WO2021182395A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2021182395A1
WO2021182395A1 PCT/JP2021/008987 JP2021008987W WO2021182395A1 WO 2021182395 A1 WO2021182395 A1 WO 2021182395A1 JP 2021008987 W JP2021008987 W JP 2021008987W WO 2021182395 A1 WO2021182395 A1 WO 2021182395A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
content
Prior art date
Application number
PCT/JP2021/008987
Other languages
English (en)
French (fr)
Inventor
睦海 榊原
洋志 首藤
和政 筒井
林 宏太郎
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022507178A priority Critical patent/JP7348574B2/ja
Priority to EP21767294.8A priority patent/EP4119689A1/en
Priority to CN202180019541.7A priority patent/CN115244203B/zh
Priority to KR1020227030455A priority patent/KR20220134776A/ko
Priority to MX2022011055A priority patent/MX2022011055A/es
Priority to US17/907,883 priority patent/US20230133134A1/en
Publication of WO2021182395A1 publication Critical patent/WO2021182395A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a hot-rolled steel sheet. Specifically, the present invention relates to a hot-rolled steel sheet that is formed into various shapes by press working or the like and is used, and in particular, a hot-rolled steel sheet that has high strength and is excellent in ductility and shearing workability.
  • the present application claims priority based on Japanese Patent Application No. 2020-041524 filed in Japan on March 11, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes high strength for automobiles having excellent collision resistance and moldability, in which retained austenite having an average crystal particle size of 5 ⁇ m or less is dispersed in ferrite having an average crystal particle size of 10 ⁇ m or less.
  • Steel plates are disclosed.
  • austenite undergoes martensitic transformation during processing and exhibits a large elongation due to transformation-induced plasticity, but the formation of hard martensite impairs hole expansion.
  • Patent Document 1 discloses that not only ductility but also hole expansion property is improved by miniaturizing ferrite and retained austenite.
  • Patent Document 2 discloses a high-strength steel plate having excellent elongation and stretch flangeability and a tensile strength of 980 MPa or more, in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains. There is.
  • Patent Document 4 discloses a technique for improving peeling and creases on the end face of a plate by reducing the content of P.
  • Patent Documents 1 to 4 are all techniques for improving either ductility or end face properties after shearing. However, Patent Documents 1 to 3 do not mention a technique for achieving both of these characteristics. Patent Document 4 refers to both shearing workability and press moldability. However, since the strength of the steel sheet disclosed in Patent Document 4 is less than 850 MPa, it may be difficult to apply it to a member having a high strength of 980 MPa or more.
  • the load required for post-treatment such as coining after shearing becomes large, so it is desired to control the height difference of the end face after shearing with particularly high accuracy. ..
  • stress may be concentrated on the significantly damaged part, which may cause a decrease in moldability.
  • the present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent ductility and shearing workability. It is an object of the present invention to more preferably provide a hot-rolled steel sheet having the above-mentioned characteristics and further excellent in workability of the end face after shearing.
  • the present inventors have conducted extensive research on the chemical composition of hot-rolled steel sheets and the relationship between the metallographic structure and mechanical properties. As a result, the present invention was completed by obtaining the following findings (a) to (i).
  • having excellent shearing workability means that the height difference of the end face after shearing is small. Further, having excellent strength or high strength means that the tensile strength is 980 MPa or more. Further, excellent workability of the end face after shearing means that the variation in hardness of the end face after shearing in the plate thickness direction is small.
  • the matrix structure of the metal structure is preferably hard. That is, it is preferable that the soft structure fraction such as ferrite is as small as possible.
  • a hard structure is generally formed in a phase transformation of 600 ° C. or lower, but in this temperature range, the grain boundary and the crystal orientation difference of which the crystal orientation difference is 52 ° with respect to the ⁇ 110> direction are 7 A large number of grain boundaries at ° are formed.
  • the gist of the present invention made based on the above findings is as follows.
  • (1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%. C: 0.100 to 0.250%, Si: 0.05-2.00%, Mn: 1.00 to 4.00%, sol.
  • the rest consists of Fe and impurities
  • the metal structure is Area%, ferrite less than 15.0%, retained austenite less than 3.0%, With the ⁇ 110> direction as the axis, L 52 / L 7 is the ratio of the grain boundary length L 52 having a crystal orientation difference of 52 ° to the grain boundary length L 7 having a crystal orientation difference of 7 °. It is 0.10 to 0.18, and the standard deviation of the Mn concentration is 0.60% by mass or less. It is characterized in that the tensile strength is 980 MPa or more.
  • the hot-rolled steel sheet according to (1) above has the above-mentioned metal structure. The area% is 10.0% or less of the ferrite, and the ferrite is 10.0% or less.
  • the standard deviation of Vickers hardness may be 20 HV 0.01 or less.
  • (3) The hot-rolled steel sheet according to (1) or (2) above has a chemical composition of% by mass. Ti: 0.005 to 0.300%, Nb: 0.005 to 0.100%, V: 0.005 to 0.500%, Cu: 0.01-2.00%, Cr: 0.01-2.00%, Mo: 0.01-1.00%, Ni: 0.02-2.00%, B: 0.0001 to 0.0100%, Ca: 0.0005-0.0200%, Mg: 0.0005-0.0200%, REM: 0.0005 to 0.1000%, and Bi: 0.0005 to 0.020% It may contain one or more selected from the group consisting of.
  • a hot-rolled steel sheet having excellent strength, ductility and shear workability can be obtained. Further, according to the above-mentioned preferable aspect according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned various characteristics and further excellent in workability of the end face after shearing.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.
  • the hot-rolled steel sheet according to the present embodiment has a mass% of C: 0.100 to 0.250%, Si: 0.05 to 2.00%, Mn: 1.00 to 4.00%, sol. .. Al: 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, and the balance: Fe and impurities including.
  • C 0.100 to 0.250% C increases the fraction of the hard phase. If the C content is less than 0.100%, it becomes difficult to obtain the desired strength. Therefore, the C content is set to 0.100% or more.
  • the C content is preferably 0.120% or more, more preferably 0.150% or more.
  • the C content exceeds 0.250%, the transformation rate becomes slow and MA is easily generated, it becomes difficult to obtain a structure having uniform strength, and the height difference of the end face after shearing becomes large. .. Therefore, the C content is set to 0.250% or less.
  • the C content is preferably 0.220% or less.
  • Si 0.05 to 2.00% Si has the effect of delaying the precipitation of cementite. By this action, it is possible to maintain a large amount of solid solution C in the hard phase and prevent coarsening of cementite, and as a result, the strength of the steel sheet can be increased.
  • Si itself has the effect of increasing the strength of the steel sheet by strengthening the solid solution.
  • Si has an action of making the steel sound by deoxidation (suppressing the occurrence of defects such as blow holes in the steel). If the Si content is less than 0.05%, the effect of the above action cannot be obtained. Therefore, the Si content is set to 0.05% or more.
  • the Si content is preferably 0.50% or more and 0.80% or more.
  • the Si content exceeds 2.00%, the precipitation of cementite is significantly delayed, and the surface integral of retained austenite increases to 3.0% or more, which is not preferable. Further, the Si content is 2.00% greater than the surface texture and chemical conversion treatability of the steel sheet, and further with ductility and weldability is significantly degraded, A 3 transformation point increases significantly. This may make it difficult to perform hot rolling in a stable manner. Therefore, the Si content is set to 2.00% or less. The Si content is preferably 1.70% or less and 1.50% or less.
  • Mn 1.00 to 4.00% Mn has the effect of suppressing ferrite transformation and increasing the strength of the steel sheet. If the Mn content is less than 1.00%, a tensile strength of 980 MPa or more cannot be obtained. Therefore, the Mn content is set to 1.00% or more.
  • the Mn content is preferably 1.50% or more, more preferably 1.80% or more.
  • the Mn content exceeds 4.00%, the angle difference of the crystal grains in the hard phase becomes non-uniform due to the segregation of Mn, and the height difference of the end face after shearing becomes large. Therefore, the Mn content is set to 4.00% or less.
  • the Mn content is preferably 3.70% or less and 3.50% or less.
  • sol. Al 0.001 to 2.000% Al, like Si, has the effect of delaying the precipitation of cementite. By this action, it is possible to maintain a large amount of solid solution C in the hard phase and prevent coarsening of cementite, and as a result, the strength of the steel sheet can be increased. It also has the effect of deoxidizing the steel and making the steel sheet sound. sol. If the Al content is less than 0.001%, the effect of the above action cannot be obtained. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.010% or more. On the other hand, sol.
  • the Al content is 2.000% or less.
  • the Al content is preferably 1.500% or less and 1.300% or less.
  • sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • P 0.100% or less
  • P is an element generally contained as an impurity, but it is also an element having an effect of increasing the strength by strengthening the solid solution. Therefore, P may be positively contained, but P is also an element that is easily segregated.
  • the P content exceeds 0.100%, the decrease in ductility due to the segregation of grain boundaries becomes remarkable. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content does not need to be specified, but it is preferably 0.001% or more from the viewpoint of refining cost.
  • S 0.0300% or less
  • S is an element contained as an impurity and forms sulfide-based inclusions in the steel to reduce the ductility of the hot-rolled steel sheet.
  • the S content exceeds 0.0300%, the ductility of the steel sheet is significantly reduced. Therefore, the S content is 0.0300% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content does not need to be specified, but it is preferably 0.0001% or more from the viewpoint of refining cost.
  • N 0.1000% or less
  • N is an element contained in steel as an impurity and has an effect of reducing the ductility of the steel sheet. If the N content exceeds 0.1000%, the ductility of the steel sheet is significantly reduced. Therefore, the N content is set to 0.1000% or less.
  • the N content is preferably 0.0800% or less, and more preferably 0.0700% or less.
  • the lower limit of the N content does not need to be specified in particular, but as will be described later, when one or more of Ti, Nb and V are contained to refine the metal structure, the precipitation of carbonitride
  • the N content is preferably 0.0010% or more, and more preferably 0.0020% or more in order to promote the above.
  • O 0.0100% or less
  • O forms a coarse oxide that becomes a starting point of fracture when it is contained in a large amount in steel, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less.
  • the O content is preferably 0.0080% or less and 0.0050% or less.
  • the O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides when the molten steel is deoxidized.
  • the rest of the chemical composition of the hot-rolled steel sheet according to this embodiment consists of Fe and impurities.
  • the impurities are those mixed from ore, scrap, manufacturing environment, etc. as raw materials, or those intentionally added, which adversely affect the hot-rolled steel sheet according to the present embodiment. Means something that is acceptable to the extent that it does not exist.
  • the hot-rolled steel sheet according to the present embodiment may optionally contain Ti, Nb, V, Cu, Cr, Mo, Ni, B, Ca, Mg, REM, Bi, Zr, Co, Zn, W and Sn. It may be contained as an element. When the above optional element is not contained, the lower limit of the content is 0%.
  • the above optional elements will be described in detail.
  • Ti 0.005 to 0.300%
  • Nb 0.005 to 0.100%
  • V 0.005 to 0.500% Since Ti, Nb and V all precipitate as carbides or nitrides in steel and have an action of refining the metal structure by a pinning effect, one or more of these elements are contained. May be good. In order to obtain the effect of the above action more reliably, the Ti content should be 0.005% or more, the Nb content should be 0.005% or more, or the V content should be 0.005% or more. It is preferable to do so. However, even if these elements are excessively contained, the effect of the above action is saturated and it is economically unfavorable. Therefore, the Ti content is 0.300% or less, the Nb content is 0.100% or less, and the V content is 0.500% or less.
  • the Cu has the effect of enhancing the hardenability of the steel sheet and the effect of precipitating it as carbide in the steel at low temperature to increase the strength of the steel sheet.
  • the Cu content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cu content is set to 2.00% or less.
  • the Cu content is preferably 1.50% or less and 1.00% or less.
  • the Cr content is preferably 0.01% or more and 0.05% or more.
  • the Cr content is set to 2.00% or less.
  • Mo has an action of enhancing the hardenability of the steel sheet and an action of precipitating carbides in the steel to increase the strength.
  • the Mo content is preferably 0.01% or more and 0.02% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content is preferably 0.50% or less and 0.20% or less.
  • Ni has the effect of enhancing the hardenability of the steel sheet. Further, when Ni contains Cu, it has an effect of effectively suppressing the grain boundary cracking of the slab caused by Cu. In order to obtain the effect of the above action more reliably, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically unfavorable to contain it in a large amount. Therefore, the Ni content is set to 2.00% or less.
  • B has an effect of enhancing the hardenability of the steel sheet.
  • the B content is preferably 0.0001% or more and 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca, Mg and REM all have an effect of improving the formability of the steel sheet by adjusting the shape of the inclusions to a preferable shape.
  • Bi has an effect of improving the formability of the steel sheet by miniaturizing the solidified structure. Therefore, one or more of these elements may be contained. In order to obtain the effect of the above action more reliably, it is preferable that any one or more of Ca, Mg, REM and Bi is 0.0005% or more.
  • the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, which in turn reduces the ductility of the steel sheet. There is. Further, even if the Bi content exceeds 0.020%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content are 0.0200% or less, the REM content is 0.1000% or less, and the Bi content is 0.020% or less.
  • the Bi content is preferably 0.010% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of REM refers to the total content of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • the chemical composition of the hot-rolled steel sheet described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • O may be measured using the Inactive Gas Melting-Non-Dispersive Infrared Absorption Method.
  • the metal structure of the hot-rolled steel sheet according to the present embodiment will be described.
  • the metal structure is area%, ferrite is less than 15.0%, retained austenite is less than 3.0%, and the crystal orientation difference is about the ⁇ 110> direction as an axis. and grain boundary length L 52 but is 52 °, L 52 / L 7 crystal orientation differences is the ratio of the grain boundary length L 7 is 7 ° is 0.10 to 0.18
  • the standard deviation of the Mn concentration is 0.60 mass% or less. Therefore, the hot-rolled steel sheet according to the present embodiment can obtain excellent strength, ductility, and shear workability.
  • the metal structure of the cross section parallel to the rolling direction at the position of 1/4 of the plate thickness from the surface and the center position in the plate width direction is defined.
  • the reason is that the metallographic structure at this position represents a typical metallographic structure of the steel sheet.
  • the "1/4 position" of the plate thickness is an observation position for specifying the metal structure, and is not strictly limited to the 1/4 depth.
  • the metal structure obtained by observing somewhere in the range of 1/8 to 3/8 depth of the plate thickness can be regarded as the metal structure at the 1/4 position.
  • Ferrite is a structure formed when fcc is transformed into bcc at a relatively high temperature. Since ferrite has low strength, if the surface integral of ferrite is excessive, the desired tensile strength cannot be obtained. Further, if the surface integral of ferrite is excessive, the standard deviation of Vickers hardness becomes high. Therefore, the surface integral of ferrite is set to less than 15.0%. It is preferably 10.0% or less, more preferably less than 5.0%. By setting the area ratio of ferrite to 10.0% or less and controlling the standard deviation of Vickers hardness as described later, the workability of the end face of the hot-rolled steel sheet after shearing can be improved. Since the smaller the amount of ferrite, the more preferable it is, the surface integral of ferrite may be 0%.
  • the surface integral of ferrite is measured by the following method.
  • the cross section perpendicular to the rolling direction is mirror-finished, and the strain introduced into the surface layer of the sample is removed by polishing at room temperature with colloidal silica containing no alkaline solution for 8 minutes.
  • Crystal orientation information is obtained by measuring by diffraction method.
  • an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10-5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62.
  • the obtained crystal orientation information is used to ferrite the region where the Grain Average Simulation value is 1.0 ° or less. Is determined.
  • the surface integral of ferrite is obtained by obtaining the surface integral of the region determined to be ferrite.
  • Residual austenite is a metal structure that exists as a face-centered cubic lattice even at room temperature. Residual austenite has the effect of increasing the ductility of hot-rolled steel sheets due to transformation-induced plasticity (TRIP). On the other hand, retained austenite transforms into high-carbon martensite (hereinafter, also referred to as high-carbon martensite) during shearing, so it has the effect of inhibiting stable crack generation and damages the sheared end face. It also causes localization.
  • high-carbon martensite hereinafter, also referred to as high-carbon martensite
  • Damage due to shearing occurs in a distributed manner on the machined surface, and depending on the degree of damage, there are parts where austenite transforms into high-carbon martensite and parts where it does not.
  • the generated hard high carbon martensite acts to promote the damage, further enhancing the localization of the damage on the sheared end face.
  • the surface integral of retained austenite is 3.0% or more, the above action becomes apparent and the workability of the sheared end face of the hot-rolled steel sheet deteriorates. Therefore, the surface integral of retained austenite is less than 3.0%.
  • the surface integral of retained austenite is preferably less than 1.0%. Since the smaller the retained austenite, the more preferable it is, the surface integral of the retained austenite may be 0%.
  • Methods for measuring the area fraction of retained austenite include X-ray diffraction, EBSP (Electron Backscattering Diffraction Pattern) analysis, and magnetic measurement methods, and the measured values may differ depending on the measurement method. ..
  • the surface integral of retained austenite is measured by X-ray diffraction.
  • Co-K ⁇ rays are used in the cross section parallel to the rolling direction at the 1/4 position of the plate thickness of the steel plate and the center position in the plate width direction.
  • the hot-rolled steel sheet according to this embodiment has a metal structure other than ferrite and retained austenite.
  • the low temperature structure in the present embodiment is a structure composed of martensite, bainite and autotemper martensite having a total area fraction of more than 82.0% and less than 100.0%. If the total surface integral of bainite, martensite and autotemper martensite is 82.0% or less, the desired strength may not be obtained. Therefore, the total surface integral of bainite and martensite is preferably more than 82.0%. More preferably, it is 85.0% or more. The larger the total surface integral of bainite, martensite and autotemper martensite, the more preferable, so it may be 100.0%.
  • the low temperature structure contains one of bainite, martensite and autotemper martensite, and the area fraction thereof may be more than 82.0% and 100.0% or less, and bainite, martensite and the like. Two or more kinds of autotemper martensite may be contained, and the total area fraction thereof may be more than 82.0% and less than 100.0%.
  • the metal structure of the hot-rolled steel sheet according to the present embodiment has an area% of less than 15.0% of ferrite and less than 3.0% of retained austenite, and the residual structure includes the above-mentioned low temperature structure. That is, since the metallographic structure other than ferrite and retained austenite is a low-temperature structure consisting of one or more of bainite, martensite and autotemper martensite, the area of ferrite and retained austenite can be increased from 100.0%. It may be obtained by subtracting the total rate.
  • the method for measuring the area fraction of the low temperature structure may be carried out by the following method using a thermal field emission scanning electron microscope.
  • the area ratio of martensite in the low temperature structure can be obtained by the following procedure.
  • the cross section parallel to the rolling direction at the 1/4 position of the plate thickness of the steel plate and the center position in the plate width direction is used as the observation surface, and this observation surface is etched with the repera liquid.
  • the observation surface shall be a sheet thickness cross section parallel to the rolling direction of the steel sheet.
  • a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) covers a region of 100 ⁇ m ⁇ 100 ⁇ m in the observation surface within a range of 1/8 to 3/8 of the plate thickness centered on 1/4 of the plate thickness. Observe the obtained secondary electron image.
  • the area ratio of the uncorroded region can be regarded as the total area ratio of martensite and retained austenite.
  • the area ratio of martensite can be calculated by subtracting the area ratio of retained austenite measured by the above method from the area ratio of this uncorroded region.
  • the area ratios of bainite and autotempered martensite among the low-temperature structures were observed with a thermal electric field radiation scanning electron microscope (JSM-7001F manufactured by JEOL) in the same manner as the above-mentioned method for measuring the area fraction of martensite. , Can be determined from the obtained secondary electron image. Polishing and night-game etching are performed on the observation surface, and a region of 100 ⁇ m ⁇ 100 ⁇ m within the range of 1/8 to 3/8 of the plate thickness centered on the plate thickness of 1/4 is observed on the observation surface. By leaving a plurality of indentations around the region observed by the above-mentioned repeller corrosion, the same region as the region observed by the repeller corrosion can be confirmed.
  • Autotemper martensite is a collection of lath-shaped crystal grains, and is a structure in which iron carbide has two or more elongation directions.
  • bainite is also an aggregate of lath-shaped crystal grains, but bainite does not contain iron-based carbides with a major axis of 20 nm or more inside, or contains iron-based carbides with a major axis of 20 nm or more inside, and the carbides are contained.
  • a single variant i.e., a structure in which the iron-based carbides have one elongation direction.
  • Autotemper martensite can be distinguished from bainite in that cementite within the tissue has multiple variants.
  • the area fraction of bainite, martensite, and autotemper martensite, which are low-temperature tissues, may be obtained by the method using the thermal field emission scanning electron microscope described above.
  • the metal structure of the hot-rolled steel sheet according to the present embodiment contains less than 15.0% ferrite and less than 3.0% retained austenite, and the remaining structure is substantially derived from the low temperature structure.
  • pearlite may be included.
  • Pearlite is a lamellar metal structure in which cementite is deposited in layers between ferrites, and is a soft metal structure as compared with bainite and martensite. Since pearlite has low strength and also has a structure that reduces ductility, it is preferable that pearlite is not included in the hot-rolled steel sheet according to the present embodiment.
  • the area% is preferably 5% or less from the viewpoint of ensuring strength and ductility. More preferably, it is 3% or less. Since the smaller the amount of pearlite, the more preferable it is, the area fraction of pearlite may be 0%.
  • the surface integral of pearlite can be measured by the following method. Metal in a plate thickness cross section parallel to the rolling direction from a steel plate at a depth of 1/4 of the plate thickness from the surface (a region of 1/8 depth from the surface to the plate thickness to 3/8 depth from the surface to the plate thickness). Collect the test piece so that the tissue can be observed. Next, after polishing the plate thickness cross section, the polished surface is nital-corroded, and at least three regions of 30 ⁇ m ⁇ 30 ⁇ m are observed for structure using an optical microscope and a scanning electron microscope (SEM). The area ratio of pearlite is obtained by performing image analysis on the tissue photograph obtained by this tissue observation.
  • SEM scanning electron microscope
  • the above-mentioned surface integral measurement of ferrite is performed on the crystal grains excluding the crystal grains determined to be pearlite. Specifically, the obtained crystal orientation information is used to obtain a Grain Average Misoriation value of 1.0 ° by using the "Grain Average Simulation" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. The following regions are determined to be ferrite. The surface integral of ferrite is obtained by obtaining the surface integral of the region determined to be ferrite.
  • Dislocations are less likely to accumulate in the hard phase during the formation of grain boundaries with a crystal orientation difference of 7 ° about the ⁇ 110> direction. Therefore, in such a metal structure having a high density of grain boundaries and uniformly dispersed (that is, the total length of the grain boundaries as described above is large), introduction of dislocations into the metal structure by shearing is performed. Is easy and the deformation of the material during shearing is promoted. As a result, the height difference of the end face after shearing is suppressed.
  • L 52 / L 7 is set to 0.10 to 0.18.
  • L 52 / L 7 is preferably 0.12 or more and 0.13 or more. Further, L 52 / L 7 is preferably 0.16 or less and 0.15 or less.
  • the grain boundary having a crystal orientation difference of X ° about the ⁇ 110> direction is one crystal grain when two adjacent crystal grains (crystal grain A and crystal grain B) are specified at a certain grain boundary.
  • an orientation difference of ⁇ 4 ° is allowed from the matching orientation relation.
  • the length L 52 and the crystal orientation difference of grain boundary misorientation is 52 ° is 7 ° grain boundary length L 7 of the EBSP-OIM (Electron It is measured using the Back Scatter Diffraction Pattern-Orientation Image Microscopy) method.
  • a highly inclined sample is irradiated with an electron beam in a scanning electron microscope (SEM), and the Kikuchi pattern formed by backscattering is photographed with a high-sensitivity camera.
  • SEM scanning electron microscope
  • the crystal orientation of the irradiation point can be measured in a short waiting time by performing image processing on the obtained photographed photograph with a computer.
  • the EBSP-OIM method is performed using an EBSD analyzer that combines a scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector, and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • JSM-7001F manufactured by JEOL
  • OIM Analysis registered trademark
  • the analyzable area of the EBSP-OIM method is an area that can be observed by SEM. Although it depends on the resolution of the SEM, according to the EBSP-OIM method, analysis can be performed with a minimum resolution of 20 nm.
  • L 52 of this embodiment is calculated by the following method.
  • the length of the grain boundary having a crystal orientation difference of 52 ° with respect to the ⁇ 110> direction is measured at a position 1/4 of the plate thickness from the surface of the steel plate and a center position in the plate width direction in the cross section parallel to the rolling direction. do.
  • analysis was performed in at least 5 fields of view in a region of 1200 times magnification and 40 ⁇ m ⁇ 30 ⁇ m, and the average value of the lengths of grain boundaries having a crystal orientation difference of 52 ° around the ⁇ 110> direction was calculated. By calculating, L 52 is obtained.
  • L 7 is obtained by calculating the average value of the lengths of the grain boundaries having a crystal orientation difference of 7 ° with the ⁇ 110> direction as the axis.
  • an directional difference of ⁇ 4 ° is allowed.
  • ferrite is a soft phase and has a small effect on the dislocation accumulation effect inside the hard phase
  • retained austenite is not a structure formed by phase transformation at 600 ° C. or lower and has no dislocation accumulation effect. Therefore, in this measurement method, ferrite and retained austenite are not included in the analysis. Ferrite can be specified and excluded from the analysis target by the same method as the method for measuring the surface integral of ferrite. In the EBSP-OIM method, retained austenite having a crystal structure of fcc can be excluded from the analysis target.
  • Standard deviation of Mn concentration 0.60% by mass or less
  • the standard deviation of Mn concentration at the 1/4 position of the plate thickness and the center position in the plate width direction from the surface of the hot-rolled steel sheet according to the present embodiment is 0. It is 60% by mass or less.
  • the standard deviation of the Mn concentration is preferably 0.55% by mass or less, 0.50% by mass or less, and 0.40% by mass or less. From the viewpoint of suppressing the unevenness of the end face after shearing, the smaller the standard deviation of the Mn concentration is, the more desirable it is.
  • the practical lower limit of the standard deviation of the Mn concentration may be 0.10% by mass or more.
  • the standard deviation of the Mn concentration of this embodiment is calculated by the following method. After mirror-polishing the L cross section (cross section parallel to the rolling direction) of the hot-rolled steel sheet, measure the 1/4 position of the sheet thickness and the center position in the plate width direction from the surface of the steel sheet with an electron probe microanalyzer (EPMA). The standard deviation of the Mn concentration is measured.
  • the measurement conditions are an acceleration voltage of 15 kV and a magnification of 5000 times.
  • the measurement range is 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction, and the distribution image is measured. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40,000 or more points is measured.
  • the standard deviation is calculated based on the Mn concentration obtained from all the measurement points. As a result, the standard deviation of the Mn concentration is obtained.
  • the damage to the end face due to shearing occurs so as to have a distribution in the plate thickness direction, and the degree of damage is localized in a part in the plate thickness direction, that is, it is significantly damaged in a part in the plate thickness direction.
  • a portion that is significantly damaged becomes a source of cracks and leads to fracture.
  • the present inventors reduce the localization of damage in the plate thickness direction of the end face after shearing, and improve the workability of the end face after shearing. I found out to do. It is considered that this is because by making the structure of the hot-rolled steel sheet uniform, the formation of voids during shearing can be suppressed and the localization of damage can be reduced.
  • the standard deviation of the Vickers hardness distribution of the hot-rolled steel sheet is 20 HV 0.01 or less. More preferably, it is 18 HV 0.01 or less and 17 HV 0.01 or less.
  • the standard deviation of Vickers hardness is obtained by the following method. Among the plate thickness cross sections parallel to the rolling direction, the Vickers hardness is measured at equal intervals of 300 or more measurement points within the range of plate thickness ⁇ 1 mm in the metal structure at the center position in the plate width direction. The measured load is 10 gf. Based on the measurement result, the standard deviation of Vickers hardness (HV0.01) is calculated.
  • the hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited and the contribution of weight reduction of the vehicle body is small.
  • the upper limit is not particularly limited, but may be 1780 MPa from the viewpoint of suppressing mold wear.
  • the tensile strength is measured according to JIS Z 2241: 2011 using the No. 5 test piece of JIS Z 2241: 2011. The sampling position of the tensile test piece may be 1/4 from the end in the plate width direction, and the tensile test piece may be collected so that the direction perpendicular to the rolling direction is the longitudinal direction.
  • the plate thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 0.5 to 8.0 mm.
  • the thickness of the hot-rolled steel sheet according to the present embodiment may be 0.5 mm or more.
  • the plate thickness is 1.2 mm or more and 1.4 mm or more.
  • the plate thickness is 8.0 mm or less.
  • the plate thickness is 6.0 mm or less.
  • the hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure may be a surface-treated steel sheet provided with a plating layer on the surface for the purpose of improving corrosion resistance and the like.
  • the plating layer may be an electroplating layer or a hot-dip plating layer.
  • the electroplating layer include electrogalvanization and electroZn—Ni alloy plating.
  • the hot-dip plating layer include hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, hot-dip Zn-Al-Mg-Si alloy plating, and the like.
  • the amount of plating adhered is not particularly limited and may be the same as the conventional one. Further, the corrosion resistance can be further improved by subjecting an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • hot rolling is performed after heating the slab under predetermined conditions, acceleration cooling is performed to a predetermined temperature range after hot rolling, and winding. It is effective to control the cooling history after rolling.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • Hot rolling is performed in a temperature range of 850 to 1100 ° C. so that the total plate thickness is reduced by 90% or more.
  • Hot rolling is completed at a temperature T1 (° C.) or higher represented by the following formula ⁇ 1>.
  • Cooling is started within 1.5 seconds after the completion of hot rolling, and accelerated cooling is performed at an average cooling rate of 50 ° C./sec or more to a temperature T2 (° C.) or less represented by the following formula ⁇ 2>. ..
  • Winding is performed at a temperature T3 (° C.) or higher represented by the following formula ⁇ 3>.
  • the lower limit of the residence time after winding is the condition I (2000 at 450 ° C. or higher) in the predetermined temperature range of the end portion in the plate width direction and the center portion in the plate width direction of the hot-rolled steel sheet. Cool to satisfy any one or more of more than seconds, more than 8000 seconds at 400 ° C. or higher, and more than 30,000 seconds at 350 ° C. or higher). More preferably, the average cooling rate in the temperature range from the winding temperature to the winding temperature ⁇ 10 ° C. is 0.010 ° C./sec or less.
  • T1 (° C.) 868-396 x [C] -68.1 x [Mn] + 24.6 x [Si] -36.1 x [Ni] -24.8 x [Cr] -20.7 x [Cu] ] + 250 ⁇ [sol. Al] ... ⁇ 1>
  • T2 (° C.) 770-270 x [C] -90 x [Mn] -37 x [Ni] -70 x [Cr] -83 x [Mo] ... ⁇ 2>
  • T3 (° C.) 591-474 x [C] -33 x [Mn] -17 x [Ni] -17 x [Cr] -21 x [Mo] ... ⁇ 3>
  • the [element symbol] in each formula indicates the content (mass%) of each element in steel. If the element is not contained, 0 is substituted.
  • the slab to be subjected to hot rolling stays in the temperature range of 700 to 850 ° C. during heating for 900 seconds or more, and then the slab is further heated and held in the temperature range of 1100 ° C. or higher for 6000 seconds or more. ..
  • the temperature of the steel sheet may be changed in this temperature range or may be constant. Further, when the steel sheet is held in the temperature range of 1100 ° C. or higher, the temperature of the steel sheet may be changed at 1100 ° C. or higher, or may be constant.
  • Mn is distributed between ferrite and austenite, and the transformation time becomes longer, so that Mn can be diffused in the ferrite region.
  • the standard deviation of the Mn concentration can be significantly reduced.
  • Hot rolling reduction rate A total plate thickness reduction of 90% or more in the temperature range of 850 to 1100 ° C.
  • Roll As a result, the recrystallized austenite grains are mainly refined. Furthermore, by promoting the accumulation of strain energy in the unrecrystallized austenite grains, the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, and as a result, the standard deviation of the Mn concentration is reduced. Can be done. Therefore, it is effective to perform hot rolling so that the total plate thickness is reduced by 90% or more in the temperature range of 850 to 1100 ° C. That is, in the present embodiment, the suppression of the standard deviation of the Mn concentration cannot be sufficiently achieved only by precise control of slab heating, but can be achieved by controlling the rolling reduction rate of hot rolling so as to be within the above range. ..
  • the plate thickness reduction in the temperature range of 850 to 1100 ° C. means that the inlet plate thickness before the first pass in rolling in this temperature range is t 0, and the outlet plate thickness after the final pass in rolling in this temperature range is t. When it is 1 , it can be expressed as (t 0 ⁇ t 1 ) / t 0 ⁇ 100 (%).
  • Hot rolling completion temperature T1 (° C.) or higher
  • the hot rolling completion temperature is preferably T1 (° C.) or higher.
  • the formation of ferrite and pearlite can be suppressed by accelerating cooling to T2 (° C) or lower at an average cooling rate of 50 ° C./sec or higher within 1.5 seconds after the completion of hot rolling. This improves the strength of the steel sheet.
  • the average cooling rate here refers to the range of temperature drop of the steel sheet from the start of accelerated cooling (when the steel sheet is introduced into the cooling equipment) to the completion of accelerated cooling (when the steel sheet is taken out from the cooling equipment). The value divided by the time required from the start to the completion of accelerated cooling.
  • the time until the start of cooling is set to 1.5 seconds or less, the average cooling rate is set to 50 ° C / sec or more, and the cooling stop temperature is set to T2 (° C) or less. Ferrite transformation and / or pearlite transformation can be suppressed, and TS ⁇ 980 MPa can be obtained. Therefore, within 1.5 seconds after the completion of hot rolling, accelerated cooling is performed to T2 (° C.) or lower at an average cooling rate of 50 ° C./sec or higher.
  • the upper limit of the average cooling rate is not specified, but if the cooling rate is increased, the cooling equipment becomes large and the equipment cost increases.
  • the average cooling rate is preferably 300 ° C./sec or less, more preferably less than 200 ° C./sec, and even more preferably 150 ° C./sec or less. stomach.
  • the cooling shutdown temperature of accelerated cooling is preferably T3 (° C.) or higher.
  • Average cooling rate from cooling stop temperature to take-up temperature of accelerated cooling 10 ° C / sec or more Cooling stop of accelerated cooling to suppress the area fraction of pearlite and obtain tensile strength of 980 MPa or more.
  • the average cooling rate from the temperature to the winding temperature is 10 ° C./sec or more.
  • the average cooling rate here means the value obtained by dividing the temperature drop width of the steel sheet from the cooling stop temperature of accelerated cooling to the winding temperature by the time required from the stopping of accelerated cooling to winding. ..
  • the average cooling rate from the cooling stop temperature of accelerated cooling to the winding temperature is set to 10 ° C./sec or more.
  • the winding temperature shall be T3 (° C.) or higher.
  • T3 (° C.) or higher the transformation driving force from austenite to bcc can be reduced, and the deformation strength of austenite can be reduced. Therefore, at the time of bainite and martensitic transformation, the length L 52 of the grain boundary where the crystal orientation difference is 52 ° with respect to the ⁇ 110> direction is reduced, and the crystal orientation difference is 7 with respect to the ⁇ 110> direction.
  • the grain boundary length L 7 at ° can be increased to bring L 52 / L 7 to 0.18 or less. As a result, the height difference of the end face after shearing can be reduced. Therefore, the winding temperature is set to T3 (° C.) or higher.
  • Cooling after winding Cooling condition I: Over 2000 seconds at 450 ° C. or higher, 400 so that the lower limit of the residence time satisfies the following condition I in a predetermined temperature range after winding the hot-rolled steel sheet.
  • Cooling condition I Over 2000 seconds at 450 ° C. or higher, 400 so that the lower limit of the residence time satisfies the following condition I in a predetermined temperature range after winding the hot-rolled steel sheet.
  • the lower limit of the residence time in a predetermined temperature range is cooled so as to satisfy the condition I, that is, more than 2000 seconds at 450 ° C. or higher, more than 8000 seconds at 400 ° C. or higher, or 30,000 seconds at 350 ° C. or higher.
  • the transformation proceeds sufficiently.
  • the austenite may stabilize and the transformation may stay, but if this residence time is satisfied, the transformation resumes and the surface integral of the retained austenite can be reduced.
  • the surface integral of retained austenite can be less than 3.0%.
  • the average cooling rate in the temperature range from the winding temperature to the winding temperature -10 ° C is set to 0.010 ° C / sec or less.
  • the transformation formation temperature in the metal structure can be made uniform.
  • the standard deviation of the Vickers hardness of the hot-rolled steel sheet can be set to 20 HV 0.01 or less, and the workability of the end face after shearing can be improved.
  • the cooling rate of the hot-rolled steel sheet after winding may be controlled by a heat insulating cover, an edge mask, mist cooling, or the like.
  • the temperature of the hot-rolled steel sheet is measured by a contact type or non-contact type thermometer if it is at the end in the plate width direction. If it is not the end of the hot-rolled steel sheet in the plate width direction, it is measured by a thermocouple or calculated by heat transfer analysis.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the area fraction of ferrite and retained austenite, the standard deviation of L 52 / L 7 , Mn concentration, and the standard deviation of Vickers hardness were determined by the above-mentioned method.
  • the obtained measurement results are shown in Table 5.
  • the structure other than ferrite and retained austenite was found to be from one or more of bainite, martensite and tempered martensite. It was.
  • the hot-rolled steel sheet is inferior in shearing workability. If there is, it was judged as a failure.
  • the Vickers hardness was measured for the above 10 end faces whose cross-sectional shapes were photographed.
  • the load is 100 gf
  • the Vickers hardness (HV0.1) is 80 ⁇ m from the end face (80 ⁇ m from the straight line 2 to the straight line 1 side in FIG. 1) from the upper surface to the lower surface of the hot-rolled steel sheet at 100 ⁇ m intervals in the plate thickness direction.
  • HV0.1 Vickers hardness
  • the difference between the maximum value and the minimum value of the obtained Vickers hardness was 85 HV 0.1 or less, it was determined that the hot-rolled steel sheet had excellent workability of the end face after shearing.
  • Table 5 shows the obtained measurement results.
  • the production No. whose chemical composition and metal structure are not within the range specified in the present invention. 3 to 15 and 32 to 35 were inferior in any one or more of the characteristics (tensile strength TS, ductility and shearability).
  • the production No. In No. 11 in addition to ferrite, retained austenite and low temperature structure, formation of 6% pearlite was confirmed in area%. Therefore, the tensile strength TS decreased.
  • the hot-rolled steel sheet according to the present invention it is possible to provide a hot-rolled steel sheet having excellent strength, ductility and shear workability. Further, according to the above-mentioned preferable aspect according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned various characteristics and further excellent in workability of the end face after shearing.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、金属組織が、面積%で、フェライトが15.0%未満であり、残留オーステナイトが3.0%未満であり、<110>方向を軸として、結晶方位差が52°である粒界の長さL52と結晶方位差が7°である粒界の長さLとの比であるL52/Lが0.10~0.18であり、Mn濃度の標準偏差が0.60質量%以下であり、引張強さが980MPa以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高強度であり、且つ延性およびせん断加工性に優れる熱延鋼板に関する。
 本願は、2020年3月11日に、日本に出願された特願2020-041524号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。
 車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれている。これらの要求に応えるべく、幾つかの技術が従来から提案されている。
 自動車部材には様々な加工様式があるため、要求される成形性は適用される部材により異なるが、その中でも延性は成形性の重要な指標として位置付けられている。
 また、自動車部材はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。
 例えば、特許文献1には、平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト変態して、変態誘起塑性により大きな伸びを示すものの、硬質なマルテンサイトの生成により穴拡げ性が損なわれる。特許文献1には、フェライトおよび残留オーステナイトを微細化することにより、延性のみならず穴拡げ性も向上する、と開示されている。
 特許文献2には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、伸びおよび伸びフランジ性に優れた引張強度が980MPa以上の高強度鋼板が開示されている。
 せん断加工性の向上についての技術に関し、例えば特許文献3には、表層のフェライト粒径dと内部のフェライト結晶粒dとの比d/dを0.95以下に制御することで、打ち抜き後のバリ高さを制御する技術が開示されている。
 特許文献4にはPの含有量を低減することで板端面のハガレやメクレを改善する技術が開示されている。
日本国特開平11-61326号公報 日本国特開2005-179703号公報 日本国特開平10-168544号公報 日本国特開2005-298924号公報
 特許文献1~4に開示された技術は、いずれも延性またはせん断加工後の端面性状のいずれか一方を向上させる技術である。しかし、特許文献1~3ではこれらの特性を両立させる技術について言及されてない。特許文献4では、せん断加工性とプレス成形性との両立について言及されている。しかし、特許文献4に開示された鋼板の強度は850MPa未満であるため、980MPa以上の高強度の部材へ適用することは困難な場合がある。
 また、特に980MPa以上の高強度鋼板では、せん断加工後のコイニング等の後処理に必要な荷重が大きくなるため、せん断加工後の端面の高低差を特に高い精度で制御することが望まれている。せん断加工後の端面の形状だけでなく、せん断加工後の端面の損傷にばらつきがある場合、著しく損傷した箇所に応力が集中することで、成形性の低下を引き起こす場合がある。
 本発明は、従来技術の上記課題に鑑みてなされたものであり、高い強度を有するとともに、優れた延性およびせん断加工性を有する熱延鋼板を提供することを目的とする。本発明は、より好ましくは、上記諸特性を有した上で更に、せん断加工後の端面の加工性に優れる熱延鋼板を提供することを目的とする。
 本発明者らは、上述の課題に鑑み、熱延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた。その結果、以下の知見(a)~(i)を得て、本発明を完成した。
 なお、優れたせん断加工性を有するとは、せん断加工後の端面の高低差が小さいことを示す。また、優れた強度または高い強度を有するとは、引張強さが980MPa以上であることを示す。さらに、せん断加工後の端面の加工性に優れるとは、せん断加工後の端面の板厚方向の硬度のばらつきが小さいことを示す。
(a)優れた引張(最大)強度を得るためには、金属組織の母相組織は硬質であることが好ましい。すなわち、フェライト等の軟質な組織分率はなるべく小さいことが好ましい。
(b)しかし、硬質な組織を主体とする金属組織とするだけでは、優れたせん断加工性を確保することができない。
(c)高強度の熱延鋼板にせん断加工後の端面の加工性も兼備させるためには、鋼板に含まれる組織を均一とすることが効果的である。
(d)組織を硬質かつ均一とするためには、仕上圧延後の冷却において、フェライト等の軟質な組織の析出を抑制できるような冷却速度とすることが効果的である。
(e)硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては<110>方向を軸として結晶方位差が52°である粒界および結晶方位差が7°である粒界が多量に形成される。
(f)<110>方向を軸として結晶方位差が7°である粒界の生成時には、硬質相中に転位が蓄積されにくい。そのため、このような粒界の密度が多く、且つ均一に分散している(すなわち<110>方向を軸として結晶方位差が7°である粒界の合計の長さが大きい)金属組織では、せん断加工による金属組織中への転位の導入が容易であり、せん断加工中の材料の変形が促進される。その結果、せん断加工後の端面の高低差が抑制される。
(g)<110>方向を軸として結晶方位差が7°である粒界を均一に分散させるには、Mn濃度の標準偏差を一定値以下とする必要がある。Mn濃度の標準偏差を一定値以下とするためには、スラブ加熱の際に700~850℃の温度域で900秒以上滞留させ、1100℃以上の温度域で6000秒以上保持し、かつ850℃~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが効果的である。
(h)<110>方向を軸として結晶方位差が7°である粒界の長さLを増大させ、且つ<110>方向を軸として結晶方位差が52°である粒界の長さL52を減少させるには、巻取り温度を所定温度以上とすることが効果的である。
(i)せん断加工後の端面の板厚方向の硬度のばらつきを抑制するためには、残留オーステナイトの生成を抑制すること、およびビッカース硬度の標準偏差を抑制することが効果的である。また、ビッカース硬度の標準偏差を抑制するためには、フェライト量を低減することおよび巻取後の所定の温度域における平均冷却速度を制御することが効果的である。
 上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.100~0.250%、
Si:0.05~2.00%、
Mn:1.00~4.00%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0300%以下、
N:0.1000%以下、
O:0.0100%以下、
Ti:0~0.300%、
Nb:0~0.100%、
V:0~0.500%、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B:0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びにSn:0~0.050%を含有し、
 残部がFeおよび不純物からなり、
 金属組織が、
  面積%で、フェライトが15.0%未満であり、残留オーステナイトが3.0%未満であり、
  <110>方向を軸として、結晶方位差が52°である粒界の長さL52と結晶方位差が7°である粒界の長さLとの比であるL52/Lが0.10~0.18であり、 Mn濃度の標準偏差が0.60質量%以下であり、
 引張強さが980MPa以上であることを特徴とする。
(2)上記(1)に記載の熱延鋼板は、前記金属組織において、
 面積%で、前記フェライトが10.0%以下であり、
 ビッカース硬度の標準偏差が20HV0.01以下であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Ti:0.005~0.300%、
Nb:0.005~0.100%、
V:0.005~0.500%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B:0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を得ることができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、せん断加工後の端面の加工性に優れた熱延鋼板を得ることができる。本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
せん断加工後の端面の高低差の測定方法を説明するための図である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、鋼板の化学組成に関する%は特に指定しない限り質量%である。
1.化学組成
 本実施形態に係る熱延鋼板は、質量%で、C:0.100~0.250%、Si:0.05~2.00%、Mn:1.00~4.00%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含む。以下に各元素について詳細に説明する。
(1-1)C:0.100~0.250%
 Cは、硬質相の分率を上昇させる。C含有量が0.100%未満では、所望の強度を得ることが困難となる。したがって、C含有量は0.100%以上とする。C含有量は、好ましくは0.120%以上、更に好ましくは0.150%以上である。一方、C含有量が0.250%超では、変態速度が遅くなることでMAが生成しやすくなり、強度の均一な組織を得ることが困難となり、せん断加工後の端面の高低差が大きくなる。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.220%以下である。
(1-2)Si:0.05~2.00%
 Siは、セメンタイトの析出を遅延させる作用を有する。この作用により、硬質相中の固溶C量を多く保つこと、およびセメンタイトの粗大化を防ぐことができ、これらの結果、鋼板の強度を高めることができる。またSi自体も固溶強化により鋼板の強度を高める効果がある。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.50%以上、0.80%以上である。しかし、Si含有量が2.00%超では、セメンタイトの析出を著しく遅延させ、残留オーステナイトの面積分率が高まり3.0%以上となってしまうため好ましくない。また、Si含有量が2.00%超では、鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる場合がある。したがって、Si含有量は2.00%以下とする。Si含有量は、好ましくは1.70%以下、1.50%以下である。
(1-3)Mn:1.00~4.00%
 Mnは、フェライト変態を抑制して鋼板を高強度化する作用を有する。Mn含有量が1.00%未満では、980MPa以上の引張強さを得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.50%以上であり、より好ましくは1.80%以上である。一方、Mn含有量が4.00%超ではMnの偏析に起因して、硬質相中の結晶粒の角度差が不均一となり、せん断加工後の端面の高低差が大きくなる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、3.50%以下である。
(1-4)sol.Al:0.001~2.000%
 Alは、Siと同様に、セメンタイトの析出を遅延させる作用を有する。この作用により、硬質相中の固溶C量を多く保つこと、およびセメンタイトの粗大化を防ぐことができ、これらの結果、鋼板の強度を高めることができる。また、鋼を脱酸して鋼板を健全化する作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。一方、sol.Al含有量が2.000%超では、セメンタイトの析出を著しく遅延させ、残留オーステナイトの面積分率が高まり3.0%以上となってしまうとともに経済的に好ましくない。そのため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、1.300%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
(1-5)P:0.100%以下
 Pは、一般的に不純物として含有される元素であるが、固溶強化により強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよいが、Pは偏析し易い元素でもある。P含有量が0.100%を超えると、粒界偏析に起因する延性の低下が顕著となる。したがって、P含有量は、0.100%以下とする。P含有量は、好ましくは0.030%以下である。P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%以上とすることが好ましい。
(1-6)S:0.0300%以下
 Sは、不純物として含有される元素であり、鋼中に硫化物系介在物を形成して熱延鋼板の延性を低下させる。S含有量が0.0300%を超えると、鋼板の延性が著しく低下する。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%以上とすることが好ましい。
(1-7)N:0.1000%以下
 Nは、不純物として鋼中に含有される元素であり、鋼板の延性を低下させる作用を有する。N含有量が0.1000%超では、鋼板の延性が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、さらに好ましくは0.0700%以下である。N含有量の下限は特に規定する必要はないが、後述するようにTi、NbおよびVの1種または2種以上を含有させて金属組織の微細化を図る場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
(1-8)O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、0.0080%以下、0.0050%以下とすることが好ましい。溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、0.0010%以上としてもよい。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物からなる。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、あるいは意図的に添加されるものであって、本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、上記元素に加え、Ti、Nb、V、Cu、Cr、Mo、Ni、B、Ca、Mg、REM、Bi、Zr、Co、Zn、WおよびSnを任意元素として含有してもよい。上記任意元素を含有させない場合の含有量の下限は0%である。以下、上記任意元素について詳細に説明する。
(1-9)Ti:0.005~0.300%、Nb:0.005~0.100%およびV:0.005~0.500%
 Ti、NbおよびVは、いずれも、鋼中に炭化物または窒化物として析出し、ピン止め効果によって金属組織を微細化する作用を有するため、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ti含有量を0.005%以上とするか、Nb含有量を0.005%以上とするか、あるいはV含有量を0.005%以上とすることが好ましい。しかし、これらの元素を過剰に含有させても、上記作用による効果が飽和して経済的に好ましくない。したがって、Ti含有量は0.300%以下とし、Nb含有量は0.100%以下とし、V含有量は0.500%以下とする。
(1-10)Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~1.00%、Ni:0.02~2.00%およびB:0.0001~0.0100%
 Cu、Cr、Mo、NiおよびBは、いずれも、鋼板の焼入性を高める作用を有する。また、CrおよびNiは残留オーステナイトを安定化させる作用を有し、CuおよびMoは鋼中に炭化物を析出して強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
 Cuは、鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、1.00%以下である。
 上述したようにCrは、鋼板の焼入性を高める作用および残留オーステナイトを安定化させる作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上、0.05%以上とすることが好ましい。しかし、Cr含有量が2.00%超では、鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
 上述したようにMoは、鋼板の焼入性を高める作用および鋼中に炭化物を析出して強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上、0.02%以上とすることが好ましい。しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。Mo含有量は、好ましくは0.50%以下、0.20%以下である。
 上述したようにNiは、鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.02%以上とすることが好ましい。Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
 上述したようにBは、鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上、0.0002%以上とすることが好ましい。しかし、B含有量が0.0100%超では、鋼板の成形性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。
(1-11)Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
 Ca、MgおよびREMは、いずれも、介在物の形状を好ましい形状に調整することにより、鋼板の成形性を高める作用を有する。また、Biは、凝固組織を微細化することにより、鋼板の成形性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って鋼板の延性を低下させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量、Mg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
(1-12)Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%およびSn:0~0.050%
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認しているが、熱間圧延時に疵が発生する場合があるため、Sn含有量は0.050%以下とする。
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
2.熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板では、金属組織が、面積%で、フェライトが15.0%未満であり、残留オーステナイトが3.0%未満であり、<110>方向を軸として、結晶方位差が52°である粒界の長さL52と、結晶方位差が7°である粒界の長さLとの比であるL52/Lが0.10~0.18であり、Mn濃度の標準偏差が0.60質量%以下である。そのため、本実施形態に係る熱延鋼板は、優れた強度、延性およびせん断加工性を得ることができる。なお、本実施形態では、圧延方向に平行な断面の、表面から板厚の1/4位置、且つ板幅方向中央位置における金属組織を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。なお、板厚の「1/4位置」とは、金属組織を特定するための観察位置であり、厳密に1/4深さに限定されない。板厚の1/8~3/8深さの範囲のどこかを観察して得られる金属組織を、1/4位置の金属組織とみなすことができる。
(2-1)フェライトの面積分率:15.0%未満
 フェライトは比較的高温でfccがbccに変態したときに生成する組織である。フェライトは強度が低いため、フェライトの面積分率が過剰であると所望の引張強さを得ることができない。また、フェライトの面積分率が過剰であると、ビッカース硬度の標準偏差が高くなる。このため、フェライトの面積分率は15.0%未満とする。好ましくは10.0%以下、より好ましくは5.0%未満である。フェライトの面積率を10.0%以下とし、且つ後述の通りビッカース硬度の標準偏差を制御することで、熱延鋼板のせん断加工後の端面の加工性を向上することができる。
 フェライトは少ない程好ましいため、フェライトの面積分率は0%であってもよい。
 フェライトの面積分率の測定は、以下の方法で行う。圧延方向に直角な断面を鏡面に仕上げ、さらに、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨することで、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積分率を求めることで、フェライトの面積分率を得る。
(2-2)残留オーステナイトの面積分率:3.0%未満
 残留オーステナイトは室温でも面心立方格子として存在する金属組織である。残留オーステナイトは、変態誘起塑性(TRIP)により熱延鋼板の延性を高める作用を有する。一方、残留オーステナイトは、せん断加工中には高炭素のマルテンサイト(以下、高炭素マルテンサイトとも称する)に変態するため、安定的なき裂発生を阻害する作用を有し、せん断加工端面の損傷の局所化の原因ともなる。せん断加工による損傷は、加工面おいて分布をもって発生し、その損傷の程度の差によって、オーステナイトが高炭素マルテンサイトに変態する部分と変態しない部分とが存在することになる。その結果、損傷の分布の中でもより大きな損傷を受ける部分では、生成した硬質な高炭素マルテンサイトが損傷を助長するように働くため、せん断加工端面の損傷の局所化をより一層高めてしまう。残留オーステナイトの面積分率が3.0%以上では、上記作用が顕在化し、熱延鋼板のせん断端面の加工性が劣化する。したがって、残留オーステナイトの面積分率は3.0%未満とする。残留オーステナイトの面積分率は、好ましくは1.0%未満である。残留オーステナイトは少ない程好ましいため、残留オーステナイトの面積分率は0%であってもよい。
 残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。
 本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、鋼板の板厚の1/4位置且つ板幅方向中央位置における、圧延方向に平行な断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで、残留オーステナイトの面積分率を得る。
(2-3)ベイナイト、マルテンサイトおよびオートテンパーマルテンサイト:合計で82.0%超、100.0%以下
 なお、本実施形態に係る熱延鋼板には、フェライトおよび残留オーステナイト以外の金属組織として低温組織が含まれる。本実施形態における低温組織とは、面積分率の合計が82.0%超、100.0%以下のマルテンサイト、ベイナイトおよびオートテンパーマルテンサイトからなる組織である。ベイナイト、マルテンサイトおよびオートテンパーマルテンサイトの面積分率の合計が82.0%以下であると、所望の強度を得ることができないおそれがある。そのため、ベイナイトおよびマルテンサイトの面積分率の合計は82.0%超とすることが好ましい。より好ましくは、85.0%以上である。ベイナイト、マルテンサイトおよびオートテンパーマルテンサイトの面積分率の合計は多い程好ましいため、100.0%としてもよい。
 なお、低温組織は、ベイナイト、マルテンサイトおよびオートテンパーマルテンサイトのうち1種を含み、その面積分率が82.0%超、100.0%以下であってもよいし、ベイナイト、マルテンサイトおよびオートテンパーマルテンサイトのうち2種以上を含み、それらの面積分率の合計が82.0%超、100.0%以下であってもよい。
 本実施形態に係る熱延鋼板の金属組織は、面積%で、フェライトが15.0%未満であり、残留オーステナイトが3.0%未満であり、残部組織として、前述の低温組織が含まれる。すなわち、フェライトと残留オーステナイト以外の金属組織は、ベイナイト、マルテンサイトおよびオートテンパーマルテンサイトのうち1種もしくは2種以上からなる低温組織であるため、100.0%から、フェライトと残留オーステナイトの面積分率の合計を引くことで得てよい。一方で、低温組織の面積分率の測定方法は、サーマル電界放射型走査電子顕微鏡を用いた以下の方法で行ってもよい。
 低温組織のうち、マルテンサイトの面積率は、以下の手順で求めることができる。
 鋼板の板厚の1/4位置且つ板幅方向中央位置における、圧延方向に平行な断面を観察面とし、この観察面をレペラ液でエッチングする。観察面は、鋼板の圧延方向に平行な板厚断面とする。観察面内のうち、板厚1/4を中心とする板厚1/8~3/8の範囲内で100μm×100μmの領域について、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)で得られた二次電子像を観察する。レペラ腐食では、マルテンサイトおよび残留オーステナイトは腐食されないため、腐食されていない領域の面積率は、マルテンサイト及び残留オーステナイトの合計面積率とみなすことができる。この腐食されていない領域の面積率から、上記方法で測定した残留オーステナイトの面積率を引算して、マルテンサイトの面積率を算出できる。
 また、低温組織のうち、ベイナイトおよびオートテンパーマルテンサイトの面積率は、上述したマルテンサイトの面積分率の測定方法と同様に、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)により観察し、得られた二次電子像から決定することができる。観察面に対して研磨及びナイタールエッチングを行い、観察面における、板厚1/4を中心とする板厚1/8~3/8の範囲内の100μm×100μmの領域を観察する。前述のレペラ腐食で観察した領域の周囲に圧痕を複数個残すことで、レペラ腐食で観察した領域と同じ領域を確認することができる。
 オートテンパーマルテンサイトはラス状の結晶粒の集合であり、内部に鉄炭化物の伸長方向が二つ以上である組織である。一方、ベイナイトも、ラス状の結晶粒の集合であるが、ベイナイトは、内部に長径20nm以上の鉄系炭化物を含まないもの、または、内部に長径20nm以上の鉄系炭化物を含み、その炭化物が、単一のバリアント、すなわち、鉄系炭化物群の伸長方向が1つである組織である。オートテンパーマルテンサイトは、組織内のセメンタイトが複数のバリアントを有する点で、ベイナイトと区別できる。
 以上説明した、サーマル電界放射型走査電子顕微鏡を用いた方法で、低温組織であるベイナイト、マルテンサイトおよびオートテンパーマルテンサイトの面積分率を求めてよい。
 なお、上述のとおり、本実施形態に係る熱延鋼板の金属組織は、15.0%未満のフェライトと、3.0%未満の残留オーステナイトを含み、残部組織は、実質的に前記低温組織からなるが、これらの組織以外に、パーライトを含む場合がある。パーライトは、フェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、またベイナイトやマルテンサイトと比較すると軟質な金属組織である。パーライトは強度が低く、また延性を低下させる組織でもあるため、本実施形態に係る熱延鋼板には含まれないことが好ましい。また、パーライトを含む場合でも、強度および延性の確保の観点から、面積%で5%以下とすることが好ましい。より好ましくは3%以下である。パーライトは少ない程好ましいため、パーライトの面積分率は0%であってもよい。
 パーライトの面積分率は、以下の方法により測定することができる。鋼板から、圧延方向に平行な板厚断面の、表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織が観察できるように試験片を採取する。次に、板厚断面を研磨した後、研磨面をナイタール腐食し、光学顕微鏡および走査型電子顕微鏡(SEM)を用いて、30μm×30μmの領域を少なくとも3領域組織観察する。この組織観察により得られた組織写真に対して画像解析を行うことによって、パーライトの面積率を得る。
 パーライトが存在する場合、上記のフェライトの面積分率の測定はパーライトと判別された結晶粒を除く結晶粒に対して行う。具体的には、得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積分率を求めることで、フェライトの面積分率を得る。
(2-4)<110>方向を軸として、結晶方位差が52°である粒界の長さL52と結晶方位差が7°である粒界の長さLとの比であるL52/L:0.10~0.18
 980MPa以上の高強度を得るには、母相を硬質な組織にする必要がある。硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては、<110>方向を軸として、結晶方位差が52°である粒界と結晶方位差が7°である粒界とが多量に形成される。<110>方向を軸として、結晶方位差が7°である粒界の生成時においては、硬質相中に転位が蓄積されにくい。そのため、このような粒界の密度が多く、且つ均一に分散している(すなわち上記のような粒界の合計の長さが大きい)金属組織では、せん断加工による金属組織中への転位の導入が容易であり、せん断加工中の材料の変形が促進される。その結果、せん断加工後の端面の高低差が抑制される。
 一方、<110>方向を軸として、結晶方位差が52°である粒界においては、硬質相中に転位が蓄積されやすい。そのため、せん断加工による金属組織中への転位導入が難しく、せん断加工中に材料がすぐに破断してしまうため、せん断加工後の端面の高低差が大きくなる。よって、<110>方向を軸として、結晶方位差が52°である粒界の長さをL52、結晶方位差が7°である粒界の長さをLとしたとき、せん断加工後の端面の高低差はL52/Lによって支配される。L52/Lが0.10未満の場合、硬質相中に転位が極めて蓄積されにくいため、母材の強度を980MPa以上とすることができない。また、L52/Lが0.18超である場合には、せん断加工後の端面の高低差が大きくなる。よって、せん断加工後の端面の高低差を小さくするために、L52/Lを0.10~0.18とする。L52/Lは好ましくは0.12以上、0.13以上である。またL52/Lは好ましくは0.16以下、0.15以下である。
 なお、<110>方向を軸として結晶方位差がX°である粒界とは、ある粒界で隣接する二つの結晶粒(結晶粒Aと結晶粒B)を特定したとき、片方の結晶粒Bを<110>軸にX°回転させることによって、結晶粒Aおよび結晶粒Bの結晶方位が一致する結晶学的関係を有する粒界のことをいう。ただし、結晶方位の測定精度を考慮すると、一致する方位関係から±4°の方位差を許容する。
 本実施形態では、<110>方向を軸として、結晶方位差が52°である粒界の長さL52および結晶方位差が7°である粒界の長さLをEBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて測定する。
 EBSP-OIM法では、まず、走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影する。次いで、得られた、撮影写真をコンピュータで画像処理する事により、照射点の結晶方位を短待間で測定することができる。
 EBSP-OIM法は、走査型電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器とを組み合わせたEBSD解析装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法では、試料表面の微細構造並びに結晶方位を解析できるため、特定の結晶方位差を持つ粒界の長さを定量的に求めることができる。また、EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。
 本実施形態のL52は以下の方法で算出する。
 <110>方向を軸として、結晶方位差が52°である粒界の長さは、圧延方向に平行な断面のうち、鋼板表面から板厚の1/4位置且つ板幅方向中央位置において測定する。この測定に当たっては、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行い、<110>方向を軸として、結晶方位差が52°である粒界の長さの平均値を算出することで、L52を得る。
 同様に、<110>方向を軸として、結晶方位差が7°である粒界の長さの平均値を算出することで、Lを得る。なお、前述したように、L52およびLを算出する際は、±4°の方位差を許容する。
 なお、フェライトは軟質相であり、硬質相内部の転位蓄積効果に及ぼす影響が小さく、また残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さない。そのため、本測定方法では、フェライトおよび残留オーステナイトは解析の対象としない。フェライトの面積分率の測定方法と同様の方法でフェライトを特定して、解析対象から除外することができる。EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。
(2-5)Mn濃度の標準偏差:0.60質量%以下
 本実施形態に係る熱延鋼板の表面から板厚の1/4位置且つ板幅方向中央位置におけるMn濃度の標準偏差は0.60質量%以下である。これにより、<110>方向を軸として結晶方位差が7°である粒界を均一に分散させることができる。その結果、せん断加工後の端面の高低差を小さくすることができる。Mn濃度の標準偏差は、好ましくは、0.55質量%以下、0.50質量%以下、0.40質量%以下である。
 せん断加工後の端面の凹凸の抑制の観点から、Mn濃度の標準偏差は小さいほど望ましい。しかし、製造プロセスの制約の観点から、Mn濃度の標準偏差の実質的な下限は、0.10質量%以上としてよい。
 本実施形態のMn濃度の標準偏差は、以下の方法で算出する。
 熱延鋼板のL断面(圧延方向に平行な断面)を鏡面研磨した後に、鋼板の表面から板厚の1/4位置且つ板幅方向中央位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は、加速電圧を15kVとし、倍率を5000倍とする。測定範囲は、試料圧延方向に20μm及び試料板厚方向に20μmの範囲とし、分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出する。これにより、Mn濃度の標準偏差を得る。
 (2-6)ビッカース硬度の標準偏差:20HV0.01以下
 熱延鋼板の圧延方向に平行な板厚断面で、板幅方向中央位置におけるビッカース硬度の標準偏差を20HV0.01以下とし、且つ上述の通りフェライトの面積分率を10.0%以下にすると、熱延鋼板のせん断加工後の端面の加工性を向上させることができる。せん断加工後の端面の加工性は、せん断加工による端面の損傷によって著しく低下する。特に、せん断加工による端面の損傷は板厚方向に分布を持つように生じるとともに、損傷の程度は板厚方向の一部に局所化する、すなわち板厚方向の一部において著しく損傷する。特に、せん断加工後の端面に、さらなる加工を施す際に、著しく損傷した部分が亀裂の発生源となり、破断に至ると推定される。
 本発明者らは、フェライト量が減少し、且つビッカース硬度の標準偏差が小さくなるほど、せん断加工後の端面の板厚方向の損傷の局所化が小さくなり、せん断加工後の端面の加工性が向上することを見出した。これは、熱延鋼板の組織を均一化することにより、せん断加工時のボイドの生成を抑制し、損傷の局所化を小さくできるためだと考えられる。上記の作用を得るためには、熱延鋼板のビッカース硬度分布の標準偏差を20HV0.01以下とすることが好ましい。より好ましくは18HV0.01以下、17HV0.01以下である。
 ビッカース硬度の標準偏差は、次の方法により得る。
 圧延方向に平行な板厚断面のうち、板幅方向中央位置における金属組織において、板厚×1mmの範囲で、300点以上の測定点を等間隔に、ビッカース硬度を測定する。測定荷重は10gfとする。測定結果に基づいて、ビッカース硬度(HV0.01)の標準偏差を算出する。
3.引張強度特性
 本実施形態に係る熱延鋼板は、引張(最大)強さが980MPa以上である。引張強さが980MPa未満であると、適用部品が限定され,車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1780MPaとしてもよい。引張強さは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2241:2011に準拠して測定する。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向が長手方向となるように引張試験片を採取すればよい。
4.板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、0.5~8.0mmとしてもよい。熱延鋼板の板厚を0.5mm以上とすることで、圧延完了温度の確保が容易になるとともに圧延荷重を低減できるため、熱間圧延を容易に行うことができる。したがって、本実施形態に係る熱延鋼板の板厚は0.5mm以上としてもよい。好ましくは、板厚は1.2mm以上、1.4mm以上である。また、板厚を8.0mm以下とすることで、金属組織の微細化が容易となり、上述した金属組織を容易に確保することができる。したがって、板厚は8.0mm以下としてもよい。好ましくは、板厚は6.0mm以下である。
5.その他
(5-1)めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、耐食性の向上等を目的として、表面にめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施すことで、耐食性をさらに高めることも可能である。
6.製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
 本実施形態に係る熱延鋼板を得るためには、所定の条件でスラブの加熱を行った後に熱間圧延を行うこと、熱間圧延後に所定の温度域まで加速冷却すること、そして、巻き取った後の冷却履歴を制御すること、が効果的である。
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(7)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
(1)スラブを700~850℃の温度域で900秒以上滞留させ、その後さらに加熱し、1100℃以上の温度域で6000秒以上保持する。
(2)850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
(3)下記式<1>により表される温度T1(℃)以上で熱間圧延を完了する。
(4)熱間圧延完了後、1.5秒以内に冷却を開始して、50℃/秒以上の平均冷却速度で下記式<2>により表される温度T2(℃)以下まで加速冷却する。
(5)加速冷却の冷却停止温度から巻取り温度までを10℃/秒以上の平均冷却速度で冷却する。
(6)下記式<3>により表される温度T3(℃)以上で巻き取る。
(7)巻取り後の冷却において、熱延鋼板の板幅方向最端部および板幅方向中央部の所定の温度域で、巻取り後の滞留時間の下限が条件I(450℃以上で2000秒超、400℃以上で8000秒超、350℃以上で30000秒超のいずれか一つ以上)を満足するように冷却する。より好ましくは、巻取り温度~巻取り温度-10℃の温度域における平均冷却速度を0.010℃/秒以下とする。
T1(℃)=868-396×[C]-68.1×[Mn]+24.6×[Si]-36.1×[Ni]-24.8×[Cr]-20.7×[Cu]+250×[sol.Al]…<1>
T2(℃)=770-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo]…<2>
T3(℃)=591-474×[C]-33×[Mn]-17×[Ni]-17×[Cr]-21×[Mo]…<3>
 ただし、各式中の[元素記号]は各元素の鋼中の含有量(質量%)を示す。当該元素を含有しない場合は0を代入する。
(6-1)スラブ、熱間圧延に供する際のスラブ温度、滞留および保持時間
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや、鋳造および分塊により得られたスラブなどを用いることができる。必要によっては、それらスラブに熱間加工または冷間加工を加えたものを用いることができる。
 熱間圧延に供するスラブは、加熱時の700~850℃の温度域で900秒以上滞留させ、その後更にスラブを加熱し、1100℃以上の温度域で6000秒以上保持することが効果的である。なお、700~850℃の温度域での滞留時には、鋼板温度をこの温度域で変動させてもよく、一定としてもよい。また、1100℃以上の温度域での保持時には、鋼板温度を1100℃以上で変動させてもよく、一定としてもよい。
 700~850℃の温度域でのオーステナイト変態において、Mnがフェライトとオーステナイトとの間で分配され、その変態時間が長くなることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析を解消し、Mn濃度の標準偏差を著しく減ずることができる。Mn濃度の標準偏差を減少させることで、最終的な金属組織において、<110>方向を軸として結晶方位差が7°である粒界を均一に分散させることができ、せん断加工後の端面の高低差を小さくすることができる。また、スラブ加熱時のオーステナイト粒を均一にするためには、1100℃以上の温度域で6000秒以上スラブを加熱することが効果的である。
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点から、少なくとも最終の数段はタンデムミルを用いた熱間圧延とすることがより好ましい。
(6-2)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上の板厚減
 850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。これにより、主に再結晶オーステナイト粒の微細化が図られる。さらに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進されることにより、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、その結果、Mn濃度の標準偏差を小さくすることができる。したがって、850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが効果的である。すなわち、本実施形態では、Mn濃度の標準偏差の抑制は、スラブ加熱の精緻な制御だけでは十分に達成できず、熱間圧延の圧下率を上記範囲となるように制御することで、達成できる。
 なお、850~1100℃の温度域の板厚減とは、この温度域の圧延における最初のパス前の入口板厚をtとし、この温度域の圧延における最終パス後の出口板厚をtとしたとき、(t-t)/t×100(%)で表すことができる。
(6-3)熱間圧延完了温度:T1(℃)以上
 熱間圧延の完了温度はT1(℃)以上とすることが好ましい。熱間圧延の完了温度をT1(℃)以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができる。さらにその結果、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの生成を抑えられ、高強度の鋼板を得ることができる。
(6-4)熱間圧延完了後の加速冷却:1.5秒以内に冷却を開始して、50℃/秒以上の平均冷却速度でT2(℃)以下まで加速冷却
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT2(℃)以下まで加速冷却を行うことが好ましい。
 熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT2(℃)以下まで加速冷却を行うことで、フェライトおよびパーライトの生成を抑制できる。これにより、鋼板の強度が向上する。なお、ここでいう平均冷却速度とは、加速冷却開始時(冷却設備への鋼板の導入時)から加速冷却完了時(冷却設備から鋼板の導出時)までの鋼板の温度降下幅を、加速冷却開始時から加速冷却完了時までの所要時間で除した値のことをいう。熱間圧延完了後の加速冷却において、冷却開始までの時間を1.5秒以内とし、平均冷却速度を50℃/秒以上とし、冷却停止温度をT2(℃)以下とすることで、鋼板内部でのフェライト変態および/またはパーライト変態を抑制でき、TS≧980MPaを得ることができる。したがって、熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT2(℃)以下まで加速冷却を行う。平均冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、平均冷却速度は300℃/秒以下が好ましく、200℃/秒未満がより好ましく、150℃/秒以下がさらに好ましい。い。また、加速冷却の冷却停止温度はT3(℃)以上とするとよい。
(6-5)加速冷却の冷却停止温度から巻取り温度までの平均冷却速度:10℃/秒以上
 パーライトの面積分率を抑え、980MPa以上の引張強さを得るために、加速冷却の冷却停止温度から巻取り温度までの平均冷却速度を10℃/秒以上とする。これにより母相組織を硬質にすることができる。なお、ここでいう平均冷却速度とは、加速冷却の冷却停止温度から巻取り温度までの鋼板の温度降下幅を、加速冷却の停止時から巻取りまでの所要時間で除した値のことをいう。上記平均冷却速度を10℃/秒以上とすることで、パーライトの面積分率を低減し、強度および延性を確保することができる。したがって、加速冷却の冷却停止温度から巻取り温度までの平均冷却速度は10℃/秒以上とする。
(6-6)巻取り温度:T3(℃)以上
 巻取り温度はT3(℃)以上とする。巻取り温度をT3(℃)以上とすることで、オーステナイトからbccへの変態駆動力を小さくすることができ、また、オーステナイトの変形強度を小さくすることができる。そのため、ベイナイトおよびマルテンサイト変態する際に、<110>方向を軸として結晶方位差が52°である粒界の長さL52を低減し、また<110>方向を軸として結晶方位差が7°である粒界の長さLを増加して、L52/Lを0.18以下とすることができる。その結果、せん断加工後の端面の高低差を小さくすることができる。したがって、巻取り温度はT3(℃)以上とする。
(6-7)巻取り後の冷却:熱延鋼板の巻き取り後に所定の温度域で、滞留時間の下限が下記条件Iを満足するように冷却
条件I:450℃以上で2000秒超、400℃以上で8000秒超または350℃以上で30000秒超のいずれか一つ以上
 巻取り後の冷却において、所定の温度域における滞留時間の下限が条件Iを満足するように冷却する、すなわち450℃以上で2000秒超、400℃以上で8000秒超または350℃以上で30000秒超のいずれか一つ以上を満足した滞留時間を確保して冷却することで、変態が十分に進行する。変態の進行とともに、オーステナイトが安定化し変態が停留する場合があるが、この滞留時間を満足すれば変態は再開し、残留オーステナイトの面積分率を低減することができる。その結果、残留オーステナイトの面積分率を3.0%未満とすることができる。
 また、巻取り後の冷却において、より好ましい条件として、巻取り温度~巻取り温度-10℃の温度域における平均冷却速度を0.010℃/秒以下とする。こうすることで、金属組織中の変態生成温度を均一にすることができる。その結果、熱延鋼板のビッカース硬度の標準偏差を20HV0.01以下とすることができ、せん断加工後の端面の加工性を向上することができる。
 巻取り後の熱延鋼板の冷却速度は、保温カバーやエッジマスク、ミスト冷却等によって制御するとよい。
 なお、本実施形態において熱延鋼板の温度は、板幅方向最端部であれば接触式または非接触式温度計で測定する。熱延鋼板の板幅方向最端部以外であれば、熱電対により測定するか、伝熱解析により計算する。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および表2の鋼No.A~Tに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3および表4に示す製造条件により、表5に示す熱延鋼板を得た。なお、熱間圧延に供するスラブは、加熱時の700~850℃の温度域において表3に示す滞留時間で滞留させ、その後さらに加熱して表3に示す加熱温度まで加熱して保持した。
 得られた熱延鋼板に対し、上述の方法により、フェライトおよび残留オーステナイトの面積分率、L52/L、Mn濃度の標準偏差およびビッカース硬度の標準偏差を求めた。得られた測定結果を表5に示す。
 本発明例の金属組織においては、上記のサーマル電界放射型走査電子顕微鏡を用いた方法によって確認したところ、フェライトと残留オーステナイト以外の組織は、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種以上からなるものであった。
[熱延鋼板の特性の評価方法]
 (1)引張強さおよび全伸び
 得られた熱延鋼板の機械的性質のうち引張強さおよび全伸びは、JIS Z 2241:2011に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向が長手方向なるように引張試験片を採取した。
 引張強さTS≧980MPa、かつ引張強さTS×全伸びEl≧14000(MPa・%)を満たした場合、強度および延性に優れた熱延鋼板であるとして合格と判定した。一方、引張強さTS≧980MPaおよび引張強さTS×全伸びEl≧14000(MPa・%)のいずれか一方でも満たさない場合、強度および延性に優れた熱延鋼板ではないとして不合格と判定した。
(2)せん断加工性およびせん断加工後の端面の加工性
 熱延鋼板のせん断加工性およびせん断加工端面の加工性は、打ち抜き試験により評価した。穴直径10mm、クリアランス10%、打ち抜き速度3m/sで5個の打ち抜き穴を作製した。
 まず、せん断加工性の評価では、5個の打ち抜き穴の圧延方向に直角な断面を樹脂に埋め込み、走査型電子顕微鏡で断面形状を撮影した。得られた観察写真では、図1に示すような加工断面を観察することができた。観察写真において、熱延鋼板の上面および下面に垂直且つバリの頂点(バリ部分の熱延鋼板の下面と板厚方向に最も遠い点A)を通る直線(図1の直線1)と、熱延鋼板の上面および下面に垂直、且つ断面のうち最も打ち抜き穴に近い(直線1と最も遠い)位置Bを通る直線(図1の直線2)とを引き、この2直線の距離(図1のd)を端面の高低差と定義した。5個の打ち抜き穴から得られた端面10個について端面の高低差を測定し、端面の高低差の最大値が板厚の18%以下(端面の高低差の最大値(mm)/板厚(mm)×100≦18)であればせん断加工性に優れた熱延鋼板であるとして、合格と判定した。一方、端面の高低差の最大値が板厚の18%超(端面の高低差の最大値(mm)/板厚(mm)×100>18)であればせん断加工性に劣る熱延鋼板であるとして、不合格と判定した。
 次に、せん断加工後の端面の加工性の評価では、断面形状を撮影した上記の10個の端面についてビッカース硬度を測定した。荷重は100gfとし、端面から80μmの位置(図1の直線2から直線1側に80μmの位置)において、熱延鋼板の上面から下面まで、板厚方向に100μm間隔でビッカース硬度(HV0.1)を測定した。得られたビッカース硬度のうち、最高値と最低値との差が85HV0.1以下であった場合、せん断加工後の端面の加工性に優れた熱延鋼板であると判定した。
 得られた測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、本発明例である製造No.1、2および16~31において、優れた強度、延性およびせん断加工性を有する熱延鋼板が得られた。更に、本発明例のうち、好ましい態様に係る製造No.2および18~31では、上記諸特性を有した上で更に、せん断加工後の端面の加工性に優れる熱延鋼板が得られた。
 一方、化学組成、金属組織が本発明で規定する範囲内でない製造No.3~15および32~35は、特性(引張強さTS、延性およびせん断加工性)のうちいずれか一つ以上が劣った。また、製造No.11では、フェライト、残留オーステナイトおよび低温組織に加え、面積%で、6%のパーライトの生成が確認された。そのため、引張強さTSが低下した。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を提供することができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、せん断加工後の端面の加工性に優れた熱延鋼板を得ることができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.100~0.250%、
    Si:0.05~2.00%、
    Mn:1.00~4.00%、
    sol.Al:0.001~2.000%、
    P:0.100%以下、
    S:0.0300%以下、
    N:0.1000%以下、
    O:0.0100%以下、
    Ti:0~0.300%、
    Nb:0~0.100%、
    V:0~0.500%、
    Cu:0~2.00%、
    Cr:0~2.00%、
    Mo:0~1.00%、
    Ni:0~2.00%、
    B:0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.020%、
    Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びにSn:0~0.050%を含有し、
     残部がFeおよび不純物からなり、
     金属組織が、
      面積%で、フェライトが15.0%未満であり、残留オーステナイトが3.0%未満であり、
      <110>方向を軸として、結晶方位差が52°である粒界の長さL52と結晶方位差が7°である粒界の長さLとの比であるL52/Lが0.10~0.18であり、
     Mn濃度の標準偏差が0.60質量%以下であり、
     引張強さが980MPa以上である
    ことを特徴とする熱延鋼板。
  2.  前記金属組織において、
     面積%で、前記フェライトが10.0%以下であり、
     ビッカース硬度の標準偏差が20HV0.01以下であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Ti:0.005~0.300%、
    Nb:0.005~0.100%、
    V:0.005~0.500%、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.01~1.00%、
    Ni:0.02~2.00%、
    B:0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、および
    Bi:0.0005~0.020%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2021/008987 2020-03-11 2021-03-08 熱延鋼板 WO2021182395A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022507178A JP7348574B2 (ja) 2020-03-11 2021-03-08 熱延鋼板
EP21767294.8A EP4119689A1 (en) 2020-03-11 2021-03-08 Hot-rolled steel sheet
CN202180019541.7A CN115244203B (zh) 2020-03-11 2021-03-08 热轧钢板
KR1020227030455A KR20220134776A (ko) 2020-03-11 2021-03-08 열연 강판
MX2022011055A MX2022011055A (es) 2020-03-11 2021-03-08 Lamina de acero laminada en caliente.
US17/907,883 US20230133134A1 (en) 2020-03-11 2021-03-08 Hot-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041524 2020-03-11
JP2020041524 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182395A1 true WO2021182395A1 (ja) 2021-09-16

Family

ID=77672342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008987 WO2021182395A1 (ja) 2020-03-11 2021-03-08 熱延鋼板

Country Status (7)

Country Link
US (1) US20230133134A1 (ja)
EP (1) EP4119689A1 (ja)
JP (1) JP7348574B2 (ja)
KR (1) KR20220134776A (ja)
CN (1) CN115244203B (ja)
MX (1) MX2022011055A (ja)
WO (1) WO2021182395A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6784344B1 (ja) * 2019-03-06 2020-11-11 日本製鉄株式会社 熱延鋼板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061326A (ja) 1992-06-12 1994-01-11 Hitachi Kiden Kogyo Ltd スクリーン渣の封袋方法及びその装置
JPH10168544A (ja) 1996-12-10 1998-06-23 Nkk Corp 打ち抜き性に優れる冷延鋼板及びその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2020041524A (ja) 2018-09-13 2020-03-19 三菱日立パワーシステムズ株式会社 ガスタービンの1段静翼及びガスタービン
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2021065346A1 (ja) * 2019-10-01 2021-04-08 日本製鉄株式会社 熱延鋼板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
BR112015024840B1 (pt) * 2013-04-15 2020-03-31 Nippon Steel Corporation Chapa de aço laminada a quente
JP6465266B1 (ja) * 2017-07-07 2019-02-06 新日鐵住金株式会社 熱延鋼板及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061326A (ja) 1992-06-12 1994-01-11 Hitachi Kiden Kogyo Ltd スクリーン渣の封袋方法及びその装置
JPH10168544A (ja) 1996-12-10 1998-06-23 Nkk Corp 打ち抜き性に優れる冷延鋼板及びその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2020041524A (ja) 2018-09-13 2020-03-19 三菱日立パワーシステムズ株式会社 ガスタービンの1段静翼及びガスタービン
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2021065346A1 (ja) * 2019-10-01 2021-04-08 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
KR20220134776A (ko) 2022-10-05
US20230133134A1 (en) 2023-05-04
CN115244203B (zh) 2023-11-21
JP7348574B2 (ja) 2023-09-21
JPWO2021182395A1 (ja) 2021-09-16
EP4119689A1 (en) 2023-01-18
MX2022011055A (es) 2022-09-19
CN115244203A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2021065346A1 (ja) 熱延鋼板
JP6784344B1 (ja) 熱延鋼板
JP6784343B1 (ja) 熱延鋼板
WO2022044493A1 (ja) 熱延鋼板
WO2021182395A1 (ja) 熱延鋼板
WO2021153037A1 (ja) 熱延鋼板
WO2022044495A1 (ja) 熱延鋼板
WO2021182389A1 (ja) 熱延鋼板
WO2021153036A1 (ja) 熱延鋼板
WO2022044492A1 (ja) 熱延鋼板
WO2022044494A1 (ja) 熱延鋼板
WO2023095870A1 (ja) 亜鉛めっき鋼板
US20240209470A1 (en) Hot-rolled steel sheet
KR20240068702A (ko) 강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507178

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767294

Country of ref document: EP

Effective date: 20221011