WO2021155809A1 - 同步信号传输方法和设备 - Google Patents

同步信号传输方法和设备 Download PDF

Info

Publication number
WO2021155809A1
WO2021155809A1 PCT/CN2021/075091 CN2021075091W WO2021155809A1 WO 2021155809 A1 WO2021155809 A1 WO 2021155809A1 CN 2021075091 W CN2021075091 W CN 2021075091W WO 2021155809 A1 WO2021155809 A1 WO 2021155809A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
configuration
configuration information
terminal device
indicated
Prior art date
Application number
PCT/CN2021/075091
Other languages
English (en)
French (fr)
Inventor
杨坤
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21750585.8A priority Critical patent/EP4102898A4/en
Publication of WO2021155809A1 publication Critical patent/WO2021155809A1/zh
Priority to US17/880,579 priority patent/US20220394638A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular to a synchronization signal transmission method and equipment.
  • the synchronization signal design of the New Radio (NR) system uses the idea of the synchronization signal block (SS/PBCH Block, SSB) set.
  • the SSB set limits the number of SSBs in the Bandwidth Part (BWP) and the time domain distribution rules .
  • the maximum number of SSBs limits the number of beams and beam widths and beam gains of the SSB, which in turn limits the coverage effect of the SSB and the quality of the SSB-based measurement operation.
  • Increasing the number of SSB beams can improve the directivity of energy, obtain higher beam gain, and can improve the coverage effect of the SSB. Because the FR1 frequency band limits the maximum number of SSB beams; and in actual deployment, the Time Division Duplexing mode may occupy part of the SSB resources, and the actual number of available SSBs may be less. Therefore, it is necessary to design a reasonable expansion scheme of the SSB set to expand the available SSBs of the SSB set.
  • the purpose of the embodiments of the present invention is to provide a synchronization signal transmission method and device to solve the problem of limiting the coverage effect of the SSB due to the limited number of SSBs in the SSB set.
  • a synchronization signal transmission method is provided, the method is executed by a terminal device, and the method includes:
  • first configuration information where the first configuration information is used to indicate a first synchronization signal block SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained through cell search
  • the second SSB is indicated by second configuration information, and the first configuration information and the second configuration information may be carried in the same or different signaling.
  • a synchronization signal transmission method is provided, the method is executed by a network device, and the method includes:
  • Sending first configuration information where the first configuration information is used to indicate a first SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained by the terminal device through cell search.
  • the second SSB is indicated by the second configuration information
  • the first configuration information and the second configuration information are carried in the same or different signaling.
  • a terminal device in a third aspect, includes:
  • a receiving module configured to receive first configuration information, where the first configuration information is used to indicate a first SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained through cell search
  • the second SSB is indicated by the second configuration information
  • the first configuration information and the second configuration information are carried in the same or different signaling.
  • a network device in a fourth aspect, includes:
  • a sending module configured to send first configuration information, where the first configuration information is used to indicate a first SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained through cell search
  • the second SSB is indicated by the second configuration information
  • the first configuration information and the second configuration information are carried in the same or different signaling.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the steps of the synchronization signal transmission method as described in the first aspect are implemented.
  • a network device in a sixth aspect, includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, The synchronization signal transmission method as described in the second aspect is implemented.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the synchronization signal transmission method is provided.
  • the embodiment of the present invention is based on the frequency-domain multiplexing SSB transmission mode, and the number of SSBs can be flexibly expanded according to requirements.
  • the number of SSBs can be increased, the coverage effect of SSBs can be improved, and the measurement operation based on SSBs can be improved.
  • Quality for example, beam selection for initial access, etc.
  • Fig. 1 is a schematic flowchart of a synchronization signal transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the distribution of SSB according to an embodiment of the present invention.
  • Fig. 3 is a schematic flowchart of a synchronization signal transmission method according to another embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • LTE Time Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • terminal equipment may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, UE), and a mobile phone (handset).
  • the terminal equipment can communicate with one or more core networks through a radio access network (Radio Access Network, RAN), for example, the terminal equipment can be a mobile phone (or It is called a "cellular" phone), a computer with wireless communication function, etc.
  • the terminal device can also be a portable, pocket-sized, handheld, built-in computer or a mobile device in a vehicle.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, and access points.
  • the names of devices with base station functions may be different.
  • an LTE network it is called an evolved NodeB (EvolvedNodeB, eNB or eNodeB)
  • eNB evolved NodeB
  • 3G Third Generation
  • Node B Node B
  • Node B Node B
  • the term does not constitute a restriction.
  • an embodiment of the present invention provides a synchronization signal transmission method 100, which can be executed by a terminal device.
  • the method can be executed by software or hardware installed on the terminal device.
  • the method includes the following step:
  • S102 Receive first configuration information, where the first configuration information is used to indicate that the frequency domain positions of the first SSB and the second SSB are different; where the second SSB is obtained through cell search; or the second SSB is As indicated by the second configuration information.
  • the first configuration information and the second configuration information may be carried in the same or different signaling, that is, the first configuration information and the second configuration information may be the same configuration information; or the first configuration information and the second configuration information
  • the configuration information can be two different configuration information.
  • the first configuration information and/or the second configuration information indicate the time-frequency positions of the first SSB and the second SSB at the same time.
  • the terminal device obtains the time-frequency position of the second SSB through cell search; then obtains the time-frequency position of the first SSB by receiving the first configuration information.
  • the frequency domain positions of the first SSB and the second SSB are different.
  • the number of candidate time domain resources and the second SSB candidate time domain resources are equal.
  • the frequency domain positions occupied by multiple first SSBs are the first frequency domain
  • the frequency domain positions occupied by multiple second SSBs are the second frequency domain.
  • the first frequency domain and the second frequency domain are different.
  • the multiple candidate time domain positions of the first SSB are different, and for each candidate time domain position of the first SSB, there is a candidate time domain position of the second SSB that is the same as the time domain position of the first SSB.
  • the first SSB and the second SSB are located in the same downlink BWP, and the first SSB and the second SSB are located in the same SSB set.
  • the SSB set may be a set of SSBs in the SSB transmission period in the aforementioned downlink BWP; or, the SSB set may be a set of SSBs configured in the first configuration information and/or the second configuration information.
  • the first SSB and the second SSB are located in the initial downlink BWP, and the initial downlink BWP is indicated by one of the following methods:
  • PBCH Physical Broadcast Channel
  • SIB1 System Information Block 1
  • a terminal device receives first configuration information, and determines the time-frequency resource positions of the first SSB and the second SSB through the first configuration information and/or the second configuration information; or through cell search
  • the time-frequency resource position of the second SSB is determined by the first configuration information, and the frequency domain positions of the first SSB and the second SSB are different.
  • the number of SSBs can be flexibly expanded according to requirements.
  • the beam gain of the SSB can be increased, the coverage effect of the SSB can be improved, and the measurement operation based on the SSB can be improved.
  • Quality for example, beam selection for initial access, etc.
  • the SSBs with different frequency domain positions mentioned in the various embodiments of the present invention are explained by taking the first SSB and the second SSB as examples. In fact, the SSBs with different frequency domain positions (more than two frequency domain positions) The number can be more.
  • the first configuration information mentioned in Embodiment 100 may be specifically used to indicate at least one of the following:
  • the SSB set includes the first SSB and the second SSB; the SSB set may be a set of SSBs in the SSB transmission period in the downlink BWP; or ,
  • the SSB set is a set of SSBs configured in the first configuration information and/or the second configuration information.
  • the first SSB is associated with the first control resource set CORESET#0
  • the second SSB is associated with the second CORESET#0; wherein, the configuration parameters of the first CORESET#0 and the second CORESET#0
  • the configuration parameters are the same.
  • the first CORESET#0 and the second CORESET#0 are the same CORESET, where the configuration parameters of Coreset#0 include the configuration of time-frequency resources, the configuration of the detection window, and so on.
  • the configuration parameter of the first CORESET#0 and the configuration parameter of the second CORESET#0 may be different, for example, the first CORESET#0 and the second CORESET#0 are different CORESETs.
  • the first SSB is associated with the first configuration
  • the second SSB is associated with the second configuration
  • the first configuration and/or the second configuration include at least one of the following:
  • System Information Radio Network Temporary Identifier System Information-Radio Network Temporary Identifier, SI-RNTI
  • PDCCH Physical Downlink Control Channel
  • Random Access-Radio Network Temporary Identifier (RA-RNTI) scrambled PDCCH search space set (Type1-SS set);
  • TC-RNTI Temporary Cell-Radio Network Temporary Identifier
  • P-RNTI Paging-Radio Network Temporary Identifier
  • the first configuration information received in Embodiment 100 may also be used to indicate the foregoing first configuration.
  • the method further includes: receiving third configuration information, where the third configuration information is used to indicate the foregoing first configuration.
  • the first configuration of the first SSB is the same as the second configuration of the second SSB by default.
  • the first configuration and the second configuration mentioned in the various embodiments of this specification are the same, and the information types included in the first configuration and the second configuration (for example, the Type1-SS set, PRACH configuration mentioned above) are the same; and each information included The content of is the same (for example, the resources indicated by Type1-SS set are the same, and the PRACH configuration is the same).
  • the first configuration of the first SSB is the same as the second configuration of the second SSB by default.
  • the first configuration of the first SSB is the same as the second configuration of the second SSB by default.
  • the first configuration of the first SSB is different from the second configuration of the second SSB.
  • the first configuration and the second configuration mentioned in the various embodiments of this specification are different, and it may be that the information types included in the first configuration and the second configuration (for example, the Type1-SS set, PRACH configuration mentioned above) are different; and/or, The content of each information is different (for example, the resources indicated by Type1-SS set are different, and the PRACH configuration is different).
  • the method further includes: performing PDCCH monitoring on a search space associated with an SSB in the SSB set; wherein, the SSB set
  • the SSB set including the first SSB and the second SSB may be a set of SSBs in the SSB transmission period in the downlink BWP; or, the SSB set is a set of SSBs configured in the first configuration information and/or the second configuration information.
  • the terminal device in Embodiment 100 may also receive the first SSB and the second SSB, and perform at least one of the following based on the first SSB and/or the second SSB one:
  • Layer 1 Reference Signal Received Power (Layer 1 Reference Signal Received Power, L1-RSRP) measurement.
  • a network device can send SSB on resources of different frequencies at the same time and send frequency-domain multiplexing parameters (for example, the first configuration parameter, the second configuration parameter).
  • the terminal device obtains the distribution of the SSB set in the time-frequency domain, and selects one or more synchronization signal blocks that meet the requirements according to its distribution and/or network configuration to perform SSB-related communication operations, such as initial access, RRM measurement, etc. .
  • the first embodiment is an SSB-based cell search process.
  • the network device sends multiple SSBs at different frequency positions within the target BWP.
  • the frequency domain position of the SSB satisfies the frequency position defined by the synchronization raster, and the time domain position of the SSB satisfies the time domain distribution rule defined by the 5G NR protocol.
  • the time-frequency mapping diagram is shown in Figure 2.
  • SSBs of the same time and different frequencies can be mapped to the same CORESET#0, and the mapping method depends on the configuration of the PBCH/MIB in the respective SSB.
  • SSBs of different frequencies at the same time can be mapped to different CORESET#0.
  • the cell search process of the terminal device is as follows:
  • Step 0 The terminal device performs cell search according to Synchronization Raster, completes time-frequency synchronization, and obtains MIB information. Through this step, the terminal device can obtain the time-frequency position of the second SSB mentioned in the previous embodiments.
  • Step 1 The terminal device obtains system information (for example, SIB1, which corresponds to the first configuration information in the foregoing embodiments), and obtains the parameters of the SSB distribution in the current BWP to obtain the time-frequency position of the first SSB.
  • SIB1 system information
  • SIB1 which corresponds to the first configuration information in the foregoing embodiments
  • the system information may indicate the frequency domain multiplexing number of the SSB.
  • the system information may indicate frequency-domain multiplexing parameters between SSBs, and include at least one of the following information: the frequency offset of each SSB relative to a specific reference point (for example, the lower or upper boundary of CORESET#0), The relative frequency offset between SSBs, the frequency offset of a specific SSB (for example, the SSB with the lowest frequency, or the SSB detected when the terminal performs a cell search) relative to a specific reference point.
  • a specific reference point for example, the lower or upper boundary of CORESET#0
  • the relative frequency offset between SSBs for example, the frequency offset of a specific SSB (for example, the SSB with the lowest frequency, or the SSB detected when the terminal performs a cell search) relative to a specific reference point.
  • the system information indicates the QCL relationship between SSBs.
  • the system information indicates the transmission period of the SSB of each frequency.
  • Step 2 The terminal equipment determines the associated parameters of each SSB, including one of the following parameters: SI-RNTI scrambled PDCCH SS set, RA-RNTI, TC-RNTI scrambled PDCCH SS set, P-RNTI plus The SS set of the disturbed PDCCH, and the PRACH parameters associated with the SSB.
  • SSBs of different frequencies can use the same configuration parameters.
  • the same configuration parameters are used for the SSBs that satisfy the QCL.
  • the same configuration parameters are used for SSBs at the same time domain location.
  • Step 3 The terminal device detects the signal quality of the SSB in the BWP, selects one of the SSBs to initiate initial access, sends the RACH signal on the RACH resource associated with the SSB, and uses the QCL configuration of the SSB to receive the SIB or Paging or RAR or MSG4 message.
  • the terminal equipment detects the signal quality of the SSB according to the time-frequency location distribution of the SSB.
  • the terminal device can re-detect the signal quality of all SSBs in the subsequent SSB cycle, and select the SSB with the best signal quality.
  • the terminal device weights and combines the SSB signal measurement results that satisfy the QCL relationship; or the terminal device selects one of the SSB signals for measurement and ignores the measurement of the SSB with its QCL.
  • the terminal device receives the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the terminal device specifies the PDSCH, and performs rate matching (rate matching) on SSBs transmitted on multiple frequencies.
  • the second embodiment is an SSB-based cell measurement process.
  • the terminal device obtains the time-frequency distribution information of the SSB of the target BWP.
  • the terminal device obtains the SSB time-frequency distribution information of the target BWP through system information (for example, through the first configuration information and/or the second configuration information described in the various embodiments above). Obtain the time-frequency distribution information of the first SSB and the second SSB).
  • the terminal device obtains the SSB time-frequency distribution information of the target BWP through system information (for example, the first SSB and the second SSB time-frequency distribution information).
  • the system information may be RRC signaling, MAC CE signaling, Downlink Control Information (DCI) signaling, or a combination of multiple signaling.
  • the time-frequency distribution information of the SSB includes at least one of the following parameters:
  • the location of the reference SSB is the CD-SSB indicated by the system or determined through the cell search process.
  • this information indicates the frequency domain multiplexing number of the SSB in the target BWP.
  • the information indicates the position of the SSB in the frequency domain, and the indication method is the same as in the first embodiment.
  • QCL relationship between SSBs This information indicates the relationship between SSBs.
  • the indication method can be that SSBs in the same time domain and different frequency domains meet the QCL relationship, or SSBs in the same frequency domain and different time domains meet the QCL relationship, or specify one The SSB of the group SSB number satisfies the QCL relationship.
  • SSB sending cycle indicating that the SSBs in different frequency domains in the target BWP indicate different sending cycles, or the SSBs in the target BWP indicate the same sending cycle.
  • SSB related parameter information confirm the related parameters according to the system message corresponding to the SSB, including one of the following parameters: SS set of SI-RNTI scrambled PDCCH, RA-RNTI, TC-RNTI scrambled PDCCH SS set of P-RNTI, SS set of PDCCH scrambled by P-RNTI, PRACH parameter associated with SSB.
  • SSB used for channel measurement according to the distribution of the SSB and the QCL relationship, such as RLM measurement, BFD measurement, and L1-RSRP measurement.
  • the network device configures the terminal device with multiple SSBs of different frequencies at the same time in the target BWP.
  • the terminal device simultaneously measures multiple SSBs in the target BWP at the corresponding time to obtain channel information of different links.
  • the terminal equipment detects the channel conditions of multiple SSBs at the same time, and can traverse the SSB channel measurement faster.
  • the network device configures the SSBs of the same time and different frequencies in the target BWP to satisfy the QCL relationship, and configures the terminal device to use the above-mentioned SSB measurement channel.
  • the terminal equipment detects the above-mentioned SSB and performs weighted combination to obtain more accurate channel measurement results.
  • the network device configures the SSBs of the same frequency and different time in the target BWP to satisfy the QCL relationship, and configures the terminal device to use the above-mentioned SSB measurement channel.
  • the terminal device flexibly selects one or more SSBs among the above-mentioned SSBs for measurement, and weights and combines them to obtain channel information.
  • the third embodiment is an SSB-based RRM measurement process.
  • the network device indicates the SSB distribution of the BWP of the current cell or indicates the SSB distribution of the neighboring cells for the terminal device for RRM monitoring.
  • the terminal device obtains the time-frequency distribution information of the SSB of the target BWP.
  • the terminal device obtains the SSB time-frequency distribution information of the target BWP through the system information.
  • the terminal device obtains the SSB time-frequency distribution information of the target BWP through the system information.
  • the system information can be RRC signaling, MAC CE signaling, DCI signaling, or a combination of multiple signaling.
  • the time-frequency distribution information of the SSB includes at least one of the following parameters:
  • the location of the reference SSB is indicated by the system or determined through the cell search process.
  • this information indicates the frequency domain multiplexing number of the SSB in the target BWP.
  • the information indicates the position of the SSB in the frequency domain, and the indication method is the same as in the first embodiment.
  • QCL relationship between SSBs This information indicates the relationship between SSBs.
  • the indication method can be that SSBs in the same time domain and different frequency domains meet the QCL relationship, or SSBs in the same frequency domain and different time domains meet the QCL relationship, or specify one The SSB of the group SSB number satisfies the QCL relationship.
  • SSB sending cycle indicating that the SSBs in different frequency domains in the target BWP indicate different sending cycles, or the SSBs in the target BWP indicate the same sending cycle.
  • the network device configures multiple SSBs of different frequencies at the same time in the target BWP for the terminal device.
  • the terminal device simultaneously measures multiple SSBs in the target BWP at the corresponding time to obtain channel information of different links.
  • the terminal equipment detects the channel conditions of multiple SSBs at the same time, and can traverse the SSB channel measurement faster.
  • the network device configures the SSBs of the same time and different frequencies in the target BWP to satisfy the QCL relationship, and configures the terminal device to use the above-mentioned SSB measurement channel.
  • the terminal equipment detects and combines the above-mentioned SSBs to obtain more accurate channel measurement results.
  • the network device configures the SSBs of the same frequency and different time in the target BWP to satisfy the QCL relationship, and configures the terminal to recognize the use of the above-mentioned SSB measurement channel.
  • the terminal device flexibly selects one or more SSBs among the above-mentioned SSBs for measurement, and weights and combines them to obtain channel information.
  • the synchronization signal transmission method according to the embodiment of the present invention is described in detail above with reference to FIG. 1.
  • the synchronization signal transmission method according to another embodiment of the present invention will be described in detail below with reference to FIG. 3. It can be understood that the interaction between the network device and the terminal device described from the network device side is the same as the description on the terminal device side in the method shown in FIG. 1, and to avoid repetition, the related description is appropriately omitted.
  • FIG. 3 is a schematic diagram of the implementation process of the synchronization signal transmission method according to the embodiment of the present invention, which can be applied to the network device side. As shown in FIG. 3, the method 300 includes:
  • S302 Send first configuration information, where the first configuration information is used to indicate that the frequency domain positions of the first SSB and the second SSB are different; where the second SSB is obtained through cell search; or the second SSB is As indicated by the second configuration information.
  • the first configuration information and the second configuration information may be carried in the same or different signaling.
  • a network device sends first configuration information, and indicates the time-frequency resource positions of the first SSB and the second SSB through the first configuration information and/or the second configuration information; or the terminal device passes through the cell
  • the second SSB is searched and determined, and the time-frequency resource position of the first SSB is indicated through the first configuration information, and the frequency domain positions of the first SSB and the second SSB are different.
  • the embodiment of the present invention is based on the frequency-domain multiplexing SSB transmission mode, and the number of SSBs can be flexibly expanded according to requirements.
  • the number of SSBs can be increased, the coverage effect of SSBs can be improved, and the measurement operation based on SSBs can be improved.
  • Quality for example, beam selection for initial access, etc.
  • the first SSB and the second SSB are located in the same downlink BWP.
  • the first SSB and the second SSB are located in an initial downlink BWP;
  • the initial downlink BWP is indicated by one of the following methods:
  • radio resource control RRC signaling It is indicated by radio resource control RRC signaling.
  • the first configuration information is used to indicate at least one of the following:
  • the SSB set includes the first SSB and the second SSB;
  • the sending period of the first SSB The sending period of the first SSB.
  • the first SSB is associated with the first CORESET#0, and the second SSB is associated with the second CORESET#0;
  • the configuration parameters of the first CORESET#0 and the configuration parameters of the second CORESET#0 are the same.
  • the first SSB is associated with a first configuration
  • the second SSB is associated with a second configuration
  • the first configuration and/or the second configuration include at least one of the following one:
  • the search space set of the PDCCH scrambled by RA-RNTI The search space set of the PDCCH scrambled by RA-RNTI
  • the first configuration information is used to indicate the first configuration
  • the method further includes: sending third configuration information, where the third configuration information is used to indicate the first configuration.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are different.
  • the method further includes:
  • PDCCH transmission is performed on a search space associated with an SSB in the SSB set;
  • the SSB set includes the first SSB and the second SSB.
  • the first SSB and/or the second SSB are used by the terminal device to perform at least one of the following:
  • the synchronization signal transmission method according to the embodiment of the present invention is described in detail above with reference to FIGS. 1 to 3.
  • the terminal device according to the embodiment of the present invention will be described in detail below with reference to FIG. 4.
  • Fig. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 4, the terminal device 400 includes:
  • the receiving module 402 may be configured to receive first configuration information, where the first configuration information is used to indicate a first SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained through cell search
  • the second SSB is indicated by the second configuration information.
  • the first configuration information and the second configuration information may be carried in the same or different signaling.
  • the terminal device receives the first configuration information, and determines the time-frequency resource positions of the first SSB and the second SSB through the first configuration information and/or the second configuration information; or determines the location of the second SSB through cell search
  • the position of the time-frequency resource, the position of the time-frequency resource of the first SSB is determined through the first configuration information, and the frequency domain positions of the first SSB and the second SSB are different.
  • the embodiment of the present invention is based on the frequency-domain multiplexing SSB transmission mode, and the number of SSBs can be flexibly expanded according to requirements.
  • the number of SSBs can be increased, the coverage effect of SSBs can be improved, and the measurement operation based on SSBs can be improved.
  • Quality for example, beam selection for initial access, etc.
  • the first SSB and the second SSB are located in the same downlink bandwidth part BWP.
  • the first SSB and the second SSB are located in an initial downlink BWP;
  • the initial downlink BWP is indicated by one of the following methods:
  • radio resource control RRC signaling It is indicated by radio resource control RRC signaling.
  • the first configuration information is used to indicate at least one of the following:
  • the sending period of the first SSB The sending period of the first SSB.
  • the first SSB is associated with a first control resource set CORESET#0, and the second SSB is associated with a second CORESET#0;
  • the configuration parameters of the first CORESET#0 and the configuration parameters of the second CORESET#0 are the same.
  • the first SSB is associated with a first configuration
  • the second SSB is associated with a second configuration
  • the first configuration and/or the second configuration include at least one of the following one:
  • SI-RNTI scrambled physical downlink control channel PDCCH search space set
  • the first configuration information is used to indicate the first configuration
  • the receiving module 402 may also be used to receive third configuration information, where the third configuration information is used to indicate the first configuration.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are different.
  • the receiving module 402 may also be used to perform PDCCH monitoring on a search space associated with an SSB in the SSB set;
  • the SSB set includes the first SSB and the second SSB.
  • the receiving module 402 may be further configured to perform at least one of the following based on the first SSB and/or the second SSB:
  • the terminal device 400 can refer to the process of the method 100 corresponding to the embodiment of the present invention, and each unit/module in the terminal device 400 and other operations and/or functions mentioned above are used to implement the corresponding methods in the method 100.
  • Fig. 5 is a schematic structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 5, the network device 500 includes:
  • the sending module 502 may be used to send first configuration information, where the first configuration information is used to indicate a first SSB, and the frequency domain positions of the first SSB and the second SSB are different;
  • the second SSB is obtained through cell search
  • the second SSB is indicated by the second configuration information.
  • the first configuration information and the second configuration information may be carried in the same or different signaling.
  • the network device provided by the embodiment of the present invention sends first configuration information, and indicates the time-frequency resource location of the first SSB and the second SSB through the first configuration information and/or the second configuration information; or the terminal device determines the second configuration information through cell search
  • the time-frequency resource position of the SSB indicates the time-frequency resource position of the first SSB through the first configuration information, and the frequency domain positions of the first SSB and the second SSB are different.
  • the embodiment of the present invention is based on the frequency-domain multiplexing SSB transmission mode, and the number of SSBs can be flexibly expanded according to requirements.
  • the number of SSBs can be increased, the coverage effect of SSBs can be improved, and the measurement operation based on SSBs can be improved.
  • Quality for example, beam selection for initial access, etc.
  • the first SSB and the second SSB are located in the same downlink BWP.
  • the first SSB and the second SSB are located in an initial downlink BWP;
  • the initial downlink BWP is indicated by one of the following methods:
  • radio resource control RRC signaling It is indicated by radio resource control RRC signaling.
  • the first configuration information is used to indicate at least one of the following:
  • the SSB set includes the first SSB and the second SSB;
  • the sending period of the first SSB The sending period of the first SSB.
  • the first SSB is associated with the first CORESET#0, and the second SSB is associated with the second CORESET#0;
  • the configuration parameters of the first CORESET#0 and the configuration parameters of the second CORESET#0 are the same.
  • the first SSB is associated with a first configuration
  • the second SSB is associated with a second configuration
  • the first configuration and/or the second configuration include at least one of the following one:
  • the search space set of the PDCCH scrambled by RA-RNTI The search space set of the PDCCH scrambled by RA-RNTI
  • the first configuration information is used to indicate the first configuration
  • the sending module 502 may be used to send third configuration information, where the third configuration information is used to indicate the first configuration.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are the same.
  • the first configuration and the second configuration are different.
  • the sending module 502 may be used for
  • PDCCH transmission is performed on a search space associated with an SSB in the SSB set;
  • the SSB set includes the first SSB and the second SSB.
  • the first SSB and/or the second SSB are used by the terminal device to perform at least one of the following:
  • the network device 500 can refer to the process of the method 300 corresponding to the embodiment of the present invention, and each unit/module in the network device 500 and the other operations and/or functions mentioned above are used to implement the corresponding methods in the method 300.
  • Fig. 6 is a block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device 600 shown in FIG. 6 includes: at least one processor 601, a memory 602, at least one network interface 604, and a user interface 603.
  • the various components in the terminal device 600 are coupled together through the bus system 605.
  • the bus system 605 is used to implement connection and communication between these components.
  • the bus system 605 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 605 in FIG. 6.
  • the user interface 603 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 602 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 602 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 6021 and an application 6022.
  • the operating system 6021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 6022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 6022.
  • the terminal device 600 further includes: a computer program that is stored in the memory 602 and can be run on the processor 601, and the computer program is executed by the processor 601 to implement the steps of the method embodiment 100 as follows.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 601 or implemented by the processor 601.
  • the processor 601 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 601 or instructions in the form of software.
  • the aforementioned processor 601 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 602, and the processor 601 reads information in the memory 602, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 601, each step of the above method embodiment 100 is implemented.
  • the embodiments described in the embodiments of the present invention may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present invention can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present invention.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 600 can implement each process implemented by the terminal device in the foregoing embodiments, and can achieve the same or equivalent technical effects. To avoid repetition, details are not described herein again.
  • FIG. 7 is a structural diagram of a network device applied in an embodiment of the present invention, which can implement the details of the method embodiment 300 and achieve the same effect.
  • the network device 700 includes: a processor 701, a transceiver 702, a memory 703, and a bus interface, where:
  • the network device 700 further includes: a computer program stored in the memory 703 and capable of running on the processor 701. The computer program is executed by the processor 701 to implement the steps of the method embodiment 300.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, it implements any one of the method embodiment 100 and method embodiment 300 described above. Each process can achieve the same technical effect. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种同步信号传输方法和设备,该方法包括:接收第一配置信息,第一配置信息用于指示第一SSB,第一SSB和第二SSB的频域位置不同;其中,第二SSB是通过小区搜索得到的;或第二SSB是第二配置信息指示的;第一配置信息和第二配置信息承载于同一或不同的信令中。

Description

同步信号传输方法和设备
相关申请的交叉引用
本申请主张在2020年02月06日在中国提交的中国专利申请号202010081750.1的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信领域,尤其涉及一种同步信号传输方法和设备。
背景技术
新空口(New Radio,NR)***的同步信号设计使用同步信号块(SS/PBCH Block,SSB)集合的思想,SSB集合限制了部分带宽(Bandwidth Part,BWP)内SSB的数量和时域分布规则。SSB的最大数量限制了SSB的波束数量和波束宽度和波束增益,进而限制了SSB的覆盖效果和基于SSB的测量操作的质量。
增加SSB波束数量可以是提高能量的方向性,获得更高的波束增益,可以提高SSB的覆盖效果等。由于FR1频段限制了SSB波束的最大数量;且实际部署中,时分双工(Time Division Duplexing)模式可能占用部分SSB资源,实际可用SSB数量可能更少。因此,有必要设计一种合理的SSB集合的扩展方案,来扩展SSB集合的可用SSB。
发明内容
本发明实施例的目的是提供一种同步信号传输方法和设备,用以解决因SSB集合中SSB的数量有限,限制SSB的覆盖效果的问题。
第一方面,提供了一种同步信号传输方法,所述方法由终端设备执行,所述方法包括:
接收第一配置信息,所述第一配置信息用于指示第一同步信号块SSB,所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是通过小区搜索得到的;或
所述第二SSB是第二配置信息指示的,所述第一配置信息与所述第二配置信息可以承载于同一或者不同的信令中。
第二方面,提供了一种同步信号传输方法,所述方法由网络设备执行,所述方法包括:
发送第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是终端设备通过小区搜索得到的;或
所述第二SSB是第二配置信息指示的;
所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
第三方面,提供了一种终端设备,该终端设备包括:
接收模块,用于接收第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是通过小区搜索得到的;或
所述第二SSB是第二配置信息指示的;
所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
第四方面,提供了一种网络设备,该网络设备包括:
发送模块,用于发送第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是通过小区搜索得到的;或
所述第二SSB是第二配置信息指示的;
所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
第五方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的同步信号传输方法的步骤。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的同步信号传输方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面和第二方面中任意一个方面所述的同步信号传输方法。
本发明实施例基于频域复用的SSB的传输方式,可以根据需求灵活的扩展SSB的数量,通过扩展SSB的数量可以增加SSB的波束数量,提升SSB的覆盖效果,提升基于SSB的测量操作的质量(例如,初始接入的波束选择等)。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本发明的一个实施例的同步信号传输方法的示意性流程图;
图2是根据本发明的一个实施例的SSB的分布情况示意图;
图3是根据本发明的另一个实施例的同步信号传输方法的示意性流程图;
图4是根据本发明的一个实施例的终端设备的结构示意图;
图5是根据本发明的一个实施例的网络设备的结构示意图;
图6是根据本发明的另一个实施例的终端设备的结构示意图;
图7根据本发明的另一个实施例的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本说明书各个实施例中的“和/或”表示前后两者的至少之一。
应理解,本发明实施例的技术方案可以应用于各种通信***,例如:长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for  Microwave Access,WiMAX)通信***、5G***,或者说新无线(New Radio,NR)***,或者为后续演进通信***。
在本发明实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本发明实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的***中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(EvolvedNodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信***中的网络设备等等,然用词并不构成限制。
如图1所示,本发明的一个实施例提供一种同步信号传输方法100,该方法可以由终端设备执行,换言之,该方法可以由安装在终端设备的软件或硬件来执行,该方法包括如下步骤:
S102:接收第一配置信息,该第一配置信息用于指示第一SSB,第一SSB和第二SSB的频域位置不同;其中,第二SSB是通过小区搜索得到的;或第二SSB是第二配置信息指示的。
所述第一配置信息和所述第二配置信息可以承载于同一或者不同的信令中,也即第一配置信息和第二配置信息可以是同一个配置信息;或者第一配置信息和第二配置信息可以是两个不同的配置信息。
在一个例子中,第一配置信息和/或第二配置信息同时指示上述第一SSB和第二SSB的时频位置。
在另一个例子中,终端设备通过小区搜索得到第二SSB的时频位置;然后通过接收第一配置信息得到第一SSB的时频位置。
上述第一SSB和第二SSB的频域位置不同。在一个例子中,在一个5ms同步窗口内,如果第一SSB和第二SSB同时存在,则第一SSB候选时域资源为多个,第二SSB候选时域资源为多个,且第一SSB候选时域资源和第二SSB候选时域资源的数量相等,在该例子中,多个第一SSB占用的频域位置为第一频域,多个第二SSB占用的频域位置为第二频域,第一频域和第二频域不相同。第一SSB的多个候选时域位置不同,且针对每一个第一SSB的候选时域位置,均有一个与该第一SSB的时域位置相同的第二SSB的候选时域位置。
可选地,第一SSB和第二SSB是位于同一个下行BWP内,且第一SSB和第二SSB是位于同一个SSB集合内。该SSB集合可以是上述下行BWP内SSB发送周期内的SSB的集合;或者,该SSB集合为第一配置信息和/或第二配置信息内配置的SSB的集合。
可选地,第一SSB和第二SSB位于初始下行BWP内,该初始下行BWP是由以下方式之一指示:
1)由第二SSB中包含的物理广播信道(Physical Broadcast Channel,PBCH)指示;
2)由***信息块1(System Information Block 1,SIB1)指示;
3)由无线资源控制(Radio Resource Control,RRC)信令指示。
本发明实施例提供的同步信号传输方法,终端设备接收第一配置信息,通过第一配置信息和/或第二配置信息确定第一SSB和第二SSB的时频资源位置;或者通过小区搜索确定第二SSB的时频资源位置,通过第一配置信息确定第一SSB的时频资源位置,第一SSB和第二SSB的频域位置不同。
本发明实施例基于频域复用的SSB的传输方式,可以根据需求灵活的扩展SSB的数量,通过扩展SSB的数量可以提高SSB的波束增益,提升SSB的覆盖效果,提升基于SSB的测量操作的质量(例如,初始接入的波束选择等)。
需要说明的是,本发明各个实施例提到的不同频域位置的SSB是以第一SSB和第二SSB为例进行说明,实际上,不同频域位置(大于两个频域位置)的SSB的数量还可以更多。
可选地,作为一个实施例,实施例100中提到的第一配置信息具体可以用于指示下述至少之一:
1)第一SSB的频域位置。
2)第一SSB相对于第二SSB的频域位置偏移量。
3)第一SSB与SSB集合中其它SSB的准共址QCL关系;其中,该SSB集合包括第一SSB和第二SSB;该SSB集合可以是下行BWP内SSB发送周期内的SSB的集合;或者,该SSB集合为第一配置信息和/或第二配置信息内配置的SSB的集合。
4)第一SSB的发送周期。
可选地,作为一个实施例,第一SSB和第一控制资源集CORESET#0关联,第二SSB和第二CORESET#0关联;其中,第一CORESET#0的配置参数和第二CORESET#0的配置参数相同,例如,第一CORESET#0和第二CORESET#0是相同的CORESET,其中,Coreset#0的配置参数包含了时频资源的配置、检测窗口的配置等。当然,在其他的实施例中,第一CORESET#0的配置参数和第二CORESET#0的配置参数可以不同,例如,第一CORESET#0和第二CORESET#0是不同的CORESET。
可选地,作为一个实施例,第一SSB和第一配置关联,第二SSB和第二配置关联;其中,第一配置和/或第二配置包括如下至少之一:
1)***信息无线网络临时标识(System Information-Radio Network Temporary Identifier,SI-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的搜索空间集(Type0-SS set,Type0A-SS set);
2)随机接入无线网络临时标识(Random Access-Radio Network Temporary Identifier,RA-RNTI)加扰的PDCCH的搜索空间集(Type1-SS set);
3)临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI)加扰的PDCCH的搜索空间集(Type1-SS set);
4)寻呼-无线网络临时标识(Paging-Radio Network Temporary Identifier,P-RNTI)加扰的PDCCH的搜索空间集(Type2-SS set);
5)物理随机接入信道(Physical Random Access Channel,PRACH)配置。
可选地,作为一个实施例,实施例100中接收到的第一配置信息还可以用于指示上述第一配置。
可选地,作为一个实施例,实施例100中终端设备接收第一配置信息之后,所述方法 还包括:接收第三配置信息,第三配置信息用于指示上述第一配置。
可选地,作为一个实施例,在网络设备没有为所述终端设备指示第一SSB的第一配置的情况下,第一SSB的第一配置默认和第二SSB的第二配置相同。本说明书各个实施例提到的第一配置和第二配置相同,可以是第一配置和第二配置包括的信息种类(例如,上述Type1-SS set、PRACH配置)相同;且包括的每个信息的内容相同(例如,Type1-SS set指示的资源相同、PRACH配置相同)。
可选地,作为一个实施例,在第一SSB和第二SSB满足QCL关系的情况下,第一SSB的第一配置默认和第二SSB的第二配置相同。
可选地,作为一个实施例,在第一SSB和第二SSB配置为相同时域位置时,第一SSB的第一配置默认和第二SSB的第二配置相同。
可选地,作为一个实施例,第一SSB的第一配置和第二SSB的第二配置不同。本说明书各个实施例提到的第一配置和第二配置不同,可以是第一配置和第二配置包括的信息种类(例如,上述Type1-SS set、PRACH配置)不同;和/或,包括的每个信息的内容不同(例如,Type1-SS set指示的资源不同、PRACH配置不同)。
可选地,作为一个实施例,实施例100中终端设备接收第一配置信息之后,所述方法还包括:在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的监听;其中,该SSB集合包括上述第一SSB和第二SSB该SSB集合可以是下行BWP内SSB发送周期内的SSB的集合;或者,该SSB集合为第一配置信息和/或第二配置信息内配置的SSB的集合。
可选地,作为一个实施例,实施例100中终端设备接收第一配置信息之后,终端设备还可以接收第一SSB和第二SSB,并基于第一SSB和/或第二SSB执行如下至少之一:
1)无线资源管理(Radio Resource Management,RRM)测量;
2)无线链路监测(Radio Link Monitoring,RLM)测量;
3)波束失败检测(Beam Failure Detection,BFD)测量;
4)层1参考信号接收功率(Layer 1 Reference Signal Received Power,L1-RSRP)测量。
本发明上述各个实施例提供的同步信号传输方法,网络设备可以在相同时间不同频率的资源上发送SSB,并发送频域复用的参数(例如,第一配置参数、第二配置参数),这样,终端设备获取SSB集合在时频域的分布情况,根据其分布情况和/或网络配置选择符 合要求的一个或多个同步信号块执行SSB相关的通信操作,例如,初始接入、RRM测量等。
为详细说明本发明上述各个实施例提供的同步信号传输方法,以下将结合几个具体的实施例进行说明。
实施例一
该实施例一为基于SSB的小区搜索过程,该实施例中,网络设备在目标BWP内不同的频率位置上发送多个SSB。SSB的频域位置满足同步栅格(synchronization raster)定义的频率位置,SSB的时域位置满足5G NR协议定义的时域分布规则。其时频映射示意图如图2所示,在图2中,相同时间不同频率的SSB可以映射到相同CORESET#0,其映射方式取决于各自SSB中PBCH/MIB的配置。当然,在其他的实施例中,相同时间不同频率的SSB可以映射到不同的CORESET#0。
当网络设备按照上述方式发送SSB时,终端设备的小区搜索过程如下:
步骤0:终端设备按照Synchronization Raster进行小区搜索,完成时频同步,获得MIB信息,通过该步骤,终端设备可以获得前文各个实施例中提到的第二SSB的时频位置。
步骤1:终端设备获取***信息(例如SIB1,该***信息对应于前文各个实施例中的第一配置信息),获得当前BWP内SSB分布的参数,以获得第一SSB的时频位置。
可选地,***信息可以指示SSB的频域复用数量。
可选地,***信息可以指示SSB之间的频域复用参数,至少包含以下信息之一:各个SSB相对于特定参考点(例如CORESET#0的下边界或者上边界)的频率偏移量,SSB之间的相对频率偏移量,特定SSB(例如频率最低的SSB,或者终端执行小区搜索时检测到的SSB)相对特定参考点的频率偏移量。
可选地,***信息指示SSB之间的QCL关系。
可选地,***信息指示各个频率的SSB的传输周期。
步骤2:终端设备确定各个SSB的相关联的参数,包括以下参数之一:SI-RNTI加扰的PDCCH的SS set,RA-RNTI,TC-RNTI加扰的PDCCH的SS set,P-RNTI加扰的PDCCH的SS set,SSB相关联的PRACH参数。
可选地,不同频率的SSB可以使用相同的配置参数。
可选地,对于指示了QCL关系的SSB,满足QCL的SSB使用相同的配置参数。
可选地,对于相同时域位置的SSB使用相同的配置参数。
步骤3:终端设备检测BWP内SSB的信号质量,选择其中一个SSB发起初始接入,在SSB关联的RACH资源上发送RACH信号,使用该SSB的QCL配置接收SIB或者Paging或者RAR或者MSG4消息。
该步骤中,终端设备按照SSB的时频位置分布情况检测SSB的信号质量。终端设备可以在后续SSB周期中重新检测所有SSB的信号质量,选择信号质量最好的SSB。
可选地,如果***消息指示了SSB之间的QCL关系,终端设备将满足QCL关系的SSB信号测量结果进行加权合并;或者终端设备选择其中一个SSB信号进行测量,忽略与其QCL的SSB的测量。
网络设备如果指示了多个频率的SSB,终端设备接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。可选地,终端设备明确(specific)PDSCH,对多个频率的传输的SSB做速率匹配(rate matching)。
实施例二
该实施例二为基于SSB的小区测量过程,该实施例中,终端设备获取目标BWP的SSB的时频分布信息。
可选地,如果目标BWP是终端设备的初始BWP,终端设备通过***信息获得目标BWP的SSB时频分布信息(例如,通过前文各个实施例中介绍的第一配置信息和/或第二配置信息得到第一SSB和第二SSB的时频分布信息)。
可选地,如果目标BWP不是终端设备的初始BWP,终端设备通过***信息获得目标BWP的SSB时频分布信息(例如,通过前文各个实施例中介绍的第一配置信息得到第一SSB和第二SSB的时频分布信息)。该***信息可以是RRC信令,MAC CE信令,下行控制信息(Downlink Control Information,DCI)信令,或者多个信令的组合。
该实施例中,SSB的时频分布信息包括以下参数至少一种:
a.参考SSB的位置:参考SSB由***指示或者通过小区搜索流程确定的CD-SSB。
b.SSB频域的位置信息:该信息指示目标BWP中SSB的频域复用数量。该信息指示SSB在频域的位置,指示方式与实施例一相同。
c.SSB之间QCL关系:该信息指示SSB之间的关系,指示方式可以为在相同时域不同频域的SSB满足QCL关系,或者相同频域不同时域的SSB满足QCL关系,或者指定一组SSB编号的SSB满足QCL关系。
d.SSB的发送周期:指示目标BWP内不同频域的SSB分别指示不同发送周期,或者目标BWP内SSB指示相同的发送周期。
e.SSB相关联的参数信息:根据SSB对应的***消息确认其相关联的参数,包括以下参数之一:SI-RNTI加扰的PDCCH的SS set,RA-RNTI,TC-RNTI加扰的PDCCH的SS set,P-RNTI加扰的PDCCH的SS set,SSB相关联的PRACH参数。
根据SSB的分布情况和QCL关系配置用于信道测量的SSB,例如RLM测量,BFD测量,L1-RSRP测量。
该实施例中,网络设备为终端设备配置目标BWP内同一时间的多个不同频率的SSB。终端设备在对应的时间同时测量目标BWP内的多个SSB,获得不同链路的信道信息。终端设备同时检测多个SSB的信道情况,可以更快的遍历SSB信道测量。
或者,网络设备将目标BWP内的相同时间不同频率的SSB配置为满足QCL关系,并且配置终端设备使用上述SSB测量信道。终端设备对上述SSB进行检测,并进行加权合并,获得更准确的信道测量结果。
或者,网络设备将目标BWP内相同频率不同时间的SSB配置为满足QCL关系,并且配置终端设备使用上述SSB测量信道。终端设备灵活的选择上述SSB中的一个或者多个SSB进行测量,并且加权合并,获得信道信息。
实施例三
该实施例三为基于SSB的RRM测量过程,该实施例中,网络设备为终端设备指示当前小区BWP的SSB分布或者指示相邻小区的SSB分布,用于RRM监听。
终端设备获取目标BWP的SSB的时频分布信息。
如果目标BWP是当前小区的终端设备的初始BWP,终端设备通过***信息获得目标BWP的SSB时频分布信息。
如果目标BWP不是当前小区的终端设备的初始BWP,或者目标BWP是相邻小区的BWP,终端设备通过***信息获得目标BWP的SSB时频分布信息。该***信息可以是 RRC信令,MAC CE信令,DCI信令,或者多个信令的组合。
SSB的时频分布信息包括以下参数至少一种:
a.参考SSB的位置:参考SSB由***指示或者通过小区搜索流程确定。
b.SSB频域的位置信息:该信息指示目标BWP中SSB的频域复用数量。该信息指示SSB在频域的位置,指示方式与实施例一相同。
c.SSB之间QCL关系:该信息指示SSB之间的关系,指示方式可以为在相同时域不同频域的SSB满足QCL关系,或者相同频域不同时域的SSB满足QCL关系,或者指定一组SSB编号的SSB满足QCL关系。
d.SSB的发送周期:指示目标BWP内不同频域的SSB分别指示不同发送周期,或者目标BWP内SSB指示相同的发送周期。
根据SSB的分布情况和QCL关系配置用于RRM测量的SSB。
网络设备为终端设备配置目标BWP内同一时间的多个不同频率的SSB。终端设备在对应的时间同时测量目标BWP内的多个SSB,获得不同链路的信道信息。终端设备同时检测多个SSB的信道情况,可以更快的遍历SSB信道测量。
或者,网络设备将目标BWP内的相同时间不同频率的SSB配置为满足QCL关系,并且配置终端设备使用上述SSB测量信道。终端设备对上述SSB进行检测,并进行合并,获得更准确的信道测量结果。
或者,网络设备将目标BWP内相同频率不同时间的SSB配置为满足QCL关系,并且配置终端识别使用上述SSB测量信道。终端设备灵活的选择上述SSB中的一个或者多个SSB进行测量,并且加权合并,获得信道信息。
以上结合图1详细描述了根据本发明实施例的同步信号传输方法。下面将结合图3详细描述根据本发明另一实施例的同步信号传输方法。可以理解的是,从网络设备侧描述的网络设备与终端设备的交互与图1所示的方法中的终端设备侧的描述相同,为避免重复,适当省略相关描述。
图3是本发明实施例的同步信号传输方法实现流程示意图,可以应用在网络设备侧。如图3所示,该方法300包括:
S302:发送第一配置信息,该第一配置信息用于指示第一SSB,第一SSB和第二SSB 的频域位置不同;其中,第二SSB是通过小区搜索得到的;或第二SSB是第二配置信息指示的。
所述第一配置信息和所述第二配置信息可以承载于同一或者不同的信令中。
本发明实施例提供的同步信号传输方法,网络设备发送第一配置信息,通过第一配置信息和/或第二配置信息指示第一SSB和第二SSB的时频资源位置;或者终端设备通过小区搜索确定第二SSB,通过第一配置信息指示第一SSB的时频资源位置,第一SSB和第二SSB的频域位置不同。
本发明实施例基于频域复用的SSB的传输方式,可以根据需求灵活的扩展SSB的数量,通过扩展SSB的数量可以增加SSB的波束数量,提升SSB的覆盖效果,提升基于SSB的测量操作的质量(例如,初始接入的波束选择等)。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于同一个下行BWP内。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于初始下行BWP内;
其中,所述初始下行BWP是由以下方式之一指示:
由所述第二SSB中包含的PBCH指示;
由***信息块SIB1指示;
由无线资源控制RRC信令指示。
可选地,作为一个实施例,所述第一配置信息用于指示下述至少之一:
所述第一SSB的频域位置;
所述第一SSB相对于所述第二SSB的频域位置偏移量;
所述第一SSB与SSB集合中其它SSB的QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
所述第一SSB的发送周期。
可选地,作为一个实施例,所述第一SSB和第一CORESET#0关联,所述第二SSB和第二CORESET#0关联;
其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
可选地,作为一个实施例,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
SI-RNTI加扰的PDCCH的搜索空间集;
RA-RNTI加扰的PDCCH的搜索空间集;
TC-RNTI加扰的PDCCH的搜索空间集;
P-RNTI加扰的PDCCH的搜索空间集;
PRACH配置。
可选地,作为一个实施例,
所述第一配置信息用于指示所述第一配置;或
所述发送第一配置信息之后,所述方法还包括:发送第三配置信息,所述第三配置信息用于指示所述第一配置。
可选地,作为一个实施例,在没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,所述第一配置和所述第二配置不同。
可选地,作为一个实施例,所述发送第一配置信息之后,所述方法还包括:
在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的发送;
其中,所述SSB集合包括所述第一SSB和所述第二SSB。
可选地,作为一个实施例,所述第一SSB和/或所述第二SSB用于终端设备执行如下至少之一:
RRM测量;
RLM测量;
BFD测量;
L1-RSRP测量。
以上结合图1至图3详细描述了根据本发明实施例的同步信号传输方法。下面将结合图4详细描述根据本发明实施例的终端设备。
图4是根据本发明实施例的终端设备的结构示意图。如图4所示,终端设备400包括:
接收模块402,可以用于接收第一配置信息,所述第一配置信息用于指示第一SSB, 所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是通过小区搜索得到的;或
所述第二SSB是所述第二配置信息指示的。
所述第一配置信息和所述第二配置信息可以承载于同一或者不同的信令中。
本发明实施例提供的终端设备,接收第一配置信息,通过第一配置信息和/或第二配置信息确定第一SSB和第二SSB的时频资源位置;或者通过小区搜索确定第二SSB的时频资源位置,通过第一配置信息确定第一SSB的时频资源位置,第一SSB和第二SSB的频域位置不同。
本发明实施例基于频域复用的SSB的传输方式,可以根据需求灵活的扩展SSB的数量,通过扩展SSB的数量可以增加SSB的波束数量,提升SSB的覆盖效果,提升基于SSB的测量操作的质量(例如,初始接入的波束选择等)。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于同一个下行带宽部分BWP内。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于初始下行BWP内;
其中,所述初始下行BWP是由以下方式之一指示:
由所述第二SSB中包含的物理广播信道PBCH指示;
由***信息块SIB1指示;
由无线资源控制RRC信令指示。
可选地,作为一个实施例,所述第一配置信息用于指示下述至少之一:
所述第一SSB的频域位置;
所述第一SSB相对于所述第二SSB的频域位置偏移量;
所述第一SSB与SSB集合中其它SSB的准共址QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
所述第一SSB的发送周期。
可选地,作为一个实施例,所述第一SSB和第一控制资源集CORESET#0关联,所述第二SSB和第二CORESET#0关联;
其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
可选地,作为一个实施例,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
***信息无线网络临时标识SI-RNTI加扰的物理下行控制信道PDCCH的搜索空间集;
随机接入无线网络临时标识RA-RNTI加扰的PDCCH的搜索空间集;
临时小区无线网络临时标识TC-RNTI加扰的PDCCH的搜索空间集;
寻呼无线网络临时标识P-RNTI加扰的PDCCH的搜索空间集;
物理随机接入信道PRACH配置。
可选地,作为一个实施例,所述第一配置信息用于指示所述第一配置;或
所述接收模块402,还可以用于接收第三配置信息,所述第三配置信息用于指示所述第一配置。
可选地,作为一个实施例,在网络设备没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,所述第一配置和所述第二配置不同。
可选地,作为一个实施例,所述接收模块402,还可以用于在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的监听;
其中,所述SSB集合包括所述第一SSB和所述第二SSB。
可选地,作为一个实施例,所述接收模块402,还可以用于基于所述第一SSB和/或所述第二SSB执行如下至少之一:
无线资源管理RRM测量;
无线链路监测RLM测量;
波束失败检测BFD测量;
层一参考信号接收功率L1-RSRP测量。
根据本发明实施例的终端设备400可以参照对应本发明实施例的方法100的流程,并且,该终端设备400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图5是根据本发明实施例的网络设备的结构示意图。如图5所述,网络设备500包括:
发送模块502,可以用于发送第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
其中,所述第二SSB是通过小区搜索得到的;或
所述第二SSB是所述第二配置信息指示的。
所述第一配置信息和所述第二配置信息可以承载于同一或者不同的信令中。
本发明实施例提供的网络设备,发送第一配置信息,通过第一配置信息和/或第二配置信息指示第一SSB和第二SSB的时频资源位置;或者终端设备通过小区搜索确定第二SSB的时频资源位置,通过第一配置信息指示第一SSB的时频资源位置,第一SSB和第二SSB的频域位置不同。
本发明实施例基于频域复用的SSB的传输方式,可以根据需求灵活的扩展SSB的数量,通过扩展SSB的数量可以增加SSB的波束数量,提升SSB的覆盖效果,提升基于SSB的测量操作的质量(例如,初始接入的波束选择等)。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于同一个下行BWP内。
可选地,作为一个实施例,所述第一SSB和所述第二SSB位于初始下行BWP内;
其中,所述初始下行BWP是由以下方式之一指示:
由所述第二SSB中包含的物理广播信道PBCH指示;
由***信息块SIB1指示;
由无线资源控制RRC信令指示。
可选地,作为一个实施例,所述第一配置信息用于指示下述至少之一:
所述第一SSB的频域位置;
所述第一SSB相对于所述第二SSB的频域位置偏移量;
所述第一SSB与SSB集合中其它SSB的QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
所述第一SSB的发送周期。
可选地,作为一个实施例,所述第一SSB和第一CORESET#0关联,所述第二SSB和第二CORESET#0关联;
其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
可选地,作为一个实施例,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
SI-RNTI加扰的PDCCH的搜索空间集;
RA-RNTI加扰的PDCCH的搜索空间集;
TC-RNTI加扰的PDCCH的搜索空间集;
P-RNTI加扰的PDCCH的搜索空间集;
PRACH配置。
可选地,作为一个实施例,
所述第一配置信息用于指示所述第一配置;或
所述发送模块502,可以用于发送第三配置信息,所述第三配置信息用于指示所述第一配置。
可选地,作为一个实施例,在没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
可选地,作为一个实施例,所述第一配置和所述第二配置不同。
可选地,作为一个实施例,所述发送模块502,可以用于
在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的发送;
其中,所述SSB集合包括所述第一SSB和所述第二SSB。
可选地,作为一个实施例,所述第一SSB和/或所述第二SSB用于终端设备执行如下至少之一:
无线资源管理RRM测量;
无线链路监测RLM测量;
波束失败检测BFD测量;
层一参考信号接收功率L1-RSRP测量。
根据本发明实施例的网络设备500可以参照对应本发明实施例的方法300的流程,并 且,该网络设备500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本说明书中的各个实施例采用递进的方式描述,每个实施例重点说明的通常是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于设备实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
图6是本发明另一个实施例的终端设备的框图。图6所示的终端设备600包括:至少一个处理器601、存储器602、至少一个网络接口604和用户接口603。终端设备600中的各个组件通过总线***605耦合在一起。可理解,总线***605用于实现这些组件之间的连接通信。总线***605除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线***605。
其中,用户接口603可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本发明实施例中的存储器602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的***和方法的存储器602旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器602存储了如下的元素,可执行模块或者数据结构,或者 他们的子集,或者他们的扩展集:操作***6021和应用程序6022。
其中,操作***6021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序6022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序6022中。
在本发明实施例中,终端设备600还包括:存储在存储器上602并可在处理器601上运行的计算机程序,计算机程序被处理器601执行时实现如下方法实施例100的步骤。
上述本发明实施例揭示的方法可以应用于处理器601中,或者由处理器601实现。处理器601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器601执行时实现如上述方法实施例100的各步骤。
可以理解的是,本发明实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本发明实施例所述功能的模块(例如过程、函数等)来实现本发明实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备600能够实现前述实施例中终端设备实现的各个过程,并且能够达到相同或等同的技术效果,为避免重复,这里不再赘述。
请参阅图7,图7是本发明实施例应用的网络设备的结构图,能够实现方法实施例300的细节,并达到相同的效果。如图7所示,网络设备700包括:处理器701、收发机702、存储器703和总线接口,其中:
在本发明实施例中,网络设备700还包括:存储在存储器上703并可在处理器701上运行的计算机程序,计算机程序被处理器701、执行时实现方法实施例300的步骤。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例100和方法实施例300中任意一个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (53)

  1. 一种同步信号传输方法,所述方法由终端设备执行,所述方法包括:
    接收第一配置信息,所述第一配置信息用于指示第一同步信号块SSB,所述第一SSB和第二SSB的频域位置不同;
    其中,所述第二SSB是通过小区搜索得到的;或
    所述第二SSB是第二配置信息指示的;
    所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
  2. 根据权利要求1所述的方法,其中,所述第一SSB和所述第二SSB位于同一个下行带宽部分BWP内。
  3. 根据权利要求2所述的方法,其中,所述第一SSB和所述第二SSB位于初始下行BWP内;
    其中,所述初始下行BWP是由以下方式之一指示:
    由所述第二SSB中包含的物理广播信道PBCH指示;
    由***信息块SIB1指示;
    由无线资源控制RRC信令指示。
  4. 根据权利要求1所述的方法,其中,所述第一配置信息用于指示下述至少之一:
    所述第一SSB的频域位置;
    所述第一SSB相对于所述第二SSB的频域位置偏移量;
    所述第一SSB与SSB集合中其它SSB的准共址QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
    所述第一SSB的发送周期。
  5. 根据权利要求1所述的方法,其中,所述第一SSB和第一控制资源集CORESET#0关联,所述第二SSB和第二CORESET#0关联;
    其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
  6. 根据权利要求1所述的方法,其中,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
    ***信息无线网络临时标识SI-RNTI加扰的物理下行控制信道PDCCH的搜索空间集;
    随机接入无线网络临时标识RA-RNTI加扰的PDCCH的搜索空间集;
    临时小区无线网络临时标识TC-RNTI加扰的PDCCH的搜索空间集;
    寻呼无线网络临时标识P-RNTI加扰的PDCCH的搜索空间集;
    物理随机接入信道PRACH配置。
  7. 根据权利要求6所述的方法,其中,
    所述第一配置信息用于指示所述第一配置;或
    所述接收第一配置信息之后,所述方法还包括:接收第三配置信息,所述第三配置信息用于指示所述第一配置。
  8. 根据权利要求6或7所述的方法,其中,在网络设备没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
  9. 根据权利要求6或7所述的方法,其中,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
  10. 根据权利要求6或7所述的方法,其中,所述第一配置和所述第二配置不同。
  11. 根据权利要求10所述的方法,其中,所述接收第一配置信息之后,所述方法还包括:
    在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的监听;
    其中,所述SSB集合包括所述第一SSB和所述第二SSB。
  12. 根据权利要求1所述的方法,其中,所述接收第一配置信息之后,所述方法还包括:
    基于所述第一SSB和/或所述第二SSB执行如下至少之一:
    无线资源管理RRM测量;
    无线链路监测RLM测量;
    波束失败检测BFD测量;
    层一参考信号接收功率L1-RSRP测量。
  13. 一种同步信号传输方法,所述方法由网络设备执行,所述方法包括:
    发送第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
    其中,所述第二SSB是终端设备通过小区搜索得到的;或
    所述第二SSB是第二配置信息指示的;
    所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
  14. 根据权利要求13所述的方法,其中,所述第一SSB和所述第二SSB位于同一个下行BWP内。
  15. 根据权利要求14所述的方法,其中,所述第一SSB和所述第二SSB位于初始下行BWP内;
    其中,所述初始下行BWP是由以下方式之一指示:
    由所述第二SSB中包含的物理广播信道PBCH指示;
    由***信息块SIB1指示;
    由无线资源控制RRC信令指示。
  16. 根据权利要求13所述的方法,其中,所述第一配置信息用于指示下述至少之一:
    所述第一SSB的频域位置;
    所述第一SSB相对于所述第二SSB的频域位置偏移量;
    所述第一SSB与SSB集合中其它SSB的QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
    所述第一SSB的发送周期。
  17. 根据权利要求13所述的方法,其中,所述第一SSB和第一CORESET#0关联,所述第二SSB和第二CORESET#0关联;
    其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
  18. 根据权利要求13所述的方法,其中,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
    SI-RNTI加扰的PDCCH的搜索空间集;
    RA-RNTI加扰的PDCCH的搜索空间集;
    TC-RNTI加扰的PDCCH的搜索空间集;
    P-RNTI加扰的PDCCH的搜索空间集;
    PRACH配置。
  19. 根据权利要求18所述的方法,其中,
    所述第一配置信息用于指示所述第一配置;或
    所述发送第一配置信息之后,所述方法还包括:发送第三配置信息,所述第三配置信息用于指示所述第一配置。
  20. 根据权利要求18或19所述的方法,其中,在没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
  21. 根据权利要求18或19所述的方法,其中,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
  22. 根据权利要求18或19所述的方法,其中,所述第一配置和所述第二配置不同。
  23. 根据权利要求22所述的方法,其中,所述发送第一配置信息之后,所述方法还包括:
    在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的发送;
    其中,所述SSB集合包括所述第一SSB和所述第二SSB。
  24. 根据权利要求13所述的方法,其中,所述第一SSB和/或所述第二SSB用于终端设备执行如下至少之一:
    RRM测量;
    RLM测量;
    BFD测量;
    L1-RSRP测量。
  25. 一种终端设备,包括:
    接收模块,用于接收第一配置信息,所述第一配置信息用于指示第一SSB,所述第一SSB和第二SSB的频域位置不同;
    其中,所述第二SSB是通过小区搜索得到的;或
    所述第二SSB是第二配置信息指示的;
    所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
  26. 根据权利要求25所述的终端设备,其中,所述第一SSB和所述第二SSB位于同一个下行带宽部分BWP内。
  27. 根据权利要求26所述的终端设备,其中,所述第一SSB和所述第二SSB位于初始下行BWP内;
    其中,所述初始下行BWP是由以下方式之一指示:
    由所述第二SSB中包含的物理广播信道PBCH指示;
    由***信息块SIB1指示;
    由无线资源控制RRC信令指示。
  28. 根据权利要求25所述的终端设备,其中,所述第一配置信息用于指示下述至少之一:
    所述第一SSB的频域位置;
    所述第一SSB相对于所述第二SSB的频域位置偏移量;
    所述第一SSB与SSB集合中其它SSB的准共址QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
    所述第一SSB的发送周期。
  29. 根据权利要求25所述的终端设备,其中,所述第一SSB和第一控制资源集CORESET#0关联,所述第二SSB和第二CORESET#0关联;
    其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
  30. 根据权利要求25所述的终端设备,其中,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
    ***信息无线网络临时标识SI-RNTI加扰的物理下行控制信道PDCCH的搜索空间集;
    随机接入无线网络临时标识RA-RNTI加扰的PDCCH的搜索空间集;
    临时小区无线网络临时标识TC-RNTI加扰的PDCCH的搜索空间集;
    寻呼无线网络临时标识P-RNTI加扰的PDCCH的搜索空间集;
    物理随机接入信道PRACH配置。
  31. 根据权利要求30所述的终端设备,其中,
    所述第一配置信息用于指示所述第一配置;或
    所述接收模块,用于在所述接收第一配置信息之后,接收第三配置信息,所述第三配置信息用于指示所述第一配置。
  32. 根据权利要求30或31所述的终端设备,其中,在网络设备没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
  33. 根据权利要求30或31所述的终端设备,其中,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
  34. 根据权利要求30或31所述的终端设备,其中,所述第一配置和所述第二配置不同。
  35. 根据权利要求34所述的终端设备,其中,
    所述接收模块,还用于在所述接收第一配置信息之后,在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的监听;
    其中,所述SSB集合包括所述第一SSB和所述第二SSB。
  36. 根据权利要求25所述的终端设备,其中,
    所述接收模块,还用于在所述接收第一配置信息之后,基于所述第一SSB和/或所述第二SSB执行如下至少之一:
    无线资源管理RRM测量;
    无线链路监测RLM测量;
    波束失败检测BFD测量;
    层一参考信号接收功率L1-RSRP测量。
  37. 一种网络设备,包括:
    发送模块,用于发送第一配置信息,所述第一配置信息用于指示第一SSB,所述 第一SSB和第二SSB的频域位置不同;
    其中,所述第二SSB是通过小区搜索得到的;或
    所述第二SSB是第二配置信息指示的;
    所述第一配置信息和所述第二配置信息承载于同一或不同的信令中。
  38. 根据权利要求37所述的网络设备,其中,所述第一SSB和所述第二SSB位于同一个下行BWP内。
  39. 根据权利要求38所述的网络设备,其中,所述第一SSB和所述第二SSB位于初始下行BWP内;
    其中,所述初始下行BWP是由以下方式之一指示:
    由所述第二SSB中包含的物理广播信道PBCH指示;
    由***信息块SIB1指示;
    由无线资源控制RRC信令指示。
  40. 根据权利要求37所述的网络设备,其中,所述第一配置信息用于指示下述至少之一:
    所述第一SSB的频域位置;
    所述第一SSB相对于所述第二SSB的频域位置偏移量;
    所述第一SSB与SSB集合中其它SSB的QCL关系;其中,所述SSB集合包括所述第一SSB和所述第二SSB;
    所述第一SSB的发送周期。
  41. 根据权利要求37所述的网络设备,其中,所述第一SSB和第一CORESET#0关联,所述第二SSB和第二CORESET#0关联;
    其中,所述第一CORESET#0的配置参数和所述第二CORESET#0的配置参数相同。
  42. 根据权利要求37所述的网络设备,其中,所述第一SSB和第一配置关联,所述第二SSB和第二配置关联;其中,所述第一配置和/或所述第二配置包括如下至少之一:
    SI-RNTI加扰的PDCCH的搜索空间集;
    RA-RNTI加扰的PDCCH的搜索空间集;
    TC-RNTI加扰的PDCCH的搜索空间集;
    P-RNTI加扰的PDCCH的搜索空间集;
    PRACH配置。
  43. 根据权利要求42所述的网络设备,其中,
    所述第一配置信息用于指示所述第一配置;或
    所述发送模块,还用于在所述发送第一配置信息之后,发送第三配置信息,所述第三配置信息用于指示所述第一配置。
  44. 根据权利要求42或43所述的网络设备,其中,在没有为所述终端设备指示所述第一配置的情况下,所述第一配置和所述第二配置相同。
  45. 根据权利要求42或43所述的网络设备,其中,在所述第一SSB和所述第二SSB满足QCL关系的情况下,所述第一配置和所述第二配置相同。
  46. 根据权利要求42或43所述的网络设备,其中,所述第一配置和所述第二配置不同。
  47. 根据权利要求46所述的网络设备,其中,
    所述发送模块,还用于在所述发送第一配置信息之后,在SSB集合中的一个SSB关联的搜索空间上进行PDCCH的发送;
    其中,所述SSB集合包括所述第一SSB和所述第二SSB。
  48. 根据权利要求37所述的网络设备,其中,所述第一SSB和/或所述第二SSB用于终端设备执行如下至少之一:
    RRM测量;
    RLM测量;
    BFD测量;
    L1-RSRP测量。
  49. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的同步信号传输方法。
  50. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求13至24中任一项所述的同步信号传输方法。
  51. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至24中任一项所述的同步信号传输方法。
  52. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至24中任一项所述的同步信号传输方法。
  53. 一种电子设备,所述电子设备被配置成用于执行如权利要求1至12中任一项所述的同步信号传输方法,或者,所述电子设备被配置成用于执行如权利要求13至24中任一项所述的同步信号传输方法。
PCT/CN2021/075091 2020-02-06 2021-02-03 同步信号传输方法和设备 WO2021155809A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21750585.8A EP4102898A4 (en) 2020-02-06 2021-02-03 METHOD AND DEVICE FOR TRANSMISSION OF SYNCHRONIZATION SIGNALS
US17/880,579 US20220394638A1 (en) 2020-02-06 2022-08-03 Synchronization signal transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010081750.1A CN113225801B (zh) 2020-02-06 2020-02-06 同步信号传输方法和设备
CN202010081750.1 2020-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,579 Continuation US20220394638A1 (en) 2020-02-06 2022-08-03 Synchronization signal transmission method and device

Publications (1)

Publication Number Publication Date
WO2021155809A1 true WO2021155809A1 (zh) 2021-08-12

Family

ID=77085593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075091 WO2021155809A1 (zh) 2020-02-06 2021-02-03 同步信号传输方法和设备

Country Status (4)

Country Link
US (1) US20220394638A1 (zh)
EP (1) EP4102898A4 (zh)
CN (1) CN113225801B (zh)
WO (1) WO2021155809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077922A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Synchronization signal block forwarding
CN115734321A (zh) * 2021-09-01 2023-03-03 华为技术有限公司 通信方法及相关装置
CN116193595B (zh) * 2021-09-28 2023-11-28 华为技术有限公司 一种信号的发送方法、接收方法及通信装置
WO2024065384A1 (en) * 2022-09-29 2024-04-04 Lenovo (Beijing) Ltd. On-demand ssb transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190110300A1 (en) * 2017-10-06 2019-04-11 Fg Innovation Ip Company Limited Random access channel resource selection in multi-beam environment
CN109699067A (zh) * 2017-10-20 2019-04-30 维沃移动通信有限公司 同步信号块的处理方法、同步信号块的指示方法及装置
WO2019136646A1 (zh) * 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN110431789A (zh) * 2017-03-15 2019-11-08 高通股份有限公司 新无线电无线通信***中的同步信号传输
CN110475309A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种信号传输方法和装置
WO2019242027A1 (en) * 2018-06-22 2019-12-26 Nec Corporation Beam management

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790956B2 (en) * 2017-08-11 2020-09-29 Futurewei Technologies, Inc. System and method for communicating time and frequency tracking signals using configurations for one port CSI-RSs
WO2019028850A1 (en) * 2017-08-11 2019-02-14 Mediatek Singapore Pte. Ltd. METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER
WO2019047945A1 (en) * 2017-09-11 2019-03-14 Intel IP Corporation METHOD AND APPARATUS FOR REFERENCE SIGNAL CONFIGURATION
US11323892B2 (en) * 2017-09-29 2022-05-03 Lg Electronics Inc. Method for transmitting and receiving data on basis of QCL in wireless communication system, and device therefor
US11558833B2 (en) * 2018-02-13 2023-01-17 Samsung Electronics Co., Ltd. Method and device for communicating synchronization signal
WO2019190236A1 (ko) * 2018-03-29 2019-10-03 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치
CN110475262B (zh) * 2018-05-11 2021-08-06 ***通信有限公司研究院 一种准共址信息的配置方法、网络设备及用户设备
CN110959304B (zh) * 2018-05-17 2023-10-17 Lg电子株式会社 在无线通信***中确定终端的发送配置指示符的方法和使用其的装置
CN110519843B (zh) * 2018-05-22 2023-08-08 华为技术有限公司 通信方法和通信装置
CN110536456B (zh) * 2018-05-25 2022-03-25 成都华为技术有限公司 通信方法、终端设备和网络设备
CN112314023B (zh) * 2018-07-06 2023-04-14 中兴通讯股份有限公司 用于信号传输和接收的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431789A (zh) * 2017-03-15 2019-11-08 高通股份有限公司 新无线电无线通信***中的同步信号传输
US20190110300A1 (en) * 2017-10-06 2019-04-11 Fg Innovation Ip Company Limited Random access channel resource selection in multi-beam environment
CN109699067A (zh) * 2017-10-20 2019-04-30 维沃移动通信有限公司 同步信号块的处理方法、同步信号块的指示方法及装置
WO2019136646A1 (zh) * 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN110475309A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种信号传输方法和装置
WO2019242027A1 (en) * 2018-06-22 2019-12-26 Nec Corporation Beam management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102898A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备
WO2023092828A1 (zh) * 2021-11-26 2023-06-01 中国信息通信研究院 一种无线通信信息传送方法和设备

Also Published As

Publication number Publication date
EP4102898A4 (en) 2023-07-12
US20220394638A1 (en) 2022-12-08
CN113225801B (zh) 2023-07-21
CN113225801A (zh) 2021-08-06
EP4102898A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2021155809A1 (zh) 同步信号传输方法和设备
US11902192B2 (en) Method and apparatus for determining power
EP3905837A1 (en) Cell changing method, device, storage medium, and terminal
US11051338B2 (en) Channel access method and apparatus for physical random access channel transmission, and program
WO2020020332A1 (zh) 一种随机接入方法、终端设备及存储介质
WO2021160020A1 (zh) 小区切换方法和设备
US11997655B2 (en) Resource indication method and apparatus and communication system
US11683834B2 (en) Signal transmission method, communication device and storage medium
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2018171451A1 (zh) 一种***信息的传输方法及装置
US11490415B2 (en) Random access method and apparatus
TWI744427B (zh) 用於隨機接入的方法和設備
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
KR20210008358A (ko) 다운링크 채널의 수신 방법 및 단말기
US20220377732A1 (en) Method for associating neighboring cell and device
WO2020030008A1 (zh) 一种传输信号的方法和装置
US20230017114A1 (en) Random access method and device
JP7023977B2 (ja) 端末装置がネットワークにアクセスするための方法、端末装置及びネットワーク装置
WO2021213334A1 (zh) 信息传输方法和设备
WO2021057911A1 (zh) 小区管理方法和设备
WO2020082394A1 (zh) 随机接入的方法、终端设备和网络设备
WO2018227493A1 (zh) 随机接入方法及相关装置
US20190150033A1 (en) Network nodes and terminal devices, and methods of operating the same
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
WO2022206559A1 (zh) 一种资源分配方法、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021750585

Country of ref document: EP

Effective date: 20220906