WO2021157114A1 - Installation control device and installation control method - Google Patents

Installation control device and installation control method Download PDF

Info

Publication number
WO2021157114A1
WO2021157114A1 PCT/JP2020/033857 JP2020033857W WO2021157114A1 WO 2021157114 A1 WO2021157114 A1 WO 2021157114A1 JP 2020033857 W JP2020033857 W JP 2020033857W WO 2021157114 A1 WO2021157114 A1 WO 2021157114A1
Authority
WO
WIPO (PCT)
Prior art keywords
installation
component
transport
work space
control device
Prior art date
Application number
PCT/JP2020/033857
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 中野
博文 田口
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021157114A1 publication Critical patent/WO2021157114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the present invention relates to an installation control device and an installation control method.
  • the present invention claims the priority of application number 2020-015942 of the Japanese patent filed on February 3, 2020, and for designated countries where incorporation by reference to the literature is permitted, the content described in the application is Incorporated into this application by reference.
  • a crane When assembling large products in factories, etc., a crane (crane) is used.
  • the deviation between the current position and the target position of the upper roll recognized based on the IGPS signal received by the navigation receiver is calculated, and the calculated current position and target position are calculated.
  • a technique for autonomously moving an indoor crane so that the current position of the upper roll becomes the target position based on the deviation from the above is disclosed.
  • Patent Document 1 calculates the deviation between the current position and the target position, and autonomously moves the indoor crane so that the current location becomes the target position based on the calculated deviation.
  • the present invention has been made in view of the above points, and an object of the present invention is to enable automation of the installation work of lifting and transporting a transport component and installing it on the installation component.
  • the present application includes a plurality of means for solving at least a part of the above problems, and examples thereof are as follows.
  • the installation control device is an installation control device that controls the installation work of lifting and transporting the transport parts and installing them on the installation parts, and the transport parts and the installation parts are mounted.
  • a measurement unit that measures measurement data representing the shape of the including work space
  • a transport component position detection unit that detects the position of the transport component in the work space based on the measurement data and the transport component 3D shape data, and the measurement data.
  • the installation component position detection unit that detects the position of the installation component in the work space based on the 3D shape data of the installation component, and the transfer of the transfer component from the position of the transfer component to the position of the installation component in the work space. It is characterized by including a transport path calculation unit for calculating a path and a control amount calculation unit for calculating a control amount for controlling a crane that executes the installation work based on the calculated transport path.
  • FIG. 1 is a diagram showing a configuration example of a functional block included in the installation control device according to the embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of measurement data.
  • FIG. 3 is a three-dimensional view showing an example of the transported object.
  • FIG. 4 is a three-dimensional view showing an example of the installed object.
  • FIG. 5 is a flowchart illustrating an example of automatic installation processing.
  • FIG. 6 is a flowchart illustrating an example of the position detection process.
  • FIG. 7 is a flowchart illustrating an example of the transport path calculation process.
  • FIG. 1 shows a configuration example of a functional block included in the installation control device 100 according to the embodiment of the present invention.
  • the installation control device 100 automates the installation work of lifting and transporting the transport component 200 (FIG. 3) using a crane (not shown) provided in a factory or the like and installing it on the installation component 300 (FIG. 4).
  • the installation control device 100 may be built in the crane to be controlled or may be provided outside the crane.
  • the installation control device 100 is realized by, for example, a general computer such as a personal computer provided with a CPU (Central Processor Unit), memory, storage, input device, output device, communication interface, and the like.
  • a general computer such as a personal computer provided with a CPU (Central Processor Unit), memory, storage, input device, output device, communication interface, and the like.
  • CPU Central Processor Unit
  • the installation control device 100 has each functional block of an input unit 110, an output unit 120, a measurement unit 130, a crane control unit 140, a communication unit 150, a storage unit 160, and a calculation unit 170.
  • the input unit 110 is composed of an input device such as a keyboard, a mouse, and a microphone provided in the computer, and receives various inputs from the user.
  • the output unit 120 includes an output device such as a display and a speaker provided in the computer, displays an operation screen and the like, and outputs sound.
  • the measuring unit 130 is composed of, for example, a 3D measuring instrument such as a laser scanner and a camera, measures the 3D shape of the work space in which the transported object 200 and the installation component 300 are arranged, and measures the measurement data 161 representing the measurement result. It is stored in the storage unit 160.
  • a 3D measuring instrument such as a laser scanner and a camera
  • the crane control unit 140 controls the operation of the crane by controlling the electric actuator (not shown) of the crane.
  • the communication unit 150 connects a predetermined external device via a communication interface provided in the computer, receives various data described later, and stores the data in the storage unit 160.
  • the storage unit 160 includes a memory and a storage provided in the computer.
  • the storage unit 160 contains measurement data 161, transport component 3D shape data 162, installation component 3D shape data 163, transport component installation reference point data 164, installation component installation reference point data 165, transport attitude constraint data 166, and crane specification data. 167 is stored.
  • the measurement data 161 is measured by the measurement unit 130 and stored in the storage unit 160.
  • the measurement data 161 represents the shape of the work space in which the transport component 200, the installation component 300, and other structures are arranged.
  • FIG. 2 shows an example of measurement data 161.
  • the measurement data 161 contains 3D coordinate positions (X-axis coordinates, Y-axis coordinates, and X-axis coordinates, and Y-axis coordinates) of the coordinate system in which the transport parts 200, the installation parts 300, and other structures existing in the work space have their origins at a predetermined point in the work space. It is recorded as a sequence of points (Z-axis coordinates).
  • the conveyed component 3D shape data 162 is created in advance by CAD (Computer Aided Design) software or the like on an external device and stored in the storage unit 160.
  • the transport component 3D shape data 162 represents the 3D shape of the transport component 200.
  • FIG. 3 shows an example of the 3D shape of the transport component 200.
  • the transport component 200, a plurality of mounting reference points 201 1-201 4 described later (installation reference point 201 4 is not shown) are set.
  • installation reference point 201 when there is no need to distinguish between the mounting reference points 201 1-201 4 individually, it referred to as installation reference point 201.
  • the number of installation reference points 201 is not limited to 4, and may be 1, 2, 3 or 4 or more.
  • the installation component 3D shape data 163 is created in advance by CAD software or the like on an external device and stored in the storage unit 160.
  • the installation component 3D shape data 163 represents the 3D shape information of the installation component 300.
  • FIG. 4 shows an example of the 3D shape of the installation component 300.
  • the installation part 300 a plurality of mounting reference points 301 1 to 301 4 which will be described later, is set.
  • the installation reference points 301 when it is not necessary to distinguish the installation reference points 301 1 to 301 4 individually, they are referred to as the installation reference points 301.
  • the number of installation reference points 301 is not limited to 4, and may be 1, 2, 3 or 4 or more. Further, the numbers of the installation reference points 201 and the installation reference points 301 do not necessarily have to match.
  • the transport component installation reference point data 164 is transmitted in advance from an external device and stored in the storage unit 160.
  • the transport component installation reference point data 164 represents the positions of a plurality of installation reference points 201 (FIG. 3) on the transport component 200 by the 3D coordinates of the coordinate system with the predetermined point of the transport component 200 as the origin.
  • the installation component installation reference point data 165 is previously transmitted from an external device and stored in the storage unit 160.
  • the installation component installation reference point data 165 represents the positions of a plurality of installation reference points 301 (FIG. 4) on the installation component 300 by the 3D coordinates of the coordinate system with the predetermined point of the installation component 300 as the origin.
  • the transport posture constraint data 166 is transmitted from an external device in advance and stored in the storage unit 160.
  • the transport posture constraint data 166 represents a constraint on the posture of the transport component 200 when the transport component 200 is lifted and transported by a crane.
  • the crane specification data 167 is stored in the storage unit 160 in advance, and represents, for example, the crane specifications such as the resolution of the electric actuator, the lifting load limit, and the transport speed.
  • the calculation unit 170 includes a CPU included in the computer, and the CPU executes a predetermined program to control the entire installation control device 100, and also transfers the transfer component position detection unit 171 and the installation component position detection unit 172. Each functional block of the path calculation unit 173 and the control amount calculation unit 174 is realized.
  • the transport component position detection unit 171 identifies the transport component 200 in the work space represented by the measurement data 161 based on the measurement data 161 and the transport component 3D shape data 162, and calculates the 3D coordinate position thereof. Further, the transport component position detection unit 171 calculates the 3D coordinate position of the transport component 200 in the work space of the plurality of installation reference points 201 of the transport component 200 based on the 3D coordinate position of the transport component 200 and the transport component installation reference point data 164.
  • the installation component position detection unit 172 identifies the installation component 300 in the work space represented by the measurement data 161 based on the measurement data 161 and the installation component 3D shape data 163, and calculates the 3D coordinate position thereof. Further, the installation component position detection unit 172 calculates the 3D coordinate position of the installation component 300 in the work space of the plurality of installation reference points 301 based on the 3D coordinate position of the installation component 300 and the installation reference point data 165 of the installation component 300.
  • the transport path calculation unit 173 calculates the shortest distance transport path starting from the 3D coordinate positions of the plurality of installation reference points 201 of the transport component 200 and ending at the 3D coordinate positions of the plurality of installation reference points 301 of the installation component 300. .. In FIG. 3 and FIG. 4, the transport path is calculated as 4-point mounting reference points 201 1-201 4 matches the four-point mounting reference points 301 1 to 301 4 of the installation part 300 of the transport members 200 ..
  • the control amount calculation unit 174 calculates the control amount of the electric actuator of the crane by the crane control unit 140 based on the calculated transfer path and the crane specification data 167.
  • FIG. 5 shows an example of automatic installation processing by the installation control device 100.
  • the storage unit 160 already has measurement data 161, transport component 3D shape data 162, installation component 3D shape data 163, transport component installation reference point data 164, installation component installation reference point data 165, transport attitude constraint data 166, and the like. And it is assumed that the crane specification data 167 is stored.
  • the installation automatic processing is started in response to the operator of the installation control device 100 performing a predetermined start operation after the operator attaches the transport component 200 to the crane by a wire or the like in the work space.
  • the calculation unit 170 reads various data stored in the storage unit 160 (step S11).
  • the transfer component position detection unit 171 and the installation component position detection unit 172 perform position detection processing to detect the positions of the transfer component 200 and the installation component 300 in the work space (step S12).
  • FIG. 6 is a flowchart illustrating an example of the position detection process in step S12.
  • the transport component position detection unit 171 identifies the transport component 200 in the work space represented by the measurement data 161 based on the measurement data 161 and the transport component 3D shape data 162, and calculates the 3D coordinate position of the transport component 200 in the work space. (Step S21).
  • the identification of the conveyed component 200 is measured by forming the measurement data 161 into a 3D shape by a plane fitting process or the like, and comparing the shape feature amount between the 3D shape of the measurement data 161 and the conveyed component 3D shape data. From the data 161, a sequence of points representing the transport component 200 is extracted. Further, the calculation of the 3D coordinate position of the transport component 200 does not completely represent the entire transport component 200 in the measurement data 161 and there is a possibility that there is a hidden portion. Therefore, the transport component 200 represents the entire transport component 200. By arranging the component 3D shape data 162 so as to coincide with the point sequence representing the transport component 200 in the measurement data 161, the 3D coordinate position of the transport component 200 in the work space is calculated.
  • the installation component position detection unit 172 identifies the installation component 300 in the work space represented by the measurement data 161 based on the measurement data 161 and the installation component 3D shape data 163, and determines the 3D coordinate position of the installation component 300 in the work space. Calculate (step S22). Specifically, since it is the same as the process of step S21 by the transport component position detection unit 171, the description thereof will be omitted.
  • the transfer component position detection unit 171 determines the 3D coordinate position of the transfer component 200 in the work space and the 3D coordinate position of the plurality of installation reference points 201 of the transfer component 200 in the work space based on the transfer component installation reference point data 164. Is calculated (step S23). Specifically, by converting the coordinates of the plurality of installation reference points 201 in the transport component 200 represented by the transport component installation reference point data 164 into the coordinates of the coordinate system of the work space, the plurality of installation reference points of the transport component 200 are converted. The 3D coordinate position in the work space of 201 is calculated.
  • the installation component position detection unit 172 determines the 3D coordinate position of the installation component 300 in the work space and the 3D coordinate position of the plurality of installation reference points 301 of the installation component 300 in the work space based on the installation component installation reference point data 165. Is calculated (step S24). Specifically, since it is the same as the process of step S23 by the transport component position detection unit 171, the description thereof will be omitted. This completes the position detection process in step S12 of FIG.
  • the processes of steps S21 and S22 described above may be executed in a different order or may be executed in parallel. The same applies to the processes of steps S23 and S24.
  • FIG. 7 is a flowchart illustrating an example of the transport path calculation process in step S13.
  • the transport path calculation unit 173 determines the 3D coordinate positions of the transport component 200 in the work space of the plurality of installation reference points 201 as the start point of the transport path, and the 3D coordinate positions of the installation component 300 in the work space of the plurality of installation reference points 301. It is set as the starting point of the transport path (step S31).
  • the transport path calculation unit 173 sets the structures other than the transport component 200 and the installation component 300 in the work space represented by the measurement data 161 as obstacles (step S32). Specifically, the point sequence of the 3D coordinate position of the transport component 200 calculated in step S21 and the point sequence of the 3D coordinate position of the installation component 300 calculated in step S22 are deleted from the measurement data 161 and the remaining point sequence is deleted. Is extracted as an obstacle in the work space.
  • the transport path calculation unit 173 constrains the transport component 200 during transport from interfering with an obstacle and the restriction of the posture transition with respect to the transport component 200 during transport represented by the transport posture constraint data 166, from the starting point.
  • the problem of finding the shortest distance of the transport path to the end point is reduced as an optimization problem (step S33).
  • This optimization problem may be reduced to, for example, a mixed integer programming problem, a shortest graph search problem, or the like.
  • the transport path calculation unit 173 solves the transport path optimization problem using the optimization solution method and calculates the transport path (step S34).
  • the optimization solution method for example, a MIP (Mixed Integer Programming) solver.
  • the optimal solution or the quasi-optimal solution may be obtained by using a genetic algorithm, Dijkstra's algorithm, or the like. This completes the transport path calculation process.
  • control amount calculation unit 174 then causes the crane to execute the installation work through the transfer path based on the transfer path and the crane specification data 167.
  • the control amount of the electric actuator of the crane is calculated and output to the crane control unit 140 (step S14).
  • the crane control unit 140 operates the electric actuator according to the control amount input from the control amount calculation unit 174 (step S15). As a result, the installation work by the crane is realized. This completes the automatic installation process by the installation control device 100.
  • the installation control device 100 According to the automatic installation processing by the installation control device 100 described above, it is possible to automate the installation work of installing the transport component 200 with respect to the installation component 300.
  • the installation work by the crane is automated, but at least one of the calculated transfer path and the calculated control amount of the electric actuator is displayed on the display as the output unit 120 to display the crane. It may be presented to the operator of the above, and the operation of the crane may be performed by the operator.
  • the crane is the control target, but a robot or the like that installs the transport parts on the installation parts may be the control target.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace or add a part of the configuration of one embodiment with the configuration of another embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

The present invention automatizes installation work for installing a conveyed item at an installed item. An installation control device according to the present invention is characterized by being provided with: a measurement unit that performs measurement to obtain measurement data representing the shape of a work space including a conveyed part and an installed part; a conveyed-part position detection unit that detects the position of the conveyed part in the work space on the basis of the measurement data and conveyed-part 3D shape data; an installed-part position detection unit that detects the position of the installed part in the work space on the basis of the measurement data and installed-part 3D shape data; a conveyance-path calculation unit that calculates a conveyance path for the conveyed part from the position of the conveyed part to the position of the installed part in the work space; and a control-amount calculation unit that calculates, on the basis of the calculated conveyance path, a control amount for controlling a crane that executes installation work.

Description

据付制御装置、及び据付制御方法Installation control device and installation control method
 本発明は、据付制御装置、及び据付制御方法に関する。本発明は2020年2月3日に出願された日本国特許の出願番号2020-015942の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to an installation control device and an installation control method. The present invention claims the priority of application number 2020-015942 of the Japanese patent filed on February 3, 2020, and for designated countries where incorporation by reference to the literature is permitted, the content described in the application is Incorporated into this application by reference.
 工場等において大型の製品を組み立てる場合、クレーン(起重機)が用いられる。クレーンの制御に関し、例えば、特許文献1には、航法用受信機が受信したIGPS信号に基づき認識された上ロールの現在位置と目標位置との偏差を算出し、算出された現在位置と目標位置との偏差に基づいて上ロールの現在位置が目標位置になるように屋内クレーンを自律移動させる技術が開示されている。 When assembling large products in factories, etc., a crane (crane) is used. Regarding the control of the crane, for example, in Patent Document 1, the deviation between the current position and the target position of the upper roll recognized based on the IGPS signal received by the navigation receiver is calculated, and the calculated current position and target position are calculated. A technique for autonomously moving an indoor crane so that the current position of the upper roll becomes the target position based on the deviation from the above is disclosed.
特開2017-88330号公報JP-A-2017-88330
 特許文献1に記載の技術は、現在位置と目標位置との偏差を算出し、算出した偏差に基づいて現在地が目標位置になるように屋内クレーンを自律移動させている。 The technique described in Patent Document 1 calculates the deviation between the current position and the target position, and autonomously moves the indoor crane so that the current location becomes the target position based on the calculated deviation.
 しかしながら、特許文献1の記載の技術では、工場で行われる部品の据付作業では、据付先の据付部品と、据え付ける対象である搬送部品とのそれぞれの3D(Dimension)次元空間における位置がわからないため、据付作業の自動化をすることができない。 However, in the technique described in Patent Document 1, in the parts installation work performed in the factory, the positions of the installation parts to be installed and the transport parts to be installed are not known in the 3D (Dimension) dimensional space. The installation work cannot be automated.
 本発明は、上記の点に鑑みてなされたものであって、搬送部品を吊り上げ搬送して据付部品に据え付ける据付作業を自動化できるようにすることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to enable automation of the installation work of lifting and transporting a transport component and installing it on the installation component.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。 The present application includes a plurality of means for solving at least a part of the above problems, and examples thereof are as follows.
 上記課題を解決するため、本発明の一態様に係る据付制御装置は、搬送部品を吊り上げ搬送して据付部品に据え付ける据付作業を制御する据付制御装置であって、前記搬送部品及び前記据付部品を含む作業空間の形状を表す計測データを計測する計測部と、前記計測データ及び搬送部品3D形状データに基づき、前記作業空間における前記搬送部品の位置を検出する搬送部品位置検出部と、前記計測データ及び据付部品3D形状データに基づき、前記作業空間における前記据付部品の位置を検出する据付部品位置検出部と、前記作業空間における前記搬送部品の位置から前記据付部品の位置までの前記搬送部品の搬送パスを算出する搬送パス算出部と、算出された前記搬送パスに基づき、前記据付作業を実行するクレーンを制御するための制御量を算出する制御量算出部と、を備えることを特徴とする。 In order to solve the above problems, the installation control device according to one aspect of the present invention is an installation control device that controls the installation work of lifting and transporting the transport parts and installing them on the installation parts, and the transport parts and the installation parts are mounted. A measurement unit that measures measurement data representing the shape of the including work space, a transport component position detection unit that detects the position of the transport component in the work space based on the measurement data and the transport component 3D shape data, and the measurement data. And the installation component position detection unit that detects the position of the installation component in the work space based on the 3D shape data of the installation component, and the transfer of the transfer component from the position of the transfer component to the position of the installation component in the work space. It is characterized by including a transport path calculation unit for calculating a path and a control amount calculation unit for calculating a control amount for controlling a crane that executes the installation work based on the calculated transport path.
 本発明によれば、搬送部品を吊り上げ搬送して据付部品に据え付ける据付作業を自動化することが可能となる。 According to the present invention, it is possible to automate the installation work of lifting and transporting the transported parts and installing them on the installation parts.
 上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the explanation of the following embodiments.
図1は、本発明の一実施形態に係る据付制御装置が有する機能ブロックの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a functional block included in the installation control device according to the embodiment of the present invention. 図2は、計測データの一例を示す図である。FIG. 2 is a diagram showing an example of measurement data. 図3は、搬送物の一例を示す立体図である。FIG. 3 is a three-dimensional view showing an example of the transported object. 図4は、据付物の一例を示す立体図である。FIG. 4 is a three-dimensional view showing an example of the installed object. 図5は、据付自動処理の一例を説明するフローチャートである。FIG. 5 is a flowchart illustrating an example of automatic installation processing. 図6は、位置検出処理の一例を説明するフローチャートである。FIG. 6 is a flowchart illustrating an example of the position detection process. 図7は、搬送パス算出処理の一例を説明するフローチャートである。FIG. 7 is a flowchart illustrating an example of the transport path calculation process.
 以下、本発明の一実施形態について図面に基づいて説明する。なお、実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, in all the drawings for explaining the embodiment, in principle, the same members are designated by the same reference numerals, and the repeated description thereof will be omitted. Further, in the following embodiments, it goes without saying that the components (including element steps and the like) are not necessarily essential unless otherwise specified or clearly considered to be essential in principle. stomach. In addition, when saying "consisting of A", "consisting of A", "having A", and "including A", other elements are excluded unless it is clearly stated that it is only that element. It goes without saying that it is not something to do. Similarly, in the following embodiments, when the shape, positional relationship, etc. of a component or the like is referred to, the shape, etc. It shall include those similar to or similar to.
 <本発明の一実施形態に係る据付制御装置100が有する機能ブロックの構成例>
 図1は、本発明の一実施形態に係る据付制御装置100が有する機能ブロックの構成例を示している。
<Structure example of the functional block included in the installation control device 100 according to the embodiment of the present invention>
FIG. 1 shows a configuration example of a functional block included in the installation control device 100 according to the embodiment of the present invention.
 据付制御装置100は、工場等に設けられたクレーン(不図示)を用いて搬送部品200(図3)を吊り上げ搬送して据付部品300(図4)に据え付ける据付作業を自動化するものである。なお、据付制御装置100は、制御対象のクレーンに内蔵してもよいし、クレーンの外部に設けてもよい。 The installation control device 100 automates the installation work of lifting and transporting the transport component 200 (FIG. 3) using a crane (not shown) provided in a factory or the like and installing it on the installation component 300 (FIG. 4). The installation control device 100 may be built in the crane to be controlled or may be provided outside the crane.
 据付制御装置100は、例えば、CPU(Central Processor Unit)、メモリ、ストレージ、入力デバイス、出力デバイス、通信インタフェース等を備えるパーソナルコンピュータ等の一般的なコンピュータによって実現される。 The installation control device 100 is realized by, for example, a general computer such as a personal computer provided with a CPU (Central Processor Unit), memory, storage, input device, output device, communication interface, and the like.
 据付制御装置100は、入力部110、出力部120、計測部130、クレーン制御部140、通信部150、記憶部160、及び演算部170の各機能ブロックを有する。 The installation control device 100 has each functional block of an input unit 110, an output unit 120, a measurement unit 130, a crane control unit 140, a communication unit 150, a storage unit 160, and a calculation unit 170.
 入力部110は、コンピュータが備えるキーボード、マウス、マイクロホン等の入力デバイスからなり、ユーザからの各種の入力を受け付ける。出力部120は、コンピュータが備えるディスプレイ、スピーカ等の出力デバイスからなり、操作画面等を表示し、音声を出力する。 The input unit 110 is composed of an input device such as a keyboard, a mouse, and a microphone provided in the computer, and receives various inputs from the user. The output unit 120 includes an output device such as a display and a speaker provided in the computer, displays an operation screen and the like, and outputs sound.
 計測部130は、例えば、レーザスキャナ、カメラ等の3D計測器からなり、搬送物及200及び据付部品300が配置されている作業空間の3D形状を計測し、その計測結果を表す計測データ161を記憶部160に格納する。 The measuring unit 130 is composed of, for example, a 3D measuring instrument such as a laser scanner and a camera, measures the 3D shape of the work space in which the transported object 200 and the installation component 300 are arranged, and measures the measurement data 161 representing the measurement result. It is stored in the storage unit 160.
 クレーン制御部140は、クレーンの電動アクチュエータ(不図示)を制御することによってクレーンの動作を制御する。通信部150は、コンピュータが備える通信インタフェースを介して所定の外部装置を接続し、後述する各種のデータを受信し、記憶部160に格納する。 The crane control unit 140 controls the operation of the crane by controlling the electric actuator (not shown) of the crane. The communication unit 150 connects a predetermined external device via a communication interface provided in the computer, receives various data described later, and stores the data in the storage unit 160.
 記憶部160は、コンピュータが備えるメモリ、ストレージからなる。記憶部160には、計測データ161、搬送部品3D形状データ162、据付部品3D形状データ163、搬送部品据付基準点データ164、据付部品据付基準点データ165、搬送姿勢制約データ166、及びクレーン仕様データ167が格納される。 The storage unit 160 includes a memory and a storage provided in the computer. The storage unit 160 contains measurement data 161, transport component 3D shape data 162, installation component 3D shape data 163, transport component installation reference point data 164, installation component installation reference point data 165, transport attitude constraint data 166, and crane specification data. 167 is stored.
 計測データ161は、計測部130によって計測され、記憶部160に格納されるものである。計測データ161は、搬送部品200、据付部品300、その他の構造物が配置されている作業空間の形状を表す。図2は、計測データ161の一例を示している。計測データ161は、作業空間に存在する搬送部品200、据付部品300、その他の構造物が、作業空間の所定の点を原点とする座標系の3D座標位置(X軸座標,Y軸座標,及びZ軸座標)の点列として記録されている。 The measurement data 161 is measured by the measurement unit 130 and stored in the storage unit 160. The measurement data 161 represents the shape of the work space in which the transport component 200, the installation component 300, and other structures are arranged. FIG. 2 shows an example of measurement data 161. The measurement data 161 contains 3D coordinate positions (X-axis coordinates, Y-axis coordinates, and X-axis coordinates, and Y-axis coordinates) of the coordinate system in which the transport parts 200, the installation parts 300, and other structures existing in the work space have their origins at a predetermined point in the work space. It is recorded as a sequence of points (Z-axis coordinates).
 搬送部品3D形状データ162は、予め外部装置上のCAD(Computer Aided Design)ソフトウェア等によって作成され、記憶部160に格納されているものである。搬送部品3D形状データ162は、搬送部品200の3D形状を表す。図3は、搬送部品200の3D形状の一例を示している。搬送部品200には、後述する複数の据付基準点201~201(据付基準点201は不図示)が設定されている。以下、据付基準点201~201を個々に区別する必要がない場合、据付基準点201と称する。なお、据付基準点201の数は、4に限らず、1,2,3または4以上であってもよい。 The conveyed component 3D shape data 162 is created in advance by CAD (Computer Aided Design) software or the like on an external device and stored in the storage unit 160. The transport component 3D shape data 162 represents the 3D shape of the transport component 200. FIG. 3 shows an example of the 3D shape of the transport component 200. The transport component 200, a plurality of mounting reference points 201 1-201 4 described later (installation reference point 201 4 is not shown) are set. Hereinafter, when there is no need to distinguish between the mounting reference points 201 1-201 4 individually, it referred to as installation reference point 201. The number of installation reference points 201 is not limited to 4, and may be 1, 2, 3 or 4 or more.
 据付部品3D形状データ163は、予め外部装置上のCADソフトウェア等によって作成され、記憶部160に格納されているものである。据付部品3D形状データ163は、据付部品300の3D形状情報を表す。図4は、据付部品300の3D形状の一例を示している。据付部品300には、後述する複数の据付基準点301~301が設定されている。以下、据付基準点301~301を個々に区別する必要がない場合、据付基準点301と称する。なお、据付基準点301の数は、4に限らず、1,2,3または4以上であってもよい。また、据付基準点201及び据付基準点301の数は必ずしも一致していなくてもよい。 The installation component 3D shape data 163 is created in advance by CAD software or the like on an external device and stored in the storage unit 160. The installation component 3D shape data 163 represents the 3D shape information of the installation component 300. FIG. 4 shows an example of the 3D shape of the installation component 300. The installation part 300, a plurality of mounting reference points 301 1 to 301 4 which will be described later, is set. Hereinafter, when it is not necessary to distinguish the installation reference points 301 1 to 301 4 individually, they are referred to as the installation reference points 301. The number of installation reference points 301 is not limited to 4, and may be 1, 2, 3 or 4 or more. Further, the numbers of the installation reference points 201 and the installation reference points 301 do not necessarily have to match.
 搬送部品据付基準点データ164は、予め外部装置から送信されて記憶部160に格納されている。搬送部品据付基準点データ164は、搬送部品200における複数の据付基準点201(図3)の位置を、搬送部品200の所定の点を原点とする座標系の3D座標によって表す。据付部品据付基準点データ165は、予め外部装置から送信されて記憶部160に格納されているものである。据付部品据付基準点データ165は、据付部品300における複数の据付基準点301(図4)の位置を、据付部品300の所定の点を原点とする座標系の3D座標によって表す。 The transport component installation reference point data 164 is transmitted in advance from an external device and stored in the storage unit 160. The transport component installation reference point data 164 represents the positions of a plurality of installation reference points 201 (FIG. 3) on the transport component 200 by the 3D coordinates of the coordinate system with the predetermined point of the transport component 200 as the origin. The installation component installation reference point data 165 is previously transmitted from an external device and stored in the storage unit 160. The installation component installation reference point data 165 represents the positions of a plurality of installation reference points 301 (FIG. 4) on the installation component 300 by the 3D coordinates of the coordinate system with the predetermined point of the installation component 300 as the origin.
 搬送姿勢制約データ166は、予め外部装置から送信されて記憶部160に格納されているものである。搬送姿勢制約データ166は、搬送部品200をクレーンによって吊り上げ搬送する際の搬送部品200の姿勢に対する制約を表す。クレーン仕様データ167は、予め記憶部160に格納されているものであり、例えば、電動アクチュエータの分解能、吊り上げ荷重制限、搬送速度等のクレーンの仕様を表す。 The transport posture constraint data 166 is transmitted from an external device in advance and stored in the storage unit 160. The transport posture constraint data 166 represents a constraint on the posture of the transport component 200 when the transport component 200 is lifted and transported by a crane. The crane specification data 167 is stored in the storage unit 160 in advance, and represents, for example, the crane specifications such as the resolution of the electric actuator, the lifting load limit, and the transport speed.
 演算部170は、コンピュータが備えるCPUからなり、該CPUが所定のプログラムを実行することにより、据付制御装置100の全体を制御するとともに、搬送部品位置検出部171、据付部品位置検出部172、搬送パス算出部173、及び制御量算出部174の各機能ブロックを実現する。 The calculation unit 170 includes a CPU included in the computer, and the CPU executes a predetermined program to control the entire installation control device 100, and also transfers the transfer component position detection unit 171 and the installation component position detection unit 172. Each functional block of the path calculation unit 173 and the control amount calculation unit 174 is realized.
 搬送部品位置検出部171は、計測データ161、及び搬送部品3D形状データ162に基づき、計測データ161によって表される作業空間における搬送部品200を識別し、その3D座標位置を算出する。さらに、搬送部品位置検出部171は、搬送部品200の3D座標位置、及び搬送部品据付基準点データ164に基づき、搬送部品200の複数の据付基準点201の作業空間における3D座標位置を算出する。 The transport component position detection unit 171 identifies the transport component 200 in the work space represented by the measurement data 161 based on the measurement data 161 and the transport component 3D shape data 162, and calculates the 3D coordinate position thereof. Further, the transport component position detection unit 171 calculates the 3D coordinate position of the transport component 200 in the work space of the plurality of installation reference points 201 of the transport component 200 based on the 3D coordinate position of the transport component 200 and the transport component installation reference point data 164.
 据付部品位置検出部172は、計測データ161、及び据付部品3D形状データ163に基づき、計測データ161によって表される作業空間における据付部品300を識別し、その3D座標位置を算出する。さらに、据付部品位置検出部172は、据付部品300の3D座標位置、及び据付部品据付基準点データ165に基づき、据付部品300の複数の据付基準点301の作業空間における3D座標位置を算出する。 The installation component position detection unit 172 identifies the installation component 300 in the work space represented by the measurement data 161 based on the measurement data 161 and the installation component 3D shape data 163, and calculates the 3D coordinate position thereof. Further, the installation component position detection unit 172 calculates the 3D coordinate position of the installation component 300 in the work space of the plurality of installation reference points 301 based on the 3D coordinate position of the installation component 300 and the installation reference point data 165 of the installation component 300.
 搬送パス算出部173は、搬送部品200の複数の据付基準点201の3D座標位置を始点、据付部品300の複数の据付基準点301の3D座標位置を終点とする最短距離の搬送パスを算出する。図3及び図4の場合、搬送部品200の4点の据付基準点201~201が据付部品300の4点の据付基準点301~301に一致するように搬送パスが算出される。 The transport path calculation unit 173 calculates the shortest distance transport path starting from the 3D coordinate positions of the plurality of installation reference points 201 of the transport component 200 and ending at the 3D coordinate positions of the plurality of installation reference points 301 of the installation component 300. .. In FIG. 3 and FIG. 4, the transport path is calculated as 4-point mounting reference points 201 1-201 4 matches the four-point mounting reference points 301 1 to 301 4 of the installation part 300 of the transport members 200 ..
 制御量算出部174は、算出された搬送パス、及びクレーン仕様データ167に基づき、クレーン制御部140によるクレーンの電動アクチュエータの制御量を算出する。 The control amount calculation unit 174 calculates the control amount of the electric actuator of the crane by the crane control unit 140 based on the calculated transfer path and the crane specification data 167.
 <据付制御装置100による据付自動処理>
 次に、図5は、据付制御装置100による据付自動処理の一例を示している。
<Automatic installation processing by the installation control device 100>
Next, FIG. 5 shows an example of automatic installation processing by the installation control device 100.
 前提として、既に記憶部160には、計測データ161、搬送部品3D形状データ162、据付部品3D形状データ163、搬送部品据付基準点データ164、据付部品据付基準点データ165、搬送姿勢制約データ166、及びクレーン仕様データ167が格納されているものとする。該据付自動処理は、作業空間において作業者がワイヤ等によって搬送部品200をクレーンに取り付けた後、据付制御装置100のオペレータが所定の開始操作を行うことに応じて開始される。 As a premise, the storage unit 160 already has measurement data 161, transport component 3D shape data 162, installation component 3D shape data 163, transport component installation reference point data 164, installation component installation reference point data 165, transport attitude constraint data 166, and the like. And it is assumed that the crane specification data 167 is stored. The installation automatic processing is started in response to the operator of the installation control device 100 performing a predetermined start operation after the operator attaches the transport component 200 to the crane by a wire or the like in the work space.
 はじめに、演算部170が、記憶部160に格納されている各種のデータを読み込む(ステップS11)。次に、搬送部品位置検出部171及び据付部品位置検出部172が、位置検出処理を行い、作業空間における搬送部品200及び据付部品300の位置を検出する(ステップS12)。 First, the calculation unit 170 reads various data stored in the storage unit 160 (step S11). Next, the transfer component position detection unit 171 and the installation component position detection unit 172 perform position detection processing to detect the positions of the transfer component 200 and the installation component 300 in the work space (step S12).
 図6は、ステップS12における位置検出処理の一例を説明するフローチャートである。まず、搬送部品位置検出部171が、計測データ161及び搬送部品3D形状データ162に基づき、計測データ161が表す作業空間における搬送部品200を識別し、作業空間における搬送部品200の3D座標位置を算出する(ステップS21)。 FIG. 6 is a flowchart illustrating an example of the position detection process in step S12. First, the transport component position detection unit 171 identifies the transport component 200 in the work space represented by the measurement data 161 based on the measurement data 161 and the transport component 3D shape data 162, and calculates the 3D coordinate position of the transport component 200 in the work space. (Step S21).
 具体的には、搬送部品200の識別は、計測データ161を平面フィッティング処理等により3D形状化し、計測データ161の3D形状と、搬送部品3D形状データとの形状特徴量を比較することにより、計測データ161のうち、搬送部品200を表す点列を抽出する。また、搬送部品200の3D座標位置の算出は、計測データ161では搬送部品200の全体を表しきれておらず、隠れている部分が存在する可能性があるため、搬送部品200の全体を表す搬送部品3D形状データ162を、計測データ161における搬送部品200を表す点列と一致するように配置することにより、作業空間における搬送部品200の3D座標位置を算出する。 Specifically, the identification of the conveyed component 200 is measured by forming the measurement data 161 into a 3D shape by a plane fitting process or the like, and comparing the shape feature amount between the 3D shape of the measurement data 161 and the conveyed component 3D shape data. From the data 161, a sequence of points representing the transport component 200 is extracted. Further, the calculation of the 3D coordinate position of the transport component 200 does not completely represent the entire transport component 200 in the measurement data 161 and there is a possibility that there is a hidden portion. Therefore, the transport component 200 represents the entire transport component 200. By arranging the component 3D shape data 162 so as to coincide with the point sequence representing the transport component 200 in the measurement data 161, the 3D coordinate position of the transport component 200 in the work space is calculated.
 次に、据付部品位置検出部172が、計測データ161及び据付部品3D形状データ163に基づき、計測データ161が表す作業空間における据付部品300を識別し、作業空間における据付部品300の3D座標位置を算出する(ステップS22)。具体的には、搬送部品位置検出部171によるステップS21の処理と同様なので、その説明は省略する。 Next, the installation component position detection unit 172 identifies the installation component 300 in the work space represented by the measurement data 161 based on the measurement data 161 and the installation component 3D shape data 163, and determines the 3D coordinate position of the installation component 300 in the work space. Calculate (step S22). Specifically, since it is the same as the process of step S21 by the transport component position detection unit 171, the description thereof will be omitted.
 次に、搬送部品位置検出部171が、作業空間における搬送部品200の3D座標位置、及び搬送部品据付基準点データ164に基づき、搬送部品200の複数の据付基準点201の作業空間における3D座標位置を算出する(ステップS23)。具体的には、搬送部品据付基準点データ164が表す搬送部品200における複数の据付基準点201の座標を、作業空間の座標系の座標に変換することにより、搬送部品200の複数の据付基準点201の作業空間における3D座標位置を算出する。 Next, the transfer component position detection unit 171 determines the 3D coordinate position of the transfer component 200 in the work space and the 3D coordinate position of the plurality of installation reference points 201 of the transfer component 200 in the work space based on the transfer component installation reference point data 164. Is calculated (step S23). Specifically, by converting the coordinates of the plurality of installation reference points 201 in the transport component 200 represented by the transport component installation reference point data 164 into the coordinates of the coordinate system of the work space, the plurality of installation reference points of the transport component 200 are converted. The 3D coordinate position in the work space of 201 is calculated.
 次に、据付部品位置検出部172が、作業空間における据付部品300の3D座標位置、及び据付部品据付基準点データ165に基づき、据付部品300の複数の据付基準点301の作業空間における3D座標位置を算出する(ステップS24)。具体的には、搬送部品位置検出部171によるステップS23の処理と同様なので、その説明は省略する。以上で、図5のステップS12における位置検出処理は終了される。なお、上述したステップS21,S22の処理は、実行する順序を入れ替えてもよいし、並行して実行するようにしてもよい。ステップS23,S24の処理についても同様である。 Next, the installation component position detection unit 172 determines the 3D coordinate position of the installation component 300 in the work space and the 3D coordinate position of the plurality of installation reference points 301 of the installation component 300 in the work space based on the installation component installation reference point data 165. Is calculated (step S24). Specifically, since it is the same as the process of step S23 by the transport component position detection unit 171, the description thereof will be omitted. This completes the position detection process in step S12 of FIG. The processes of steps S21 and S22 described above may be executed in a different order or may be executed in parallel. The same applies to the processes of steps S23 and S24.
 図5に戻る。上述した位置検出処理により、搬送部品200の複数の据付基準点201、及び据付部品300の複数の据付基準点301の作業空間のおける3D座標位置が算出された後、次に、搬送パス算出部173が、搬送パス算出処理を実行する(ステップS13)。 Return to Fig. 5. After the 3D coordinate positions in the work space of the plurality of installation reference points 201 of the transport component 200 and the plurality of installation reference points 301 of the transport component 300 are calculated by the position detection process described above, the transport path calculation unit is then used. 173 executes the transport path calculation process (step S13).
 図7は、ステップS13における搬送パス算出処理の一例を説明するフローチャートである。まず、搬送パス算出部173が、搬送部品200の複数の据付基準点201の作業空間における3D座標位置を搬送パスの始点、据付部品300の複数の据付基準点301の作業空間における3D座標位置を搬送パスの始点に設定する(ステップS31)。 FIG. 7 is a flowchart illustrating an example of the transport path calculation process in step S13. First, the transport path calculation unit 173 determines the 3D coordinate positions of the transport component 200 in the work space of the plurality of installation reference points 201 as the start point of the transport path, and the 3D coordinate positions of the installation component 300 in the work space of the plurality of installation reference points 301. It is set as the starting point of the transport path (step S31).
 次に、搬送パス算出部173が、計測データ161が表す作業空間における搬送部品200及び据付部品300以外の構造物を障害物に設定する(ステップS32)。具体的には、計測データ161から、ステップS21で算出した搬送部品200の3D座標位置の点列、及びステップS22で算出した据付部品300の3D座標位置の点列を削除し、残った点列を作業空間における障害物として抽出する。 Next, the transport path calculation unit 173 sets the structures other than the transport component 200 and the installation component 300 in the work space represented by the measurement data 161 as obstacles (step S32). Specifically, the point sequence of the 3D coordinate position of the transport component 200 calculated in step S21 and the point sequence of the 3D coordinate position of the installation component 300 calculated in step S22 are deleted from the measurement data 161 and the remaining point sequence is deleted. Is extracted as an obstacle in the work space.
 次に、搬送パス算出部173が、搬送中の搬送部品200が障害物と干渉しないこと、及び搬送姿勢制約データ166が表す搬送中の搬送部品200に対する姿勢の遷移の制限を制約とし、始点から終点までの搬送パスの最短距離を求める問題を最適化問題として帰着する(ステップS33)。この最適化問題は、例えば、混合整数計画問題や最短グラフ探索問題等に帰着してもよい。 Next, the transport path calculation unit 173 constrains the transport component 200 during transport from interfering with an obstacle and the restriction of the posture transition with respect to the transport component 200 during transport represented by the transport posture constraint data 166, from the starting point. The problem of finding the shortest distance of the transport path to the end point is reduced as an optimization problem (step S33). This optimization problem may be reduced to, for example, a mixed integer programming problem, a shortest graph search problem, or the like.
 次に、搬送パス算出部173が、搬送パスの最適化問題を最適化解法を用いて求解し、搬送パスを算出する(ステップS34)最適化解法としては、例えば、MIP(Mixed Integer Programming)ソルバーや、遺伝的アルゴリズムや、ダイクストラ法等用いて最適解または準最適解を求めるようにしてもよい。以上で、搬送パス算出処理は終了される。 Next, the transport path calculation unit 173 solves the transport path optimization problem using the optimization solution method and calculates the transport path (step S34). As the optimization solution method, for example, a MIP (Mixed Integer Programming) solver. Alternatively, the optimal solution or the quasi-optimal solution may be obtained by using a genetic algorithm, Dijkstra's algorithm, or the like. This completes the transport path calculation process.
 図5に戻る。上述した搬送パス算出処理によって搬送パスが算出された後、次に、制御量算出部174が、搬送パス、及びクレーン仕様データ167に基づき、クレーンが搬送パスを通って据付作業を実行するようにクレーンの電動アクチュエータの制御量を算出してクレーン制御部140に出力する(ステップS14)。 Return to Fig. 5. After the transfer path is calculated by the transfer path calculation process described above, the control amount calculation unit 174 then causes the crane to execute the installation work through the transfer path based on the transfer path and the crane specification data 167. The control amount of the electric actuator of the crane is calculated and output to the crane control unit 140 (step S14).
 次に、クレーン制御部140が、制御量算出部174から入力された制御量に従って電動アクチュエータを動作させる(ステップS15)。これにより、クレーンによる据付作業が実現される。以上で、据付制御装置100による据付自動処理は終了される。 Next, the crane control unit 140 operates the electric actuator according to the control amount input from the control amount calculation unit 174 (step S15). As a result, the installation work by the crane is realized. This completes the automatic installation process by the installation control device 100.
 以上に説明した据付制御装置100による据付自動処理によれば、据付部品300に対して搬送部品200を据え付ける据付作業を自動化することが可能となる。 According to the automatic installation processing by the installation control device 100 described above, it is possible to automate the installation work of installing the transport component 200 with respect to the installation component 300.
 <変形例>
 本実施形態によれば、クレーンによる据付作業までを自動化しているが、算出された搬送パス、及び算出された電動アクチュエータの制御量の少なくとも一方を、出力部120としてのディスプレイに表示してクレーンのオペレータに提示し、クレーンの操作はオペレータが実行するようにしてもよい。
<Modification example>
According to this embodiment, the installation work by the crane is automated, but at least one of the calculated transfer path and the calculated control amount of the electric actuator is displayed on the display as the output unit 120 to display the crane. It may be presented to the operator of the above, and the operation of the crane may be performed by the operator.
 また、本実施形態は、クレーンを制御対象としているが、搬送部品を据付部品に据え付けるロボット等を制御対象としてもよい。 Further, in the present embodiment, the crane is the control target, but a robot or the like that installs the transport parts on the installation parts may be the control target.
 本発明は、上述した実施形態に限定されるものではなく、様々な変形が可能である。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えたり、追加したりすることが可能である。 The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace or add a part of the configuration of one embodiment with the configuration of another embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD. In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
 100・・・据付制御装置、110・・・入力部、120・・・出力部、130・・・計測部、140・・・クレーン制御部、150・・・通信部、160・・・記憶部、161・・・計測データ、162・・・搬送部品3D形状データ、163・・・据付部品3D形状データ、164・・・搬送部品据付基準点データ、165・・・据付部品据付基準点データ、166・・・搬送姿勢制約データ、167・・・クレーン仕様データ、170・・・演算部、171・・・搬送部品位置検出部、172・・・据付部品位置検出部、173・・・搬送パス算出部、174・・・制御量算出部、200・・・搬送部品、201・・・据付基準点、300・・・据付部品、301・・・据付基準点 100 ... Installation control device, 110 ... Input unit, 120 ... Output unit, 130 ... Measurement unit, 140 ... Crane control unit, 150 ... Communication unit, 160 ... Storage unit , 161 ... Measurement data, 162 ... Transport parts 3D shape data, 163 ... Installation parts 3D shape data, 164 ... Transport parts installation reference point data, 165 ... Installation parts installation reference point data, 166 ... Transfer attitude constraint data, 167 ... Crane specification data, 170 ... Calculation unit, 171 ... Transfer component position detection unit, 172 ... Installation component position detection unit, 173 ... Transfer path Calculation unit, 174 ... Control amount calculation unit, 200 ... Transport parts, 201 ... Installation reference point, 300 ... Installation parts, 301 ... Installation reference point

Claims (6)

  1.  搬送部品を吊り上げ搬送して据付部品に据え付ける据付作業を制御する据付制御装置であって、
     前記搬送部品及び前記据付部品を含む作業空間の形状を表す計測データを計測する計測部と、
     前記計測データ及び搬送部品3D形状データに基づき、前記作業空間における前記搬送部品の位置を検出する搬送部品位置検出部と、
     前記計測データ及び据付部品3D形状データに基づき、前記作業空間における前記据付部品の位置を検出する据付部品位置検出部と、
     前記作業空間における前記搬送部品の位置から前記据付部品の位置までの前記搬送部品の搬送パスを算出する搬送パス算出部と、
     算出された前記搬送パスに基づき、前記据付作業を実行するクレーンを制御するための制御量を算出する制御量算出部と、
     を備えることを特徴とする据付制御装置。
    An installation control device that controls the installation work of lifting and transporting transport parts and installing them on the installation parts.
    A measuring unit that measures measurement data representing the shape of the work space including the conveyed parts and the installed parts, and a measuring unit.
    A transport component position detection unit that detects the position of the transport component in the work space based on the measurement data and the transport component 3D shape data, and a transport component position detection unit.
    An installation component position detection unit that detects the position of the installation component in the work space based on the measurement data and the installation component 3D shape data.
    A transport path calculation unit that calculates a transport path of the transport component from the position of the transport component to the position of the installation component in the work space.
    Based on the calculated transfer path, a control amount calculation unit that calculates a control amount for controlling the crane that executes the installation work, and a control amount calculation unit.
    An installation control device characterized by being equipped with.
  2.  請求項1に記載の据付制御装置であって、
     前記搬送部品位置検出部は、搬送部品据付基準点データに基づき、前記搬送部品の複数の据付基準点の前記作業空間における位置を算出し、
     前記据付部品位置検出部は、据付部品据付基準点データに基づき、前記据付部品の複数の据付基準点の前記作業空間における位置を算出し、
     前記搬送パス算出部は、前記作業空間における前記搬送部品の複数の据付基準点の位置を始点、前記据付部品の複数の据付基準点の位置を終点とする前記搬送パスを算出する
     ことを特徴とする据付制御装置。
    The installation control device according to claim 1.
    The transport component position detection unit calculates the positions of a plurality of transport component installation reference points in the work space based on the transport component installation reference point data.
    The installation component position detection unit calculates the positions of a plurality of installation reference points of the installation component in the work space based on the installation component installation reference point data.
    The transport path calculation unit is characterized in that the transport path calculation unit calculates the transport path starting from the positions of a plurality of installation reference points of the transport component in the work space and ending at the positions of a plurality of installation reference points of the installation component. Installation control device.
  3.  請求項1に記載の据付制御装置であって、
     算出された前記制御量に基づいて前記クレーンを操作するための電動アクチュエータを制御するクレーン制御部、
     を備えることを特徴とする据付制御装置。
    The installation control device according to claim 1.
    A crane control unit that controls an electric actuator for operating the crane based on the calculated control amount.
    An installation control device characterized by being equipped with.
  4.  請求項1に記載の据付制御装置であって、
     算出された前記搬送パス、及び前記制御量の少なくとも一方を前記クレーンのオペレータに提示する出力部、
     を備えることを特徴とする据付制御装置。
    The installation control device according to claim 1.
    An output unit that presents at least one of the calculated transfer path and the control amount to the crane operator.
    An installation control device characterized by being equipped with.
  5.  請求項1に記載の据付制御装置であって、
     前記搬送パス算出部は、搬送中の前記搬送部品が姿勢制約を満たすように前記搬送パスを算出する
     ことを特徴とする据付制御装置。
    The installation control device according to claim 1.
    The transport path calculation unit is an installation control device characterized in that the transport path is calculated so that the transport component being transported satisfies the posture constraint.
  6.  搬送部品を吊り上げ搬送して据付部品に据え付ける据付作業を制御する据付制御装置の据付制御方法であって、
     前記搬送部品及び前記据付部品を含む作業空間の形状を表す計測データを計測する計測ステップと、
     前記計測データ及び搬送部品3D形状データに基づき、前記作業空間における前記搬送部品の位置を検出する搬送部品位置検出ステップと、
     前記計測データ及び据付部品3D形状データに基づき、前記作業空間における前記据付部品の位置を検出する据付部品位置検出ステップと、
     前記作業空間における前記搬送部品の位置から前記据付部品の位置までの前記搬送部品の搬送パスを算出する搬送パス算出ステップと、
     算出された前記搬送パスに基づき、前記据付作業を実行するクレーンを制御するための制御量を算出する制御量算出ステップと、
     を含むことを特徴とする据付制御方法。
    This is an installation control method for an installation control device that controls the installation work of lifting and transporting transport parts and installing them on the installation parts.
    A measurement step for measuring measurement data representing the shape of the work space including the transfer component and the installation component, and a measurement step.
    A transport component position detection step for detecting the position of the transport component in the work space based on the measurement data and the transport component 3D shape data, and a transport component position detection step.
    An installation component position detection step that detects the position of the installation component in the work space based on the measurement data and the installation component 3D shape data, and
    A transport path calculation step for calculating a transport path of the transport component from the position of the transport component to the position of the installation component in the work space, and a transport path calculation step.
    A control amount calculation step for calculating a control amount for controlling a crane that executes the installation work based on the calculated transfer path, and a control amount calculation step.
    An installation control method comprising.
PCT/JP2020/033857 2020-02-03 2020-09-08 Installation control device and installation control method WO2021157114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015942 2020-02-03
JP2020015942A JP7264839B2 (en) 2020-02-03 2020-02-03 Installation control device and installation control method

Publications (1)

Publication Number Publication Date
WO2021157114A1 true WO2021157114A1 (en) 2021-08-12

Family

ID=77199795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033857 WO2021157114A1 (en) 2020-02-03 2020-09-08 Installation control device and installation control method

Country Status (2)

Country Link
JP (1) JP7264839B2 (en)
WO (1) WO2021157114A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243600A (en) * 1999-02-16 2000-09-08 Toshiba Corp Installation position control device and method of accelerator equipment, and storage medium
JP2006256848A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Cargo handling support method and cargo handling support system
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2008214009A (en) * 2007-03-02 2008-09-18 Sintokogio Ltd Carrying method by overhead traveling crane and overhead traveling crane system using the carrying method
JP2009155056A (en) * 2007-12-27 2009-07-16 Seiko Precision Inc Image processing device, baggage carrying facility, and program
JP2009269110A (en) * 2008-05-02 2009-11-19 Olympus Corp Assembly equipment
JP2013069100A (en) * 2011-09-22 2013-04-18 Dainippon Screen Mfg Co Ltd Three-dimensional position/posture recognition device, industrial robot, three-dimensional position/posture recognition method, program and storing medium
WO2013108749A1 (en) * 2012-01-16 2013-07-25 株式会社日立製作所 Delivery route planning system
JP2018095369A (en) * 2016-12-09 2018-06-21 株式会社タダノ crane
JP2019089612A (en) * 2017-11-13 2019-06-13 株式会社日立産機システム Crane system and control method of crane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132538A (en) * 2015-01-20 2016-07-25 株式会社日立製作所 Carrying-in and installation work plan support device and carrying-in and installation work plan support method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243600A (en) * 1999-02-16 2000-09-08 Toshiba Corp Installation position control device and method of accelerator equipment, and storage medium
JP2006256848A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Cargo handling support method and cargo handling support system
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2008214009A (en) * 2007-03-02 2008-09-18 Sintokogio Ltd Carrying method by overhead traveling crane and overhead traveling crane system using the carrying method
JP2009155056A (en) * 2007-12-27 2009-07-16 Seiko Precision Inc Image processing device, baggage carrying facility, and program
JP2009269110A (en) * 2008-05-02 2009-11-19 Olympus Corp Assembly equipment
JP2013069100A (en) * 2011-09-22 2013-04-18 Dainippon Screen Mfg Co Ltd Three-dimensional position/posture recognition device, industrial robot, three-dimensional position/posture recognition method, program and storing medium
WO2013108749A1 (en) * 2012-01-16 2013-07-25 株式会社日立製作所 Delivery route planning system
JP2018095369A (en) * 2016-12-09 2018-06-21 株式会社タダノ crane
JP2019089612A (en) * 2017-11-13 2019-06-13 株式会社日立産機システム Crane system and control method of crane

Also Published As

Publication number Publication date
JP7264839B2 (en) 2023-04-25
JP2021123433A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
US10401844B2 (en) Simulator, simulation method, and simulation program
EP3166084B1 (en) Method and system for determining a configuration of a virtual robot in a virtual environment
US10262406B2 (en) Simulator, simulation method, and simulation program
JP6540472B2 (en) Simulation apparatus, simulation method, and simulation program
US11135720B2 (en) Method and system for programming a cobot for a plurality of industrial cells
JP2007245283A (en) Workpiece attitude detecting device, workpiece attitude detecting method, picking system, and picking method
WO2022091421A1 (en) Industrial system, abnormality detection system, and abnormality detection method
CN110737944A (en) floor slab generation method and generation device based on Revit
US11370120B2 (en) Method and system for teaching a robot in reaching a given target in robot manufacturing
CN111830825B (en) Automatic driving control method and system for machine
CN114080590A (en) Robotic bin picking system and method using advanced scanning techniques
WO2021157114A1 (en) Installation control device and installation control method
EP3520084A1 (en) System and method for element quality improvement in 3d quadrilateral-dominant surface meshes
US20140214384A1 (en) Recording medium, computing apparatus, and computing method
CN111026130A (en) AGV positioning deviation correction control method and device and readable storage medium
US7146594B1 (en) System, method, and computer program product for schematic generation
CN116390835A (en) System control device, robot control method, terminal device, terminal control method, and robot control system
EP4257303A1 (en) Apparatus and method for providing development environment for functional modules of robot
US20240077842A1 (en) Adjustment Support System, Adjustment Support Program, and Adjustment Support Method
JP3411770B2 (en) Off-line automatic teaching method of sensing pattern and sensing operation simulation method
JP2013158845A (en) Robot device, image generation device, image generation method, and image generation program
JP7103908B2 (en) Elevator fit judgment device, fit judgment method, and fit judgment program
US20240123621A1 (en) Robot Posture Determination Device, Method, and Program
EP4309855A1 (en) A method of using a robotic arm to position a part
JP6981314B2 (en) Information processing equipment, simulation program and simulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917910

Country of ref document: EP

Kind code of ref document: A1