. For example, if the scheduling DCI is received on slot n, the slot allocated for PDSCH transmission is slot
  • K 0 is determined according to the subcarrier spacing of the PDSCH
  • ⁇ PDSCH and ⁇ PDCCH are respectively used to determine the subcarrier spacing configured for the PDSCH and PDCCH.
  • the value range of K 0 is 0 to 32.
  • the DCI includes K 2 indication information, and the K 2 is used to determine the transmission timing of the PUSCH time slot. For example, if the scheduling DCI is received on slot n, the slot allocated for PUSCH transmission is slot Wherein, K 2 is determined according to the subcarrier spacing of PDSCH, and ⁇ PUSCH and ⁇ PDCCH are respectively used to determine the subcarrier spacing configured for PUSCH and PDCCH. The value range of K 2 is 0 to 32.
  • the transmission timing of the HARQ-ACK feedback information transmitted on the physical uplink control channel is: for the time slot of PUCCH transmission, if the end position of a PDSCH reception is in time slot n or an indication of semi-persistent scheduling (Semi-persistent scheduling, SPS) PDSCH released PDCCH reception ends at time slot n, and the terminal device should transmit corresponding HARQ-ACK feedback information on the PUCCH resource in time slot n+K1.
  • SPS semi-persistent scheduling
  • the hybrid automatic repeat request acknowledgment (HARQ-ACK) feedback information includes: ACK information, or NACK information; K1 is the number of time slots, and the number of time slots can be indicated by the HARQ feedback timing in the DCI format (PDSCH-to -HARQ-timing-indicator) information field to indicate, or, the number of time slots is provided through the HARQ feedback timing set (such as dl-DataToUL-ACK parameter).
  • MAC CE activation sequence When the HARQ-ACK information corresponding to the PDSCH including the MAC CE command is transmitted on the time slot n, the corresponding behavior indicated by the MAC CE command and the downlink configuration assumed by the UE should start from the time slot After the first time slot comes into effect, where, Indicates the number of time slots included in each subframe under the subcarrier spacing configuration ⁇ .
  • CSI transmission timing on PUSCH is the same as the transmission timing of DCI scheduling PUSCH transmission under normal circumstances.
  • the CSI reference resource for reporting CSI on the uplink time slot n' is determined according to a single downlink time slot nn CSI_ref , where, ⁇ DL and ⁇ UL are respectively downlink and uplink subcarrier spacing configurations. n
  • CSI_ref The value of CSI_ref depends on the type of CSI report.
  • Aperiodic SRS transmission timing If the UE receives DCI on time slot n to trigger the transmission of aperiodic SRS, the UE transmit the aperiodic SRS in each triggered SRS resource set, where k is configured by the high layer parameter slotOffset in each triggered SRS resource set and is determined according to the subcarrier spacing corresponding to the triggered SRS transmission , ⁇ SRS and ⁇ PDCCH are the subcarrier spacing configurations of the triggered SRS transmission and the PDCCH carrying the trigger command, respectively.
  • the PDSCH reception timing in the NR system is only affected by the timing of the downlink receiving side, and is not affected by the large round-trip transmission delay in the NTN system, so the NTN system can reuse the PDSCH reception timing in the NR system.
  • (D) MAC CE activation timing: When the HARQ-ACK information corresponding to the PDSCH including the MAC CE command is transmitted on time slot n, the corresponding behavior indicated by the MAC CE command and the downlink configuration assumed by the UE should start from the time slot The first time slot after is effective, where X may be determined by the UE capability of the NTN, and the value may not be 3.
  • (E) CSI reference resource timing For the CSI reference resource reporting CSI on the uplink time slot n', it is based on a single downlink time slot definite.
  • Aperiodic SRS transmission timing If the UE receives DCI on time slot n to trigger the transmission of aperiodic SRS, the UE The aperiodic SRS in each triggered SRS resource set is transmitted above.
  • UEs in NTN There may be two types of UEs in NTN, one is the UE without positioning capability, and the other is the UE with positioning capability.
  • the satellite will broadcast a common TA based on the signal transmission delay between the perigee (that is, the closest point within the coverage of the satellite ground, that is, the reference point in Figure 6) and the base station, as follows
  • TA 2*(d0+d0_F)/c.
  • the UE uses the public TA broadcast by the network to compensate, and the network indicates a UE-specific TA adjustment value to the UE in the RAR, so that the initial TA of the UE is the public TA broadcast and the UE-specific value indicated in the RAR.
  • TA is the cumulative result of the two.
  • d0 is the distance between the satellite and the perigee (that is, the nearest point within the coverage of the satellite ground, that is, the reference point in Figure 7)
  • d0_F is the distance between the satellite and the ground network equipment
  • d1 is the distance between the satellite and the terminal equipment.
  • the network can configure K offset at the cell level or K offset at the satellite beam level by broadcasting.
  • the network may configure a dedicated K offset for the UE through RRC signaling or MAC.
  • the UE uses the broadcast K offset .
  • the network mainly refers to TA to configure the value of K offset .
  • the network needs to configure K_offset according to the largest TA supported by a cell or a satellite beam; for UE-specific K offset , the network can configure K offset with reference to the TA of the UE.
  • each satellite beam corresponds to at least one ground reference point, that is, at least one common TA needs to be broadcast for each satellite beam.
  • an embodiment of the present invention provides a method for determining time-domain parameters.
  • the network device can send configuration information to the terminal device.
  • the configuration information includes a time-domain parameter reference value and at least one time-domain parameter offset value, so that the terminal device
  • the time-domain parameters can be determined according to the configuration information.
  • the terminal device can determine the corresponding multiple time-domain parameters, which can Multiple different time-domain parameters are configured by using fewer bit fields, so such a configuration manner can reduce signaling overhead.
  • a method for determining time-domain parameters including:
  • the network device sends configuration information to the terminal device.
  • the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • the time domain parameters may include the following situations:
  • the time domain parameter can be K offset ;
  • the time domain parameter reference value is the reference value of K offset , which can be recorded as K offset_ref in this embodiment;
  • the time domain parameter offset value is the offset value of K offset , and at least one of the time domain parameter offsets
  • the value can be expressed as: delteK offset_i ;
  • the time domain parameter is the K offset , then determine the time domain resource position for uplink transmission according to the time domain parameter.
  • the time domain parameter can be a common TA, that is, common TA.
  • the time-domain parameter reference value is the reference value of common TA, which can be recorded as common TA_ref in this embodiment;
  • the time-domain parameter offset value is the offset value of common TA, and the above-mentioned at least one time-domain parameter offset value Can be expressed as: deltecommon TA_i.
  • At least one time-domain parameter offset value corresponds to at least one object, and one time-domain parameter offset value corresponds to one or more objects; wherein, the above-mentioned at least one object is at least one beam, or, the above-mentioned at least one object for at least one terminal device.
  • the network device in this embodiment of the present invention may be a base station or a satellite, and the foregoing beam may refer to a base station beam or a satellite beam.
  • the aforementioned beam refers to a base station beam
  • the aforementioned beam refers to a satellite beam.
  • time domain parameter is the common TA
  • TA compensation is performed when sending a random access request during a random access process.
  • the time domain parameter is the common TA, it is applied to a terminal device without positioning capability.
  • the random access process includes: a four-step random access process, and/or, a two-step random access process.
  • the sending method for the network device to send the above configuration information may include at least one of the following:
  • configuration information time domain parameter reference value and at least one time domain parameter offset value
  • At least one time domain parameter offset value corresponds to at least one beam, then at least one time domain parameter offset value is sent by broadcast or multicast;
  • the at least one time domain parameter offset value corresponds to at least one terminal device, then the at least one time domain parameter offset value is sent by multicast or dedicated signaling.
  • the dedicated signaling may be MAC CE signaling or RRC signaling.
  • the terminal device determines time domain parameters according to the configuration information.
  • the time domain parameter reference value is a time domain parameter reference value shared by at least one object; at least one time domain parameter offset value includes a time domain parameter offset value corresponding to each object.
  • the implementation of 802 includes: determining the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value;
  • the first time domain parameter offset value is one of at least one time domain parameter offset value; the first time domain parameter offset value corresponds to the beam where the terminal device is located, or the first time domain parameter offset value is the same as Terminal equipment correspondence.
  • determining the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value includes: calculating the sum of the time domain parameter reference value and the first time domain parameter offset value to obtain the time domain parameters.
  • determining the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value includes: calculating the difference between the time domain parameter reference value and the first time domain parameter offset value to obtain the time domain parameters.
  • the time domain parameter reference value is determined according to the first round-trip delay (Round-Trip Time, RTT) and the second RTT;
  • the first RTT is: the RTT between the first reference point and the network device, and the uplink time domain and the downlink time domain of the first reference point are aligned.
  • the second RTT is: an RTT between the network device and a ground reference point within the cell where the terminal device is located.
  • the network device is a non-terrestrial network device that provides services to terminal devices.
  • the time domain parameter reference value is the sum of the first RTT and the second RTT.
  • the time domain parameter reference value corresponds to the second RTT
  • the second RTT is the RTT between the network device and a ground reference point within the cell where the terminal device is located
  • the network device is the RTT to the terminal device Non-terrestrial network equipment that provides services.
  • the time domain parameter reference value is the time domain parameter corresponding to the first object; each time domain offset value in at least one time domain offset value is: at least one other object corresponds to The offset value of the time domain parameter relative to the reference value of the time domain parameter;
  • At least one other object is an object in all objects except the first object.
  • the above-mentioned all objects refer to all beams of the satellite, or, the above-mentioned all objects refer to all beams served by the satellite.
  • an implementation of the above 802 includes:
  • the time domain parameter reference value is determined as the time domain parameter.
  • the foregoing terminal device corresponding to the first object may include: the terminal device is the first terminal device, or the terminal device is located in the first beam.
  • the time-domain parameter reference value is a time-domain parameter corresponding to the first terminal device. At this time, when the terminal device is determined to be the first terminal device, the time-domain parameter reference value is determined to be a time-domain parameter.
  • the time-domain parameter reference value is a time-domain parameter corresponding to the first beam.
  • the time-domain parameter reference value may be determined to be a time-domain parameter.
  • another implementation of the above 802 includes: if the terminal device corresponds to the second object, then determine the time domain according to the time domain parameter reference value and the offset value of the first time domain parameter parameter;
  • the first time domain parameter offset value is one of at least one time domain parameter offset value; the first time domain parameter offset value corresponds to the satellite beam where the terminal device is located, or, the first time domain parameter offset value Corresponding to a terminal device; wherein, the second object is one of at least one other object.
  • the time-domain parameter reference value corresponds to the time-domain parameter of the first terminal device.
  • the terminal device is determined to be the second terminal device, it is necessary to offset the time-domain parameter reference value from the first time-domain parameter , to determine the time domain parameter, where the offset value of the first time domain parameter is the offset value of the time domain parameter corresponding to the second terminal device.
  • the time domain parameter reference value is a time domain parameter corresponding to the first beam.
  • the time domain parameter reference value is a time domain parameter corresponding to the first beam.
  • the network device can send configuration information to the terminal device, and the configuration information includes a time domain parameter reference value and at least one time domain parameter offset value, so that the terminal device can, according to the configuration information, Determine the time-domain parameters.
  • the terminal device can determine the corresponding multiple time-domain parameters, and this can pass fewer bits
  • the domain configures multiple different time domain parameters, so this configuration mode can reduce signaling overhead.
  • the following will be based on the fact that at least one time-domain parameter offset value corresponds to at least one satellite beam (referring to the following embodiment 2 to embodiment 5),
  • the embodiments of the present invention are introduced respectively for the case that at least one time-domain parameter offset value corresponds to at least one terminal device (referring to Embodiment 6 to Embodiment 9 below).
  • the network device configures a K offset reference value K offset _ref, and configures a delteK offset _i for each satellite beam i, and the K offset corresponding to the satellite beam i is the sum of K offstt _ref and delteK offset _i.
  • the network device configures a K offset for each satellite beam, and the K offset is used to determine the time-domain resource position for uplink transmission of the UE.
  • the method for configuring the K offset by the network device is as follows:
  • K offset _ref a time-domain parameter reference value K offset , denoted as K offset _ref.
  • the K offset_ref corresponds to the sum of the RTT between the first reference point and the serving satellite and the RTT between the serving satellite and one ground reference point (within the ground coverage of the cell).
  • the uplink time slot (UL timing) at the first reference point is aligned with the downlink time slot (DL timing).
  • the Koffset_ref corresponds to the RTT between the serving satellite and a terrestrial reference point (within the cell's terrestrial coverage).
  • delteK offset _i For each satellite beam i, configure a time-domain parameter offset value, which is denoted as delteK offset _i, and the delteK offset _i represents the increment of K offset corresponding to satellite beam i relative to K offset _ref.
  • 0 is greater than or equal to i
  • i ⁇ N N is the number of satellite beams contained in the cell, where the beam index is 0 to N-1.
  • the terminal device uses the K offset corresponding to the satellite beam where it is located. That is, if the terminal device is located in the satellite beam i, and the network does not configure the terminal device-specific K offset for the terminal device, the K offset used by the terminal device is the sum of K offset_ref and delteK offset_i .
  • the cell where the current terminal device is located includes 3 satellite beams
  • Table 1 below is a schematic diagram of configuring K offset for each satellite beam.
  • the network device can be configured by broadcasting: a time domain K offset _ref, a time domain parameter offset value delteK offset _0 for satellite beam 0, a time domain parameter offset value delteK offset _1 for satellite beam 1, and a time domain parameter offset value delteK offset _1 for satellite beam 1.
  • Time domain parameter offset value delteK offset_2 for beam 2.
  • the network device configures a K offset K offset _0 for satellite beam 0, and configures a delteK offset _i for each satellite beam i (where i>0), then the K offset corresponding to satellite beam i is K offset _0 and delteK offset _i Sum.
  • the network device configures a K offset for each satellite beam, and the K offset is used to determine the time-domain resource position for uplink transmission of the terminal device.
  • the method for configuring the K offset by the network device is as follows:
  • K offset _0 For satellite beam 0, configure K offset , denoted as K offset _0 .
  • delteK offset _i For each satellite beam i, configure a K offset offset value, denoted as delteK offset _i, where delteK offset _i represents the increment of K offset corresponding to satellite beam i relative to K offset _0. Wherein, 0 ⁇ i ⁇ N, N is the number of satellite beams included in the cell.
  • the terminal device uses the K offset corresponding to the satellite beam where it is located. That is: if the terminal device is located in satellite beam i, and the network device does not configure terminal-device-specific K offset for the terminal device, the K offset used by the terminal device is:
  • the K offset used by the terminal device is the K offset _0 broadcast by the network device;
  • the K offset used by the terminal device is the sum of K offset_0 and delteK offset_i .
  • the cell where the current terminal device is located includes 3 satellite beams, and Table 2 below is a schematic diagram of configuring K offset for each satellite beam.
  • the network device can be configured by broadcasting: the time domain parameter K offset _0 for satellite beam 0, the time domain parameter offset value delteK offset _1 for satellite beam 1, and the time domain parameter offset value delteK for satellite beam 2 offset_2 .
  • the network device configures a common TA reference value common TA_ref, and configures a delta common TA i for each satellite beam i, then the common TA corresponding to the satellite beam i is the sum of common TA_ref and delta common TA_i.
  • the network device configures a public TA for each satellite beam, and the public TA is used for terminal devices without positioning capability to transmit msg1 (four-step random access)/msgA (two-step random access) during random access When performing TA compensation.
  • the method for the network device to configure the public TA is as follows:
  • the common TA_ref corresponds to the sum of the RTT between the first reference point and the serving satellite and the RTT between the serving satellite and a ground reference point (within the ground coverage of the cell).
  • the UL timing and DL timing at the first reference point are aligned.
  • the common TA_ref corresponds to the RTT between the serving satellite and a ground reference point (within the ground coverage of the cell).
  • the terminal device uses the common TA corresponding to its own satellite beam based on the configuration of the network device. That is: if the terminal device is located in the satellite beam i, and the terminal device does not currently have a valid TA available, the public TA corresponding to the satellite beam i used by the terminal device sends msg1/msg3.
  • the common TA corresponding to the satellite beam i is the sum of common TA_ref and delta common TA_i.
  • the cell where the current terminal device is located includes 3 satellite beams, as shown in Table 3 below, which is a schematic diagram of configuring common TA for each satellite beam.
  • the network equipment can be configured by broadcasting: a time domain common TA_ref, a time domain parameter offset value delta common TA_0 for satellite beam 0, a time domain parameter offset value delta common TA_1 for satellite beam 1, and a time domain parameter offset value delta common TA_1 for satellite beam
  • the time domain parameter offset value of 2 is delta common TA_2.
  • the network device configures a common TA common TA_0 for satellite beam 0, and configures a delta common TA_i for each satellite beam i (where i>0), then the common TA corresponding to satellite beam i is the sum of common TA_0 and delta common TA_i .
  • the network device configures a public TA for each satellite beam, and the public TA is used for terminal devices without positioning capability to transmit msg1 (that is, four-step random access process)/msgA (that is, two-step random access process) during the random access process. TA compensation during access process).
  • the method for the network device to configure the public TA is as follows:
  • TA_0 For satellite beam 0, configure a common TA, denoted as common TA_0.
  • the terminal device uses the common TA corresponding to its own satellite beam based on the configuration of the network device. That is: if the terminal device is located in the satellite beam i, and the terminal device does not currently have a valid TA available, the public TA corresponding to the satellite beam i used by the terminal device sends msg1/msg3. Wherein, the public TA corresponding to the satellite beam i is:
  • the cell where the current terminal device is located includes 3 satellite beams, as shown in Table 2 below, which is a schematic diagram of configuring common TA for each satellite beam.
  • the network equipment can be configured by broadcasting: the time domain parameter common TA_0 for satellite beam 0, the time domain parameter offset value delta common TA_1 for satellite beam 1, and the time domain parameter offset value delta common for satellite beam 2 TA_2.
  • the network device configures a K offset reference value K offset _ref, and at the same time configures a delteK offset _i for each terminal device i, then the K offset corresponding to the terminal device i is the sum of K offset _ref and delteK offset _i.
  • the network device configures a K offset for each terminal device, and the K offset is used to determine the time-domain resource position of UE uplink transmission.
  • the method for configuring the K offset by the network device is as follows:
  • K offset _ref a time-domain parameter reference value K offset , denoted as K offset _ref.
  • the K offset_ref corresponds to the sum of the RTT between the first reference point and the serving satellite and the RTT between the serving satellite and one ground reference point (within the ground coverage of the cell).
  • the uplink time slot (UL timing) at the first reference point is aligned with the downlink time slot (DL timing).
  • the Koffset_ref corresponds to the RTT between the serving satellite and a terrestrial reference point (within the cell's terrestrial coverage).
  • delteK offset _i For each terminal device i, configure a time domain parameter offset value, denoted as delteK offset _i, said delteK offset _i represents the increment of K offset corresponding to terminal device i relative to K offset _ref. Wherein, 0 is greater than or equal to i, and i ⁇ N, where N is the number of terminal devices included in the cell.
  • the terminal device uses the K offset corresponding to its current terminal device. That is, if the current terminal device is terminal device i, and the network device does not configure a dedicated K offset for the current terminal device, the K offset used by the terminal device is the sum of K offset_ref and delteK offset_i .
  • the satellite serves 3 terminal devices
  • Table 5 below is a schematic diagram of configuring K offset for each terminal device.
  • the network device can be configured by broadcasting: a time domain K offset _ref, a time domain parameter offset value delteK offset _0 for terminal device 0, a time domain parameter offset value delteK offset _1 for terminal device 1, and a time domain parameter offset value delteK offset _1 for terminal device 1.
  • K offset_0 K offset_ref +delteK offset_0 of terminal device 0
  • K offset_1 of terminal device 1 K offset_ref + delteK offset_1
  • K offset_2 K offset_ref +delteK offset_2 of terminal device 2.
  • the network device configures a time domain parameter K offset for terminal device 0, denoted as K offset _0, and configures a delteK offset _i for each terminal device i (where i>0), then the K offset corresponding to terminal device i is K The sum of offset_0 and delteK offset_i .
  • the network device configures a K offset for each terminal device, and the K offset is used to determine a time-domain resource position for uplink transmission of the terminal device.
  • the method for configuring the K offset by the network device is as follows:
  • K offset _0 For terminal device 0, configure K offset , denoted as K offset _0 .
  • delteK offset_i For each terminal device i, configure a K offset offset value, which is recorded as delteK offset_i, and the delteK offset _i represents the increment of K offset corresponding to terminal device i relative to K offset _0.
  • 0 ⁇ i ⁇ N, N is the number of terminal devices included in the cell.
  • the terminal device uses the K offset corresponding to its own terminal device. That is: if the current terminal device is terminal device i, and the network device does not have a K offset dedicated to the terminal device, then the K offset used by the terminal device is:
  • the K offset used by the current terminal device is the K offset_0 broadcast by the network device
  • the K offset used by the current terminal device is the sum of K offset_0 and delteK offset_i .
  • the cell where the current terminal device is located includes 3 terminal devices, and Table 6 below is a schematic diagram of configuring K offset for each terminal device.
  • the network device can be configured by broadcasting: the time domain parameter K offset _0 for terminal device 0, the time domain parameter offset value delteK offset _1 for terminal device 1, and the time domain parameter offset value delteK for terminal device 2 offset_2 .
  • the network device configures a common TA reference value common TA_ref, and at the same time configures a delta common TA i for each terminal device i, then the common TA corresponding to the terminal device i is the sum of common TA_ref and delta common TA_i.
  • the network device configures a public TA for each terminal device, and the public TA is used for terminal devices without positioning capability to transmit msg1 (four-step random access)/msgA (two-step random access) during random access When performing TA compensation.
  • the method for the network device to configure the public TA is as follows:
  • common TA_ref corresponds to the sum of the RTT between the first reference point and the serving satellite and the RTT between the serving satellite and one ground reference point (within the cell ground coverage).
  • the UL timing and DL timing at the first reference point are aligned.
  • the common TA_ref corresponds to the RTT between the serving satellite and a ground reference point (within the ground coverage of the cell).
  • the terminal device uses the common TA corresponding to the terminal device where it is located based on the configuration of the network device. That is: if the terminal device is located at the terminal device i, and the terminal device does not currently have a valid and available TA, the public TA corresponding to the terminal device i used by the terminal device sends msg1/msg3. Wherein, the public TA corresponding to the terminal device i is the sum of common TA_ref and delta common TA_i.
  • the cell where the current terminal device is located includes 3 terminal devices, as shown in Table 7 below, which is a schematic diagram of configuring common TA for each terminal device.
  • the network device can be configured by broadcasting: a time domain parameter reference value common TA_ref, a time domain parameter offset value delta common TA_0 for terminal device 0, a time domain parameter offset value delta common TA_1 for terminal device 1, The time domain parameter offset value delta common TA_2 for terminal device 2.
  • the network device configures a public TA common TA_0 for terminal device 0, and configures a delta common TA_i for each terminal device i (where i>0), then the public TA corresponding to terminal device i is the sum of common TA_0 and delta common TA_i .
  • the network device configures a public TA for each terminal device, and the public TA is used for terminal devices without positioning capability to transmit msg1 (that is, a four-step random access process)/msgA (that is, a two-step random access process) during a random access process. TA compensation during access process).
  • the method for the network device to configure the public TA is as follows:
  • the terminal device uses the common TA corresponding to its own terminal device based on the configuration of the network device. That is: if the current terminal device is terminal device i, and the terminal device does not currently have a valid and available TA, the public TA corresponding to terminal device i is used to send msg1/msg3. Wherein, the public TA corresponding to the terminal device i is:
  • the cell where the current terminal device is located includes 3 terminal devices, as shown in Table 8 below, which is a schematic diagram of configuring common TA for each terminal device.
  • the network device can be configured by broadcasting: the time domain parameter common TA_0 for terminal device 0, the time domain parameter offset value delta common TA_1 for terminal device 1, and the time domain parameter offset value delta common for terminal device 2 TA_2.
  • the configuration method in the embodiment of the present invention can be applied to a scenario where a cell contains multiple satellite beams, or a scenario where a satellite serves multiple terminal devices.
  • Such a configuration method can configure multiple Different time domain parameters can reduce signaling overhead.
  • a terminal device including:
  • a receiving module 901, configured to receive configuration information sent by the network device
  • the processing module 902 is configured to determine a time domain parameter according to configuration information, where the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • At least one time-domain parameter offset value corresponds to at least one object, and one time-domain parameter offset value corresponds to one or more objects;
  • At least one object is at least one beam, or at least one object is at least one terminal device.
  • the time domain parameter reference value is a time domain parameter reference value shared by at least one object
  • the at least one temporal parameter offset value includes a temporal parameter offset value corresponding to each object.
  • the processing module 902 is specifically configured to determine the time domain parameter according to the time domain parameter reference value and the offset value of the first time domain parameter;
  • the first time domain parameter offset value is one of at least one time domain parameter offset value; the first time domain parameter offset value corresponds to the beam where the terminal device is located, or the first time domain parameter offset value is the same as Terminal equipment correspondence.
  • the time domain parameter reference value is determined according to the first round-trip delay RTT and the second RTT;
  • the first RTT is: the RTT between the first reference point and the network device, and the uplink time domain and the downlink time domain of the first reference point are aligned;
  • the second RTT is: an RTT between the network device and a ground reference point within the cell where the terminal device is located.
  • the network device is a non-terrestrial network device that provides services to terminal devices.
  • the time domain parameter reference value is the sum of the first RTT and the second RTT.
  • the time domain parameter reference value corresponds to the second RTT
  • the second RTT is the RTT between the network device and a ground reference point within the cell where the terminal device is located
  • the network device is the RTT to the terminal device Non-terrestrial network equipment that provides services.
  • the time domain parameter reference value is a time domain parameter corresponding to the first object
  • Each time domain offset value in the at least one time domain offset value is: the offset value of the time domain parameter corresponding to at least one other object relative to the time domain parameter reference value; wherein, at least one other object is the offset value of all objects except Objects other than the first object.
  • the processing module 902 is specifically configured to determine the time domain parameter reference value as the time domain parameter if the terminal device corresponds to the first object.
  • the processing module 902 is specifically configured to determine the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value if the terminal device corresponds to the second object;
  • the first time-domain parameter offset value is one of at least one time-domain parameter offset value
  • the first time domain parameter offset value corresponds to the satellite beam where the terminal device is located, or the first time domain parameter offset value corresponds to the terminal device; the second object is one of at least one other object.
  • the processing module 902 is specifically configured to calculate the sum of the time domain parameter reference value and the first time domain parameter offset value to obtain the time domain parameter.
  • the time domain parameter is a time slot offset K offset ;
  • the time domain parameter is a public timing advance TA.
  • the processing module 902 is further configured to determine the time-domain parameter according to the configuration information, if the time-domain parameter is K offset , determine the time-domain resource location for uplink transmission according to the time-domain parameter; if the time-domain parameter is public TA, according to the time domain parameters, TA compensation is performed when sending a random access request during the random access process.
  • the time domain parameter is a public TA, it is applied to a terminal device without positioning capability.
  • the random access process includes: a four-step random access process, and/or, a two-step random access process.
  • the reference value of the time domain parameter is sent by broadcasting.
  • the at least one time domain parameter offset value corresponds to at least one beam
  • the at least one time domain parameter offset value is sent by broadcast or multicast.
  • the at least one time domain parameter offset value corresponds to at least one terminal device, then the at least one time domain parameter offset value is sent by multicast or dedicated signaling.
  • the network device is a satellite.
  • a network device including:
  • the sending module 1001 is configured to send configuration information to the terminal device, the configuration information is used to determine time domain parameters, and the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • At least one time-domain parameter offset value corresponds to at least one object, and one time-domain parameter offset value corresponds to one or more objects;
  • At least one object is at least one beam, or at least one object is at least one terminal device.
  • the time-domain parameter reference value is a time-domain parameter reference value corresponding to each object
  • At least one time-domain parameter offset value corresponds to a time-domain parameter offset value for each object.
  • the time domain parameter reference value is determined according to the first RTT and the second RTT;
  • the first RTT is: the RTT between the first reference point and the network device, and the uplink time domain and the downlink time domain of the first reference point are aligned;
  • the second RTT is: an RTT between the network device and a ground reference point within the cell where the terminal device is located.
  • the network device is a non-terrestrial network device that provides services to terminal devices.
  • the time domain parameter reference value is the sum of the first RTT and the second RTT.
  • the time domain parameter reference value corresponds to the second RTT
  • the second RTT is the RTT between the network device and a ground reference point within the cell where the terminal device is located
  • the network device is the RTT to the terminal device Non-terrestrial network equipment that provides services.
  • the time domain parameter is a time slot offset K offset ;
  • the time domain parameter is the timing advance TA.
  • the reference value of the time domain parameter is sent by broadcasting.
  • At least one time domain parameter offset value corresponds to at least one beam, then at least one time domain parameter offset value is sent by broadcast or multicast;
  • the at least one time domain parameter offset value corresponds to at least one terminal device, then the at least one time domain parameter offset value is sent by multicast or dedicated signaling.
  • the network device is a satellite.
  • An embodiment of the present invention also provides a terminal device, including: a memory storing executable program codes;
  • a processor coupled to the memory
  • the processor invokes the executable program code stored in the memory to execute the time domain parameter determination method executed by the terminal device in the embodiment of the present invention.
  • the embodiment of the present invention also provides a network device, including: a memory storing executable program codes;
  • a processor coupled to the memory
  • the processor invokes the executable program code stored in the memory to execute the time domain parameter determination method executed by the network device in the embodiment of the present invention.
  • a terminal device provided in an embodiment of the present invention includes: a radio frequency (radio frequency, RF) circuit 1110, a memory 1120, a processor 1130 and other components.
  • the radio frequency circuit 1110 includes a receiver 1111 and a transmitter 1112 .
  • the RF circuit 1110 can be used for sending and receiving information or receiving and sending signals during a call. In particular, after receiving the downlink information from the base station, it is processed by the processor 1130; in addition, the designed uplink data is sent to the base station.
  • the RF circuit 1110 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (low noise amplifier, LNA), a duplexer, and the like.
  • RF circuitry 1110 may also communicate with networks and other devices via wireless communications.
  • the above wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (global system of mobile communication, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access) multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service (short messaging service, SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • e-mail short message service
  • SMS short message service
  • the memory 1120 may be used to store software programs and modules, and the processor 1130 executes various functional applications and data processing of the terminal device by running the software programs and modules stored in the memory 1120 .
  • the memory 1120 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.) and the like; Data created by the use of terminal equipment (such as audio data, phonebook, etc.), etc.
  • the memory 1120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 1130 is the control center, connects various parts of the entire terminal equipment with various interfaces and lines, runs or executes software programs and/or modules stored in the memory 1120, and invokes data stored in the memory 1120 to execute Various functions and processing data of the terminal equipment, so as to monitor the terminal equipment as a whole.
  • the processor 1130 may include one or more processing units; preferably, the processor 1130 may integrate an application processor and a modem processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, etc. , the modem processor mainly handles wireless communications. It can be understood that, the foregoing modem processor may not be integrated into the processor 1130 .
  • the RF circuit 1110 (specifically, it may be the receiver 1111) is used to receive configuration information sent by the network device;
  • the processor 1130 is configured to determine a time domain parameter according to configuration information, where the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • At least one time-domain parameter offset value corresponds to at least one object, and one time-domain parameter offset value corresponds to one or more objects;
  • At least one object is at least one beam, or at least one object is at least one terminal device.
  • the time domain parameter reference value is a time domain parameter reference value shared by at least one object
  • the at least one temporal parameter offset value includes a temporal parameter offset value corresponding to each object.
  • the processor 1130 is specifically configured to determine the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value;
  • the first time domain parameter offset value is one of at least one time domain parameter offset value; the first time domain parameter offset value corresponds to the beam where the terminal device is located, or the first time domain parameter offset value is the same as Terminal equipment correspondence.
  • the time domain parameter reference value is determined according to the first round-trip delay RTT and the second RTT;
  • the first RTT is: the RTT between the first reference point and the network device, and the uplink time domain and the downlink time domain of the first reference point are aligned;
  • the second RTT is: an RTT between the network device and a ground reference point within the cell where the terminal device is located.
  • the network device is a non-terrestrial network device that provides services to terminal devices.
  • the time domain parameter reference value is the sum of the first RTT and the second RTT.
  • the time domain parameter reference value corresponds to the second RTT
  • the second RTT is the RTT between the network device and a ground reference point within the cell where the terminal device is located
  • the network device is the RTT to the terminal device Non-terrestrial network equipment that provides services.
  • the time domain parameter reference value is a time domain parameter corresponding to the first object
  • Each time domain offset value in the at least one time domain offset value is: the offset value of the time domain parameter corresponding to at least one other object relative to the time domain parameter reference value; wherein, at least one other object is the offset value of all objects except Objects other than the first object.
  • the processor 1130 is specifically configured to determine the time domain parameter reference value as the time domain parameter if the terminal device corresponds to the first object.
  • the processor 1130 is specifically configured to determine the time domain parameter according to the time domain parameter reference value and the first time domain parameter offset value if the terminal device corresponds to the second object;
  • the first time-domain parameter offset value is one of at least one time-domain parameter offset value
  • the first time domain parameter offset value corresponds to the satellite beam where the terminal device is located, or the first time domain parameter offset value corresponds to the terminal device; the second object is one of at least one other object.
  • the processor 1130 is specifically configured to calculate a sum of a time domain parameter reference value and a first time domain parameter offset value to obtain a time domain parameter.
  • the time domain parameter is a time slot offset K offset ;
  • the time domain parameter is a public timing advance TA.
  • the processor 1130 is further configured to determine the time-domain parameter according to the configuration information, if the time-domain parameter is K offset , determine the time-domain resource location for uplink transmission according to the time-domain parameter; if the time-domain parameter is public TA, according to the time domain parameters, TA compensation is performed when sending a random access request during the random access process.
  • the time domain parameter is a public TA, it is applied to a terminal device without positioning capability.
  • the random access process includes: a four-step random access process, and/or, a two-step random access process.
  • the reference value of the time domain parameter is sent by broadcasting.
  • the at least one time domain parameter offset value corresponds to at least one beam
  • the at least one time domain parameter offset value is sent by broadcast or multicast.
  • the at least one time domain parameter offset value corresponds to at least one terminal device, then the at least one time domain parameter offset value is sent by multicast or dedicated signaling.
  • the network device is a satellite.
  • the network device in the embodiment of the present invention may be a satellite, and the satellite includes:
  • the sending module 1201 is configured to send configuration information to the terminal device, the configuration information is used to determine time domain parameters, and the configuration information includes: a time domain parameter reference value and at least one time domain parameter offset value.
  • At least one time-domain parameter offset value corresponds to at least one object, and one time-domain parameter offset value corresponds to one or more objects;
  • At least one object is at least one beam, or at least one object is at least one terminal device.
  • the time-domain parameter reference value is a time-domain parameter reference value corresponding to each object
  • At least one time-domain parameter offset value corresponds to a time-domain parameter offset value for each object.
  • the time domain parameter reference value is determined according to the first RTT and the second RTT;
  • the first RTT is: the RTT between the first reference point and the network device, and the uplink time domain and the downlink time domain of the first reference point are aligned;
  • the second RTT is: an RTT between the network device and a ground reference point within the cell where the terminal device is located.
  • the network device is a non-terrestrial network device that provides services to terminal devices.
  • the time domain parameter reference value is the sum of the first RTT and the second RTT.
  • the time domain parameter reference value corresponds to the second RTT
  • the second RTT is the RTT between the network device and a ground reference point within the cell where the terminal device is located
  • the network device is the RTT to the terminal device Non-terrestrial network equipment that provides services.
  • the time domain parameter is a time slot offset K offset ;
  • the time domain parameter is the timing advance TA.
  • the reference value of the time domain parameter is sent by broadcasting.
  • At least one time domain parameter offset value corresponds to at least one beam, then at least one time domain parameter offset value is sent by broadcast or multicast;
  • the at least one time domain parameter offset value corresponds to at least one terminal device, then the at least one time domain parameter offset value is sent by multicast or dedicated signaling.
  • An embodiment of the present invention also provides a computer-readable storage medium, including: computer instructions, which, when run on a computer, cause the computer to execute various processes of the terminal device in the foregoing method embodiments.
  • An embodiment of the present invention also provides a computer-readable storage medium, including: computer instructions, which, when run on a computer, cause the computer to execute various processes of the network device in the foregoing method embodiments.
  • An embodiment of the present invention also provides a computer program product, including computer instructions.
  • the computer program product runs on a computer, the computer runs the computer instructions, so that the computer executes various processes of the terminal device in the above method embodiments.
  • the embodiment of the present invention also provides a computer program product, including computer instructions.
  • the computer program product runs on the computer, the computer runs the computer instructions, so that the computer executes various processes of the network device in the above method embodiments.
  • the embodiment of the present invention also provides a chip, the chip is coupled with the memory in the terminal device, so that the chip calls the program instructions stored in the memory during operation, so that the terminal device executes various processes of the terminal device in the above method embodiments.
  • the embodiment of the present invention also provides a chip, the chip is coupled with the memory in the network device, so that the chip calls the program instructions stored in the memory during operation, so that the network device executes various processes of the network device in the above method embodiments.
  • a computer program product includes one or more computer instructions.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • DSL digital subscriber line
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种时域参数确定方法、终端设备及网络设备,应用于通信技术领域,本发明实施例包括:接收网络设备发送的配置信息,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值;根据所述配置信息,确定时域参数。

Description

时域参数确定方法、终端设备及网络设备 技术领域
本发明涉及通信技术领域,尤其涉及一种时域参数确定方法、终端设备及网络设备。
背景技术
在非地面通信(Non Terrestrial Network,NTN)网络中,对于一个小区包含多个卫星波束的场景,由于卫星向终端设备广播时隙偏移量K offset或定时提前(timeing advance,TA)时,需要针对每个卫星波束都广播一个K offset或TA,但是由于K offset和TA的值域范围很大,每个K offset和TA配置需要占用较多的比特域,这种配置方式需要较大的信令开销。
发明内容
本发明实施例提供了一种时域参数确定方法、终端设备及网络设备,通过网络设备向终端设备的配置方式(配置发送时域参数参考值和至少一个时域参数偏移值),对于一个小区包含多个卫星波束的场景,或者对于卫星服务于多个终端设备的场景,均可以减少信令开销。
本发明实施例提供了一种时域参数确定方法、终端设备及网络设备,网络设备可以向终端设备指示时域参数参考值和至少一个时域参数偏移值,并据此来确定时域参数,这样可以通过较少的比特域配置多个不同的时域参数,从而这样的配置方式可以减少信令开销。
第一方面,提供一种时域参数确定方法,包括:接收网络设备发送的配置信息;根据配置信息,确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
第二方面,提供一种时域参数确定方法,包括:向终端设备发送配置信息,配置信息用于确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
第三方面,提供一种终端设备,包括:
接收模块,用于接收网络设备发送的配置信息,配置信息包括:时域参数参考值和至少一个时域参数偏移值
处理模块,用于根据配置信息,确定时域参数。
第四方面,提供一种网络设备,包括:
发送模块,用于向终端设备发送配置信息,配置信息用于确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
第五方面,提供一种终端设备,包括:
接收器,用于接收网络设备发送的配置信息;
处理器,用于根据配置信息,确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
第六方面,提供一种网络设备,包括:
发送器,用于向终端设备发送配置信息,配置信息用于确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
第七方面,提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述第一方面或第一方面的任一种可选的实现方式的方法,或者,执行上述第二方面或第二方面的任一种可选的实现方式的方法。
第八方面,提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述第一方面或第一方面的任一种可选的实现方式的方法,或者,执行上述第二方面或第二方面的任一种可选的实现方式的方法。
第九方面,提供一种芯片,芯片与终端设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得终端设备执行如上述第一方面或第一方面的任一种可选的实现方式的方法,或者,使得网络设备执行上述第二方面或第二方面的任一种可选的实现方式的方法。
本发明实施例提供的时域参数确定方法,网络设备可以向终端设备发送配置信息,该配置信息包括时域参数参考值和至少一个时域参数偏移值,这样终端设备可以根据该配置信息,确定出时域参数,对于一个小区包含多个卫星波束的场景,或者对于卫星服务于多个终端设备的场景,终端设备都可以确定对应的多个时域参数,这样可以通过较少的比特域配置多个不同的时域参数,因此这样的配置方式可以减少信令开销。
附图说明
图1A为本发明实施例提供的一种无线通信***的架构示意图一;
图1B为本发明实施例提供的一种无线通信***的架构示意图二;
图1C为本发明实施例提供的一种无线通信***的架构示意图三;
图2为本发明实施例提供的一种透明转发的卫星网络架构示意图;
图3为本发明实施例提供的一种再生转发的卫星网络架构示意图;
图4为本发明实施例提供的一种NTN***中的定时关系一;
图5为本发明实施例提供的一种NTN***中的定时关系二;
图6为本发明实施例提供的一种再生转发NTN架构示意图;
图7为本发明实施例提供的一种透明转发NTN架构示意图;
图8为本发明实施例提供的一种时域参数确定方法的流程示意图;
图9为本发明实施例提供的一种终端设备的结构示意图;
图10为本发明实施例提供的一种网络设备的结构示意图;
图11为本发明实施例提供的一种终端设备的硬件结构示意图;
图12为本发明实施例提供的一种卫星的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
一、NTN相关背景
相关技术中,3GPP正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有以下优点:
首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。
其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。
再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同可以分为低地球轨道(low-Earth orbit,LEO)卫星、中地球轨道(medium-Earth orbit,MEO)卫星、地球同步轨道(geostationary Earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户设备与卫星之间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户设备与卫星之间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信***的***容量,卫星采用多波束覆盖地面,一颗卫星 可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
示例性的,图1A为本申请实施例提供的一种通信***的架构示意图。如图1A所示,通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1A示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1B为本申请实施例提供的另一种通信***的架构示意图。请参见图1B,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图1B所示的通信***的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在***架构下,可以将卫星1102称为网络设备。可选地,通信***中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1C为本申请实施例提供的另一种通信***的架构示意图。请参见图1C,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3C所示的通信***的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种***架构下,可以将基站1203称为网络设备。可选地,通信***中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1A-图1C只是以示例的形式示意本申请所适用的***,当然,本申请实施例所示的方法还可以适用于其它***,例如,5G通信***、LTE通信***等,本申请实施例对此不作具体限定。
可选地,图1A-图1C所示的无线通信***还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信***还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)***、下一代(移动 通信***)(next radio,NR)***或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)***中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图3A-图3B示出的通信***为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本发明实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信***中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本发明实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
可选地,本发明实施例可应用于非地面通信网络(Non-Terrestrial Networks,NTN)***,也可应用于地面通信网络(Terrestrial Networks,TN)***。
本发明实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本发明实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本发明实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
应理解,本文中术语“***”和“网络”在本文中常可被互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本发明实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
可选地,在本发明实施例中的指示信息包括物理层信令例如下行控制信息(Downlink Control  Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)中的至少一种。
可选地,在本发明实施例中的高层参数或高层信令包括无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)中的至少一
目前3GPP考虑的卫星网络架构有两种,一种是透明转发(transparentpayload)的卫星网络架构,一种是再生转发(regenerativepayload)的卫星网络架构。
卫星网络(即NTN网络)可以包括以下网元:
(1)至少一个网关:用于连接卫星和地面公共网络;
(2)馈线链路:用于网关和卫星之间通信的链路;
(3)服务链路:用于终端设备和卫星之间通信的链路;
(4)卫星:从其提供的功能上可以分为透明转发和再生转发这两种。对于透明转发的卫星:只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发的卫星:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能;
(5)星间链路:存在于再生转发网络架构下。
示例性的,图2为一种透明转发的卫星网络架构示意图,其中包括:用户设备(UE)、基站(gNB)、卫星以及地面网关(NTN gateway)组成的5G接入网(NG-RAN)、5G核心网(5G core network,5G CN)以及数据网络。UE与gNB之间通过新无线(new radio,NR)Uu接口(即通用用户网络接口)连接,基站与5G核心网(5G Core Network,5G CN)之间通过NG接口连接,5G核心网与数据网络(data network)通过N6接口连接。其中,卫星与地面网关形成射频拉远单元(remote radio unit,RRU)UE与gNB进行数据传输的过程中,会经过卫星和地面网关的转发,卫星和地面网关在转发过程中对数据不做协议栈处理,从而实现透明转发。
示例性的,图3为一种再生转发的卫星网络架构示意图,其中包括:UE、卫星以及地面网关组成的NG-RAN、5G CN以及数据网络。UE与卫星之间通过NR Uu接口连接,卫星与5G CN之间通过NG接口连接,5G核心网与数据网络通过N6接口连接。其中,卫星与地面网关之间通过在信号速率指示器(signal rate indicator,SRI)接口上运行的NG接口(即NG over SRI)连接,UE在进行数据传输时,会经过卫星的转发,卫星在转发过程中对数据会作协议栈处理,从而实现再生转发。
二、NTN***的定时关系
在陆地通信***中,信号通信的传播时延通常小于1ms。在NTN***中,由于终端设备和卫星(或者说网络设备)之间的通信距离很远,信号通信的传播时延很大,范围可以从几十毫秒到几百毫秒,具体和卫星轨道高度和卫星通信的业务类型相关。为了处理比较大的传播时延,NTN***的定时关系相对于NR***需要增强。
在NTN***中和NR***一样,用户设备(user equipment,UE)在进行上行传输时需要考虑TA的影响。由于***中的传播时延较大,因此TA值的范围也比较大。当终端设备被调度在时隙n进行上行传输时,该终端设备需要考虑往返传输时延(Round Trip Time,RTT),在上行传输时提前传输,从而可以使得信号到达基站侧时在基站侧上行的时隙n上。具体地,NTN***中的定时关系可能包括两种情况,分别如下图4和图5所示。
情况1如图4所示,和NR***一样,网络设备的下行时隙和上行时隙是对齐的,但是终端设备的下行时隙和终端设备的上行时隙之间没有对齐,为了使终端设备的上行传输和网络设备的上行时隙对齐,终端设备需要使用一个较大的TA值。在进行上行传输时,也需要引入一个较大的偏移值。例如,如图4所示的TA值。在一些情况下,TA值也可以用于确定K offset值。
需要说明的是,本发明实施例中的附图中,将网络设备的下行时隙或下行时隙对应的时序在图中表示为gNB DL;将网络设备的上行时隙或上行时隙对应的时序在图中表示为gNB UL;将终端设备的下行时隙或下行时隙对应的时序在图中表示为UE DL;将终端设备的上行时隙或上行时隙对应的时序在图中 表示为UE UL。
可选的,网络设备的下行时隙和网络设备的上行时隙之间有一个偏移值。
情况2如图5所示,网络设备的下行时隙和网络设备上行时隙之间有一个偏移值。在这种情况下,如果想要使终端设备的上行传输和网络设备的上行时隙对齐,终端设备只需要使用一个较小的TA值。但是,该情况下网络设备可能需要额外的调度复杂度来处理相应的调度时序。
三、NR***的时序关系
现有NR***中的时序关系如下:
1)物理下行共享信道(Physical Downlink Shared Channel,PDSCH)接收时序:当UE被下行控制信息(Downlink Control Information,DCI)调度接收PDSCH时,该DCI中包括K 0的指示信息,该K 0用于确定传输该PDSCH的时隙。例如,如果在时隙n上收到该调度DCI,那么被分配用于PDSCH传输的时隙为时隙
Figure PCTCN2021092755-appb-000001
其中,K 0是根据PDSCH的子载波间隔确定的,μ PDSCH和μ PDCCH分别用于确定为PDSCH和PDCCH配置的子载波间隔。K 0的取值范围是0到32。
2)DCI调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输时序:当UE被DCI调度发送PUSCH时,该DCI中包括K 2的指示信息,该K 2用于确定传输该PUSCH的时隙。例如,如果在时隙n上收到该调度DCI,那么被分配用于PUSCH传输的时隙为时隙
Figure PCTCN2021092755-appb-000002
其中,K 2是根据PDSCH的子载波间隔确定的,μ PUSCH和μ PDCCH分别用于确定为PUSCH和PDCCH配置的子载波间隔。K 2的取值范围是0到32。
3)随机接入响应(Random Access Response,RAR)授权(grant)调度的PUSCH的传输时序:对于被RAR grant调度进行PUSCH传输的时隙,如果UE发起物理随机接入信道(Physical Random Access Channel,PRACH)传输后,该UE收到包括该对应RAR grant消息的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的结束位置在时隙n,那么UE在时隙n+K 2+Δ上传输该PUSCH,其中,K 2和Δ是协议约定的。
4)物理上行控制信道(physical uplink control channel,PUCCH)上传输HARQ-ACK反馈信息的传输时序为:对于PUCCH传输的时隙,如果一个PDSCH接收的结束位置在时隙n或一个指示半持续调度(semi-persistent scheduling,SPS)PDSCH释放的PDCCH接收的结束位置在时隙n,终端设备应在时隙n+K1内的PUCCH资源上传输对应的HARQ-ACK反馈信息。
其中,混合自动重传请求应答(HARQ-ACK)反馈信息包括:ACK信息,或者,NACK信息;K1为时隙个数,时隙个数可以是通过DCI格式中HARQ反馈时序指示(PDSCH-to-HARQ-timing-indicator)信息域来指示的,或者,时隙个数是通过HARQ反馈时序集合(例如dl-DataToUL-ACK参数)提供的。在K1=0时,对应PUCCH传输的最后一个时隙与PDSCH接收的时隙重叠,或者,对应PUCCH传输的最后一个时隙与指示SPSPDSCH释放的PDCCH接收的时隙重叠。
5)MAC CE激活时序:当包括MAC CE命令的PDSCH对应的HARQ-ACK信息在时隙n上传输,该MAC CE命令指示的对应行为以及UE假设的下行配置应从时隙
Figure PCTCN2021092755-appb-000003
后的第一个时隙开始生效,其中,
Figure PCTCN2021092755-appb-000004
表示子载波间隔配置μ下每个子帧包括的时隙个数。
6)PUSCH上的CSI传输时序:PUSCH上的CSI传输时序和一般情况下DCI调度PUSCH传输的传输时序相同。
7)CSI参考资源时序:对于在上行时隙n′上上报CSI的CSI参考资源是根据单个下行时隙n-n CSI_ref确定的,其中,
Figure PCTCN2021092755-appb-000005
μ DL和μ UL分别是下行和上行的子载波间隔配置。n CSI_ref的取值取决于CSI上报的类型。
8)非周期SRS传输时序:如果UE在时隙n上收到DCI触发传输非周期SRS,该UE在时隙
Figure PCTCN2021092755-appb-000006
上传输每个被触发的SRS资源集合中的非周期SRS,其中k是通过每个被触发的SRS资源集合中的高层参数slotOffset配置的并且是根据被触发的SRS传输对应的子载波间隔确定的,μ SRS和μ PDCCH分别是被触发的SRS传输和携带触发命令的PDCCH的子载波间隔配置。
四、NTN***的时序增强
NR***中的PDSCH接收时序只受下行接收侧的时序影响,不受NTN***中的大传输往返时延的影响,因此NTN***可以重用NR***中的PDSCH接收时序。
对于其他受下行接收和上行发送交互影响的时序,为了能在NTN***中正常工作,或者说为了克服NTN***中的大传输时延,时序关系需要增强。一个简单的方案是在***中引入一个偏移参数K offset,并将该参数应用到相关的时序关系中。
(A)、DCI调度的PUSCH(包括PUSCH上传输的CSI)的传输时序:如果在时隙n上收到该调度DCI,那么被分配用于PUSCH传输的时隙为时隙
Figure PCTCN2021092755-appb-000007
(B)RAR grant调度的PUSCH的传输时序:对于被RAR grant调度进行PUSCH传输的时隙,UE在时隙n+K 2+Δ+K offset上传输该PUSCH。
(C)、PUCCH上传输HARQ-ACK的传输时序:对于PUCCH传输的时隙,UE应在时隙n+K 1+K offset内的PUCCH资源上传输对应的HARQ-ACK信息。
(D)、MAC CE激活时序:当包括MAC CE命令的PDSCH对应的HARQ-ACK信息在时隙n上传输,该MAC CE命令指示的对应行为以及UE假设的下行配置应从时隙
Figure PCTCN2021092755-appb-000008
后的第一个时隙开始生效,其中,X可能由NTN的UE能力确定,取值可以不为3。
(E)、CSI参考资源时序:对于在上行时隙n′上上报CSI的CSI参考资源是根据单个下行时隙
Figure PCTCN2021092755-appb-000009
确定的。
(F)、非周期SRS传输时序:如果UE在时隙n上收到DCI触发传输非周期SRS,该UE在时隙
Figure PCTCN2021092755-appb-000010
上传输每个被触发的SRS资源集合中的非周期SRS。
五、NTN初始TA的确定
NTN中可能存在两种类型的UE,一种是没有定位能力的UE,一种是有定位能力的UE。
对于不具有定位能力的UE,卫星会基于近地点(即卫星地面的覆盖范围之内最近的点,即图6中的参考点)与基站之间的信号传输时延广播1个公共的TA,如下图6所示,为一种再生转发NTN架构示意图,公共TA=2*d0/c;其中d0为卫星距离近地点的距离;d1为卫星距离终端设备的距离。
如图7所示,对于透明转发NTN架构示意图,TA=2*(d0+d0_F)/c。UE发送先导信息(preamble)时使用网络广播的公共TA进行补偿,网络在RAR中向UE指示一个UE专属的TA调整值,这样UE的初始TA就是广播的公共TA与RAR中指示的UE专属的TA两者累加的结果。其中,d0为卫星距离近地点(即卫星地面的覆盖范围之内最近的点,即图7中的参考点)的距离,d0_F为卫星距离地面网络设备的距离;d1为卫星距离终端设备的距离。
基于目前3GPP针对NTN标准化的进展,对于K offset的配置,已形成如下结论:对于初始随机接入结果,网络可以通过广播的方式配置小区级的K offset或者卫星波束级别的K offset
对于连接态的UE,网络可以通过RRC信令或者MAC为UE配置专属的K offset
如果网络没有配置UE专属的K offset,则UE使用广播的K offset
基于目前的理解,网络主要参考TA来配置K offset取值。比如网络广播的K offset,网络需要根据小区或者一个卫星波束下支持的最大TA来配置K_offset;对于UE专属的K offset,网络可以参考该UE的TA配置K offset
另外,对于每个GNSS定位能力的UE,在初始随机接入过程中需要基于common TA进行TA补偿发 送随机接入请求。基于目前通信协议TR38.821中的描述,每个卫星波束对应至少一个地面参考点,即针对每个卫星波束至少需要广播一个common TA。
对于一个小区包含多个卫星波束的场景,由于网络广播多个K offset和多个公共TA,最直观的方式是网络针对每个卫星波束配置一个K offset和一个公共TA,而由于K offset和TA的值域范围很大,每个K offset和TA配置需要占用较多的bit域,这种配置方式需要相对较大的信令开销。如何降低配置信令开销,是需要解决的一个问题。
为了解决上述问题,本发明实施例提供一种时域参数确定方法,网络设备可以向终端设备发送配置信息,该配置信息包括时域参数参考值和至少一个时域参数偏移值,这样终端设备可以根据该配置信息,确定出时域参数,对于一个小区包含多个卫星波束的场景,或者对于卫星服务于多个终端设备的场景,终端设备都可以确定对应的多个时域参数,这样可以通过较少的比特域配置多个不同的时域参数,因此这样的配置方式可以减少信令开销。
实施例一
如图8所示,本发明实施例中提供一种时域参数确定方法,包括:
801、网络设备向终端设备发送配置信息。
其中,该配置信息包括:时域参数参考值和至少一个时域参数偏移值。
可选的,时域参数可以包括以下情况:
情况1:时域参数可以为K offset
该情况1下,时域参数参考值为K offset的参考值,本实施例中可以记为K offset_ref;时域参数偏移值为K offset的偏移值,上述至少一个时域参数偏移值可以表示为:delteK offset_i;
其中,0<=i<N,其中N大于或等于0。
可选的,本发明实施例中,若所述时域参数为所述K offset,则根据所述时域参数,确定上行传输的时域资源位置。
情况2:时域参数可以为公共TA,即common TA。
该情况2下,时域参数参考值为common TA的参考值,本实施例中可以记为common TA_ref;时域参数偏移值为common TA的偏移值,上述至少一个时域参数偏移值可以表示为:deltecommon TA_i。
可选的,至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;其中,上述至少一个对象为至少一个波束,或者,上述至少一个对象为至少一个终端设备。
可选的,本发明实施例中的网络设备可以为基站或者卫星,上述波束可以是指基站波束,或者,卫星波束。在本发明实施例中的网络设备为基站时,上述波束是指基站波束;在本发明实施例中的网络设备为卫星时,上述波束是指卫星波束。
可选的,本发明实施例中,若所述时域参数为所述公共TA,则根据所述时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
可选的,本发明实施例中,若时域参数为所述公共TA,则应用于没有定位能力的终端设备。
可选的,所述随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
网络设备发送上述配置信息的发送方式可以包括以下至少一种:
(a)配置信息(时域参数参考值和至少一个时域参数偏移值)通过广播方式发送;
(b)时域参数参考值通过广播方式发送;
(c)若至少一个时域参数偏移值对应于至少一个波束,则至少一个时域参数偏移值通过广播方式发送或组播方式发送;
(d)若至少一个时域参数偏移值对应于至少一个终端设备,则至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
其中,专用信令可以为MAC CE信令或者RRC信令。
802、终端设备根据配置信息,确定时域参数。
根据配置信息的不同,802的实现方式也有所不同。下面进行具体说明:
(1)配置信息的一种实现方式:时域参数参考值为至少一个对象共用的时域参数参考值;至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
针对上述(1)配置信息的实现方式,802的实现方式包括:根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;第一时域参数偏移值与终端设备所在的波束对应,或者,第一时域参数偏移值与终端设备对应。
可选的,根据时域参数参考值与第一时域参数偏移值,确定时域参数包括:计算所述时域参数参考值与所述第一时域参数偏移值的和,得到所述时域参数。
可选的,根据时域参数参考值与第一时域参数偏移值,确定时域参数包括:计算所述时域参数参考值与所述第一时域参数偏移值的差,得到所述时域参数。
可选的,对于透明转发非地面通信NTN架构,时域参数参考值为根据第一往返时延(Round-Trip Time,RTT)与第二RTT确定的;
其中,第一RTT为:第一参考点与网络设备之间的RTT,第一参考点的上行时域和下行时域对齐。
第二RTT为:网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
其中,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一RTT与第二RTT的和。
可选的,对于再生转发NTN架构,时域参数参考值对应于第二RTT,第二RTT为网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,网络设备为向终端设备提供服务的非地面网络设备。
(2)配置信息的另一种实现方式:时域参数参考值为第一对象对应的时域参数;至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于时域参数参考值的偏移值;
其中,至少一个其他对象为所有对象中除第一对象以外的对象。
本实施例中,上述所有对象是指卫星的所有波束,或者,上述所有对象是指卫星服务的所有波束。
针对上述(2)配置信息的实现方式,上述802的一种实现方式包括:
若终端设备对应于第一对象,则将所述时域参数参考值,确定为时域参数。
上述终端设备对应于第一对象可以包括:终端设备是第一终端设备,或者,终端设备位于第一波束。
可选的,时域参数参考值为对应于第一终端设备的时域参数,此时在确定终端设备为第一终端设备时,就确定出该时域参数参考值为时域参数。
可选的,时域参数参考值为对应于第一波束的时域参数,此时在确定终端设备位于第一波束时,就可以确定出该时域参数参考值为时域参数。
针对上述(2)配置信息的实现方式,上述802的另一种实现方式包括:若终端设备对应于第二对象,则根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;第一时域参数偏移值与终端设备所在的卫星波束对应,或者,第一时域参数偏移值与终端设备对应;其中,第二对象为至少一个其他对象中的一个。
可选的,时域参数参考值为对应于第一终端设备的时域参数,此时在确定终端设备为第二终端设备时,需要根据时域参数参考值与第一时域参数偏移值,确定时域参数,此时第一时域参数偏移值为第二终端设备对应的时域参数偏移值。
可选的,时域参数参考值为对应于第一波束的时域参数,此时在确定终端设备位于第二波束时,需要根据时域参数参考值与第一时域参数偏移值,确定时域参数,此时第一时域参数偏移值为第二波束对应的时域参数偏移值。
本发明实施例提供的时域参数确定方法,网络设备可以向终端设备发送配置信息,该配置信息包括时域参数参考值和至少一个时域参数偏移值,这样终端设备可以根据该配置信息,确定出时域参数,对于一个小区包含多个卫星波束的场景,或者对于卫星服务于多个终端设备的场景,终端设备都可以确定对应的多个时域参数,而这样可以通过较少的比特域配置多个不同的时域参数,因此这样的配置方式可以减少信令开销。
为了更加清楚的说明本发明实施例提供的时域参数确定方法,下面将分别基于至少一个时域参数偏移值对应于至少一个卫星波束的情况(涉及下述实施例二至实施例五),以及至少一个时域参数偏移值对应于至少一个终端设备的情况(涉及下述实施例六至实施例九)分别对本发明实施例进行介绍。
实施例二
针对卫星波束级别的K offset的配置方式:
网络设备配置一个K offset参考值K offset_ref,同时针对每个卫星波束i配置一个delteK offset_i,则卫 星波束i所对应的K offset为K offstt_ref与delteK offset_i之和。
具体实施过程如下:
首先,网络设备针对每个卫星波束配置一个K offset,所述K offset用于确定UE上行传输的时域资源位置。网络设备配置所述K offset的方法如下:
a)配置一个时域参数参考值K offset,记为K offset_ref。例如:
对于透明转发NTN架构,所述K offset_ref对应于第一参考点与服务卫星之间的RTT和服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT之和。位于所述第一参考点的上行时隙(UL timing)和下行时隙(DL timing)对齐。
对于再生转发NTN架构,所述K offset_ref对应于服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT。
b)针对每个卫星波束i,配置一个时域参数偏移值,记为delteK offset_i,所述delteK offset_i表示卫星波束i对应的K offset相对于K offset_ref的增量。其中,0大于或等于i,且i<N,N为小区包含的卫星波束个数,其中,波束索引即为0至N-1。
然后,终端设备基于网络设备配置,使用自己所在卫星波束所对应的K offset。也就是说,如果终端设备位于卫星波束i,并且网络没有为所述给终端设备配置终端设备专属的K offset,则终端设备使用的K offset为K offset_ref和delteK offset_i之和。
示例性的,假设当前终端设备所在小区包括3个卫星波束,如下表1所示为一种针对每个卫星波束配置K offset的示意图。其中,网络设备可以通过广播的方式配置:一个时域K offset_ref、针对卫星波束0的时域参数偏移值delteK offset_0、针对卫星波束1的时域参数偏移值delteK offset_1、针对卫星波束2的时域参数偏移值delteK offset_2。那么相应的,在终端设备位于卫星波束0时,确定位于卫星波束0的终端设备的K offset_0=K offset_ref+delteK offset_0;在终端设备位于卫星波束1时,确定位于卫星波束1的终端设备的K offset_1=K offset_ref+delteK offset_1;在终端设备位于卫星波束0时,确定位于卫星波束2的终端设备的K offset_2=K offset_ref+delteK offset_2。
表1
Figure PCTCN2021092755-appb-000011
实施例三
针对卫星波束级别的K offset的配置方式:
网络设备针对卫星波束0配置一个K offsetK offset_0,同时针对每个卫星波束i(其中i>0)配置一个delteK offset_i,则卫星波束i所对应的K offset为K offset_0与delteK offset_i之和。
具体实施过程如下:
首先,网络设备针对每个卫星波束配置一个K offset,所述K offset用于确定终端设备上行传输的时域资源位置。网络设备配置所述K offset的方法如下:
a)针对卫星波束0,配置K offset,记为K offset_0。
b)针对每个卫星波束i,配置一个K offset偏移值,记为delteK offset_i,所述delteK offset_i表示卫星波束i对应的K offset相对于K offset_0的增量。其中,0<i<N,N为小区包含的卫星波束个数。
然后,终端设备基于网络设备配置,使用自己所在卫星波束所对应的K offset。即:如果终端设备位于卫星波束i,并且网络设备没有为所述终端设备配置终端设备专属的K offset,则终端设备使用的K offset为:
a)如果终端设备位于波束0,则终端设备使用的K offset为网络设备广播的K offset_0;
b)否则,如果终端设备位于波束i(i不等于0),则终端设备使用的K offset为K offset_0与delteK offset_i之和。
示例性的,假设当前终端设备所在小区包括3个卫星波束,如下表2所示为一种针对每个卫星波束配置K offset的示意图。其中,网络设备可以通过广播的方式配置:针对卫星波束0的时域参数K offset_0、针对卫星波束1的时域参数偏移值delteK offset_1、针对卫星波束2的时域参数偏移值delteK offset_2。那么相应的,在终端设备位于卫星波束0时,确定位于卫星波束0时域参数K offset_0;在终端设备位于卫星波束1时,确定位于卫星波束1的终端设备的K offset_1=K offset_0+delteK offset_1;在终端设备位于卫星波束0时,确定位于卫星波束2的终端设备的K offset_2=K offset_0+delteK offset_2。
表2
Figure PCTCN2021092755-appb-000012
实施例四
针对卫星波束级别的common TA的配置方式:
网络设备配置一个公共TA参考值common TA_ref,同时针对每个卫星波束i配置一个delta common TA i,则卫星波束i所对应的公共TA的为common TA_ref与delta common TA_i之和。
具体实施过程如下:
首先,网络设备针对每个卫星波束配置一个公共TA,所述公共TA用于没有定位能力的终端设备在随机接入过程中传输msg1(四步随机接入)/msgA(两步随机接入)时进行TA补偿。网络设备配置所述公共TA的方法如下:
a)配置一个公共TA参考值,记为common TA_ref。例如:
对于透明转发NTN架构,所述common TA_ref对应于第一参考点与服务卫星之间的RTT和服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT之和。位于所述第一参考点的UL timing和DL timing对齐。
对于再生转发NTN架构,所述common TA_ref对应于服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT。
c)针对每个卫星波束i,配置一个common TA偏移值,记为delta common TA_i,所述delta common TA_i表示卫星波束i对应的common TA相对于common TA_ref的增量。其中,0大于或等于i,且i<N,N为小区包含的卫星波束个数。
然后,对于没有定位能力的终端设备,如果所述终端设备发起了随机接入过程,终端设备基于网络设备配置,使用自己所在卫星波束所对应的common TA。即:如果终端设备位于卫星波束i,并且所述终端设备当前没有有效可用的TA,则终端设备使用的卫星波束i对应的公共TA发送msg1/msg3。其中,所述卫星波束i对应的公共TA为common TA_ref和delta common TA_i之和。
示例性的,假设当前终端设备所在小区包括3个卫星波束,如下表3所示为一种针对每个卫星波束配置common TA的示意图。其中,网络设备可以通过广播的方式配置:一个时域common TA_ref、针对卫星波束0的时域参数偏移值delta common TA_0、针对卫星波束1的时域参数偏移值delta common TA_1、针对卫星波束2的时域参数偏移值delta common TA_2。那么相应的,在终端设备位于卫星波束0时,确定位于卫星波束0的终端设备的common TA_0=common TA_ref+delta common TA_0;在终端设备位于卫星波束1时,确定位于卫星波束1的终端设备的common TA_1=common TA_ref+delta common TA_1;在终端设备位于卫星波束2时,确定位于卫星波束2的终端设备的common TA_2=common TA_ref+delta common TA_2。
表3
Figure PCTCN2021092755-appb-000013
实施例五
针对卫星波束级别的common TA的配置方式:
网络设备针对卫星波束0配置一个公共TAcommon TA_0,同时针对每个卫星波束i(其中i>0)配置一个delta common TA_i,则卫星波束i所对应的公共TA的为common TA_0与delta common TA_i之和。
具体实施过程如下:
首先,网络设备针对每个卫星波束配置一个公共TA,所述公共TA用于没有定位能力的终端设备在随机接入过程中传输msg1(即四步随机接入过程)/msgA(即两步随机接入过程)时进行TA补偿。网络设备配置所述公共TA的方法如下:
a)针对卫星波束0,配置公共TA,记为common TA_0。
b)针对每个卫星波束i,配置一个common TA偏移值,记为delta common TA_i,所述delta common TA_i表示卫星波束i对应的common TA相对于common TA_0的增量。其中,0<i<N,N为小区包含的卫星波束个数。
然后,对于没有定位能力的终端设备,如果所述终端设备发起了随机接入过程,终端设备基于网络设备配置,使用自己所在卫星波束所对应的common TA。即:如果终端设备位于卫星波束i,并且所述终端设备当前没有有效可用的TA,则终端设备使用的卫星波束i对应的公共TA发送msg1/msg3。其中,所述卫星波束i对应的公共TA为:
a)如果i=0,则使用common TA_0。
b)否则,使用common TA_0和delta common TA_i之和。
示例性的,假设当前终端设备所在小区包括3个卫星波束,如下表2所示为一种针对每个卫星波束配置common TA的示意图。其中,网络设备可以通过广播的方式配置:针对卫星波束0的时域参数common TA_0、针对卫星波束1的时域参数偏移值delta common TA_1、针对卫星波束2的时域参数偏移值delta common TA_2。那么相应的,在终端设备位于卫星波束0时,确定位于卫星波束0时域参数common TA_0;在终端设备位于卫星波束1时,确定位于卫星波束1的终端设备的common TA_1=common TA_0+delta common TA_1;在终端设备位于卫星波束0时,确定位于卫星波束2的终端设备的common TA_2=common TA_0+delta common TA_2。
表4
Figure PCTCN2021092755-appb-000014
实施例六
针对终端设备级别的K offset的配置方式:
网络设备配置一个K offset参考值K offset_ref,同时针对每个终端设备i配置一个delteK offset_i,则终端设备i所对应的K offset为K offset_ref与delteK offset_i之和。
具体实施过程如下:
首先,网络设备针对每个终端设备配置一个K offset,所述K offset用于确定UE上行传输的时域资源 位置。网络设备配置所述K offset的方法如下:
d)配置一个时域参数参考值K offset,记为K offset_ref。例如:
对于透明转发NTN架构,所述K offset_ref对应于第一参考点与服务卫星之间的RTT和服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT之和。位于所述第一参考点的上行时隙(UL timing)和下行时隙(DL timing)对齐。
对于再生转发NTN架构,所述K offset_ref对应于服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT。
e)针对每个终端设备i,配置一个时域参数偏移值,记为delteK offset_i,所述delteK offset_i表示终端设备i对应的K offset相对于K offset_ref的增量。其中,0大于或等于i,且i<N,N为小区包含的终端设备个数。
然后,终端设备基于网络设备配置,使用自己当前终端设备所对应的K offset。也就是说,如果当前终端设备为终端设备i,并且网络设备没有给该当前终端设备配置专属的K offset,则该终端设备使用的K offset为K offset_ref和delteK offset_i之和。
示例性的,假设卫星服务于3个终端设备,如下表5所示为一种针对每个终端设备配置K offset的示意图。其中,网络设备可以通过广播的方式配置:一个时域K offset_ref、针对终端设备0的时域参数偏移值delteK offset_0、针对终端设备1的时域参数偏移值delteK offset_1、针对终端设备2的时域参数偏移值delteK offset_2。那么相应的,在当前终端设备为终端设备0时,确定终端设备0的K offset_0=K offset_ref+delteK offset_0;在当前终端设备为终端设备1时,确定终端设备1的K offset_1=K offset_ref+delteK offset_1;在当前终端设备为终端设备0时,确定终端设备2的K offset_2=K offset_ref+delteK offset_2。
表5
Figure PCTCN2021092755-appb-000015
实施例七
针对终端设备级别的K offset的配置方式:
网络设备针对终端设备0配置一个时域参数K offset,记为K offset_0,同时针对每个终端设备i(其中i>0)配置一个delteK offset_i,则终端设备i所对应的K offset为K offset_0与delteK offset_i之和。
具体实施过程如下:
首先,网络设备针对每个终端设备配置一个K offset,所述K offset用于确定终端设备上行传输的时域资源位置。网络设备配置所述K offset的方法如下:
c)针对终端设备0,配置K offset,记为K offset_0。
d)针对每个终端设备i,配置一个K offset偏移值,记为delteK offset_i,所述delteK offset_i表示终端设备i对应的K offset相对于K offset_0的增量。其中,0<i<N,N为小区包含的终端设备个数。
然后,终端设备基于网络设备配置,使用自身终端设备所对应的K offset。即:如果当前终端设备为终端设备i,并且网络设备没有为该终端设备专属的K offset,则该终端设备使用的K offset为:
c)如果当前终端设备为终端设备0,则该当前终端设备使用的K offset为网络设备广播的K offset_0;
d)否则,如果当前终端设备为终端设备i(i不等于0),则该当前终端设备使用的K offset为K offset_0与delteK offset_i之和。
示例性的,假设当前终端设备所在小区包括3个终端设备,如下表6所示为一种针对每个终端设备 配置K offset的示意图。其中,网络设备可以通过广播的方式配置:针对终端设备0的时域参数K offset_0、针对终端设备1的时域参数偏移值delteK offset_1、针对终端设备2的时域参数偏移值delteK offset_2。那么相应的,在当前终端设备为终端设备0时,确定位于终端设备0时域参数K offset_0;在当前终端设备为终端设备1时,确定终端设备1的K offset_1=K offset_0+delteK offset_1;在当前终端设备为终端设备2时,确定终端设备2的K offset_2=K offset_0+delteK offset_2。
表6
Figure PCTCN2021092755-appb-000016
实施例八
针对终端设备级别的common TA的配置方式:
网络设备配置一个公共TA参考值common TA_ref,同时针对每个终端设备i配置一个delta common TA i,则终端设备i所对应的公共TA的为common TA_ref与delta common TA_i之和。
具体实施过程如下:
首先,网络设备针对每个终端设备配置一个公共TA,所述公共TA用于没有定位能力的终端设备在随机接入过程中传输msg1(四步随机接入)/msgA(两步随机接入)时进行TA补偿。网络设备配置所述公共TA的方法如下:
b)配置一个公共TA参考值,记为common TA_ref。例如:
对于透明转发NTN架构,common TA_ref对应于第一参考点与服务卫星之间的RTT和服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT之和。位于所述第一参考点的UL timing和DL timing对齐。
对于再生转发NTN架构,所述common TA_ref对应于服务卫星与(小区地面覆盖范围内)一个地面参考点之间的RTT。
c)针对每个终端设备i,配置一个common TA偏移值,记为delta common TA_i,所述deltacommon TA_i表示终端设备i对应的common TA相对于common TA_ref的增量。
然后,对于没有定位能力的终端设备,如果所述终端设备发起了随机接入过程,终端设备基于网络设备配置,使用自己所在终端设备所对应的common TA。即:如果终端设备位于终端设备i,并且所述终端设备当前没有有效可用的TA,则终端设备使用的终端设备i对应的公共TA发送msg1/msg3。其中,所述终端设备i对应的公共TA为common TA_ref和delta common TA_i之和。
示例性的,假设当前终端设备所在小区包括3个终端设备,如下表7所示为一种针对每个终端设备配置common TA的示意图。其中,网络设备可以通过广播的方式配置:一个时域参数参考值common TA_ref、针对终端设备0的时域参数偏移值delta common TA_0、针对终端设备1的时域参数偏移值delta common TA_1、针对终端设备2的时域参数偏移值delta common TA_2。那么相应的,在当前终端设备为终端设备0时,确定终端设备0对应的时域参数common TA_0=common TA_ref+delta common TA_0;在当前终端设备为终端设备1时,确定终端设备1对应的时域参数common TA_1=common TA_ref+delta common TA_1;在当前终端设备为终端设备0时,确定终端设备2对应的时域参数common TA_2=common TA_ref+delta common TA_2。
表7
Figure PCTCN2021092755-appb-000017
实施例九
针对终端设备级别的common TA的配置方式:
网络设备针对终端设备0配置一个公共TAcommon TA_0,同时针对每个终端设备i(其中i>0)配置一个delta common TA_i,则终端设备i所对应的公共TA的为common TA_0与delta common TA_i之和。
具体实施过程如下:
首先,网络设备针对每个终端设备配置一个公共TA,所述公共TA用于没有定位能力的终端设备在随机接入过程中传输msg1(即四步随机接入过程)/msgA(即两步随机接入过程)时进行TA补偿。网络设备配置所述公共TA的方法如下:
c)针对终端设备0,配置公共TA,记为common TA_0。
d)针对每个终端设备i,配置一个common TA偏移值,记为delta common TA_i,所述delta common TA_i表示终端设备i对应的common TA相对于common TA_0的增量。其中,0<i<N,N为小区包含的终端设备个数。
然后,对于没有定位能力的终端设备,如果该终端设备发起了随机接入过程,终端设备基于网络设备配置,使用自身终端设备所对应的common TA。即:如果当前终端设备为终端设备i,并且该终端设备当前没有有效可用的TA,则使用终端设备i对应的公共TA发送msg1/msg3。其中,所述终端设备i对应的公共TA为:
c)如果i=0,则使用common TA_0。
d)否则,使用common TA_0和delta common TA_i之和。
示例性的,假设当前终端设备所在小区包括3个终端设备,如下表8所示为一种针对每个终端设备配置common TA的示意图。其中,网络设备可以通过广播的方式配置:针对终端设备0的时域参数common TA_0、针对终端设备1的时域参数偏移值delta common TA_1、针对终端设备2的时域参数偏移值delta common TA_2。那么相应的,在当前终端设备为终端设备0时,确定终端设备0对应的时域参数common TA_0;在当前终端设备为终端设备1时,确定终端设备1对应的时域参数common TA_1=common TA_0+delta common TA_1;在终端设备位于终端设备0时,确定终端设备2对应的时域参数common TA_2=common TA_0+delta common TA_2。
表8
Figure PCTCN2021092755-appb-000018
本发明实施例中的配置方法,可以适用于对于一个小区包含多个卫星波束的场景,或者对于卫星服务于多个终端设备的场景,这样的配置方法这样可以通过较少的比特域配置多个不同的时域参数,可以减少信令开销。
如图9所示,提供一种终端设备,包括:
接收模块901,用于接收网络设备发送的配置信息;
处理模块902,用于根据配置信息,确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
可选的,至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
其中,至少一个对象为至少一个波束,或者,至少一个对象为至少一个终端设备。
可选的,时域参数参考值为至少一个对象共用的时域参数参考值;
至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
可选的,处理模块902,具体用于根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;第一时域参数偏移值与终端设备所在的波束对应,或者,第一时域参数偏移值与终端设备对应。
可选的,对于透明转发非地面通信NTN架构,时域参数参考值为根据第一往返时延RTT与第二RTT确定的;
其中,第一RTT为:第一参考点与网络设备之间的RTT,第一参考点的上行时域和下行时域对齐;
第二RTT为:网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
其中,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一RTT与第二RTT的和。
可选的,对于再生转发NTN架构,时域参数参考值对应于第二RTT,第二RTT为网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一对象对应的时域参数;
至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于时域参数参考值的偏移值;其中,至少一个其他对象为所有对象中除第一对象以外的对象。
可选的,处理模块902,具体用于若终端设备对应于第一对象,则将时域参数参考值,确定为时域参数。
可选的,处理模块902,具体用于若终端设备对应于第二对象,则根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;
第一时域参数偏移值与终端设备所在的卫星波束对应,或者,第一时域参数偏移值与终端设备对应;第二对象为至少一个其他对象中的一个。
可选的,处理模块902,具体用于计算时域参数参考值与第一时域参数偏移值的和,得到时域参数。
可选的,时域参数为时隙偏移量K offset
可选的,时域参数为公共定时提前TA。
可选的,处理模块902,还用于根据配置信息,确定时域参数之后,若时域参数为K offset,则根据时域参数,确定上行传输的时域资源位置;若时域参数为公共TA,则根据时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
可选的,若时域参数为公共TA,则应用于没有定位能力的终端设备。
可选的,随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
可选的,时域参数参考值通过广播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个波束,则至少一个时域参数偏移值通过广播方式发送或组播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个终端设备,则至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
可选的,所述网络设备为卫星。
如图10所示,提供一种网络设备,包括:
发送模块1001,用于向终端设备发送配置信息,配置信息用于确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
可选的,至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
其中,至少一个对象为至少一个波束,或者,至少一个对象为至少一个终端设备。
可选的,时域参数参考值为对应于每个对象的时域参数参考值;
至少一个时域参数偏移值为对应于每个对象的时域参数偏移值。
可选的,对于透明转发NTN架构,时域参数参考值为根据第一RTT与第二RTT确定的;
其中,第一RTT为:第一参考点与网络设备之间的RTT,第一参考点的上行时域和下行时域对齐;
第二RTT为:网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
其中,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一RTT与第二RTT的和。
可选的,对于再生转发NTN架构,时域参数参考值对应于第二RTT,第二RTT为网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数为时隙偏移量K offset
或者,
时域参数为定时提前TA。
可选的,时域参数参考值通过广播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个波束,则至少一个时域参数偏移值通过广播方式发送或组播方式发送;
若至少一个时域参数偏移值对应于至少一个终端设备,则至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
可选的,网络设备为卫星。
本发明实施例还提供一种终端设备,包括:存储有可执行程序代码的存储器;
与存储器耦合的处理器;
处理器调用存储器中存储的可执行程序代码,执行本发明实施例中终端设备所执行的时域参数确定方法。
本发明实施例还提供一种网络设备,包括:存储有可执行程序代码的存储器;
与存储器耦合的处理器;
处理器调用存储器中存储的可执行程序代码,执行本发明实施例中网络设备所执行的时域参数确定方法。
示例性的,如图11所示为本发明实施例中提供的一种终端设备,该终端设备包括:射频(radio frequency,RF)电路1110、存储器1120、处理器1130等部件。其中,射频电路1110包括接收器1111和发送器1112。本领域技术人员可以理解,图11中示出的终端设备的结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1130处理;另外,将设计上行的数据发送给基站。通常,RF电路1110包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1130通过运行存储在存储器1120的软件程序以及模块,从而执行终端设备的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1130是的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选的,处理器1130可包括一个或多个处理单元;优选的,处理器1130可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1130中。
在本发明实施例中,RF电路1110(具体可以是接收器1111),用于接收网络设备发送的配置信息;
处理器1130,用于根据配置信息,确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
可选的,至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
其中,至少一个对象为至少一个波束,或者,至少一个对象为至少一个终端设备。
可选的,时域参数参考值为至少一个对象共用的时域参数参考值;
至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
可选的,处理器1130,具体用于根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;第一时域参数偏移值与终端设备所在的波束对应,或者,第一时域参数偏移值与终端设备对应。
可选的,对于透明转发非地面通信NTN架构,时域参数参考值为根据第一往返时延RTT与第二RTT确定的;
其中,第一RTT为:第一参考点与网络设备之间的RTT,第一参考点的上行时域和下行时域对齐;
第二RTT为:网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
其中,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一RTT与第二RTT的和。
可选的,对于再生转发NTN架构,时域参数参考值对应于第二RTT,第二RTT为网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一对象对应的时域参数;
至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于时域参数参考值的偏移值;其中,至少一个其他对象为所有对象中除第一对象以外的对象。
可选的,处理器1130,具体用于若终端设备对应于第一对象,则将时域参数参考值,确定为时域参数。
可选的,处理器1130,具体用于若终端设备对应于第二对象,则根据时域参数参考值与第一时域参数偏移值,确定时域参数;
其中,第一时域参数偏移值为至少一个时域参数偏移值中的一个;
第一时域参数偏移值与终端设备所在的卫星波束对应,或者,第一时域参数偏移值与终端设备对应;第二对象为至少一个其他对象中的一个。
可选的,处理器1130,具体用于计算时域参数参考值与第一时域参数偏移值的和,得到时域参数。
可选的,时域参数为时隙偏移量K offset
可选的,时域参数为公共定时提前TA。
可选的,处理器1130,还用于根据配置信息,确定时域参数之后,若时域参数为K offset,则根据时域参数,确定上行传输的时域资源位置;若时域参数为公共TA,则根据时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
可选的,若时域参数为公共TA,则应用于没有定位能力的终端设备。
可选的,随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
可选的,时域参数参考值通过广播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个波束,则至少一个时域参数偏移值通过广播方式发送或组播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个终端设备,则至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
可选的,所述网络设备为卫星。
示例性的,如图12所示,本发明实施例中的网络设备可以为卫星,该卫星包括:
发送模块1201,用于向终端设备发送配置信息,配置信息用于确定时域参数,配置信息包括:时域参数参考值和至少一个时域参数偏移值。
可选的,至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
其中,至少一个对象为至少一个波束,或者,至少一个对象为至少一个终端设备。
可选的,时域参数参考值为对应于每个对象的时域参数参考值;
至少一个时域参数偏移值为对应于每个对象的时域参数偏移值。
可选的,对于透明转发NTN架构,时域参数参考值为根据第一RTT与第二RTT确定的;
其中,第一RTT为:第一参考点与网络设备之间的RTT,第一参考点的上行时域和下行时域对齐;
第二RTT为:网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
其中,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数参考值为第一RTT与第二RTT的和。
可选的,对于再生转发NTN架构,时域参数参考值对应于第二RTT,第二RTT为网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,网络设备为向终端设备提供服务的非地面网络设备。
可选的,时域参数为时隙偏移量K offset
或者,
时域参数为定时提前TA。
可选的,时域参数参考值通过广播方式发送。
可选的,若至少一个时域参数偏移值对应于至少一个波束,则至少一个时域参数偏移值通过广播方式发送或组播方式发送;
若至少一个时域参数偏移值对应于至少一个终端设备,则至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
本发明实施例还提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述方法实施例中网络设备的各个过程。
本发明实施例还提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述方法实施例中网络设备的各个过程。
本发明实施例还提供一种芯片,芯片与终端设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得终端设备执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种芯片,芯片与网络设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得网络设备执行如上述方法实施例中网络设备的各个过程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (91)

  1. 一种时域参数确定方法,其特征在于,包括:
    接收网络设备发送的配置信息,根据配置信息包括:时域参数参考值和至少一个时域参数偏移值;
    根据所述配置信息,确定时域参数。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述时域参数参考值为所述至少一个对象共用的时域参数参考值;
    所述至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述配置信息,确定时域参数,包括:
    根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;所述第一时域参数偏移值与终端设备所在的波束对应,或者,所述第一时域参数偏移值与所述终端设备对应。
  5. 根据权利要求3或4所述的方法,其特征在于,
    对于透明转发非地面通信NTN架构,所述时域参数参考值为根据第一往返时延RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与所述网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  6. 根据权利要求5所述的方法,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  7. 根据权利要求3或4所述的方法,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  8. 根据权利要求1或2所述的方法,其特征在于,
    所述时域参数参考值为第一对象对应的时域参数;
    所述至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于所述时域参数参考值的偏移值;其中,所述至少一个其他对象为所有对象中除所述第一对象以外的对象。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述配置信息,确定时域参数,包括:
    若终端设备对应于第一对象,则将所述时域参数参考值,确定为时域参数。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述配置信息,确定时域参数,包括:
    若终端设备对应于第二对象,则根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;
    所述第一时域参数偏移值与所述终端设备所在的卫星波束对应,或者,所述第一时域参数偏移值与所述终端设备对应;所述第二对象为所述至少一个其他对象中的一个。
  11. 根据权利要求4或10所述的方法,其特征在于,所述根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数,包括:
    计算所述时域参数参考值与所述第一时域参数偏移值的和,得到所述时域参数。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为公共定时提前TA。
  13. 根据所述权利要求8所述的方法,其特征在于,所述根据所述配置信息,确定时域参数之后,还包括:
    若所述时域参数为所述K offset,则根据所述时域参数,确定上行传输的时域资源位置;
    若所述时域参数为所述公共TA,则根据所述时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
  14. 根据权利要求13所述的方法,其特征在于,若所述时域参数为所述公共TA,则应用于没有定位能力的终端设备。
  15. 根据权利要求13或14所述的方法,其特征在于,所述随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
  16. 根据权利1至15任一项所述的方法,其特征在于,
    所述时域参数参考值通过广播方式发送。
  17. 根据权利1至16任一项所述的方法,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  18. 根据权利要求1至16任一项所述的方法,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  19. 根据权利要求1至18任一项所述的方法,其特征在于,所述网络设备为卫星。
  20. 一种时域参数确定方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息用于确定时域参数,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值。
  21. 根据权利要求20所述的方法,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  22. 根据权利要求20或21所述的方法,其特征在于,
    所述时域参数参考值为对应于每个对象的时域参数参考值;
    所述至少一个时域参数偏移值为对应于每个对象的时域参数偏移值。
  23. 根据权利要求22所述的方法,其特征在于,
    对于透明转发NTN架构,所述时域参数参考值为根据第一RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  24. 根据权利要求23所述的方法,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  25. 根据权利要求22所述的方法,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  26. 根据权利要求20至25任一项所述的方法,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为定时提前TA。
  27. 根据权利20至26任一项所述的方法,其特征在于,
    所述时域参数参考值通过广播方式发送。
  28. 根据权利20至27任一项所述的方法,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  29. 根据权利20至27任一项所述的方法,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  30. 根据权利要求23至25任一项所述的方法,其特征在于,所述网络设备为卫星。
  31. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的配置信息;
    处理模块,用于根据所述配置信息,确定时域参数,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值。
  32. 根据权利要求31所述的终端设备,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  33. 根据权利要求31或32所述的终端设备,其特征在于,
    所述时域参数参考值为所述至少一个对象共用的时域参数参考值;
    所述至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
  34. 根据权利要求33所述的终端设备,其特征在于,
    所述处理模块,具体用于根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;所述第一时域参数偏移值与终端设备所在的波束对应,或者,所述第一时域参数偏移值与所述终端设备对应。
  35. 根据权利要求33或34所述的终端设备,其特征在于,
    对于透明转发非地面通信NTN架构,所述时域参数参考值为根据第一往返时延RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与所述网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  36. 根据权利要求35所述的终端设备,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  37. 根据权利要求33或34所述的终端设备,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  38. 根据权利要求31或32所述的终端设备,其特征在于,
    所述时域参数参考值为第一对象对应的时域参数;
    所述至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于所述时域参数参考值的偏移值;其中,所述至少一个其他对象为所有对象中除所述第一对象以外的对象。
  39. 根据权利要求38所述的终端设备,其特征在于,
    所述处理模块,具体用于若终端设备对应于第一对象,则将所述时域参数参考值,确定为时域参数。
  40. 根据权利要求38所述的终端设备,其特征在于,
    所述处理模块,具体用于若终端设备对应于第二对象,则根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;
    所述第一时域参数偏移值与所述终端设备所在的卫星波束对应,或者,所述第一时域参数偏移值与所述终端设备对应;所述第二对象为所述至少一个其他对象中的一个。
  41. 根据权利要求34或40所述的终端设备,其特征在于,所述处理模块,具体用于计算所述时域参数参考值与所述第一时域参数偏移值的和,得到所述时域参数。
  42. 根据权利要求31至41任一项所述的终端设备,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为公共定时提前TA。
  43. 根据所述权利要求38所述的终端设备,其特征在于,所述处理模块,还用于根据所述配置信息,确定时域参数之后,若所述时域参数为所述K offset,则根据所述时域参数,确定上行传输的时域资源位置;若所述时域参数为所述公共TA,则根据所述时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
  44. 根据权利要求43所述的终端设备,其特征在于,若所述时域参数为所述公共TA,则应用于没有定位能力的终端设备。
  45. 根据权利要求43或44所述的终端设备,其特征在于,所述随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
  46. 根据权利31至45任一项所述的终端设备,其特征在于,
    所述时域参数参考值通过广播方式发送。
  47. 根据权利31至46任一项所述的终端设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  48. 根据权利要求31至46任一项所述的终端设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  49. 根据权利要求31至48任一项所述的终端设备,其特征在于,所述网络设备为卫星。
  50. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送配置信息,所述配置信息用于确定时域参数,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值。
  51. 根据权利要求50所述的网络设备,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  52. 根据权利要求50或51所述的网络设备,其特征在于,
    所述时域参数参考值为对应于每个对象的时域参数参考值;
    所述至少一个时域参数偏移值为对应于每个对象的时域参数偏移值。
  53. 根据权利要求52所述的网络设备,其特征在于,
    对于透明转发NTN架构,所述时域参数参考值为根据第一RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  54. 根据权利要求53所述的网络设备,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  55. 根据权利要求52所述的网络设备,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  56. 根据权利要求50至55任一项所述的网络设备,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为定时提前TA。
  57. 根据权利50至56任一项所述的网络设备,其特征在于,
    所述时域参数参考值通过广播方式发送。
  58. 根据权利50至57任一项所述的网络设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  59. 根据权利50至57任一项所述的网络设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  60. 根据权利要求53至55任一项所述的网络设备,其特征在于,所述网络设备为卫星。
  61. 一种终端设备,其特征在于,包括:
    接收器,用于接收网络设备发送的配置信息;
    处理器,用于根据所述配置信息,确定时域参数,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值。
  62. 根据权利要求61所述的终端设备,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  63. 根据权利要求61或62所述的终端设备,其特征在于,
    所述时域参数参考值为所述至少一个对象共用的时域参数参考值;
    所述至少一个时域参数偏移值包括对应于每个对象的时域参数偏移值。
  64. 根据权利要求63所述的终端设备,其特征在于,
    所述处理器,具体用于根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;所述第一时域参数偏移值与终端设备所在的波束对应,或者,所述第一时域参数偏移值与所述终端设备对应。
  65. 根据权利要求63或64所述的终端设备,其特征在于,
    对于透明转发非地面通信NTN架构,所述时域参数参考值为根据第一往返时延RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与所述网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  66. 根据权利要求65所述的终端设备,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  67. 根据权利要求63或64所述的终端设备,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为所述网络设备与终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  68. 根据权利要求61或62所述的终端设备,其特征在于,
    所述时域参数参考值为第一对象对应的时域参数;
    所述至少一个时域偏移值中的每一个时域偏移值为:至少一个其他对象对应的时域参数相对于所述时域参数参考值的偏移值;其中,所述至少一个其他对象为所有对象中除所述第一对象以外的对象。
  69. 根据权利要求68所述的终端设备,其特征在于,
    所述处理器,具体用于若终端设备对应于第一对象,则将所述时域参数参考值,确定为时域参数。
  70. 根据权利要求68所述的终端设备,其特征在于,
    所述处理器,具体用于若终端设备对应于第二对象,则根据所述时域参数参考值与第一时域参数偏移值,确定所述时域参数;
    其中,所述第一时域参数偏移值为所述至少一个时域参数偏移值中的一个;
    所述第一时域参数偏移值与所述终端设备所在的卫星波束对应,或者,所述第一时域参数偏移值与所述终端设备对应;所述第二对象为所述至少一个其他对象中的一个。
  71. 根据权利要求64或70所述的终端设备,其特征在于,所述处理器,具体用于计算所述时域参数参考值与所述第一时域参数偏移值的和,得到所述时域参数。
  72. 根据权利要求61至71任一项所述的终端设备,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为公共定时提前TA。
  73. 根据所述权利要求58所述的终端设备,其特征在于,
    所述处理器,还用于根据所述配置信息,确定时域参数之后,若所述时域参数为所述K offset,则根据所述时域参数,确定上行传输的时域资源位置;若所述时域参数为所述公共TA,则根据所述时域参数,在随机接入过程中发送随机接入请求时进行TA补偿。
  74. 根据权利要求73所述的终端设备,其特征在于,若所述时域参数为所述公共TA,则应用于没有定位能力的终端设备。
  75. 根据权利要求73或74所述的终端设备,其特征在于,所述随机接入过程包括:四步随机接入过程,和/或,两步随机接入过程。
  76. 根据权利61至75任一项所述的终端设备,其特征在于,
    所述时域参数参考值通过广播方式发送。
  77. 根据权利61至76任一项所述的终端设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  78. 根据权利要求61至76任一项所述的终端设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  79. 根据权利要求61至78任一项所述的终端设备,其特征在于,所述网络设备为卫星。
  80. 一种网络设备,其特征在于,包括:
    发送器,用于向终端设备发送配置信息,所述配置信息用于确定时域参数,所述配置信息包括:时域参数参考值和至少一个时域参数偏移值。
  81. 根据权利要求80所述的网络设备,其特征在于,所述至少一个时域参数偏移值对应于至少一个对象,一个时域参数偏移值对应于一个或多个对象;
    其中,所述至少一个对象为至少一个波束,或者,所述至少一个对象为至少一个终端设备。
  82. 根据权利要求80或81所述的网络设备,其特征在于,
    所述时域参数参考值为对应于每个对象的时域参数参考值;
    所述至少一个时域参数偏移值为对应于每个对象的时域参数偏移值。
  83. 根据权利要求82所述的网络设备,其特征在于,
    对于透明转发NTN架构,所述时域参数参考值为根据第一RTT与第二RTT确定的;
    其中,所述第一RTT为:第一参考点与网络设备之间的RTT,所述第一参考点的上行时域和下行时域对齐;
    所述第二RTT为:所述网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT。
    其中,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  84. 根据权利要求83所述的网络设备,其特征在于,所述时域参数参考值为第一RTT与第二RTT的和。
  85. 根据权利要求82所述的网络设备,其特征在于,
    对于再生转发NTN架构,所述时域参数参考值对应于第二RTT,所述第二RTT为网络设备与所述终端设备所在小区范围内的一个地面参考点之间的RTT,所述网络设备为向所述终端设备提供服务的非地面网络设备。
  86. 根据权利要求80至85任一项所述的网络设备,其特征在于,
    所述时域参数为时隙偏移量K offset
    或者,
    所述时域参数为定时提前TA。
  87. 根据权利80至86任一项所述的网络设备,其特征在于,
    所述时域参数参考值通过广播方式发送。
  88. 根据权利80至87任一项所述的网络设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个波束,则所述至少一个时域参数偏移值通过广播方式发送或组播方式发送。
  89. 根据权利80至87任一项所述的网络设备,其特征在于,
    若所述至少一个时域参数偏移值对应于至少一个终端设备,则所述至少一个时域参数偏移值通过组播方式发送或者通过专用信令发送。
  90. 根据权利要求83至85任一项所述的网络设备,其特征在于,所述网络设备为卫星。
  91. 一种计算机可读存储介质,包括:计算机指令,当所述计算机指令在处理器上运行时,使得所述处理器实现如权利要求1至19中任一项所述的方法,或者实现如权利要求20至29中任一项所述的方法。
PCT/CN2021/092755 2021-05-10 2021-05-10 时域参数确定方法、终端设备及网络设备 WO2022236574A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180089175.2A CN116686235A (zh) 2021-05-10 2021-05-10 时域参数确定方法、终端设备及网络设备
PCT/CN2021/092755 WO2022236574A1 (zh) 2021-05-10 2021-05-10 时域参数确定方法、终端设备及网络设备
EP21941150.1A EP4290974A4 (en) 2021-05-10 2021-05-10 TIME DOMAIN PARAMETER DETERMINATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US18/457,322 US20230403068A1 (en) 2021-05-10 2023-08-28 Method for time-domain parameter determination, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092755 WO2022236574A1 (zh) 2021-05-10 2021-05-10 时域参数确定方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/457,322 Continuation US20230403068A1 (en) 2021-05-10 2023-08-28 Method for time-domain parameter determination, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022236574A1 true WO2022236574A1 (zh) 2022-11-17

Family

ID=84027806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092755 WO2022236574A1 (zh) 2021-05-10 2021-05-10 时域参数确定方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US20230403068A1 (zh)
EP (1) EP4290974A4 (zh)
CN (1) CN116686235A (zh)
WO (1) WO2022236574A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385013A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 广播数据的方法和装置
CN112153733A (zh) * 2019-06-28 2020-12-29 大唐移动通信设备有限公司 一种传输时延指示方法及装置
CN112399546A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 公共定时提前的指示方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385013A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 广播数据的方法和装置
CN112153733A (zh) * 2019-06-28 2020-12-29 大唐移动通信设备有限公司 一种传输时延指示方法及装置
CN112399546A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 公共定时提前的指示方法、装置、设备及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OPPO: "NTN control procedure for physical layer", 3GPP DRAFT; R1-1910386, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051808546 *
See also references of EP4290974A4
SONY: "Calculation of timing relationship offsets", 3GPP DRAFT; R1-2103304, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052178071 *
TR 38.821

Also Published As

Publication number Publication date
CN116686235A (zh) 2023-09-01
EP4290974A1 (en) 2023-12-13
EP4290974A4 (en) 2024-04-10
US20230403068A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US20240121830A1 (en) Rach occasion repetition and prach format selection based on device type in ntn
WO2021037327A1 (en) Configuration in satellite system
WO2024103798A1 (zh) 无线通信的方法及装置
US20230231661A1 (en) Channel transmission method, terminal device and network device
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
US20240015794A1 (en) Coverage enhancements in ntn
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
WO2023050361A1 (zh) 辅目标的配置方法、装置、设备及存储介质
WO2023283950A1 (zh) 通信方法及装置
WO2022236542A1 (zh) 传输方法、终端设备、网络设备及通信***
WO2024092456A1 (zh) 位置测量方法、定时器维护方法和设备
WO2022133675A1 (zh) 无线通信方法和终端设备
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2022077481A1 (zh) 一种信道传输方法及其装置
CN116319189B (zh) 用于无线通信的方法及装置
US20240121762A1 (en) Wireless communication method, terminal device, and network device
WO2023077328A1 (zh) Ntn中终端设备上报定时提前的方法、终端设备及存储介质
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2023077321A1 (zh) 通信方法及终端设备
WO2024148465A1 (zh) 测量方法和终端设备
WO2023035276A1 (zh) 上行传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089175.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021941150

Country of ref document: EP

Effective date: 20230905

NENP Non-entry into the national phase

Ref country code: DE