WO2021153036A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2021153036A1
WO2021153036A1 PCT/JP2020/046322 JP2020046322W WO2021153036A1 WO 2021153036 A1 WO2021153036 A1 WO 2021153036A1 JP 2020046322 W JP2020046322 W JP 2020046322W WO 2021153036 A1 WO2021153036 A1 WO 2021153036A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
content
Prior art date
Application number
PCT/JP2020/046322
Other languages
English (en)
French (fr)
Inventor
和政 筒井
洋志 首藤
林 宏太郎
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2022008544A priority Critical patent/MX2022008544A/es
Priority to EP20916444.1A priority patent/EP4098762B1/en
Priority to US17/790,645 priority patent/US20230047602A1/en
Priority to JP2021574510A priority patent/JP7260824B2/ja
Priority to CN202080093028.8A priority patent/CN114929915B/zh
Priority to KR1020227023219A priority patent/KR20220110823A/ko
Publication of WO2021153036A1 publication Critical patent/WO2021153036A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a hot-rolled steel sheet. Specifically, the present invention relates to a hot-rolled steel sheet that is formed into various shapes by press working or the like and is used, and in particular, a hot-rolled steel sheet that has high strength and is excellent in hole-expanding property and shearing workability.
  • the present application claims priority based on Japanese Patent Application No. 2020-010945 filed in Japan on January 27, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes high strength for automobiles having excellent collision resistance and moldability, in which retained austenite having an average crystal particle size of 5 ⁇ m or less is dispersed in ferrite having an average crystal particle size of 10 ⁇ m or less.
  • Steel plates are disclosed.
  • austenite undergoes martensitic transformation during processing and exhibits a large elongation due to transformation-induced plasticity, but the formation of hard martensite impairs the hole-expandability.
  • Patent Document 1 discloses that not only ductility but also hole expansion property is improved by miniaturizing ferrite and retained austenite.
  • Patent Document 2 discloses a high-strength steel sheet having a tensile strength of 980 MPa or more, which has excellent elongation and hole-expanding properties, in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains. There is.
  • Patent Documents 3 and 4 disclose a high-strength hot-rolled steel sheet having excellent ductility and hole-spreading property, and a method for producing the same.
  • Patent Document 3 after cooling to a temperature range of 720 ° C. or lower within 1 second after the completion of hot rolling, and staying in a temperature range of more than 500 ° C. and 720 ° C. or lower for a residence time of 1 to 20 seconds, 350 to A method for producing a high-strength hot-rolled steel sheet having good ductility and stretch flangeability, which is wound in a temperature range of 500 ° C., is disclosed.
  • Patent Document 4 describes the average of grains surrounded by grain boundaries having a crystal orientation difference of 15 ° or more in a steel structure excluding retained austenite, which is mainly composed of bainite and has an appropriate amount of polygonal ferrite and retained austenite.
  • a high-strength hot-rolled steel sheet having a particle size of 15 ⁇ m or less and having good ductility and stretch flangeability is disclosed.
  • Patent Documents 1 to 4 are all techniques for improving strength and press moldability at the time of drilling, but there is no mention of a technique for improving shear workability, and parts are press molded. It is presumed that post-treatment will be required at this stage and the manufacturing cost will increase.
  • the present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent drilling and shearing properties.
  • the matrix structure of the metal structure is hard. That is, it is preferable that the soft structure fraction such as ferrite and retained austenite is as small as possible.
  • a hard structure is generally formed in a phase transformation of 600 ° C. or lower, but in this temperature range, grain boundaries and crystal orientation differences in which the crystal orientation difference is 60 ° with respect to the ⁇ 110> direction are present. A large amount of grain boundaries at 7 ° are formed.
  • (F) Increase the density of the length of the grain boundary having a crystal orientation difference of 60 ° about the ⁇ 110> direction, and the length of the grain boundary having a crystal orientation difference of 7 ° with the ⁇ 110> direction as the axis. It is effective to set the winding temperature to less than a predetermined temperature in order to reduce the density of the crystals.
  • the winding temperature is equal to or higher than the predetermined temperature, the density of the length of the grain boundary having a crystal orientation difference of 60 ° with respect to the ⁇ 110> direction decreases, and the crystal orientation difference is 7 ° with respect to the ⁇ 110> direction.
  • the density of grain boundaries is increased.
  • the gist of the present invention made based on the above findings is as follows.
  • (1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%. C: 0.040 to 0.250%, Si: 0.05 to 3.00%, Mn: 0.50 to 4.00%, sol.
  • the rest consists of Fe and impurities
  • the metal structure is% of the area, Martensite and tempered martensite total more than 92.0% and less than 100.0%, Retained austenite is less than 3.0% Ferrite is less than 5.0% ⁇ 110> direction as an axis, and the density S 60 lengths of the grain boundary crystal orientation difference is 60 °, the ratio of the density S 7 grain boundary length crystal orientation difference is 7 ° S 60 / S 7 is more than 0.34, less than 0.60, The standard deviation of the Mn concentration is 0.60% by mass or less, The tensile strength is 980 MPa or more.
  • the hot-rolled steel sheet according to (1) above may have an average crystal grain size of less than 3.0 ⁇ m on the surface layer.
  • the hot-rolled steel sheet according to (1) or (2) above has a chemical composition of% by mass.
  • a hot-rolled steel sheet having excellent strength, drilling property and shearing workability can be obtained. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned characteristics and further suppressing the occurrence of bending internal cracks, that is, having excellent bending internal crack resistance. can.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.
  • the hot-rolled steel sheet according to this embodiment has a mass% of C: 0.040 to 0.250%, Si: 0.05 to 3.00%, Mn: 0.50 to 4.00%, sol. .. Al: 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, and the balance: Fe and impurities including.
  • C 0.040 to 0.250%
  • Si 0.05 to 3.00%
  • Mn 0.50 to 4.00%
  • sol. .. Al 0.001 to 2.000%
  • P 0.100% or less
  • S 0.0300% or less
  • N 0.1000% or less
  • O 0.0100% or less
  • Fe and impurities including Each element will be described in detail below.
  • C 0.040 to 0.250%
  • C increases the surface integral of the hard phase. Further, C increases the strength of martensite by binding with precipitation strengthening elements such as Ti, Nb, and V. If the C content is less than 0.040%, it becomes difficult to obtain the desired strength. Therefore, the C content is 0.040% or more.
  • the C content is preferably 0.060% or more, more preferably 0.070% or more.
  • the C content is set to 0.250% or less.
  • the C content is preferably 0.150% or less.
  • Si 0.05 to 3.00% Si has the effect of delaying the precipitation of cementite. By this action, the surface integral ratio of martensite and tempered martensite can be increased, and the strength of the hot-rolled steel sheet can be increased by solid solution strengthening. Further, Si has an action of making the steel sound by deoxidation (suppressing the occurrence of defects such as blow holes in the steel). If the Si content is less than 0.05%, the effect of the above action cannot be obtained. Therefore, the Si content is set to 0.05% or more. The Si content is preferably 0.50% or more and 1.00% or more.
  • the Si content is 3.00% greater than the surface texture and chemical conversion of the hot-rolled steel sheet, and further with deteriorated significantly hole expandability and weldability, A 3 transformation point increases significantly. This makes it difficult to perform hot rolling in a stable manner. Therefore, the Si content is set to 3.00% or less.
  • the Si content is preferably 2.70% or less, more preferably 2.50% or less.
  • Mn 0.50 to 4.00% Mn has the effect of suppressing the ferrite transformation and increasing the strength of the hot-rolled steel sheet. If the Mn content is less than 0.50%, a tensile strength of 980 MPa or more cannot be obtained. Therefore, the Mn content is set to 0.50% or more.
  • the Mn content is preferably 1.00% or more, 1.50% or more, and 1.80% or more.
  • the Mn content exceeds 4.00%, the crystal orientation difference of the crystal grains in the hard phase becomes non-uniform due to the segregation of Mn, and the unevenness of the fracture surface on the end face after shearing becomes large. Therefore, the Mn content is set to 4.00% or less.
  • the Mn content is preferably 3.70% or less and 3.50% or less.
  • Al has the effect of deoxidizing the steel to be healthy, and also has the effect of increasing the area fraction of martensite and tempered martensite by suppressing the precipitation of cementite from austenite. .. sol. If the Al content is less than 0.001%, the effect of the above action cannot be obtained. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.010% or more. On the other hand, sol. If the Al content exceeds 2.000%, the above effects are saturated and economically unfavorable. The Al content is 2.000% or less. sol. The Al content is preferably 1.500% or less and 1.300% or less. In this embodiment, sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • P 0.100% or less
  • P is an element generally contained as an impurity, but it is also an element having an action of increasing the strength by strengthening the solid solution. Therefore, P may be positively contained, but P is an element that is easily segregated, and when the P content exceeds 0.100%, the decrease in hole widening property due to grain boundary segregation becomes remarkable. .. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content does not need to be specified, but it is preferably 0.001% from the viewpoint of refining cost.
  • S 0.0300% or less
  • S is an element contained as an impurity and forms sulfide-based inclusions in the steel to reduce the hole-expanding property of the hot-rolled steel sheet.
  • the S content exceeds 0.0300%, the hole-expandability of the hot-rolled steel sheet is significantly reduced. Therefore, the S content is 0.0300% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content does not need to be specified, but is preferably 0.0001% from the viewpoint of refining cost.
  • N 0.1000% or less
  • N is an element contained in steel as an impurity and has an effect of reducing the hole expanding property of the hot-rolled steel sheet.
  • the N content is set to 0.1000% or less.
  • the N content is preferably 0.0800% or less, and more preferably 0.0700% or less.
  • the lower limit of the N content does not need to be specified in particular, but as will be described later, when one or more of Ti, Nb and V are contained to refine the metal structure, precipitation of carbonitride is required.
  • the N content is preferably 0.0010% or more, and more preferably 0.0020% or more in order to promote the above.
  • O 0.0100% or less
  • O forms a coarse oxide that becomes a starting point of fracture when it is contained in a large amount in steel, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less.
  • the O content is preferably 0.0080% or less and 0.0050% or less.
  • the O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides when the molten steel is deoxidized.
  • the balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment may be Fe and impurities.
  • the impurities mean those mixed from ore as a raw material, scrap, manufacturing environment, etc., and are allowed as long as they do not adversely affect the hot-rolled steel sheet according to the present embodiment. do.
  • the hot-rolled steel sheet according to the present embodiment may optionally contain Ti, Nb, V, Cu, Cr, Mo, Ni, B, Ca, Mg, REM, Bi, Zr, Co, Zn, W and Sn. It may be contained as an element. When the above optional element is not contained, the lower limit of the content is 0%.
  • the above optional elements will be described in detail.
  • Ti 0.005 to 0.300%
  • Nb 0.005 to 0.100%
  • V 0.005 to 0.500% Since Ti, Nb and V all precipitate as carbides or nitrides in steel and have an action of refining the metal structure by a pinning effect, one or more of these elements are contained. May be good. In order to obtain the effect of the above action more reliably, the Ti content should be 0.005% or more, the Nb content should be 0.005% or more, or the V content should be 0.005% or more. It is preferable to do so. That is, it is preferable that the content of even one of Ti, Nb and V is 0.005% or more.
  • the Ti content is 0.300% or less, the Nb content is 0.100% or less, and the V content is 0.500% or less.
  • the Ti content is preferably 0.200% or less, 0.150% or less, 0.120% or less, 0.110% or less, or 0.100% or less.
  • the Cu has an action of enhancing the hardenability of the hot-rolled steel sheet and an action of precipitating as carbide in the steel at a low temperature to increase the strength of the hot-rolled steel sheet.
  • the Cu content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cu content is set to 2.00% or less.
  • the Cu content is preferably 1.50% or less and 1.00% or less.
  • the Cr content is preferably 0.01% or more and 0.05% or more.
  • the Cr content is set to 2.00% or less.
  • Mo has an action of enhancing the hardenability of the hot-rolled steel sheet and an action of precipitating carbides in the steel to increase the strength.
  • the Mo content is preferably 0.01% or more and 0.02% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content is preferably 0.50% or less and 0.20% or less.
  • Ni has the effect of enhancing the hardenability of hot-rolled steel sheets. Further, when Ni contains Cu, it has an effect of effectively suppressing the grain boundary cracking of the slab caused by Cu. In order to obtain the effect of the above action more reliably, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically unfavorable to contain it in a large amount. Therefore, the Ni content is set to 2.00% or less.
  • B has an effect of enhancing the hardenability of the hot-rolled steel sheet.
  • the B content is preferably 0.0001% or more and 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca 0.0005 to 0.0200%
  • Mg 0.0005 to 0.0200%
  • REM 0.0005 to 0.1000%
  • Bi 0.0005 to 0.020%
  • Ca, Mg and REM all have an effect of improving the formability of the hot-rolled steel sheet by adjusting the shape of the inclusions to a preferable shape.
  • Bi has an effect of improving the formability of the hot-rolled steel sheet by refining the solidified structure. Therefore, one or more of these elements may be contained.
  • any one or more of Ca, Mg, REM and Bi is 0.0005% or more.
  • the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, and on the contrary, the hole expandability of the hot-rolled steel sheet. May decrease.
  • the Bi content exceeds 0.020%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content are 0.0200% or less, the REM content is 0.1000% or less, and the Bi content is 0.020% or less.
  • the Bi content is preferably 0.010% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of REM refers to the total content of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • the present inventors have confirmed that the effect of the hot-rolled steel sheet according to the present embodiment is not impaired even if a small amount of Sn is contained. However, if a large amount of Sn is contained, defects may occur during hot rolling, so the Sn content is set to 0.050% or less.
  • the chemical composition of the hot-rolled steel sheet described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • the metal structures of martensite and tempered martensite are more than 92.0% and 100.0% or less in total, the retained austenite is less than 3.0%, and ferrite.
  • the metal structure of the cross section parallel to the rolling direction at a depth of 1/4 of the plate thickness from the surface and at the center position in the plate width direction is defined.
  • the reason is that the metallographic structure at this position represents a typical metallographic structure of the steel sheet.
  • the position of 1/4 depth from the surface to the plate thickness is a region from 1/8 depth from the surface to 3/8 depth from the surface to the plate thickness.
  • Retained austenite is a tissue that exists as a face-centered cubic lattice even at room temperature. Residual austenite has the effect of increasing the ductility of hot-rolled steel sheets due to transformation-induced plasticity (TRIP). On the other hand, retained austenite transforms into high-carbon martensite during shearing, which hinders stable crack generation and causes large irregularities in the fracture surface on the end face after shearing.
  • TRIP transformation-induced plasticity
  • the surface integral of the retained austenite is 3.0% or more, the above-mentioned action becomes apparent, and not only the shearing workability of the hot-rolled steel sheet deteriorates (the unevenness of the fracture surface on the end face becomes large), but also the hole expanding property also deteriorates. .. Therefore, the surface integral of retained austenite is less than 3.0%.
  • the surface integral of retained austenite is preferably less than 1.0%. Since the smaller the retained austenite, the more preferable it is, the surface integral of the retained austenite may be 0%.
  • Ferrite is generally a soft structure. If a predetermined amount or more of ferrite is contained, not only the desired strength cannot be obtained, but also the region of the sheared surface on the end face after shearing is increased. If the area of the sheared surface on the end face after shearing is increased, the unevenness of the fracture surface becomes large, which is not preferable.
  • the surface integral of ferrite is 5.0% or more, the above action becomes apparent and the shearing workability of the hot-rolled steel sheet deteriorates. Therefore, the surface integral of ferrite is set to less than 5.0%.
  • the surface integral of ferrite is preferably less than 1.0%. Since the smaller the amount of ferrite, the more preferable it is, the surface integral of ferrite may be 0%.
  • Methods for measuring the area fraction of retained austenite include X-ray diffraction, EBSP (electron backscatter diffraction image, Electron Backscattering Diffraction Pattern) analysis, and magnetic measurement methods, and the measured values may differ depending on the measurement method. ..
  • the surface integral of retained austenite is measured by X-ray diffraction.
  • the depth of 1/4 of the plate thickness of the steel plate (from the depth of 1/8 of the plate thickness to the depth of 3/8 of the plate thickness from the surface to the plate thickness).
  • ⁇ (110), ⁇ (200), ⁇ (211), ⁇ (111), ⁇ ( The integrated intensity of a total of 6 peaks of 200) and ⁇ (220) is obtained, and the area fraction of retained austenite is obtained by calculating using the intensity averaging method.
  • the surface integral of ferrite is measured by the following method.
  • the cross section perpendicular to the rolling direction is mirror-finished and polished at room temperature with colloidal silica containing no alkaline solution for 8 minutes to remove the strain introduced into the surface layer of the sample.
  • an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10-5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • the Grain Average Simulation value is 1.0 °.
  • the following regions are determined to be ferrite.
  • the surface integral of ferrite is obtained by obtaining the surface integral of the region determined to be ferrite.
  • Total area fraction of martensite and tempered martensite More than 92.0% and 100.0% or less
  • the total area fraction of martensite and tempered martensite is 92.0% or less. If there is, the desired strength cannot be obtained. Therefore, the total surface integral of martensite and tempered martensite is more than 92.0%. It is not necessary to include both martensite and tempered martensite, and when either martensite or tempered martensite is included, the surface integral ratio may be more than 92.0%. When both martensite and tempered martensite are included, the total surface integral of martensite and tempered martensite may be more than 92.0%.
  • the total surface integral of martensite and tempered martensite is preferably 95.0% or more, 97.0% or more, and 99.0% or more.
  • the method for measuring the surface integral of martensite and tempered martensite will be described below.
  • a Vickers indentation is imprinted in the vicinity of the observation position.
  • the contamination on the surface layer is removed by polishing, leaving the structure of the observation surface, and nightal etching is performed.
  • the same field of view as the EBSD observation surface is observed by SEM at a magnification of 3000 times.
  • the region having a substructure in the grain and where cementite is precipitated with a plurality of variants is determined to be tempered martensite.
  • the region where the brightness is high and the substructure is not exposed by etching is judged as "martensite and retained austenite”.
  • the area fraction of martensite can be obtained by subtracting the area fraction of retained austenite obtained by the above-mentioned X-ray diffraction from the area fraction of the obtained "martensite and retained austenite".
  • a method such as buffing using alumina particles having a particle size of 0.1 ⁇ m or less or Ar ion sputtering may be used.
  • the matrix In order to obtain a hot-rolled steel sheet having a tensile strength of S 60 / S 7 of more than 0.34 and less than 0.60 and 980 MPa or more, the matrix must have a hard structure.
  • a hard structure is generally formed in a phase transformation of 600 ° C. or lower, but in this temperature range, a grain boundary with a crystal orientation difference of 60 ° and a crystal orientation difference of 7 ° with the ⁇ 110> direction as the axis. A large number of grain boundaries are formed.
  • the density of the grain boundaries having a crystal orientation difference of 60 ° with respect to the ⁇ 110> direction is high, and the grain boundaries are uniformly dispersed (that is, the grain boundaries having a crystal orientation difference of 60 ° with respect to the ⁇ 110> direction).
  • the strength of the material is increased, plastic deformation in shearing is suppressed, and unevenness of the fracture surface on the end face after shearing is suppressed.
  • the density of the length of the grain boundary having a crystal orientation difference of 60 ° is defined as S 60
  • the density of the length of the grain boundary having a crystal orientation difference of 7 ° is defined as S 7 with the ⁇ 110> direction as the axis.
  • S 60 / S 7 is set to more than 0.34. Preferably, it is 0.40 or more and 0.45 or more. In order to suppress the unevenness of the fracture surface on the end face after shearing, it is desirable that S 60 / S 7 is larger, but the practical upper limit is 0.60. Therefore, S 60 / S 7 is set to less than 0.60.
  • the grain boundary having a crystal orientation difference of X ° with respect to the ⁇ 110> direction means that when two adjacent crystal grains A and crystal grains B are specified at a certain grain boundary, one crystal grain B is defined as ⁇ . 110> refers to a grain boundary having a crystal boundary in which the crystal orientations of the crystal grains A and the crystal grains B are the same when rotated by X ° about the axis. However, considering the measurement accuracy of the crystal orientation, an orientation difference of ⁇ 4 ° is allowed from the matching orientation relation.
  • the density S 7 of the length of the grain boundary density S 60 and the crystal orientation difference of grain boundary length crystal orientation difference of 60 ° is 7 °
  • EBSP -Measurement is performed using the OIM (Electron Backscatter Diffraction Pattern-Orientation Image Microscope) method.
  • OIM Electro Backscatter Diffraction Pattern-Orientation Image Microscope
  • a highly inclined sample is irradiated with an electron beam in a scanning electron microscope (SEM), the Kikuchi pattern formed by backscattering is photographed with a high-sensitivity camera, and the photographed photograph is image-processed by a computer. By doing so, the crystal orientation of the irradiation point can be measured in a short waiting time.
  • the EBSP-OIM method is performed using an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector, and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • JSM-7001F thermal field emission scanning electron microscope
  • EBSD detector an OIM Analysis (registered trademark) manufactured by AMETEK.
  • OIM Analysis registered trademark manufactured by AMETEK.
  • the analyzable area of the EBSP-OIM method is an area that can be observed by SEM. Although it depends on the resolution of the SEM, according to the EBSP-OIM method, analysis can be performed with a minimum resolution of 20 nm.
  • S 7 is obtained by dividing the average value of the lengths of the grain boundaries having a crystal orientation difference of 7 ° about the ⁇ 110> direction by the area of the measurement region. As described above, a directional difference of ⁇ 4 ° is allowed.
  • retained austenite is not a structure generated by phase transformation at 600 ° C. or lower and has no effect of dislocation accumulation, retained austenite is not included in the analysis in this measurement method. That is, in this embodiment, ⁇ 110> direction as an axis, the density of grain boundary length density S 60 and the crystal orientation difference of grain boundary length crystal orientation difference of 60 ° is 7 ° S 7 Are of martensite, tempered martensite and ferrite. In the EBSP-OIM method, retained austenite having a crystal structure of fcc can be excluded from the analysis target.
  • Standard deviation of Mn concentration 0.60% by mass or less 1/4 depth from the surface of the hot-rolled steel sheet according to the present embodiment (1/8 depth from the surface to the surface)
  • the standard deviation of the Mn concentration at the center position in the plate width direction is 0.60 mass% or less.
  • the standard deviation of the Mn concentration is preferably 0.55% by mass or less, 0.50% by mass or less, and 0.40% by mass or less.
  • the lower limit of the standard deviation of the Mn concentration is desirable as the value is smaller because it suppresses the unevenness of the fracture surface on the end face after shearing, but the practical lower limit is 0.10% by mass due to the restrictions of the manufacturing process. ..
  • the standard deviation of the Mn concentration is measured by the following method. After mirror-polishing the L cross section of the hot-rolled steel sheet, the depth from the surface to 1/4 of the plate thickness (the region from the surface to the depth of 1/8 of the plate thickness to the region from the surface to the depth of 3/8 of the plate thickness) and the plate width. The center position in the direction is measured with an electron probe microanalyzer (EPMA) to measure the standard deviation of the Mn concentration.
  • the measurement conditions are that the acceleration voltage is 15 kV, the magnification is 5000 times, and the distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction is measured. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40,000 or more points is measured.
  • the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
  • the mechanism of internal bending cracking is presumed as follows. During bending, compressive stress is generated inside the bend. At first, the entire inside of the bend is deformed uniformly while processing proceeds, but when the amount of processing increases, the deformation cannot be carried out only by uniform deformation, and the deformation progresses due to the local concentration of strain (generation of shear deformation zone). .. As this shear band grows further, cracks along the shear band are generated from the inner surface of the bend and grow.
  • in-bending cracks are more likely to occur as the strength increases is that uniform deformation is less likely to proceed due to the decrease in work hardening ability due to the increase in strength, and biased deformation is likely to occur at an early stage of processing ( It is presumed that a shear band is generated (or under loose processing conditions).
  • the internal bending crack becomes remarkable in the steel sheet having a tensile strength of 980 MPa or more. Further, the present inventors have found that the finer the crystal grain size of the surface layer of the hot-rolled steel sheet, the more the local strain concentration is suppressed and the less likely it is that internal bending cracks occur.
  • the average crystal grain size of the surface layer of the hot-rolled steel sheet is preferably less than 3.0 ⁇ m. More preferably, it is 2.5 ⁇ m or less. The lower limit is not particularly limited, but may be 1.0 ⁇ m or more, 1.5 ⁇ m or more, or 2.0 ⁇ m or more.
  • the surface layer is a region from the surface of the hot-rolled steel sheet to a depth of 50 ⁇ m from the surface.
  • the crystal grain size of the surface layer is measured using the above-mentioned EBSP-OIM method.
  • analysis was performed in a region of 1200 times magnification and 40 ⁇ m ⁇ 30 ⁇ m in at least 5 visual fields.
  • a place where the angle difference between adjacent measurement points is 5 ° or more is defined as a grain boundary, and the crystal grain size of the area average is calculated.
  • the obtained area average crystal grain size is defined as the average crystal grain size of the surface layer.
  • Retained austenite is not a structure generated by phase transformation at 600 ° C or lower and has no effect of dislocation accumulation. Therefore, retained austenite is not included in the analysis in this measurement method. That is, in the present embodiment, the average crystal grain size of the surface layer is that of martensite, tempered martensite and ferrite. In the EBSP-OIM method, retained austenite having a crystal structure of fcc can be excluded from the analysis target.
  • the hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited, and the contribution of weight reduction of the vehicle body is small.
  • the upper limit is not particularly limited, but may be 1780 MPa from the viewpoint of suppressing mold wear.
  • Tensile strength is measured in accordance with JIS Z 2241: 2011 using JIS Z 2241: 2011 No. 5 test piece.
  • the sampling position of the tensile test piece may be 1/4 from the end in the plate width direction, and the direction perpendicular to the rolling direction may be the longitudinal direction.
  • the hot-rolled steel sheet according to the present embodiment preferably has a hole expansion ratio ⁇ of 62% or more.
  • the hole expansion ratio ⁇ is 62% or more, the applicable parts are not limited, and a hot-rolled steel sheet that greatly contributes to weight reduction of the vehicle body can be obtained.
  • the upper limit does not have to be limited.
  • the hole expansion ratio ⁇ is measured in accordance with JIS Z 2256: 2010 using a No. 5 test piece of JIS Z 2241: 2011.
  • the sampling position of the hole expansion test piece may be 1/4 from the end in the plate width direction.
  • the product (TS ⁇ ⁇ ) of the tensile strength, which is an index of the hole expanding property, and the hole expanding property is preferably 60,000 MPa ⁇ % or more.
  • the applicable parts are not limited, and a hot-rolled steel sheet that greatly contributes to weight reduction of the vehicle body can be obtained.
  • the plate thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 0.5 to 8.0 mm.
  • the thickness of the hot-rolled steel sheet according to the present embodiment may be 0.5 mm or more. It is preferably 1.2 mm or more and 1.4 mm or more.
  • the plate thickness may be 8.0 mm or less. It is preferably 6.0 mm or less.
  • the hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance or the like to be a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer.
  • the electroplating layer include electrogalvanization and electroZn—Ni alloy plating.
  • the hot-dip plating layer include hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating.
  • NS hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plat
  • the amount of plating adhesion is not particularly limited and may be the same as before. Further, it is also possible to further enhance the corrosion resistance by subjecting an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • the slab is heated under predetermined conditions and then hot-rolled, accelerated and cooled to a predetermined temperature range, and the cooling history after winding is controlled. Is effective.
  • the following steps (1) to (7) are sequentially performed.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • the slab is held in a temperature range of 700 to 850 ° C. for 900 seconds or longer, then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • Hot rolling is performed in a temperature range of 850 to 1100 ° C. so that the total plate thickness is reduced by 90% or more.
  • Hot rolling is completed so that the hot rolling completion temperature Tf becomes equal to or higher than the temperature T1 (° C.) represented by the following formula ⁇ 1>.
  • Acceleration cooling is started within 1.5 seconds after the completion of hot rolling, and the average cooling rate up to the temperature range of temperature T2 (° C) or lower represented by the following formula ⁇ 2> is 30 ° C / s or more. And. More preferably, it is cooled to a temperature range of the hot rolling completion temperature Tf-50 ° C. or lower within 1.0 second after the completion of hot rolling. (5) Cool from T2 (° C.) to the winding temperature at an average cooling rate of 30 ° C./s or more. (6) The winding temperature is set to a temperature range of 300 ° C. or lower.
  • T1 (° C.) 868-396 x [C] -68.1 x [Mn] + 24.6 x [Si] -36.1 x [Ni] -24.8 x [Cr] -20.7 x [Cu] ] + 250 ⁇ [sol. Al] ... ⁇ 1>
  • T2 (° C.) 770-270 x [C] -90 x [Mn] -37 x [Ni] -70 x [Cr] -83 x [Mo] ... ⁇ 2>
  • the [element symbol] in each formula indicates the content (mass%) of each element in steel. If the element is not contained, 0 is substituted.
  • the slab to be subjected to hot rolling is held in a temperature range of 700 to 850 ° C. during heating for 900 seconds or longer, and then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • the temperature of the steel sheet may be changed in this temperature range or may be constant.
  • the temperature of the steel sheet may be changed in the temperature range of 1100 ° C. or higher, or may be constant.
  • Mn is dispersed between the ferrite and the austenite, and the transformation time is lengthened so that Mn can be diffused in the ferrite region.
  • the Mn microsegregation unevenly distributed in the slab can be eliminated, and the standard deviation of the Mn concentration can be significantly reduced.
  • the grain boundaries having a crystal orientation difference of 60 ° about the ⁇ 110> direction can be uniformly dispersed in the final metal structure, and the end face after shearing can be uniformly dispersed.
  • the unevenness of the fracture surface can be reduced.
  • Hot rolling reduction rate A total plate thickness reduction of 90% or more in the temperature range of 850 to 1100 ° C.
  • the grain boundaries having a crystal orientation difference of 60 ° about the ⁇ 110> direction can be uniformly dispersed in the final metal structure, and the end face after shearing can be uniformly dispersed.
  • the unevenness of the fracture surface can be reduced. Therefore, hot rolling is performed so that the total plate thickness is reduced by 90% or more in the temperature range of 850 to 1100 ° C.
  • the plate thickness reduction in the temperature range of 850 to 1100 ° C. means the inlet plate thickness t 0 before the first pass in rolling in this temperature range, and the outlet plate thickness after the final pass in rolling in this temperature range is t 1 When, it can be expressed as (t 0 ⁇ t 1 ) / t 0 ⁇ 100 (%).
  • Hot rolling completion temperature Tf T1 (° C.) or higher
  • the hot rolling completion temperature Tf is preferably T1 (° C.) or higher.
  • Accelerated cooling after completion of hot rolling Accelerated cooling is started within 1.5 seconds, and the average cooling rate up to T2 (° C) is 30 ° C / s or more. In order to suppress the growth of the austenite crystal grains that have been granulated, it is preferable to perform accelerated cooling to T2 (° C.) or less at an average cooling rate of 30 ° C./s or more within 1.5 seconds after the completion of hot rolling.
  • the formation of ferrite and pearlite can be suppressed by accelerating cooling to T2 (° C) or lower at an average cooling rate of 30 ° C./s or higher within 1.5 seconds after the completion of hot rolling. This improves the strength of the hot-rolled steel sheet.
  • the average cooling rate referred to here is the temperature drop width of the steel sheet from the start of accelerated cooling (when the steel sheet is introduced into the cooling equipment) to T2 (° C.), and the temperature of the steel sheet is T2 (° C.) from the start of accelerated cooling. ) Divided by the time required to reach.
  • the time until the start of cooling is set to 1.5 seconds or less, and the average cooling rate up to T2 (° C) or less is set to 30 ° C / s or more, so that the ferrite transformation inside the steel sheet is performed. And / or bainite transformation and / or pearlite transformation can be suppressed, and TS ⁇ 980 MPa can be obtained. Therefore, within 1.5 seconds after the completion of hot rolling, accelerated cooling is performed so that the average cooling rate up to T2 (° C.) is 30 ° C./s or more.
  • the upper limit of the average cooling rate is not specified, but if the cooling rate is increased, the cooling equipment becomes large and the equipment cost increases. Therefore, considering the equipment cost, the average cooling rate of accelerated cooling is preferably 300 ° C./s or less. Further, the cooling shutdown temperature of accelerated cooling is preferably 350 ° C. or lower.
  • the hot rolling completion temperature Tf-50 ° C. For cooling after the completion of hot rolling, it is more preferable to cool to a temperature range of the hot rolling completion temperature Tf-50 ° C. within 1.0 second after the completion of hot rolling. This is because the growth of austenite crystal grains finely divided by hot rolling can be suppressed.
  • cooling with a large average cooling rate is performed immediately after the completion of hot rolling, for example, cooling water. May be sprayed onto the surface of the steel sheet.
  • the average cooling rate to T2 (° C) or less is set to 30 ° C / s as described above. Accelerated cooling may be performed as described above.
  • the average cooling rate from T2 (° C.) to the take-up temperature is 30 ° C./s or more.
  • T2 (° C.) The average cooling rate from bainite to winding temperature is preferably 30 ° C./s or more. As a result, the matrix structure can be made hard.
  • the average cooling rate here is a value obtained by dividing the temperature drop width of the steel sheet from T2 (° C.) to the winding temperature by the time required from when the steel sheet temperature reaches T2 (° C.) to winding. It means that.
  • the average cooling rate from T2 (° C.) to the winding temperature is set to 30 ° C./s or more.
  • the winding temperature is preferably 300 ° C. or lower.
  • the transformation driving force from austenite to bcc can be increased, and the deformation strength of austenite can be increased. Therefore, when transforming from austenite to bainite and martensite, the density S 60 of the grain boundary length with a crystal orientation difference of 60 ° about the ⁇ 110> direction can be suppressed, and S 60 / S 7 is 0.60. Can be less than. As a result, the unevenness of the fracture surface on the end face after shearing can be reduced. In addition, it is possible to suppress a decrease in hole-spreading property due to the influence of retained austenite. Therefore, the winding temperature is preferably 300 ° C. or lower. The winding temperature is more preferably 50 ° C. or lower.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the slab was held in a temperature range of 700 to 850 ° C. for the holding times shown in Tables 3A and 3B, and then further heated to the heating temperatures shown in Tables 3A and 3B. Further, accelerated cooling was started within 1.5 seconds after the completion of hot rolling.
  • the area fraction of each structure, S 60 / S 7 , standard deviation of Mn concentration, and average crystal grain size of the surface layer were determined by the above-mentioned method.
  • the obtained measurement results are shown in Table 4A and Table 4B.
  • Shear workability The shear workability of the hot-rolled steel sheet was evaluated by measuring the size of the unevenness of the fracture surface on the end face after shearing by a punching test. Five punched holes were prepared with a hole diameter of 10 mm, a clearance of 10%, and a punching speed of 3 m / s. Next, with respect to the five punched holes, ten cross sections parallel to the rolling direction were embedded in the resin, and the cross-sectional shapes were photographed with a scanning electron microscope. In the obtained observation photograph, it was possible to observe the processed cross section composed of the sagging, the sheared surface, the fracture surface and the burr as shown in FIG.
  • the sagging is an area of an R-shaped smooth surface
  • the shearing surface is an area of a punched end surface separated by shear deformation
  • the fracture surface is a punching separated by cracks generated from the vicinity of the cutting edge after the completion of shear deformation. It is a region of an end surface
  • a burr is a surface having protrusions protruding from the lower surface of a hot-rolled steel sheet.
  • the size of the unevenness of the fracture surface is measured for 10 end faces obtained from the 5 punched holes, and if the maximum value of the unevenness of the fracture surface is 3.0 ⁇ m or less, the shearing workability is excellent. It was judged as passing. On the other hand, if the maximum value of the unevenness of the fracture surface exceeds 3.0 ⁇ m, it is judged to be inferior in shearing workability and rejected.
  • the bending test piece is obtained by cutting out a strip-shaped test piece of 100 mm ⁇ 30 mm from the 1/2 position in the plate width direction of the hot-rolled steel sheet, and evaluating the bending internal crack resistance by the following bending test. did.
  • JIS Z for both bending where the bending ridge is parallel to the rolling direction (L direction) (L-axis bending) and bending where the bending ridge is parallel to the direction perpendicular to the rolling direction (C direction) (C-axis bending). 2248: 2014 (V block 90 ° bending test) was investigated to determine the bending internal crack resistance, the minimum bending radius without cracks was obtained, and the average value R of the minimum bending radii of the L and C axes was calculated as the plate thickness. The value divided by t was defined as the limit bending R / t and used as the index value of bendability. When R / t ⁇ 3.0, it was judged that the hot-rolled steel sheet had excellent bending resistance and internal cracking resistance.
  • the presence or absence of cracks is determined by mirror-polishing the cross section of the test piece after the V block 90 ° bending test cut on a surface parallel to the bending direction and perpendicular to the plate surface, and then observing the cracks with an optical microscope. When the crack length observed inside the bend exceeds 30 ⁇ m, it is judged that there is a crack. The obtained measurement results are shown in Table 4A and Table 4B.
  • the production No. whose chemical composition and metal structure are not within the range specified in the present invention. 3 to 5, 7 to 10 and 24 to 27 were inferior in any one or more of the characteristics (tensile strength TS, hole expansion ratio ⁇ , shear workability).
  • the present invention it is possible to provide a hot-rolled steel sheet having excellent strength, drilling property and shearing workability. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned characteristics and further suppressing the occurrence of bending internal cracks, that is, having excellent bending internal crack resistance. can.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、金属組織が、面積%で、マルテンサイトおよび焼き戻しマルテンサイトが合計で92.0%超、100.0%以下であり、残留オーステナイトが3.0%未満であり、フェライトが5.0%未満であり、<110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60と結晶方位差が7°である粒界の長さの密度Sとの比であるS60/Sが0.34超、0.60未満であり、Mn濃度の標準偏差が0.60質量%以下であり、引張強さが980MPa以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高強度であり、且つ、穴広げ性およびせん断加工性に優れる熱延鋼板に関する。
 本願は、2020年1月27日に、日本に出願された特願2020-010945号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。
 車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれており、これらの要求に応えるべく、幾つかの技術が従来から提案されている。
 自動車部材には様々な加工様式があるため、要求される成形性は適用される部材により異なるが、その中でも穴広げ性は成形性の重要な指標として位置付けられている。また、自動車部材はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。
 例えば、特許文献1には、平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト変態して、変態誘起塑性により大きな伸びを示すものの、硬質なマルテンサイトの生成により穴広げ性が損なわれる。特許文献1には、フェライトおよび残留オーステナイトを微細化することにより、延性のみならず穴拡げ性も向上する、と開示されている。
 特許文献2には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、伸びおよび穴広げ性に優れた引張強度が980MPa以上の高強度鋼板が開示されている。
 特許文献3および4には、延性および穴広げ性に優れた高張力熱延鋼板およびその製造方法が開示されている。特許文献3には、熱間圧延完了後1秒間以内に720℃以下の温度域まで冷却し、500℃超720℃以下の温度域に1~20秒間の滞在時間で滞在させた後、350~500℃の温度域で巻き取る、延性および伸びフランジ性が良好な高強度熱延鋼板の製造方法が開示されている。
 また、特許文献4には、ベイナイトを主体とし、適量のポリゴナルフェライトと残留オーステナイトとを有するとともに、残留オーステナイトを除く鋼組織において15°以上の結晶方位差を有する粒界で囲まれる粒の平均粒径が15μm以下である、延性および伸びフランジ性が良好な高強度熱延鋼板が開示されている。
日本国特開平11-61326号公報 日本国特開2005-179703号公報 日本国特開2012-251200号公報 日本国特開2015-124410号公報
 上述したように、自動車部品はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。特に、980MPa以上の高強度鋼板では、せん断加工後のコイニング等の後処理に必要な荷重が大きくなるため、せん断加工後の端面における破断面の凹凸を特に高い精度で制御することが望まれている。
 特許文献1~4に開示された技術は、いずれも強度と、穴広げ時のプレス成形性とを向上させる技術ではあるが、せん断加工性を向上させる技術については言及がなく、部品をプレス成形する段階で後処理が必要となり、製造コストが上昇すると推測される。
 本発明は、従来技術の上記課題に鑑みてなされたものであり、高い強度を有するとともに、優れた穴広げ性およびせん断加工性を有する熱延鋼板を提供することを目的とする。
 本発明者らは、上述の課題に鑑み、熱延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた。その結果、以下の知見(a)~(f)を得て、本発明を完成した。
 なお、優れたせん断加工性を有するとは、せん断加工後の端面における破断面の凹凸が小さいことを示す。また、優れた強度または高い強度を有するとは、引張強さが980MPa以上であることを示す。
(a)優れた引張(最大)強さおよび穴広げ性を得るためには、金属組織の母相組織は硬質であることが好ましい。すなわち、フェライトや残留オーステナイト等の軟質な組織分率はなるべく小さいことが好ましい。
(b)多量のマルテンサイトおよび焼き戻しマルテンサイトを形成するためには、オーステナイトを速やかに所定の温度域まで冷却することが効果的である。そのため、熱延プロセス中には中間空冷を施さずに、所定の温度域まで冷却することが効果的である。
(c)硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては、<110>方向を軸として結晶方位差が60°である粒界および結晶方位差が7°である粒界が多量に形成される。
(d)<110>方向を軸として結晶方位差が60°である粒界の生成時においては、転位が組織内部に著しく蓄積するとともに、弾性ひずみが高くなる。したがって、このような粒界の密度が高く、且つ均一に分散している(すなわち、<110>方向を軸として結晶方位差が60°である粒界の長さの密度が大きい)金属組織では、材料の強度が高まるとともに、せん断加工における塑性変形が抑制され、せん断加工後の端面における破断面の凹凸の生成が著しく抑制される。
(e)<110>方向を軸として結晶方位差が60°である粒界を均一に分散させるには、Mn濃度の標準偏差を一定値以下とする必要がある。Mn濃度の標準偏差を一定値以下とするためには、スラブ加熱の際に、700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持し、かつ850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが効果的である。
(f)<110>方向を軸として結晶方位差が60°である粒界の長さの密度を増大させ、且つ<110>方向を軸として結晶方位差が7°である粒界の長さの密度を減少させるには、巻取り温度を所定温度未満とすることが効果的である。巻取り温度が所定温度以上であると、<110>方向を軸として結晶方位差が60°である粒界の長さの密度が減少し、<110>方向を軸として結晶方位差が7°である粒界の長さの密度が増加する。
 上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.040~0.250%、
Si:0.05~3.00%、
Mn:0.50~4.00%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0300%以下、
N:0.1000%以下、
O:0.0100%以下、
Ti:0~0.300%、
Nb:0~0.100%、
V:0~0.500%、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B:0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
Sn:0~0.050%を含有し、
 残部がFeおよび不純物からなり、
 金属組織が、面積%で、
  マルテンサイトおよび焼き戻しマルテンサイトが合計で92.0%超、100.0%以下であり、
  残留オーステナイトが3.0%未満であり、
  フェライトが5.0%未満であり、
  <110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60と、結晶方位差が7°である粒界の長さの密度Sとの比であるS60/Sが0.34超、0.60未満であり、
  Mn濃度の標準偏差が0.60質量%以下であり、
 引張強さが980MPa以上である。
(2)上記(1)に記載の熱延鋼板は、表層の平均結晶粒径が3.0μm未満であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Ti:0.005~0.300%、
Nb:0.005~0.100%、
V:0.005~0.500%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B:0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、穴広げ性およびせん断加工性を有する熱延鋼板を得ることができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
せん断加工後の端面における破断面の凹凸の大きさの測定方法を説明するための図である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、熱延鋼板の化学組成に関する%は特に指定しない限り質量%である。
1.化学組成
 本実施形態に係る熱延鋼板は、質量%で、C:0.040~0.250%、Si:0.05~3.00%、Mn:0.50~4.00%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含む。以下に各元素について詳細に説明する。
(1-1)C:0.040~0.250%
 Cは、硬質相の面積分率を上昇させる。また、Cは、Ti、Nb、V等の析出強化元素と結合することで、マルテンサイトの強度を上昇させる。C含有量が0.040%未満では、所望の強度を得ることが困難となる。したがって、C含有量は0.040%以上とする。C含有量は、好ましくは0.060%以上、より好ましくは0.070%以上である。
 一方、C含有量が0.250%超では、強度の低いパーライトの生成が促進され、マルテンサイトおよび焼き戻しマルテンサイトの面積分率が低下することで、熱延鋼板の強度が低下する。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.150%以下である。
(1-2)Si:0.05~3.00%
 Siは、セメンタイトの析出を遅延させる作用を有する。この作用により、マルテンサイトおよび焼き戻しマルテンサイトの面積分率を高めることができ、また固溶強化により熱延鋼板の強度を高めることができる。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.50%以上、1.00%以上である。
 しかし、Si含有量が3.00%超では、熱延鋼板の表面性状および化成処理性、さらには穴広げ性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.70%以下、より好ましくは2.50%以下である。
(1-3)Mn:0.50~4.00%
 Mnは、フェライト変態を抑制して熱延鋼板を高強度化する作用を有する。Mn含有量が0.50%未満では、980MPa以上の引張強さを得ることができない。したがって、Mn含有量は0.50%以上とする。Mn含有量は、好ましくは1.00%以上、1.50%以上、1.80%以上である。
 一方、Mn含有量が4.00%超では、Mnの偏析に起因して、硬質相中の結晶粒の結晶方位差が不均一となり、せん断加工後の端面における破断面の凹凸が大きくなる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、3.50%以下である。
(1-4)sol.Al:0.001~2.000%
 Alは、Siと同様に、脱酸により鋼を健全化する作用を有するとともに、オーステナイトからのセメンタイトの析出を抑制することで、マルテンサイトおよび焼き戻しマルテンサイトの面積分率を増加させる作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。
 一方、sol.Al含有量が2.000%超では、上記効果が飽和するとともに経済的に好ましくないため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、1.300%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
(1-5)P:0.100%以下
 Pは、一般的に不純物として含有される元素であるが、固溶強化により強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよいが、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する穴広げ性の低下が顕著となる。したがって、P含有量は、0.100%以下とする。P含有量は、好ましくは0.030%以下である。
 P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%とすることが好ましい。
(1-6)S:0.0300%以下
 Sは、不純物として含有される元素であり、鋼中に硫化物系介在物を形成して熱延鋼板の穴広げ性を低下させる。S含有量が0.0300%を超えると、熱延鋼板の穴広げ性が著しく低下する。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0050%以下である。
 S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%とすることが好ましい。
(1-7)N:0.1000%以下
 Nは、不純物として鋼中に含有される元素であり、熱延鋼板の穴広げ性を低下させる作用を有する。N含有量が0.1000%超では、熱延鋼板の穴広げ性が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、さらに好ましくは0.0700%以下である。
 N含有量の下限は特に規定する必要はないが、後述するようにTi、NbおよびVの1種または2種以上を含有させて金属組織の微細化を図る場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
(1-8)O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、0.0080%以下、0.0050%以下とすることが好ましい。
 溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、0.0010%以上としてもよい。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるものであって、本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、上記元素に加え、Ti、Nb、V、Cu、Cr、Mo、Ni、B、Ca、Mg、REM、Bi、Zr、Co、Zn、WおよびSnを任意元素として含有してもよい。上記任意元素を含有させない場合の含有量の下限は0%である。以下、上記任意元素について詳細に説明する。
(1-9)Ti:0.005~0.300%、Nb:0.005~0.100%およびV:0.005~0.500%
 Ti、NbおよびVは、いずれも、鋼中に炭化物または窒化物として析出し、ピン止め効果によって金属組織を微細化する作用を有するため、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ti含有量を0.005%以上とするか、Nb含有量を0.005%以上とするか、あるいはV含有量を0.005%以上とすることが好ましい。すなわち、Ti、NbおよびVの1種でもその含有量を0.005%以上とすることが好ましい。
 しかし、これらの元素を過剰に含有させても、上記作用による効果が飽和して経済的に好ましくない。したがって、Ti含有量は0.300%以下とし、Nb含有量は0.100%以下とし、V含有量は0.500%以下とする。Ti含有量は、0.200%以下、0.150%以下、0.120%以下、0.110%以下または0.100%以下とすることが好ましい。
(1-10)Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~1.00%、Ni:0.02~2.00%およびB:0.0001~0.0100%
 Cu、Cr、Mo、NiおよびBは、いずれも、熱延鋼板の焼入性を高める作用を有する。また、CrおよびNiはオーステナイトを安定化させる作用を有し、CuおよびMoは低温で鋼中に炭化物を析出して強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
 上述したようにCuは、熱延鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、1.00%以下である。
 上述したようにCrは、熱延鋼板の焼入性を高める作用および低温で鋼中に炭化物を析出して強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上、0.05%以上とすることが好ましい。しかし、Cr含有量が2.00%超では、鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
 上述したようにMoは、熱延鋼板の焼入性を高める作用および鋼中に炭化物を析出して強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上、0.02%以上とすることが好ましい。しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。Mo含有量は、好ましくは0.50%以下、0.20%以下である。
 上述したようにNiは、熱延鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.02%以上とすることが好ましい。Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
 上述したようにBは、熱延鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上、0.0002%以上とすることが好ましい。しかし、B含有量が0.0100%超では、鋼板の穴広げ性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。
(1-11)Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
 Ca、MgおよびREMは、いずれも、介在物の形状を好ましい形状に調整することにより、熱延鋼板の成形性を高める作用を有する。また、Biは、凝固組織を微細化することにより、熱延鋼板の成形性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
 上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って熱延鋼板の穴広げ性を低下させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量およびMg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
(1-12)Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%およびSn:0~0.050%
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。しかし、Snを多量に含有させると熱間圧延時に疵が発生する場合があるため、Sn含有量は0.050%以下とする。
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
2.熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板では、金属組織が、マルテンサイトおよび焼き戻しマルテンサイトが合計で92.0%超、100.0%以下であり、残留オーステナイトが3.0%未満であり、フェライトが5.0%未満であり、<110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60と、結晶方位差が7°である粒界の長さの密度Sとの比であるS60/Sが0.34超、0.60未満であり、Mn濃度の標準偏差が0.60質量%以下である。そのため、本実施形態に係る熱延鋼板は、優れた強度、延性およびせん断加工性を得ることができる。
 なお、本実施形態では、圧延方向に平行な断面の、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。
 なお、表面から板厚の1/4深さの位置とは、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域のことである。
(2-1)残留オーステナイトの面積分率:3.0%未満
 残留オーステナイトは室温でも面心立方格子として存在する組織である。残留オーステナイトは、変態誘起塑性(TRIP)により熱延鋼板の延性を高める作用を有する。一方、残留オーステナイトは、せん断加工中には高炭素のマルテンサイトに変態するため、安定的なき裂発生を阻害し、せん断加工後の端面における破断面の凹凸が大きくなる原因となる。残留オーステナイトの面積分率が3.0%以上では、上記作用が顕在化し、熱延鋼板のせん断加工性が劣化する(端面における破断面の凹凸が大きくなる)ばかりか、穴広げ性も低下する。したがって、残留オーステナイトの面積分率は3.0%未満とする。残留オーステナイトの面積分率は、好ましくは1.0%未満である。残留オーステナイトは少ない程好ましいため、残留オーステナイトの面積分率は0%であってもよい。
(2-2)フェライトの面積分率:5.0%未満
 フェライトは一般に軟質な組織である。所定量以上のフェライトを含有すると、所望の強度を得られないばかりか、せん断加工後の端面におけるせん断面の領域を増大させる原因となる。せん断加工後の端面におけるせん断面の領域が増大すると、破断面の凹凸が大きくなるため、好ましくない。フェライトの面積分率が5.0%以上では、上記作用が顕在化し、熱延鋼板のせん断加工性が劣化する。したがって、フェライトの面積分率は5.0%未満とする。フェライトの面積分率は、好ましくは1.0%未満である。フェライトは少ない程好ましいため、フェライトの面積分率は0%であってもよい。
 残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。
 本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、鋼板の板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置における、圧延方向に平行な断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで残留オーステナイトの面積分率を得る。
 フェライトの面積分率の測定は、以下の方法で行う。圧延方向に垂直な断面を鏡面に仕上げ、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。
 測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」(AMETEK社製)に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積分率を求めることで、フェライトの面積分率を得る。
(2-3)マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計:92.0%超、100.0%以下
 マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計が92.0%以下であると所望の強度を得ることができない。そのため、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計は92.0%超とする。なお、マルテンサイトおよび焼き戻しマルテンサイトの両方を含む必要はなく、マルテンサイトまたは焼き戻しマルテンサイトのいずれか一方を含む場合は、その面積分率が92.0%超であればよい。マルテンサイトおよび焼き戻しマルテンサイトの両方を含む場合は、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計が92.0%超であればよい。マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計は、好ましくは95.0%以上、97.0%以上、99.0%以上である。
 マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計は多い程好ましいため、100.0%としてもよい。
 マルテンサイトおよび焼き戻しマルテンサイトの面積分率の測定方法について、以下に説明する。
 まず、フェライトの面積分率を測定したEBSD測定領域と同領域をSEMで観察するために、観察位置近傍にビッカース圧痕を打刻する。その後、観察面の組織を残して、表層のコンタミを研磨除去し、ナイタールエッチングする。次に、EBSD観察面と同一視野をSEMにより倍率3000倍で観察する。
 EBSD測定において、残部組織と判別された領域の内、粒内に下部組織を有し、かつ、セメンタイトが複数のバリアントを持って析出している領域を焼き戻しマルテンサイトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域を「マルテンサイトおよび残留オーステナイト」と判断する。それぞれの面積分率を算出することで、焼き戻しマルテンサイト、並びに「マルテンサイトおよび残留オーステナイト」の面積分率を得る。マルテンサイトの面積分率については、得られた「マルテンサイトおよび残留オーステナイト」の面積分率から、上述のX線回折により得られた残留オーステナイトの面積分率を差し引くことにより得ることができる。
 なお、観察面表層のコンタミ除去については、粒子径0.1μm以下のアルミナ粒子を用いたバフ研磨、あるいはArイオンスパッタリング等の手法を用いればよい。
(2-4)<110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60と、結晶方位差が7°である粒界の長さの密度Sとの比であるS60/Sが0.34超、0.60未満
 980MPa以上の引張強さを有する熱延鋼板を得るには、母相を硬質な組織にする必要がある。硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては<110>方向を軸として、結晶方位差が60°である粒界および結晶方位差が7°である粒界が多量に形成される。
 <110>方向を軸として結晶方位差が60°である粒界の生成時においては、転位が組織内部に著しく蓄積するとともに、弾性ひずみが大きくなる。そのため、<110>方向を軸として結晶方位差が60°である粒界の密度が高く、且つ均一に分散している(すなわち<110>方向を軸として結晶方位差が60°である粒界の長さの密度が大きい)金属組織では、材料の強度が高まるとともに、せん断加工における塑性変形が抑制され、せん断加工後の端面における破断面の凹凸が抑制される。
 一方で、<110>方向を軸として結晶方位差が7°である粒界においては、組織内部の転位密度が低く、弾性ひずみも小さくなるため、せん断加工後の端面における破断面の凹凸が著しく大きくなる。よって、<110>方向を軸として、結晶方位差が60°である粒界の長さの密度をS60とし、結晶方位差が7°である粒界の長さの密度をSとしたとき、せん断加工後の端面における破断面の凹凸の大きさはS60/Sによって支配される。
 S60/Sが0.34以下の場合には、熱延鋼板の引張強さを980MPa以上とすることができないだけでなく、せん断加工後の端面における破断面の凹凸が大きくなる。よって、S60/Sを0.34超とする。好ましくは、0.40以上、0.45以上である。せん断加工後の端面における破断面の凹凸を抑制するため、S60/Sは大きいほど望ましいが、実質的な上限は0.60である。そのため、S60/Sは0.60未満とする。
 なお、<110>方向を軸として結晶方位差がX°である粒界とは、ある粒界で隣接する二つの結晶粒Aと結晶粒Bとを特定したとき、片方の結晶粒Bを<110>軸にX°回転させることによって、結晶粒Aと結晶粒Bの結晶方位が一致する結晶学的関係を有する粒界のことをいう。ただし、結晶方位の測定精度を考慮すると、一致する方位関係から±4°の方位差を許容する。
 本実施形態では、<110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60および結晶方位差が7°である粒界の長さの密度SをEBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて測定する。EBSP-OIM法では、走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、撮影写真をコンピュータで画像処理する事により、照射点の結晶方位を短待間で測定することができる。
 EBSP-OIM法は、サーマル電界放射型走査型電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器とで構成されたEBSD解析装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法では、試料表面の微細構造並びに結晶方位を解析できるため、特定の結晶方位差を持つ粒界の長さを定量的に求めることができる。また、EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。
 圧延方向に平行な断面における、鋼板表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置における金属組織の特定粒界の長さの測定に当たっては、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行う。そして、<110>方向を軸として、結晶方位差が60°である粒界の長さの平均値を上記測定領域の面積で除することで、S60を得る。同様に<110>方向を軸として結晶方位差が7°である粒界の長さの平均値を上記測定領域の面積で除することで、Sを得る。なお、前述したように、±4°の方位差を許容する。
 なお、残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さないので、本測定方法では、残留オーステナイトは解析の対象としない。つまり、本実施形態において、<110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60および結晶方位差が7°である粒界の長さの密度Sは、マルテンサイト、焼き戻しマルテンサイトおよびフェライトのものである。EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。
(2-5)Mn濃度の標準偏差:0.60質量%以下
 本実施形態に係る熱延鋼板の表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置におけるMn濃度の標準偏差は0.60質量%以下である。これにより、<110>方向を軸として結晶方位差が60°である粒界を均一に分散させることができる。その結果、せん断加工後の端面における破断面の凹凸を小さくすることができる。Mn濃度の標準偏差は、好ましくは、0.55質量%以下、0.50質量%以下、0.40質量%以下である。
 Mn濃度の標準偏差の下限は、せん断加工後の端面における破断面の凹凸を抑制するため、その値は小さいほど望ましいが、製造プロセスの制約より、実質的な下限は0.10質量%である。
 Mn濃度の標準偏差は、以下の方法により測定する。
 熱延鋼板のL断面を鏡面研磨した後に、表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得る。
(2-6)表層の平均結晶粒径:3.0μm未満
 表層の結晶粒径が細かいと、熱延鋼板の曲げ内割れを抑制することができる。鋼板強度が高くなるほど、曲げ加工時に曲げ内側から亀裂が生じやすくなる(以下、曲げ内割れと呼称する)。
 曲げ内割れのメカニズムは以下のように推定される。曲げ加工時には曲げ内側に圧縮の応力が生じる。最初は曲げ内側全体が均一に変形しながら加工が進むが、加工量が大きくなると均一な変形のみで変形を担えなくなり、局所的にひずみが集中することで変形が進む(せん断変形帯の発生)。このせん断変形帯が更に成長することで曲げ内側表面からせん断帯に沿った亀裂が発生し、成長する。高強度化に伴い曲げ内割れが発生しやすくなる理由は、高強度化に伴う加工硬化能の低下により、均一な変形が進みにくくなり、変形の偏りが生じやすくなることで、加工早期に(または緩い加工条件で)せん断変形帯が生じるためと推定される。
 本発明者らの研究により、曲げ内割れは、引張強さ980MPa以上の鋼板で顕著になることが分かった。また、本発明者らは、熱延鋼板の表層の結晶粒径が細かいほど、局所的なひずみ集中が抑制され、曲げ内割れが発生しにくくなることを見出した。上記作用を得るためには、熱延鋼板の表層の平均結晶粒径は3.0μm未満とすることが好ましい。より好ましくは2.5μm以下とする。下限は特に限定しないが、1.0μm以上、1.5μm以上、または2.0μm以上としてもよい。
 なお、本実施形態において表層とは、熱延鋼板の表面~表面から深さ50μm位置の領域である。
 表層の結晶粒径は、前述のEBSP-OIM法を用いて測定する。圧延方向に平行な断面における、熱延鋼板の表面~表面から深さ50μm位置且つ板幅方向中央位置の領域において、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行い、隣接する測定点の角度差が5°以上の場所を結晶粒界と定義し、面積平均の結晶粒径を算出する。得られた面積平均の結晶粒径を、表層の平均結晶粒径とする。
 なお、残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さないので、本測定方法では、残留オーステナイトは解析の対象としない。つまり、本実施形態において、表層の平均結晶粒径は、マルテンサイト、焼き戻しマルテンサイトおよびフェライトのものである。EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。
3.引張強度特性
 本実施形態に係る熱延鋼板は、引張(最大)強さが980MPa以上である。引張強さが980MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1780MPaとしてもよい。
 引張強さは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2241:2011に準拠して測定する。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向を長手方向とすればよい。
4.穴広げ特性
 本実施形態に係る熱延鋼板は、穴広げ率λが62%以上であることが好ましい。穴拡げ率λが62%以上であると、適用部品が限定されることなく、車体軽量化の寄与が大きい熱延鋼板を得ることができる。上限は特に限定する必要は無い。
 穴広げ率λは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2256:2010に準拠して測定する。穴広げ試験片の採取位置は、板幅方向の端部から1/4部分とすればよい。
 また、穴広げ性の指標となる引張強さと穴広げとの積(TS×λ)は60000MPa・%以上であることが好ましい。引張強さと穴広げとの積が60000MPa・%以上であると、適用部品が限定されることなく、車体軽量化の寄与が大きい熱延鋼板を得ることができる。
5.板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、0.5~8.0mmとしてもよい。熱延鋼板の板厚を0.5mm以上とすることで、圧延完了温度の確保が容易になるとともに圧延荷重を低減でき、熱間圧延を容易に行うことができる。したがって、本実施形態に係る熱延鋼板の板厚は0.5mm以上としてもよい。好ましくは1.2mm以上、1.4mm以上である。また、板厚を8.0mm以下とすることで、金属組織の微細化が容易となり、上述した金属組織を容易に確保することができる。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
6.その他
(6-1)めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。
 めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
7.製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
 本実施形態に係る熱延鋼板を得るためには、所定の条件でスラブの加熱を行った後に熱間圧延を行い、所定の温度域まで加速冷却し、巻き取った後の冷却履歴を制御することが効果的である。
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(7)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
(1)スラブを700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持する。
(2)850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
(3)熱間圧延完了温度Tfが下記式<1>により表される温度T1(℃)以上となるように熱間圧延を完了する。
(4)熱間圧延完了後1.5秒以内に加速冷却を開始して、下記式<2>により表される温度T2(℃)以下の温度域までの平均冷却速度を30℃/s以上とする。
 より好ましくは、熱間圧延完了後1.0秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却する。
(5)T2(℃)から巻取り温度までを30℃/s以上の平均冷却速度で冷却する。
(6)巻き取り温度を300℃以下の温度域とする。
T1(℃)=868-396×[C]-68.1×[Mn]+24.6×[Si]-36.1×[Ni]-24.8×[Cr]-20.7×[Cu]+250×[sol.Al]…<1>
T2(℃)=770-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo]…<2>
 ただし、各式中の[元素記号]は各元素の鋼中の含有量(質量%)を示す。当該元素を含有しない場合は0を代入する。
(7-1)スラブ、熱間圧延に供する際のスラブ温度および保持時間
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや鋳造・分塊により得られたスラブなどを用いることができ、必要によってはそれらに熱間加工または冷間加工を加えたものを用いることができる。
 熱間圧延に供するスラブは、加熱時の700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持することが好ましい。なお、700~850℃の温度域での保持時には、鋼板温度をこの温度域で変動させてもよく、一定としてもよい。また、1100℃以上の温度域での保持時には、鋼板温度を1100℃以上の温度域で変動させてもよく、一定としてもよい。
 700~850℃のオーステナイト変態において、Mnがフェライトとオーステナイト間で分配し、その変態時間を長くすることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析を解消し、Mn濃度の標準偏差を著しく減ずることができる。Mn濃度の標準偏差を減少させることで、最終的な金属組織において、<110>方向を軸として結晶方位差が60°である粒界を均一に分散することができ、せん断加工後の端面における破断面の凹凸を小さくすることができる。
 また、スラブ加熱時のオーステナイト粒を均一にするためには、1100℃以上の温度域で6000秒以上加熱することが好ましい。
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点から、少なくとも最終の数段はタンデムミルを用いた熱間圧延とすることがより好ましい。
(7-2)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上の板厚減
 850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことにより、主に再結晶オーステナイト粒の微細化が図られるとともに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進され、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、Mn濃度の標準偏差を小さくすることができる。
 Mn濃度の標準偏差を減少させることで、最終的な金属組織において、<110>方向を軸として結晶方位差が60°である粒界を均一に分散することができ、せん断加工後の端面における破断面の凹凸を小さくすることができる。したがって、850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
 なお、850~1100℃の温度域の板厚減とは、この温度域の圧延における最初のパス前の入口板厚tとし、この温度域の圧延における最終パス後の出口板厚をtとしたとき、(t-t)/t×100(%)で表すことができる。
(7-3)熱間圧延完了温度Tf:T1(℃)以上
 熱間圧延の完了温度TfはT1(℃)以上とすることが好ましい。熱間圧延完了温度TfをT1(℃)以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができ、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの生成を抑えられ、高強度の熱延鋼板を得ることができる。
(7-4)熱間圧延完了後の加速冷却:1.5秒以内に加速冷却を開始して、T2(℃)以下までの平均冷却速度を30℃/s以上とする
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1.5秒以内に、30℃/s以上の平均冷却速度でT2(℃)以下まで加速冷却を行うことが好ましい。
 熱間圧延完了後1.5秒以内に、30℃/s以上の平均冷却速度でT2(℃)以下まで加速冷却を行うことで、フェライトおよびパーライトの生成を抑制できる。これにより、熱延鋼板の強度が向上する。なお、ここでいう平均冷却速度とは、加速冷却開始時(冷却設備への鋼板の導入時)からT2(℃)までの鋼板の温度降下幅を、加速冷却開始時から鋼板温度がT2(℃)に達する時までの所要時間で除した値のことをいう。
 熱間圧延完了後の加速冷却において、冷却開始までの時間を1.5秒以内とし、T2(℃)以下までの平均冷却速度を30℃/s以上とすることで、鋼板内部でのフェライト変態および/またはベイナイト変態および/またはパーライト変態を抑制でき、TS≧980MPaを得ることができる。したがって、熱間圧延完了後1.5秒以内に、T2(℃)以下までの平均冷却速度が30℃/s以上となる加速冷却を行う。
 平均冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、加速冷却の平均冷却速度は300℃/s以下が好ましい。また、加速冷却の冷却停止温度は350℃以下とするとよい。
 熱間圧延完了後の冷却では、熱間圧延完了後1.0秒以内に、熱間圧延完了温度Tf-50℃の温度域まで冷却することがより好ましい。熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制できるためである。熱間圧延完了後1.0秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却するためには、熱間圧延完了直後に平均冷却速度の大きい冷却を行う、例えば冷却水を鋼板表面に噴射すればよい。熱間圧延完了後1.0秒以内にTf-50℃以下の温度域まで冷却することにより、表層の結晶粒径を微細化でき、熱延鋼板の耐曲げ内割れ性を高めることができる。
 熱間圧延完了後1.0秒以内に、熱間圧延完了温度Tf-50℃の温度域まで冷却した後は、上述のように、T2(℃)以下までの平均冷却速度を30℃/s以上とするように加速冷却を行えばよい。
(7-5)T2(℃)から巻取り温度までの平均冷却速度が30℃/s以上
 フェライト、ベイナイトおよびパーライトの面積分率を抑え、TS≧980MPaの強度を得るために、T2(℃)から巻取り温度までの平均冷却速度を30℃/s以上とすることが好ましい。これにより、母相組織を硬質にすることができる。なお、ここでいう平均冷却速度とは、T2(℃)から巻取り温度までの鋼板の温度降下幅を、鋼板温度がT2(℃)に達した時から巻取りまでの所要時間で除した値のことをいう。
 上記平均冷却速度を30℃/s以上とすることで、フェライト、ベイナイトおよびパーライトの面積分率を抑制し、強度および穴広げ性を確保することができる。したがって、T2(℃)から巻取り温度までの平均冷却速度は30℃/s以上とする。
(7-6)巻取り温度:300℃以下
 巻取り温度は300℃以下とすることが好ましい。巻取り温度を300℃以下とすることで、オーステナイトからbccへの変態駆動力を大きくすることができ、また、オーステナイトの変形強度を大きくすることができる。そのため、オーステナイトからベイナイトおよびマルテンサイト変態する際に、<110>方向を軸として結晶方位差が60°である粒界の長さの密度S60を抑制でき、S60/Sを0.60未満とすることができる。結果として、せん断加工後の端面における破断面の凹凸を小さくすることができる。また、残留オーステナイトの影響により穴広げ性が低下することも抑制できる。したがって、巻取り温度は300℃以下とすることが好ましい。巻取り温度は、50℃以下とすることがより好ましい。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および表2の鋼No.A~Sに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3Aおよび表3Bに示す製造条件により、表4Aおよび表4Bに示す熱延鋼板を得た。
 なお、スラブを700~850℃の温度域において表3Aおよび表3Bに示す保持時間で保持し、その後更に加熱して、表3Aおよび表3Bに示す加熱温度まで加熱して保持した。また、熱間圧延完了後1.5秒以内に加速冷却を開始した。
 得られた熱延鋼板に対し、上述の方法により、各組織の面積分率、S60/S、Mn濃度の標準偏差および表層の平均結晶粒径を求めた。得られた測定結果を表4Aおよび表4Bに示す。
 熱延鋼板の特性の評価方法
 (1)引張強度特性および穴広げ率
 得られた熱延鋼板の機械的性質のうち引張強度特性は、JIS Z 2241:2011に準拠して、穴広げ率はJIS Z 2256:2010に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向を長手方向とした。
 引張強さTS≧980MPaを満たした場合、強度に優れるとして合格と判定した。一方、引張強さTS<980MPaであった場合、強度に劣るとして不合格と判定した。
 また、引張強さTS×穴広げ率λ≧60000(MPa・%)を満たした場合、穴広げ性に優れるとして合格と判定した。一方、引張強さTS×穴広げ率λ<60000(MPa・%)であった場合、穴広げ性に劣るとして不合格と判定した。
(2)せん断加工性
 熱延鋼板のせん断加工性は、打ち抜き試験によりせん断加工後の端面における破断面の凹凸の大きさを測定することで評価した。穴直径10mm、クリアランス10%、打ち抜き速度3m/sで5個の打ち抜き穴を作製した。次に、5個の打ち抜き穴について、10箇所の圧延方向に平行な断面を樹脂に埋め込み、走査型電子顕微鏡で断面形状を撮影した。得られた観察写真では、図1に示すようなダレ、せん断面、破断面およびバリで構成される、加工断面を観察することができた。
 ダレとはR状の滑らかな面の領域であり、せん断面とはせん断変形により分離した打ち抜き端面の領域であり、破断面とはせん断変形終了後、刃先近傍から発生したき裂によって分離した打ち抜き端面の領域であり、バリとは熱延鋼板の下面からはみ出した突起を有する面である。
 観察写真において、熱延鋼板のせん断面に平行且つバリの開始点Aを通る直線(図1の直線1)を引いた。さらに、直線1と平行であり、且つ破断面の凹部において、直線1との距離が最大である点Bを通る直線2-1、および、直線1と平行であり、且つ破断面の凸部において、直線1との距離が最大である点Cを通る直線2-1を引いた。直線2-1と直線2-2との間の距離の半分の値(図1のdの半分の値)を破断面の凹凸の大きさと定義した。5個の打ち抜き穴から得られた10か所の端面について破断面の凹凸の大きさを測定し、破断面の凹凸の大きさの最大値が3.0μm以下であれば、せん断加工性に優れるとして合格と判定した。一方、破断面の凹凸の大きさの最大値が3.0μm超であれば、せん断加工性に劣るとして不合格と判定した。
(3)耐曲げ内割れ性
 曲げ試験片は、熱延鋼板の板幅方向1/2位置から、100mm×30mmの短冊形状の試験片を切り出し、以下の曲げ試験により耐曲げ内割れ性を評価した。
 曲げ稜線が圧延方向(L方向)に平行である曲げ(L軸曲げ)と、曲げ稜線が圧延方向に垂直な方向(C方向)に平行である曲げ(C軸曲げ)の両者について、JIS Z 2248:2014(Vブロック90°曲げ試験)に準拠して耐曲げ内割れ性を調査し、亀裂の発生しない最小曲げ半径を求め、L軸およびC軸の最小曲げ半径の平均値Rを板厚tで除した値を限界曲げR/tとして曲げ性の指標値とした。R/t≦3.0であった場合、耐曲げ内割れ性に優れた熱延鋼板であると判断した。
 ただし、亀裂の有無は、Vブロック90°曲げ試験後の試験片を曲げ方向と平行でかつ板面に垂直な面で切断した断面を鏡面研磨後、光学顕微鏡で亀裂を観察し、試験片の曲げ内側に観察される亀裂長さが30μmを超える場合に亀裂有と判断した。
 得られた測定結果を表4Aおよび表4Bに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4Aおよび表4Bから分かるように、本発明例である製造No.1、2、6および11~23において、優れた強度、穴広げ性およびせん断加工性を有する熱延鋼板が得られた。更に、表層の平均粒径が3.0μm未満である製造No.1、2、12~19および21~23において、上記諸特性を有した上で更に、耐曲げ内割れ性に優れた熱延鋼板が得られた。
 一方、化学組成、金属組織が本発明で規定する範囲内でない製造No.3~5、7~10および24~27は、特性(引張強さTS、穴広げ率λ、せん断加工性)のうちいずれか一つ以上が劣った。
 本発明に係る上記態様によれば、優れた強度、穴広げ性およびせん断加工性を有する熱延鋼板を提供することができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.040~0.250%、
    Si:0.05~3.00%、
    Mn:0.50~4.00%、
    sol.Al:0.001~2.000%、
    P:0.100%以下、
    S:0.0300%以下、
    N:0.1000%以下、
    O:0.0100%以下、
    Ti:0~0.300%、
    Nb:0~0.100%、
    V:0~0.500%、
    Cu:0~2.00%、
    Cr:0~2.00%、
    Mo:0~1.00%、
    Ni:0~2.00%、
    B:0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.020%、
    Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
    Sn:0~0.050%を含有し、
     残部がFeおよび不純物からなり、
     金属組織が、面積%で、
      マルテンサイトおよび焼き戻しマルテンサイトが合計で92.0%超、100.0%以下であり、
      残留オーステナイトが3.0%未満であり、
      フェライトが5.0%未満であり、
      <110>方向を軸として、結晶方位差が60°である粒界の長さの密度S60と、結晶方位差が7°である粒界の長さの密度Sとの比であるS60/Sが0.34超、0.60未満であり、
      Mn濃度の標準偏差が0.60質量%以下であり、
     引張強さが980MPa以上であることを特徴とする熱延鋼板。
  2.  表層の平均結晶粒径が3.0μm未満であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Ti:0.005~0.300%、
    Nb:0.005~0.100%、
    V:0.005~0.500%、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.01~1.00%、
    Ni:0.02~2.00%、
    B:0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、および
    Bi:0.0005~0.020%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2020/046322 2020-01-27 2020-12-11 熱延鋼板 WO2021153036A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2022008544A MX2022008544A (es) 2020-01-27 2020-12-11 Lamina de acero laminada en caliente.
EP20916444.1A EP4098762B1 (en) 2020-01-27 2020-12-11 Hot-rolled steel sheet
US17/790,645 US20230047602A1 (en) 2020-01-27 2020-12-11 Hot-rolled steel sheet
JP2021574510A JP7260824B2 (ja) 2020-01-27 2020-12-11 熱延鋼板
CN202080093028.8A CN114929915B (zh) 2020-01-27 2020-12-11 热轧钢板
KR1020227023219A KR20220110823A (ko) 2020-01-27 2020-12-11 열연 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010945 2020-01-27
JP2020010945 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153036A1 true WO2021153036A1 (ja) 2021-08-05

Family

ID=77078501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046322 WO2021153036A1 (ja) 2020-01-27 2020-12-11 熱延鋼板

Country Status (7)

Country Link
US (1) US20230047602A1 (ja)
EP (1) EP4098762B1 (ja)
JP (1) JP7260824B2 (ja)
KR (1) KR20220110823A (ja)
CN (1) CN114929915B (ja)
MX (1) MX2022008544A (ja)
WO (1) WO2021153036A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2012251200A (ja) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2015124410A (ja) 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2020010945A (ja) 2018-07-20 2020-01-23 株式会社トミーテック 鉄道模型用サウンドユニットおよび鉄道模型車両
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5533729B2 (ja) * 2011-02-22 2014-06-25 新日鐵住金株式会社 局部変形能に優れ、成形性の方位依存性の少ない延性に優れた高強度熱延鋼板及びその製造方法
TWI460290B (zh) * 2011-03-18 2014-11-11 Nippon Steel & Sumitomo Metal Corp 熱軋鋼板及其製造方法
JP2014043629A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal 熱延鋼板
WO2016010005A1 (ja) * 2014-07-14 2016-01-21 新日鐵住金株式会社 熱延鋼板
JP6696209B2 (ja) * 2016-02-18 2020-05-20 日本製鉄株式会社 高強度鋼板の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2012251200A (ja) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2015124410A (ja) 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2020010945A (ja) 2018-07-20 2020-01-23 株式会社トミーテック 鉄道模型用サウンドユニットおよび鉄道模型車両
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
EP4098762A1 (en) 2022-12-07
MX2022008544A (es) 2022-08-10
US20230047602A1 (en) 2023-02-16
CN114929915A (zh) 2022-08-19
JP7260824B2 (ja) 2023-04-19
EP4098762A4 (en) 2022-12-07
EP4098762B1 (en) 2023-10-11
KR20220110823A (ko) 2022-08-09
CN114929915B (zh) 2023-10-27
JPWO2021153036A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2021065346A1 (ja) 熱延鋼板
JP6784343B1 (ja) 熱延鋼板
JP6784344B1 (ja) 熱延鋼板
WO2022044493A1 (ja) 熱延鋼板
KR20240042470A (ko) 열간 압연 강판
WO2021153037A1 (ja) 熱延鋼板
WO2021182395A1 (ja) 熱延鋼板
WO2022044495A1 (ja) 熱延鋼板
WO2021153036A1 (ja) 熱延鋼板
WO2022044492A1 (ja) 熱延鋼板
WO2022044494A1 (ja) 熱延鋼板
WO2023063014A1 (ja) 熱間圧延鋼板
US20240209470A1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574510

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023219

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020916444

Country of ref document: EP

Effective date: 20220829