WO2016010005A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2016010005A1
WO2016010005A1 PCT/JP2015/070079 JP2015070079W WO2016010005A1 WO 2016010005 A1 WO2016010005 A1 WO 2016010005A1 JP 2015070079 W JP2015070079 W JP 2015070079W WO 2016010005 A1 WO2016010005 A1 WO 2016010005A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
rolling
Prior art date
Application number
PCT/JP2015/070079
Other languages
English (en)
French (fr)
Inventor
洋志 首藤
龍雄 横井
前田 大介
栄作 桜田
武 豊田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/323,617 priority Critical patent/US9896737B2/en
Priority to KR1020177000216A priority patent/KR101897932B1/ko
Priority to EP15821845.3A priority patent/EP3153598B1/en
Priority to BR112016030919A priority patent/BR112016030919A2/pt
Priority to JP2016534425A priority patent/JP6304381B2/ja
Priority to CN201580037109.5A priority patent/CN106661690B/zh
Priority to MX2016016578A priority patent/MX2016016578A/es
Publication of WO2016010005A1 publication Critical patent/WO2016010005A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a hot-rolled steel sheet.
  • high-strength steel sheets are often used for undercarriage parts or structural parts of car bodies for the purpose of reducing the weight of automobile bodies.
  • the undercarriage parts of automobiles are required to have the fatigue characteristics and notch fatigue characteristics of materials without notches, but conventional high-strength steel sheets have insufficient performance and reduce the thickness of the parts. There was a problem that it was not possible.
  • Patent Document 1 and Patent Document 2 describe a hot-rolled steel sheet having ultrafine ferrite grains having an average grain size of less than 2 ⁇ m while being hot-rolled, and this steel sheet has ductility, toughness, fatigue strength, and the like. It is excellent and the anisotropy of these characteristics is said to be small. Further, since fatigue cracks are generated from the vicinity of the surface, it is also effective to refine the structure near the surface.
  • Patent Document 3 describes a hot-rolled steel sheet having a grain size gradient structure in which the average grain size of polygonal ferrite gradually decreases from the center of the plate thickness toward the surface layer.
  • refinement of the martensite structure is also effective in improving fatigue characteristics.
  • Patent Document 4 80% or more of the area fraction of the microstructure is martensite, the average block diameter of the martensite structure is 3 ⁇ m or less, and the maximum block diameter is 1 to 3 times the average block diameter.
  • a machine structural steel pipe is described.
  • fine graining improves the fatigue characteristics of materials without notches, but does not contribute to the improvement of notch fatigue characteristics because there is no effect of delaying the crack propagation rate.
  • Patent Document 5 hard bainite or martensite is dispersed in a structure having fine ferrite as a main phase, thereby achieving both fatigue characteristics and notch fatigue characteristics of a material having no notch.
  • Patent Documents 6 and 7 report that the aspect ratio of martensite in the composite structure can be increased and the crack propagation rate can be reduced.
  • JP-A-11-92858 Japanese Patent Laid-Open No. 11-152544 JP 2004-2111199 A JP 2010-70789 A JP 04-337026 A JP 2005-320619 A Japanese Patent Application Laid-Open No. 07-90478
  • Patent Document 5 does not describe a technique for improving the press formability, and does not pay special attention to the hardness and shape of bainite and martensite. Conceivable. *
  • Patent Documents 6 and 7 do not consider workability such as ductility and hole expansibility required for press molding. *
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a hot-rolled steel sheet excellent in fatigue characteristics and workability in the rolling direction.
  • the inventors of the present invention have made extensive studies to achieve the above object, optimizing the chemical composition and production conditions of the high-strength hot-rolled steel sheet, and controlling the microstructure of the steel sheet, thereby improving the fatigue characteristics in the rolling direction and Succeeded in producing steel sheets with excellent workability.
  • the gist of the present invention is as follows. *
  • Chemical composition is mass%, C: 0.03-0.2%, Mn: 0.1 to 3.0%, P: 0.10% or less, S: 0.03% or less, Al + Si: 0.2 to 3.0%, N: more than 0% and 0.01% or less, O: more than 0% and 0.01% or less, Ti: 0 to 0.3%, Nb: 0 to 0.3%, Mg: 0 to 0.01%, Ca: 0 to 0.01%, REM: 0 to 0.1%, B: 0 to 0.01% Cu: 0 to 2.0%, Ni: 0 to 2.0%, Mo: 0 to 1.0%, V: 0 to 0.3%, Cr: 0 to 2.0%, The rest: iron and impurities
  • the microstructure is mainly composed of ferrite, and the hard part composed of martensite and / or austenite in an area fraction is 3% or more and less than 20%, Of the hard phases present in the center of the plate thickness, those with an aspect ratio of 3 or more account for 60% or more, The length in the rolling direction
  • the present invention it is possible to provide a hot-rolled steel sheet having excellent fatigue characteristics and workability in the rolling direction.
  • the present invention can be suitably used for a steel plate having a thickness of 8 mm or less. Since the hot-rolled steel sheet according to the present invention can extend the fatigue life of undercarriage parts of automobile materials, the industrial contribution is remarkable.
  • FIG. 1 is a schematic diagram showing the shape and dimensions of a test piece used in a fatigue test.
  • FIG. 1 (a) shows a plan view and a front view of the test piece for measuring fatigue strength when there is no notch.
  • 1 (b) shows a plan view and a front view of a test piece for measuring the fatigue strength in the case of having a notch.
  • the hot-rolled steel sheet of the present invention has a hard phase mainly composed of ferrite and composed of martensite and / or austenite in an area fraction of 3% or more and less than 20%. It takes a thing. If the microstructure is a composite structure in which the hard phase is arranged as the second phase in the ferrite that is the main phase, the ferrite improves the ductility and the hard phase improves the strength, so the steel sheet has a good balance between strength and ductility. It becomes.
  • the hot-rolled steel sheet of the present invention has a microstructure in which a hard phase mainly composed of ferrite and a hard phase composed of martensite and / or austenite is distributed as the second phase.
  • the main component of ferrite means that the area fraction of ferrite as the main phase in the hot-rolled steel sheet is the highest.
  • the area fraction of ferrite is preferably 70 to 97%.
  • the fatigue crack propagation suppression effect by the hard phase is manifested when the area fraction of the hard phase is 3% or more.
  • the hard phase becomes a starting point of defects called voids and decreases the hole expansion rate, which is necessary for automobile undercarriage parts. (MPa)) ⁇ (hole expansion rate (%)) ⁇ 35000 ”is not satisfied. Therefore, the hard phase composed of martensite or austenite is made to exist in an area fraction of 3% or more and less than 20% in the microstructure mainly composed of ferrite.
  • the hard phase is preferably present in an area fraction of 5% or more, more preferably 7% or more.
  • the aspect ratio of the hard phase is defined by (the length of the long axis of the hard phase / the length of the short axis of the hard phase).
  • “the length of the long axis of the hard phase” is “the length of the hard phase in the rolling direction of the steel sheet”
  • “the length of the short axis of the hard phase” is “the thickness direction of the steel sheet”
  • the length of the hard phase ”. The greater the aspect ratio of the hard phase, the more often the hard phase that becomes a hindrance to fatigue crack propagation will increase, and the crack detour / branch distance will increase. It is effective for.
  • the hard phase having an aspect ratio of less than 3 has a small detour / branch distance when the crack hits the hard phase, the crack propagation suppressing effect is small. For this reason, it is effective to increase the hard phase having an aspect ratio of 3 or more. Therefore, in the hot-rolled steel sheet of the present invention, the hard phase existing in the central part of the sheet thickness has an aspect ratio of 3 or more occupies 60% or more.
  • the abundance ratio of the hard phase present in the central portion of the plate thickness with an aspect ratio of 3 or more is preferably 80% or more.
  • the hard phase When the hard phase extends in the rolling direction, stress and strain during deformation concentrate on the hard phase and voids are generated at an early stage, so that the hole expandability is likely to deteriorate. Further, the length of the hard phase at the central portion of the plate thickness is particularly important since the central portion of the plate thickness is more plastically restrained than the surface layer portion and tends to generate voids.
  • the length in the rolling direction of the hard phase existing in the central part of the plate thickness is defined as less than 20 ⁇ m.
  • the length in the rolling direction of the hard phase at the center of the plate thickness is preferably less than 18 ⁇ m.
  • the hard phase is composed of martensite and / or austenite. That is, there are three forms: a hard phase consisting only of martensite, a hard phase consisting only of austenite, and a hard phase consisting of both martensite and austenite.
  • the hard phase may be composed of a single grain (martensite grain or austenite grain), or a plurality of grains may collectively form a hard phase.
  • the hard phase in which a plurality of grains are aggregated may be an aggregate of a plurality of martensite grains, a plurality of austenite grains, a single or a plurality of martensite grains, and a single or a plurality of austenite grains.
  • the average aspect ratio of ferrite grains will be described.
  • the aspect ratio of the ferrite grain is defined by (length of the major axis of the ferrite grain / length of the minor axis of the ferrite grain).
  • “the length of the major axis of the ferrite grain” is “the length of the ferrite grain in the rolling direction of the steel sheet”
  • “the length of the minor axis of the ferrite grain” is “the thickness direction of the steel sheet”
  • the length of the ferrite grain When finish rolling is finished in the austenite region, the average aspect ratio of the ferrite grains is less than 5.
  • the average aspect ratio of the ferrite grains is set to less than 5.
  • the fatigue life of a material without a notch is greatly affected by the life until a fatigue crack occurs. It is known that the occurrence of a fatigue crack goes through a three-stage process: (1) saturation of dislocation structure, (2) formation of protrusion / entry, and (3) formation of fatigue crack.
  • the crystal orientation in the stress load direction during the fatigue test is appropriately controlled so that the X-ray random intensity ratio satisfies a predetermined condition.
  • the saturation of the dislocation structure of (1) can be delayed, and the fatigue life in the rolling direction of the material having no notch can be improved. The mechanism will be described below.
  • the crystal structure of iron is a body-centered cubic (bcc structure), and the working slip systems are ⁇ 110 ⁇ ⁇ 111> system, ⁇ 112 ⁇ ⁇ 111> system, ⁇ 123 ⁇ ⁇ It is said that there are 42 of 111> series.
  • the notation of crystal orientation will be described later.
  • the Taylor factor is a value defined by equation (F).
  • d ⁇ i Md ⁇ (F) Where ⁇ i is the slip amount of the slip system i, ⁇ i is the sum of the slip amounts of all active slips, M is the Taylor factor, and ⁇ is the total plastic strain amount.
  • a crystal grain oriented in the ⁇ 001> direction with respect to the stress load direction has a short fatigue crack generation life
  • a crystal grain oriented in the ⁇ 011> direction and the ⁇ 111> orientation has a fatigue crack generation life. Is long. *
  • the sum of X01 random orientation ratios of ⁇ 011> orientation and ⁇ 111> orientation viewed from the rolling direction is 3.5 or more, and X-rays of ⁇ 001> orientation viewed from the rolling direction. It was found that by controlling the random strength to 1.0 or less, the fatigue characteristics in the rolling direction have a good value of (fatigue limit) / (tensile strength) of 0.55 or more.
  • the “fatigue limit” referred to here is a ten thousand times time strength obtained with a fatigue test piece without a notch described later.
  • the sum of the X01 random intensity ratios of the ⁇ 011> orientation and the ⁇ 111> orientation seen from the rolling direction is 3.5 or more, and ⁇ 001 seen from the rolling direction.
  • the X-ray random intensity ratio of the orientation was set to 1.0 or less.
  • the sum of the ⁇ 011> orientation and the ⁇ 111> orientation X-ray random intensity ratio viewed from the rolling direction is preferably 4.0 or more.
  • it is preferable that the X-ray random intensity ratio of ⁇ 001> direction seen from the rolling direction is 0.8 or less.
  • Measuring method of microstructure and X-ray random strength of hot rolled steel sheet (1) Measuring method of area fraction of ferrite and hard phase The area fraction of the hard phase composed of ferrite martensite and / or austenite constituting the structure of the hot-rolled steel sheet of the present invention as described above is a sample taken using a cross section perpendicular to the width direction of the steel sheet as an observation surface. Use to measure. The specimen is polished on the observation surface and etched by nital.
  • 1/4 thickness of the observation surface subjected to the nital etching meaning a position of 1/4 of the thickness of the steel plate in the thickness direction of the steel plate from the surface of the steel plate, the same applies hereinafter
  • 3/8 thickness means a position of 1/4 of the thickness of the steel plate in the thickness direction of the steel plate from the surface of the steel plate, the same applies hereinafter
  • the range of 1/2 thickness is observed with FE-SEM.
  • the observation range of each sample is observed in 10 fields at a magnification of 1000 times, and the ratio of the area occupied by the ferrite and the hard phase in each field is measured.
  • the area of the hard phase is the total area of martensite and austenite.
  • the average value of the total visual field of the ratio of the area which a ferrite and a hard phase occupy be an area ratio of a ferrite and a hard phase.
  • the center portion of the plate thickness is a position that is 1/2 the thickness of the steel plate in the thickness direction of the steel plate from the surface of the steel plate.
  • the length in the rolling direction and the length in the thickness direction may be measured for all the hard phases in the visual field range.
  • the average aspect ratio of the ferrite grains is determined for ferrite grains located at 1 ⁇ 4 to 1 ⁇ 2 thickness of the plate thickness in the above sample. 50 or more ferrite grains located at 1 ⁇ 4 to 1 ⁇ 2 thickness of the plate thickness in the above sample were observed with FE-SEM, and the length of each ferrite grain in the steel plate rolling direction and the steel plate thickness direction were observed. Measure the length. From the measurement results of these lengths, the aspect ratio of each ferrite grain is calculated, and the average aspect ratio of the observed ferrite grains is taken as the average aspect ratio of the ferrite grains. *
  • the X-ray random intensity ratio of the ⁇ 001> orientation, ⁇ 011> orientation, and ⁇ 111> orientation as seen from the rolling direction may be obtained from an inverted pole figure measured by X-ray diffraction.
  • the X-ray random intensity ratio is the X-ray intensity of the test material obtained by measuring the X-ray intensity of the standard sample and the test material without accumulation in a specific orientation under the same conditions by the X-ray diffraction method. Is divided by the X-ray intensity of the standard sample.
  • the crystal orientation is usually expressed as [hkl] or ⁇ hkl ⁇ , and the orientation parallel to the rolling direction (uvw) or ⁇ uvw>.
  • ⁇ Hkl ⁇ and ⁇ uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes.
  • b. c. c. For example, (111), ( ⁇ 111), (1-11), (11-1), ( ⁇ 1-11), ( ⁇ 11 ⁇ ) The 1), (1-1-1), and (-1-1-1) planes are equivalent and cannot be distinguished. In such a case, these orientations are collectively referred to as ⁇ 111>.
  • “ ⁇ 1” is officially expressed by adding “-” on top of “1”, but here it is expressed as “ ⁇ 1” due to the limitation of description. *
  • Preparation of X-ray diffraction sample is performed as follows. A cross section in the rolling direction (cross section perpendicular to the rolling direction) of the steel sheet is polished by mechanical polishing or chemical polishing, finished to a mirror surface by buffing, and then strain is removed by electrolytic polishing or chemical polishing.
  • the range of X-ray diffraction is the entire plate thickness. When the whole cannot be measured at once, the thickness direction may be divided into several fields of view and the results may be averaged.
  • EBSP Electrodet Power Scattering Pattern
  • ECP Electro Channeling Pattern
  • Chemical composition of steel sheet The chemical composition of the hot-rolled steel sheet of the present invention contains the following elements. Below, the reason for limitation of content of these elements is also demonstrated. “%” Of element content means “mass%”.
  • C 0.03-0.2% Carbon (C) is one of the important elements in the present invention.
  • C generates martensite and stabilizes austenite, and therefore contributes not only to improving the strength of the hot-rolled steel sheet by strengthening the structure but also to suppressing crack propagation.
  • the C content is less than 0.03%, the area fraction of the predetermined hard phase cannot be ensured, so the effect of improving the punching fatigue characteristics cannot be confirmed.
  • the content exceeds 0.2%, the area fraction of the low-temperature transformation product constituting the hard phase, which is the second phase, becomes excessive, and the hole expansibility decreases. Therefore, the C content is 0.03% to 0.2%.
  • the lower limit of the C content is preferably 0.06%, and the upper limit is preferably 0.18%.
  • Mn 0.1 to 3.0%
  • Manganese (Mn) is contained in order to enhance the hardenability and generate martensite or austenite in the steel sheet structure in addition to solid solution strengthening. This effect is saturated even if the Mn content exceeds 3%.
  • the Mn content is less than 0.1%, it is difficult to exert the effect of suppressing the formation of pearlite and bainite during cooling. Therefore, the Mn content is 0.1 to 3.0%.
  • the lower limit of the Mn content is preferably 0.3%, and the upper limit is preferably 2.5%.
  • Phosphorus (P) is an impurity contained in the molten iron, segregates at the grain boundary, and decreases the low temperature toughness as the content increases. For this reason, the lower the P content, the better. Moreover, when P is contained more than 0.10%, workability and weldability will be adversely affected. Therefore, the P content is 0.10% or less. In particular, considering the weldability, the upper limit of the P content is preferably 0.03%.
  • S 0.03% or less Sulfur (S) is an impurity contained in the hot metal, and if the content is too large, not only does cracking occur during hot rolling, but also MnS deteriorates the hole expanding property. It is an element that generates inclusions. For this reason, the content of S should be reduced as much as possible. However, an acceptable range is 0.03% or less. Therefore, the S content is 0.03% or less. However, when a certain degree of hole expandability is required, the upper limit of the S content is preferably 0.01% and more preferably 0.005%.
  • Si + Al 0.2-3.0%
  • Silicon (Si) and aluminum (Al) are both important elements in the present invention.
  • Si and Al have the effect of suppressing the ⁇ 112 ⁇ ⁇ 111> slip in iron and improving the fatigue crack initiation life by delaying the formation of dislocation structures. This effect is obtained when the total content of Si and Al (Si + Al) is 0.2% or more, and is remarkable when the content is 0.5% or more. Moreover, even if it contains exceeding 3.0%, an effect will be saturated and economical efficiency will deteriorate. Therefore, Si + Al is 0.2 to 3.0%.
  • the lower limit of Si + Al is preferably 0.5%.
  • the Al content of the present invention refers to acid-soluble Al (so-called “sol.Al”). Only one of Si and Al may be contained in an amount of 0.2 to 3.0%, or both Si and Al may be contained in a total of 0.2 to 3.0%.
  • N more than 0% and 0.01% or less Nitrogen (N) is an element that contributes to improvement of low-temperature toughness through refinement of crystal grain size during slab heating by being present as TiN in steel. Therefore, you may make it contain. However, if N is contained in an amount of more than 0.01%, there is a concern that a blowhole is formed during welding of the steel sheet and the joint strength of the welded portion is lowered. Therefore, the N content is 0.01% or less. On the other hand, it is economically not preferable that the N content is less than 0.0001%. Therefore, the lower limit of the N content is preferably 0.0001% or more, and more preferably 0.0005%.
  • O More than 0% and 0.01% or less Oxygen (O) forms an oxide and deteriorates moldability, so the content needs to be suppressed. In particular, when the O content exceeds 0.01%, the tendency of deterioration of moldability becomes remarkable. Therefore, the O content is 0.01% or less. On the other hand, it is economically not preferable that the O content is less than 0.001%. Therefore, the lower limit of the O content is preferably 0.001% or more.
  • Ti 0 to 0.3% Nb: 0 to 0.3% Titanium (Ti) is an element that achieves both excellent low-temperature toughness and high strength by precipitation strengthening. Therefore, you may contain Ti as needed. Since Ti carbonitride or solute Ti delays grain growth during hot rolling, the grain size of the hot-rolled steel sheet can be refined and contributes to improvement of low-temperature toughness. However, if the Ti content exceeds 0.3%, the above effect is saturated and the economic efficiency is lowered. Therefore, the Ti content is 0 to 0.3%. Moreover, there exists a possibility that the said effect cannot fully be acquired as Ti content is less than (0.005 + 48/14 [N] +48/32 [S])%.
  • the Ti content is preferably 0.005 + 48/14 [N] +48/32 [S] (%) or more and 0.3% or less.
  • [N] and [S] are N content (%) and S content (%), respectively.
  • the upper limit of the Ti content is preferably 0.15%.
  • Niobium (Nb) is an element that improves the low temperature toughness of a hot-rolled steel sheet. Therefore, you may contain Nb as needed. Nb carbonitride or solute Nb delays grain growth during hot rolling, whereby the grain size of the hot-rolled steel sheet can be refined and contributes to improvement in low-temperature toughness. However, even if the Nb content exceeds 0.3%, the above effect is saturated and the economic efficiency is lowered. Therefore, the Nb content is 0 to 0.3%. Moreover, there exists a possibility that the said effect cannot fully be acquired if Nb content is less than 0.01%. Therefore, the lower limit of the Nb content is preferably 0.01%, and the upper limit is preferably 0.1%. *
  • Mg 0 to 0.01% Ca: 0 to 0.01% REM: 0 to 0.1%
  • Mg magnesium
  • Ca calcium
  • REM rare earth elements
  • Mg, Ca, and REM contain the above-mentioned effects so that each content is 0.0005% or more. Therefore, the lower limit of Mg content is preferably 0.0005%, the lower limit of Ca content is preferably 0.0005%, and the lower limit of REM content is preferably 0.0005%.
  • REM is a generic name for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM means the total amount of the above elements.
  • B 0 to 0.01%
  • B is an element that is segregated at the grain boundary and improves the low temperature toughness by increasing the grain boundary strength. Therefore, you may make it contain in a steel plate as needed.
  • the B content exceeds 0.01%, the above effects are not only saturated but also economical. Therefore, the B content is 0 to 0.01%.
  • the said effect becomes remarkable when B content of a steel plate becomes 0.0002% or more. Therefore, the lower limit of the B content is preferably 0.0002%, and more preferably 0.0005%.
  • the upper limit of the B content is preferably 0.005%, and more preferably 0.002%.
  • Cu 0 to 2.0% Ni: 0 to 2.0% Mo: 0 to 1.0%
  • V 0 to 0.3%
  • Cr 0 to 2.0%
  • Copper (Cu), nickel (Ni), molybdenum (Mo), vanadium (V) and chromium (Cr) are elements that have the effect of improving the strength of the hot-rolled steel sheet by precipitation strengthening or solid solution strengthening. Therefore, you may contain any 1 or more types of these elements as needed.
  • Cu content exceeds 2.0%
  • Ni content exceeds 2.0%
  • Mo content exceeds 1.0%
  • V content exceeds 0.3%
  • Cr content is Even if it contains exceeding 2.0%, the said effect will be saturated and economical efficiency will fall.
  • Cu content is 0-2.0%, Ni content is 0-2.0%, Mo content is 0-1.0%, V content is 0-0.3%, Cr content is 0 to 2.0%. Moreover, Cu, Ni, Mo, V, and Cu cannot fully acquire the said effect, if each content is less than 0.01%. Therefore, the lower limit of the Cu content is preferably 0.01%, and more preferably 0.02%.
  • the lower limit of the Ni content is preferably 0.01%, the lower limit of the Mo content is 0.01%, the lower limit of the V content is 0.01%, and the lower limit of the Cr content is preferably 0.01%.
  • the upper limit of Cu content is 1.2%, the upper limit of Ni content is 0.6%, the upper limit of Mo content is 0.7%, the upper limit of V content is 0.2%, and the Cr content is The upper limit is preferably 1.2%.
  • the above is the basic chemical composition of the hot-rolled steel sheet of the present invention.
  • the balance of the chemical composition of the hot-rolled steel sheet of the present invention consists of iron and impurities.
  • an impurity means the component mixed by raw materials and other factors, such as an ore and a scrap, when manufacturing steel materials industrially.
  • the hot-rolled steel sheet of the present invention is excellent even if it contains 1% or less of Zr, Sn, Co, Zn, and W in total in place of a part of iron. It has been confirmed that fatigue properties and workability in the rolling direction are not impaired.
  • Sn may cause wrinkles during hot rolling, so the upper limit of Sn content is preferably 0.05%.
  • the hot-rolled steel sheet of the present invention having the structure and composition as described above is provided with a hot-dip galvanized layer formed by hot-dip galvanizing treatment on the surface, and further provided with an alloyed galvanized layer after alloying treatment after plating.
  • the plating layer is not limited to pure zinc, and may contain elements such as Si, Mg, Al, Fe, Mn, Ca, Zr, and the like to further improve the corrosion resistance.
  • the effect of the present invention can be obtained even if the hot-rolled steel sheet of the present invention has any one of a surface treatment layer formed by organic film formation, film lamination, organic salt / inorganic salt treatment, non-chrome treatment, and the like.
  • the production method is not particularly limited.
  • production comprising the following steps [a] to [h] According to the method, the hot-rolled steel sheet of the present invention can be obtained stably.
  • the detail of each process is demonstrated as an example.
  • [A] Slab casting process The manufacturing method of the slab preceding hot rolling is not particularly limited. That is, following the smelting of steel in a blast furnace, electric furnace, etc., various secondary smelting is performed to adjust to the above-described chemical composition, and then the slab is formed by a method such as normal continuous casting or thin slab casting Cast it. At that time, as long as it can be controlled within the component range of the present invention, scrap may be used as a raw material.
  • [B] Slab heating process The cast slab is heated to a predetermined temperature during hot rolling. In the case of continuous casting, it may be cooled to a low temperature and then heated again and then hot-rolled, or may be directly heated and hot-rolled directly after continuous casting without cooling.
  • the heating time of the slab is not less than the time t 1 (s) defined by the equation (A).
  • t 1 (s) 1.4 ⁇ 10 ⁇ 6 ⁇ Exp ⁇ 3.2 ⁇ 10 4 / (T 1 +273) ⁇ (A)
  • T 1 (° C.) is the average temperature of the slab in the soaking zone.
  • the reason for specifying the heating time in this way is as follows.
  • segregation of Mn exists in the center of the slab. Therefore, when the slab is not sufficiently heated, segregation of Mn remains in the center portion of the thickness of the hot-rolled steel sheet obtained by rolling. Since Mn stabilizes austenite, a region where austenite tends to remain is formed along Mn segregation during cooling after rolling. Therefore, martensite transformed from austenite at low temperature or residual austenite tends to exist along Mn segregation, and the length in the rolling direction of the hard phase at the center of the thickness of the hot-rolled steel sheet is increased. *
  • the heating time of the slab is set to the time t 1 (s) or more defined by the formula (A).
  • the slab heating temperature is preferably less than 1300 ° C.
  • the minimum of slab heating temperature shall be 1150 degreeC.
  • the slab heating time is not an elapsed time from the start of heating, but is a time during which the slab is held at a predetermined heating temperature (for example, a temperature of 1150 ° C. or higher and lower than 1300 ° C.).
  • the rough rolling process of hot rolling is started without particularly waiting for the slab extracted from the heating furnace to obtain a rough bar.
  • the total rolling reduction during rough rolling is set to 50% or more, and the slab surface layer is set to the Ar 3 transformation point represented by the following formula (B) at least twice, preferably at least three times during rough rolling. Cooling.
  • the rough rolling step was multipass hot rolling, once cooled surface layer of the slab through the previous path below Ar 3 transformation point, it is recuperated to a temperature above the Ar 3 transformation point. The slab whose surface is reheated is rolled in a later pass, and the slab surface is cooled again below the Ar 3 transformation point. Repeat this process.
  • the temperature of the slab surface layer in this invention is the temperature of the slab in a 1-mm part from the slab surface to a depth direction, for example, can be estimated from heat transfer calculation. Cooling not only the outermost surface of the slab but also the temperature inside the slab to below the Ar 3 point increases the effect of double heat.
  • Ar 3 (° C) 901 ⁇ 325 ⁇ C + 33 ⁇ Si + 287 ⁇ P + 40 ⁇ Al ⁇ 92 ⁇ (Mn + Mo + Cu) ⁇ 46 ⁇ Ni (B)
  • each element symbol means content (mass%) of each element.
  • the reason for specifying the rough rolling conditions as described above is as follows.
  • the sum of the X01 random orientation ratios of the ⁇ 011> orientation and the ⁇ 111> orientation viewed from the rolling direction is It is essential that the X-ray random intensity ratio in the ⁇ 001> orientation as viewed from the rolling direction is 3.5 or more and less than 1.0.
  • the structure around the surface layer is partially transformed from austenite to ferrite. Since the ferrite at this time is affected by the shearing force during rough rolling, the ⁇ 111> orientation and the ⁇ 011> orientation increase and the ⁇ 001> orientation decreases as viewed from the rolling direction.
  • the surface ferrite recuperates and transforms back to austenite.
  • the austenite is reversely transformed into an orientation having a certain orientation relationship with the crystal orientation of the ferrite before transformation.
  • the reverse-transformed surface austenite is further roughly rolled and cooled again below the Ar 3 transformation point, part of the surface structure is transformed from austenite to ferrite again. Since the crystal orientation of austenite before transformation is affected by the crystal orientation of the previous ferrite, the ⁇ 111> orientation and ⁇ 011> orientation of the ferrite after transformation are further increased after the previous pass.
  • the slab surface layer is not less than Ar 3 transformation point at least twice. Cool preferably 3 times or more.
  • [D] Finish rolling process In the finish rolling process following the rough rolling process, rolling with a shape ratio X calculated from the following formula (C) of 2.3 or more is performed at a slab surface temperature of 2 passes or more and 1100 ° C. or less, The total rolling rate is 40% or more.
  • L is the diameter of the rolling roll
  • h in is the thickness on the entry side of the rolling roll
  • h out is the thickness on the exit side of the rolling roll.
  • Shape ratio X as shown by the following (C1) ⁇ (C3) equation, which is the ratio of the contact arc length l d of the rolling rolls and steel plates with an average thickness h m.
  • the introduction depth of the shear strain is insufficient when the number of rolling passes is one. If the introduction depth of the shear strain is insufficient, the orientation of the ferrite in the ⁇ 111> direction and the ⁇ 011> direction as viewed from the rolling direction becomes weak, and as a result, the fatigue characteristics in the rolling direction are deteriorated. Therefore, the number of passes having a shape ratio X of 2.3 or more is set to 2 passes or more.
  • the shape ratio X may be 2.3 or more in all passes. In order to increase the thickness of the shear layer, it is preferable that the value of the shape ratio X is also large.
  • the value of the shape ratio X is preferably 2.5 or more, and more preferably 3.0 or more.
  • the reduction in the final pass of the finish rolling is (T 2 ⁇ 100) ° C. or more and less than (T 2 +20) ° C., preferably (T 2 ⁇ 100) ° C. or more and less than T 2 (° C.), and the reduction rate is 3% or more. Less than 40%.
  • the rolling reduction is preferably 10% or more and less than 40%.
  • T 2 is a temperature defined by the following equation (D).
  • T 2 (° C.) 870 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo + 100 ⁇ V (D)
  • each element symbol means content (mass%) of each element.
  • the reduction condition in this final pass is extremely important for controlling the aspect ratio of the hard phase at the center of the plate thickness.
  • the reason why the aspect ratio of the hard phase at the center of the plate thickness increases by rolling in the temperature range of (T 2 -100) ° C. or more and less than (T 2 +20) ° C. is that the recrystallization is suppressed. This is probably because the aspect ratio of austenite increased and the shape was inherited by the hard phase.
  • the reduction in the final pass is performed in a temperature range of less than (T 2 -100) ° C.
  • rolling is performed in a two-phase region of ferrite and austenite, and as a result of the work hardening of the ferrite, the ductility of the steel sheet decreases.
  • the aspect ratio of the hard phase at the center of the plate thickness becomes small. It is considered that this is because the recrystallization of austenite is promoted and the aspect ratio of austenite is reduced, which also affects the form of the hard phase. Therefore, the reduction in the final pass is performed in a temperature range of (T 2 ⁇ 100) ° C. or more and less than (T 2 +20) ° C. By reducing under this condition, the aspect ratio of the hard phase becomes 3 or more.
  • the average cooling rate from the final rolling temperature of finish rolling to 750 ° C. is set to 60 ° C./s or more. This is because if the cooling rate is less than 60 ° C./s, the length in the thickness direction of the hard phase at the center of the thickness may be 20 ⁇ m or more.
  • the cause of the relationship between the cooling rate and the length of the hard phase in the plate thickness direction is not clear, but at a cooling rate of 60 ° C / s or more, the dislocations introduced in the final rolling of finish rolling are difficult to recover and serve as the core of ferrite transformation. Since it works, untransformed austenite at the center of the plate thickness is divided by ferrite, and as a result, the length of the hard phase in the plate thickness direction may be reduced.
  • the soaking step is an essential step for obtaining a microstructure mainly composed of ferrite.
  • the holding time is set to 5 s or more because when the holding time is 5 s or less, ferrite does not become the main component of the microstructure, or the area fraction of the hard phase becomes 20% or more, so that the ductility and the hole expansion rate are reduced. It is.
  • [H] Winding process After the second cooling process, the steel sheet is wound.
  • the temperature (winding temperature) of the steel sheet during winding is set to T 3 (° C.) or less defined by the above equation (E). This is because, when rolled up at a high temperature exceeding T 3 (° C.), bainite and pearlite are generated in the structure, and it is difficult to secure the fraction of the hard phase, resulting in deterioration of the punching fatigue characteristics.
  • the hot-rolled steel sheet of the present invention is manufactured by the above manufacturing process. *
  • the reduction ratio is 0.1% or more and 2% or less for the purpose of improving ductility by correcting the shape of the steel sheet or introducing movable dislocations. It is preferable to perform skin pass rolling. Moreover, after completion
  • the hot-rolled steel sheet of the present invention is manufactured through continuous casting, pickling, etc., which are normal hot-rolling processes, in addition to the rolling process defined in the present invention, but other than the processes defined in the present invention. Even if a part of the process is extracted and manufactured, excellent fatigue characteristics and workability in the rolling direction, which are the effects of the present invention, can be ensured.
  • the hot-rolled steel sheet produced through the above steps is subjected to hot dip galvanizing or alloying hot dip galvanizing, or surface treatment by organic film formation, film lamination, organic salt / inorganic salt treatment, non-chromic treatment, etc. These steps may be added.
  • the hole expansion rate of a hot-rolled steel sheet is evaluated by a hole expansion test in accordance with the test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
  • the test piece is collected from the same position as the tensile test piece collection position, and a punched hole is provided by a cylindrical punch.
  • the steel sheet excellent in workability in the present invention is (tensile strength (MPa)) ⁇ (total elongation (%)) ⁇ 18000 and (tensile strength (MPa)) ⁇ (hole expansion rate (%)) ⁇ 35000.
  • FIG. 1 is a schematic diagram showing the shape and dimensions of a test piece used in a fatigue test
  • FIG. 1 (a) is a plan view and a front view of the test piece for measuring fatigue strength when there is no notch
  • FIG. 1B shows a plan view and a front view of a test piece for measuring fatigue strength in the case of having a notch.
  • test pieces having the shape and dimensions shown in FIG. 1 are used.
  • the test piece is collected from the same position as the tensile test piece collection position so that the rolling direction is the long side.
  • the test piece shown to Fig.1 (a) is a test piece for obtaining the fatigue strength in case there is no notch.
  • the test piece shown in FIG. 1 (b) is a punched test piece for obtaining the fatigue strength of the notched material. 1 is punched with a cylindrical punch. The punching clearance is 10%.
  • Any fatigue test piece is ground to a depth of about 0.05 mm from the outermost layer with a surface roughness finish symbol. *
  • the steel sheet having excellent fatigue characteristics in the rolling direction is a value obtained by dividing the ten thousand times strength obtained by the above-described fatigue test piece without notches by the tensile strength obtained by the tensile test (fatigue Limit ratio) is 0.55 or more, and the value (punching fatigue limit ratio) obtained by dividing the 10 million time strength obtained by the punching fatigue test by the tensile strength obtained by the tensile test is 0.30 or more. Refers to steel sheet. *
  • Hot rolled steel sheets were manufactured by the above-described steps [a] to [h] using molten steel having chemical compositions of steels A to J and steels a to d.
  • the implementation conditions for each step were the conditions shown in Table 2 and Table 3.
  • step [d] rolling at 1100 ° C. or lower was performed in 6 passes P1 to P6.
  • Steels A to J and steels a to d shown in Tables 2 and 3 correspond to the molten steels having chemical compositions shown in Table 1 and mean the used molten steels.
  • T 1 (° C.) was measured as the average temperature of the soaking tropics of the heating furnace, and was defined as the average temperature of the slab in the soaking tropics.
  • P1 to P6 mean the first to sixth passes in the finish rolling process.
  • the hot-rolled steel sheet was a hot-rolled steel sheet (HR) that was not plated, a hot-dip galvanized steel sheet (GI) that was not subjected to alloying after plating, or an galvannealed steel sheet (GA). *
  • steels A-1, B-1, C-1, C-3, C-5, C-7, D-1, E-1, E-3, E-5, E-7, E-9, E-10, E-13, E-14, E-17, E-18, F-1, G-1, H-1, I-1 and J-1 are steel
  • the chemical composition and microstructure of the steel satisfy examples of the present invention, while steels C-2, C-4, C-6, C-8, E-2, E-4, E-6, E- 8, E-11, E-12, E-15, E-16, a-1, b-1, c-1 and d-1 are those in which the chemical composition or microstructure of the steel does not meet the provisions of the present invention This is an example.
  • the “other structures” of C-6 to C-8 were all bainite. *
  • All of the hot-rolled steel sheets of the present invention examples such as Steel A-1, are present in the central part of the plate thickness, the area fraction of the hard phase, the proportion of the hard phase existing in the central part of the plate thickness with an aspect ratio of 3 or more
  • the length of the hard phase to be rolled in the rolling direction, the average aspect ratio of the ferrite grains, and the X-ray random intensity ratio all satisfied the provisions of the present invention.
  • the hot-rolled steel sheets of the examples of the present invention all have (tensile strength (MPa)) ⁇ (total elongation (%)) ⁇ 18000 and (tensile strength (MPa)) ⁇ (hole expansion rate (%)) ⁇ 35000 was satisfied, the fatigue limit was 0.55 or more, and the punching fatigue limit was 0.30 or more.
  • Steel C-2 as a comparative example had an average cooling rate from the final reduction temperature of step [e] to 750 ° C., which was too low at 43 ° C./s. Therefore, the rolling direction of the hard phase at the center of the plate thickness was as long as 22.9 ⁇ m, and (Tensile strength (MPa)) ⁇ (Hole expansion ratio (%)) ⁇ 35000 was not satisfied. *
  • Steel C-4 had an area fraction of the hard phase as high as 83.0% because the retention time in the temperature range of 600 ° C. or higher and lower than 750 ° C. in the step [f] was too short, and the ferrite was microscopic. It did not become the subject of the organization. Therefore, the ductility was low and (tensile strength (MPa)) ⁇ (total elongation (%)) ⁇ 18000 was not satisfied. *
  • the slab heating time in step [b] was 1168 s, which was shorter than the time t 1 (1244 s) defined by Equation (A). Therefore, the rolling direction of the hard phase at the center of the plate thickness was as long as 25.5 ⁇ m, and (tensile strength (MPa)) ⁇ (hole expansion rate (%)) ⁇ 35000 was not satisfied.
  • Steel E-4 had a low total rolling reduction of 46% during the rough rolling in step [c].
  • Steel E-6 the slab surface layer was cooled to the Ar 3 transformation point or less only once during the rough rolling in step [c].
  • Steel E-8 had only one pass in which the shape ratio X satisfied 2.3 or more among the six rolling passes in step [d].
  • Steel E-11 had a low reduction rate of 35% for rolling at 1100 ° C. or lower in the step [d]. Therefore, in these steels, the sum of X-ray random intensity ratios of the ⁇ 011> orientation and the ⁇ 111> orientation as seen from the rolling direction is as low as less than 3.5, while the X of the ⁇ 001> orientation as seen from the rolling direction. The line random intensity was greater than 1.0. As a result, the fatigue limit ratio in the rolling direction was a low value of less than 0.55.
  • Steel E-12 had a reduction temperature of 762 ° C. in the final pass of the finish rolling in step [d], which was lower by 100 ° C. than T 2 (877 ° C.) defined by equation (D). Therefore, the average aspect ratio of the ferrite grains was as large as 6.3, and the ferrite grains were work-hardened during the tensile test and the ductility of the steel sheet was lowered. As a result, (tensile strength (MPa)) ⁇ (total elongation (%)) ⁇ 18000 was not satisfied.
  • Steel b-1 had an excessively high C content of 0.254%.
  • Steel d-1 had an S content of 0.0361%, which was too high. Therefore, in all cases, the hole expanding property was low, and (tensile strength (MPa)) ⁇ (hole expanding rate (%)) ⁇ 35000 was not satisfied. *
  • Steel P-1 has a P content of 0.155% which is too high, so the workability is low. (Tensile strength (MPa)) ⁇ (Total elongation (%)) ⁇ 18000 and (Tensile strength (MPa)) X (hole expansion rate (%)) ⁇ 35000 was not satisfied.
  • the present invention it is possible to provide a hot-rolled steel sheet having excellent fatigue characteristics and workability in the rolling direction.
  • the present invention can be suitably used for a steel plate having a thickness of 8 mm or less. Since the hot-rolled steel sheet according to the present invention can extend the fatigue life of undercarriage parts of automobile materials, the industrial contribution is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明の熱延鋼板は、化学組成が、質量%で、C:0.03~0.2%、Mn:0.1~3.0%、P:0.10%以下、S:0.03%以下、Al+Si:0.2~3.0%、N:0を超え0.01%以下、O:0を超え0.01%以下、残部:鉄および不純物であり、ミクロ組織が、フェライトを主体とし、面積分率で、マルテンサイトおよび/またはオーステナイトで構成される硬質相が3%以上20%未満であり、板厚中央部に存在する硬質相のうちアスペクト比が3以上のものが60%以上を占め、板厚中央部に存在する硬質相の圧延方向の長さが20μm未満であり、フェライト粒の平均アスペクト比が5未満であり、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5以上であり、かつ圧延方向から見た<001>方位のX線ランダム強度比が1.0以下である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。
 従来、自動車車体の軽量化を目的として、足回り部品または車体の構造用部品に高強度鋼板が多く使われている。自動車の足回り部品には、切り欠きの無い材料の疲労特性および切り欠き疲労特性が要求されるが、従来の高強度鋼板では、これらの性能が不十分であり、部品の板厚を減少させられないという問題があった。 
 切り欠きの無い材料の疲労特性を向上させるには、組織を微細化させることが有効である。例えば、特許文献1および特許文献2には、熱延のままで平均粒径2μm未満の超微細フェライト粒を有する熱延鋼板が記載されており、この鋼板は、延性、靭性、疲労強度などに優れ、これらの特性の異方性が小さいとされている。また、疲労き裂は、表面近傍から発生するため、表面近傍の組織を微細化することも有効である。特許文献3には、ポリゴナルフェライトの平均結晶粒径が板厚中心から表層に向かい漸次小さくなる結晶粒径傾斜組織を有する熱延鋼板が記載されている。更に、マルテンサイト組織の細粒化も疲労特性の向上に有効である。特許文献4には、ミクロ組織の面分率の80%以上がマルテンサイトであり、マルテンサイト組織の平均ブロック径が3μm以下であり、かつ最大ブロック径が平均ブロック径の1倍以上3倍以下である機械構造鋼管が記載されている。しかし、細粒化は切り欠きの無い材料の疲労特性を向上させるものの、き裂伝播速度の遅延効果がなく、切り欠き疲労特性の向上には寄与しない。 
 切り欠き疲労特性の向上については、複合組織化によるき裂伝播速度の低減が効果的であることが報告されている。特許文献5では、微細なフェライトを主相とした組織中に硬質なベイナイトまたはマルテンサイトを分散させることで、切り欠きの無い材料の疲労特性と切り欠き疲労特性を両立させている。特許文献6および7では、複合組織中のマルテンサイトのアスペクト比を上げることでき裂伝播速度を低減できることが報告されている。
特開平11-92859号公報 特開平11-152544号公報 特開2004-211199号公報 特開2010-70789号公報 特開平04-337026号公報 特開2005-320619号公報 特開平07-90478号公報
 特許文献5には、プレス成型性を向上させるための手法が記載されておらず、ベイナイトおよびマルテンサイトの硬度および形状に格別の注意を払っていないため、良好なプレス成型性を備えていないと考えられる。 
 特許文献6および7には、プレス成型を行う際に必要となる延性および穴広げ性等の加工性について考慮されていない。 
 本発明は、このような問題を解決するためになされたものであり、その目的は、圧延方向の疲労特性および加工性に優れた熱延鋼板を提供することにある。
 本発明者らは、上記の目的を達成するために鋭意研究を重ね、高強度熱延鋼板の化学組成および製造条件を最適化し、鋼板のミクロ組織を制御することによって、圧延方向の疲労特性および加工性に優れた鋼板の製造に成功した。本発明の要旨は、以下のとおりである。 
(1)
 化学組成が、質量%で、
 C:0.03~0.2%、
 Mn:0.1~3.0%、
 P:0.10%以下、
 S:0.03%以下、
 Al+Si:0.2~3.0%、
 N:0%を超え、0.01%以下、
 O:0%を超え、0.01%以下、
 Ti:0~0.3%、
 Nb:0~0.3%、
 Mg:0~0.01%、
 Ca:0~0.01%、
 REM:0~0.1%、
 B:0~0.01%、
 Cu:0~2.0%、
 Ni:0~2.0%、
 Mo:0~1.0%、
 V:0~0.3%、
 Cr:0~2.0%、
 残部:鉄および不純物であり、
 ミクロ組織が、フェライトを主体とし、面積分率で、マルテンサイトおよび/またはオーステナイトで構成される硬質相が3%以上20%未満であり、
 板厚中央部に存在する硬質相のうちアスペクト比が3以上のものが60%以上を占め、
 板厚中央部に存在する硬質相の圧延方向の長さが20μm未満であり、
 フェライト粒の平均アスペクト比が5未満であり、
 圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5以上であり、かつ圧延方向から見た<001>方位のX線ランダム強度比が1.0以下である、熱延鋼板。 
 (2)
 質量%で、Ti:(0.005+48/14[N]+48/32[S])%以上0.3%以下、Nb:0.01~0.3%から選択される一種以上を含む、上記(1)の熱延鋼板。
 ただし、[N]はNの含有量(質量%)、[S]はSの含有量(質量%)を意味する。 
 (3)
 質量%で、Mg:0.0005~0.01%、Ca:0.0005~0.01%、REM:0.0005~0.1%から選択される一種以上を含む、上記(1)の熱延鋼板。 
 (4)
 質量%で、B:0.0002~0.01%を含む、上記(1)の熱延鋼板。 
 (5)
質量%で、Cu:0.01~2.0%、Ni:0.01~2.0%、Mo:0.01~1.0%、V:0.01~0.3%、Cr:0.01~2.0%から選択される一種以上を含む、上記(1)の熱延鋼板。
(6)
 表面に溶融亜鉛めっき層、または合金化亜鉛めっき層を有する、上記(1)の熱延鋼板。
 本発明によれば、圧延方向の疲労特性と加工性に優れた熱延鋼板を提供することができる。本発明は板厚8mm以下の鋼板に好適に利用できる。本発明に係る熱延鋼板は、自動車用材料の足回り部品などの疲労寿命を延ばすことが可能となるため、産業上の貢献が顕著である。
図1は、疲労試験に用いる試験片の形状および寸法を示す模式図であり、図1(a)は切り欠きが無い場合の疲労強度を測定する試験片の平面図および正面図を示し、図1(b)は切り欠きを有する場合の疲労強度を測定する試験片の平面図および正面図を示す。
 1.熱延鋼板のミクロ組織
 1-1.熱延鋼板を構成する各相の面積分率
 本発明の熱延鋼板は、フェライトを主体とし、マルテンサイトおよび/またはオーステナイトで構成される硬質相が面積分率で3%以上20%未満存在することを要する。ミクロ組織を主相であるフェライト中に第二相として硬質相を配した複合組織とすれば、フェライトが延性を向上させ、硬質相が強度を向上させるため、強度と延性のバランスが良好な鋼板となる。更に、硬質相はフェライト中の疲労き裂伝播の障害となり、疲労き裂伝播速度を低減する効果があるので、上記の複合組織を有する鋼板は、打抜き疲労特性に優れる。このことから、本発明の熱延鋼板は、フェライトを主体とし、第二相としてマルテンサイトおよび/またはオーステナイトで構成される硬質相を分配したミクロ組織とすることとした。フェライトが主体とは、熱延鋼板中の主相となるフェライトの面積分率が最も高いことを意味する。フェライトの面積分率は70~97%が好ましい。 
 硬質相による疲労き裂伝播抑制効果は、硬質相の面積分率が3%以上で発現する。一方、硬質相の面積分率が20%以上となると、硬質相がボイドと呼ばれる欠陥の起点となって穴広げ率を低下させ、自動車の足廻り部品に必要とされる、「(引張強さ(MPa))×(穴広げ率(%))≧35000」を満たさなくなる。よって、マルテンサイトまたはオーステナイトで構成される硬質相を、フェライトを主体とするミクロ組織中に面積分率で3%以上20%未満存在させることとした。硬質相は、面積分率で5%以上存在させるのが好ましく、7%以上存在させるのがより好ましい。 
 1-2.板厚中央部に存在する硬質相のアスペクト比
 次に、板厚中央部に存在する硬質相のアスペクト比について説明する。打抜き疲労試験を軸疲労試験で行った際には板厚中央部から疲労き裂が発生し、き裂が板厚方向に伝播することで破断に至る。このとき、き裂の発生と初期の伝播を抑制するには、板厚中央部の硬質相の形態が特に重要である。 
 硬質相のアスペクト比は、(硬質相の長軸の長さ/硬質相の短軸の長さ)で定義される。本発明の熱延鋼板において「硬質相の長軸の長さ」は「鋼板の圧延方向における硬質相の長さ」とし、「硬質相の短軸の長さ」は「鋼板の厚さ方向における硬質相の長さ」とする。硬質相のアスペクト比が大きいほど、疲労き裂伝播の障害になる硬質相にき裂が当たる頻度が増えるのに加え、き裂の迂回・分岐距離が増大することから、疲労き裂伝播速度低下に有効である。ここで、アスペクト比が3未満の硬質相は、き裂が硬質相に当たった際の迂回・分岐距離が小さいため、き裂伝播抑制効果は小さい。このため、アスペクト比が3以上の硬質相を増加させるのが有効である。よって、本発明の熱延鋼板では、板厚中央部に存在する硬質相のうちアスペクト比が3以上のものが60%以上を占めることとした。板厚中央部に存在する硬質相のうちアスペクト比が3以上のものの存在比率は80%以上とすることが好ましい。 
 1-3.板厚中央部に存在する硬質相の圧延方向の長さ
 板厚中央部に存在する硬質相の圧延方向の長さについて説明する。フェライトと硬質相からなる複合組織鋼が変形する際には、軟質なフェライト側が優先的に塑性変形するため、変形に伴って硬質相が担う応力が増大し、フェライト・硬質相界面には大きなひずみが生じる。 
 硬質相が担う応力、またはフェライト・硬質相界面のひずみが一定以上になるとボイドと呼ばれる欠陥が鋼中に生じ、このボイドが連結することにより破断に至る。ボイドが発生し易い材料は、局部変形に弱く、穴広げ性が低い。 
 硬質相が圧延方向に伸びていると、変形時の応力およびひずみが硬質相に集中し、早期にボイドが発生するため、穴広げ性が劣化し易い。また、表層部と比較して板厚中央部は塑性拘束が強く、ボイドが発生し易い傾向にあるため、板厚中央部の硬質相の長さは特に重要である。
 本発明者らの検討によれば、板厚中央部に存在する硬質相の圧延方向の長さを20μm未満に制御することで、ボイドの発生を抑制でき、自動車の足廻り部品に必要とされる、(引張強さ(MPa))×(穴広げ率(%))≧35000を達成できる。そのため、本発明の熱延鋼板では、板厚中央部に存在する硬質相の圧延方向の長さを20μm未満と規定した。板厚中央部の硬質相の圧延方向の長さは、18μm未満が好ましい。
 硬質相は、マルテンサイトおよび/またはオーステナイトで構成される。すなわち、マルテンサイトのみからなる硬質相、オーステナイトのみからなる硬質相、マルテンサイトとオーステナイトの両方からなる硬質相の3形態がある。また硬質相は、単一の粒(マルテンサイト粒またはオーステナイト粒)からなる場合もあるし、複数の粒が集合して一体的に硬質相を構成する場合もある。複数の粒が集合した硬質相には、複数のマルテンサイト粒の集合体、複数のオーステナイト粒、単一または複数のマルテンサイト粒と単一または複数のオーステナイト粒の集合体の場合がある。
 1-4.フェライト粒のアスペクト比
 フェライト粒の平均アスペクト比について説明する。フェライト粒のアスペクト比は、(フェライト粒の長軸の長さ/フェライト粒の短軸の長さ)で定義される。本発明の熱延鋼板において「フェライト粒の長軸の長さ」は「鋼板の圧延方向におけるフェライト粒の長さ」とし、「フェライト粒の短軸の長さ」は「鋼板の厚さ方向におけるフェライト粒の長さ」とする。オーステナイト域で仕上圧延を終了した場合には、フェライト粒の平均アスペクト比は5未満となる。一方、最終段圧延温度が低く、オーステナイトとフェライトの二相域で圧延した場合には、フェライト粒が圧延方向に延伸するため、フェライト粒の平均アスペクト比は5以上となる。フェライト粒の平均アスペクト比は5以上である場合、フェライト粒が加工硬化するため鋼板の延性が低下し、(引張強さ(MPa))×(全伸び(%))≧18000を満たすことができない。そのため、本発明の熱延鋼板では、フェライト粒の平均アスペクト比を5未満とすることとした。 
 1-5.X線ランダム強度比
 X線ランダム強度比について説明する。切り欠きの無い材料の疲労寿命は、疲労き裂が発生するまでの寿命に大きく影響を受ける。疲労き裂の発生は、(1)転位組織の飽和、(2)突き出し・入り込みの形成、(3)疲労き裂の形成、という3段階の過程を経ることが知られている。 
 今回、本発明者らが鋭意検討した結果、疲労試験時の応力負荷方向の結晶方位を適切に制御し、X線ランダム強度比を所定の条件を満たすようにすることで、3段階の過程のうち(1)の転位組織の飽和を遅らせることができ、切り欠きの無い材料の圧延方向の疲労寿命を向上させられることが見出された。以下にそのメカニズムを説明する。 
 鉄の結晶構造は体心立方構造(body-centered cubic、b.c.c.構造)であり、働くすべり系は{110}<111>系、{112}<111>系、{123}<111>系の42個であると言われている。結晶方位の表記については後述する。多結晶の場合、結晶方位によって変形し易さが異なり、変形の難易度はテイラー因子によって決定される。テイラー因子は(F)式で定義される値である。
 dΣΓ=Mdε・・・(F)
 ただし、Γはすべり系iのすべりの量、ΣΓは活動したすべり全体のすべり量の総和、Mはテイラー因子、εは全体の塑性ひずみ量をそれぞれ意味する。 
 テイラー因子が小さいほど、各すべり系のすべり量の総和が小さくとも全体の塑性ひずみ量が大きくなるため、小さいエネルギーで塑性変形できる。テイラー因子は応力負荷方向に対する結晶方位で変化するため、テイラー因子が小さい方位の結晶粒は変形し易く、テイラー因子が大きい方位の結晶粒は変形しにくい。 
 研究者らの計算により、b.c.c.金属において上述の42個のすべり系を仮定すると、<001>方位、<011>方位および<111>方位を引張変形させた時のテイラー因子の値はそれぞれ2.1、3.2および3.2であり、<001>方位が最も変形し易く、転位組織の形成が早いことが知られている。一方、<011>方位、<111>方位は変形しにくいため、転位組織の形成が遅い。すなわち、応力負荷方向に対して<001>方位を向いている結晶粒は疲労き裂の発生寿命が短く、<011>方位、<111>方位を向いている結晶粒は疲労き裂の発生寿命が長い。 
 本発明者らが検討したところ、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和を3.5以上、かつ圧延方向から見た<001>方位のX線ランダム強度を1.0以下に制御することで、圧延方向の疲労特性が(疲労限)/(引張強さ)が0.55以上の良好な値となることを知見した。ここでいう「疲労限」とは、後述する切り欠きの無い疲労試験片で得られた1000万回時間強度である。 
 この知見に基づき、本発明の熱延鋼板では、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和を3.5以上とし、かつ圧延方向から見た<001>方位のX線ランダム強度比を1.0以下とすることとした。圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和は、4.0以上であることが好ましい。また、圧延方向から見た<001>方位のX線ランダム強度比は、0.8以下であることが好ましい。 
 1-6.熱延鋼板のミクロ組織、X線ランダム強度の測定方法
 (1)フェライトと硬質相の面積分率の測定方法

 以上のような本発明の熱延鋼板の組織を構成するフェライトマルテンサイトおよび/またはオーステナイトで構成される硬質相の面積分率は、鋼板の幅方向に垂直な断面を観察面として採取した試料を用いて測定する。試料は観察面を研磨し、ナイタールエッチングする。ナイタールエッチングした観察面の、板厚の1/4厚(鋼板の表面から鋼板の厚さ方向に鋼板の厚さの1/4の位置を意味する。以下同様。)、3/8厚、および1/2厚の範囲をFE-SEMで観察する。 
 各試料の観察対象範囲について、1000倍の倍率で10視野観察し、各視野においてフェライトと硬質相の占める面積の割合を測定する。硬質相の面積はマルテンサイトとオーステナイトの合計の面積である。そして、フェライトと硬質相の占める面積の割合の全視野の平均値を、フェライトと硬質相の面積率とする。 
 (2)板厚中央部に存在する硬質相のアスペクト比および圧延方向の長さ、フェライト相のアスペクト比
 板厚中央部に存在する硬質相のアスペクト比および圧延方向の長さは、上述の試料中の板厚の1/2厚に位置する硬質相について求める。上述の試料中の板厚1/2厚に位置する硬質相を、FE-SEMを用いて50個以上観察し、各硬質相の鋼板圧延方向の長さおよび鋼板厚さ方向の長さを測定する。これらの長さの測定結果から、各硬質相のアスペクト比を算出する。観察した硬質相のうち、アスペクト比が3以上のものの割合を算出する。また、観察した硬質相の圧延方向の長さの平均値を板厚中央部に存在する硬質相の圧延方向の長さとする。
 板厚中央部とは、鋼板の表面から鋼板の厚さ方向に鋼板の厚さの1/2の位置である。例えば板厚中央部において50μm×200μmの視野範囲内にある硬質相を任意に50個選択して、各硬質相の圧延方向の長さおよび鋼板厚さ方向の長さを測定する。測定精度を高めるためには、任意に50個選択する代わりに、視野範囲内にある硬質相の全部について圧延方向の長さおよび厚さ方向の長さを測定しても良い。
 フェライト粒の平均アスペクト比は、上述の試料中の板厚の1/4厚から1/2厚に位置するフェライト粒について求める。上述の試料中の板厚の1/4厚から1/2厚に位置するフェライト粒を、FE-SEMで50個以上観察し、各フェライト粒の鋼板圧延方向の長さおよび鋼板厚さ方向の長さを測定する。これらの長さの測定結果から、各フェライト粒のアスペクト比を算出し、観察したフェライト粒のアスペクト比の平均値をフェライト粒の平均アスペクト比とする。 
 (3)X線ランダム強度比
 圧延方向から見た<001>方位、<011>方位および<111>方位のX線ランダム強度比は、X線回折によって測定される逆極点図から求めればよい。X線ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。 
 ここで、熱延鋼板について、結晶の方位は通常、板面に垂直な方位を[hkl]または{hkl}、圧延方向に平行な方位を(uvw)または<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。本発明においてはb.c.c.構造であるフェライトを主体とする熱延鋼板を対象としているため、例えば(111)、(-111)、(1-11)、(11-1)、(-1-11)、(-11-1)、(1-1-1)、(-1-1-1)面は等価であり区別がつかない。このような場合、これらの方位を総称して<111>と称する。なお、結晶学では方位について「-1」は正式には「1」の上に「-」を付して表記するが、ここでは記載の制約上「-1」と表記する。 
 X線回折用試料の作製は次のようにして行う。鋼板の圧延方向断面(圧延方向に対して垂直な断面)を機械研磨や化学研磨などによって研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨などによって歪みを除去する。X線回折の範囲は板厚全体とする。全体を一度に計測できない場合には板厚方向を数視野に分けて測定し、それらの結果を平均して求めてもよい。また、X線回折による測定が困難な場合には、EBSP(Electron Back Scattering Pattern)法やECP(Electron Channeling Pattern)法などにより統計的に十分な数の測定を行い、各方位のX線回折ランダム強度比を求めてもよい。 
 2.鋼板の化学組成
 本発明の熱延鋼板の化学組成は次の元素を含有する。以下では、これらの元素の含有量の限定理由も併せて説明する。元素の含有量の「%」は「質量%」を意味する。 
 C:0.03~0.2%
 炭素(C)は本発明において重要な元素の一つである。Cはマルテンサイトを生成させオーステナイトを安定化させるため、組織強化による熱延鋼板の強度向上に寄与するだけでなく、き裂伝播を抑制する効果がある。ただし、C含有量が0.03%未満では所定の硬質相の面積分率を確保できないため、打抜き疲労特性の向上効果が確認できない。一方、0.2%を超えて含有させると、第二相である硬質相を構成する低温変態生成物の面積分率が過剰となり穴広げ性が低下する。したがって、C含有量は0.03%~0.2%とする。C含有量の下限は、0.06%とするのが好ましく、上限は0.18%とするのが好ましい。 
 Mn:0.1~3.0%
 マンガン(Mn)は、固溶強化に加え、焼入れ性を高め鋼板組織中にマルテンサイトまたはオーステナイトを生成させるために含有させる。Mn含有量が3%超となるように含有させてもこの効果が飽和する。一方、Mn含有量が0.1%未満では、冷却中のパーライトおよびベイナイトの生成抑制効果を発揮しにくい。したがって、Mn含有量は0.1~3.0%とする。Mn含有量の下限は、0.3%とするのが好ましく、上限は2.5%とするのが好ましい。 
 P:0.10%以下
 リン(P)は、溶銑に含まれている不純物であり、粒界に偏析し、含有量の増加に伴い低温靭性を低下させる元素である。このため、P含有量は、低いほど好ましい。また、Pを0.10%超含有すると加工性および溶接性に悪影響を及ぼす。したがって、P含有量は0.10%以下とする。特に、溶接性を考慮すると、P含有量の上限は、0.03%が好ましい。 
 S:0.03%以下
 硫黄(S)は、溶銑に含まれている不純物であり、含有量が多すぎると、熱間圧延時の割れを引き起こすばかりでなく、穴広げ性を劣化させるMnSなどの介在物を生成させる元素である。このためSの含有量は、極力低減させるべきである。しかし、0.03%以下ならば許容できる範囲である。したがって、S含有量は0.03%以下とする。ただし、ある程度の穴広げ性を必要とする場合には、S含有量の上限は、0.01%が好ましく、0.005%がより好ましい。 
 Si+Al:0.2~3.0%
 ケイ素(Si)およびアルミニウム(Al)はいずれも本発明において重要な元素の一つである。SiおよびAlは鉄中の{112}<111>すべりを抑制し、転位組織形成を遅延させることにより疲労き裂の発生寿命を向上させる効果がある。この効果はSiおよびAlの合計含有量(Si+Al)が0.2%以上で得られ、0.5%以上で顕著である。また、3.0%を超えて含有させても効果が飽和し経済性が悪化する。したがって、Si+Alは0.2~3.0%とする。Si+Alの下限は、0.5%とするのが好ましい。なお、本発明のAl含有量とは、酸可溶Al(所謂「sol.Al」)を指す。SiとAlは、どちらか一方のみを0.2~3.0%含有しても良いし、SiとAlの両方を合計で0.2~3.0%含有しても良い。
 N:0%を超え、0.01%以下
 窒素(N)は、鋼中にTiNとして存在することで、スラブ加熱時の結晶粒径の微細化を通じて、低温靭性向上に寄与する元素である。そのため、含有させてもよい。ただし、Nを0.01%よりも多く含有させることにより、鋼板の溶接時にブローホールを形成させ、溶接部の継ぎ手強度を低下させる懸念がある。したがって、N含有量は0.01%以下とする。一方、N含有量を0.0001%未満とすることは経済的に好ましくない。そのため、N含有量の下限は、0.0001%以上とするのが好ましく、0.0005%とするのがより好ましい。 
 O:0%を超え、0.01%以下
 酸素(O)は、酸化物を形成し、成形性を劣化させることから、含有量を抑える必要がある。特に、O含有量が0.01%を超えると、成形性の劣化傾向が顕著となる。したがって、O含有量は0.01%以下とする。一方、O含有量を0.001%未満とすることは経済的に好ましくない。そのため、O含有量の下限は、0.001%以上とするのが好ましい。 
 Ti:0~0.3%
 Nb:0~0.3%
 チタン(Ti)は、優れた低温靭性と析出強化による高強度を両立させる元素である。そのため、必要に応じてTiを含有させてもよい。Tiの炭窒化物、または固溶Tiが熱間圧延時の粒成長を遅延させるため、熱延鋼板の粒径を微細化でき、低温靭性向上に寄与する。しかし、Ti含有量が0.3%を超えると上記効果は飽和して経済性が低下する。したがって、Ti含有量は0~0.3%とする。また、Ti含有量が(0.005+48/14[N]+48/32[S])%未満であると上記効果を十分に得ることができないおそれがある。そのため、Ti含有量は、0.005+48/14[N]+48/32[S](%)以上0.3%以下が好ましい。ここで、[N]および[S]はそれぞれN含有量(%)およびS含有量(%)である。さらに、Ti含有量が0.15%を超えると鋳造時にタンディッシュノズルが詰まりやすくなる恐れがある。そのため、Ti含有量の上限は、0.15%とするのが好ましい。 
 ニオブ(Nb)は、熱延鋼板の低温靭性を向上させる元素である。そのため、必要に応じてNbを含有させてもよい。Nbの炭窒化物、または固溶Nbが熱間圧延時の粒成長を遅延することで、熱延鋼板の粒径を微細化でき、低温靭性向上に寄与する。しかし、Nb含有量が0.3%を超えて含有させても上記効果は飽和して経済性が低下する。したがって、Nb含有量は0~0.3%とする。また、Nb含有量が0.01%未満では上記効果を十分に得ることができないおそれがある。そのため、Nb含有量の下限は、0.01%とするのが好ましく、上限は0.1%とするのが好ましい。 
 Mg:0~0.01%
 Ca:0~0.01%
 REM:0~0.1%
 マグネシウム(Mg)、カルシウム(Ca)および希土類元素(REM)は、破壊の起点となり、加工性を劣化させる原因となる非金属介在物の形態を制御し、加工性を向上させる元素である。そのため、必要に応じてこれらのいずれか1種以上を含有させてもよい。しかし、0.01%を超えるMg、0.01%を超えるCa、または、0.1%を超えるREMを含有させても上記効果は飽和して経済性が低下する。したがって、Mg含有量は0~0.01%、Ca含有量は0~0.01%、REM含有量は0~0.1%とする。Mg、CaおよびREMは、それぞれの含有量が0.0005%以上となるように含有させることで上記効果が顕著になる。そのため、Mg含有量の下限は0.0005%、Ca含有量の下限は0.0005%、REM含有量の下限は0.0005%がそれぞれ好ましい。なお、REMは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計量を意味する。 
 B:0~0.01%
 Bは粒界に偏析し、粒界強度を高めることで低温靭性を向上させる元素である。そのため、必要に応じて鋼板に含有させてもよい。しかしながら、B含有量が0.01%を超えると上記効果が飽和するばかりでなく、経済性に劣る。したがって、B含有量は0~0.01%とする。また、上記効果は、鋼板のB含有量が0.0002%以上となると顕著となる。そのため、B含有量の下限は、0.0002%が好ましく、0.0005%がより好ましい。B含有量の上限は、0.005%が好ましく、0.002%がより好ましい。 
 Cu:0~2.0%
 Ni:0~2.0%
 Mo:0~1.0%
 V:0~0.3%
 Cr:0~2.0%
 銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、バナジウム(V)およびクロム(Cr)は、析出強化もしくは固溶強化により熱延鋼板の強度を向上させる効果がある元素である。そのため、必要に応じてこれらの元素のいずれか1種以上を含有させてもよい。しかし、Cu含有量が2.0%を超え、Ni含有量が2.0%を超え、Mo含有量が1.0%を超え、V含有量が0.3%を超え、Cr含有量が2.0%を超えて含有させても上記効果は飽和して経済性が低下する。したがって、Cu含有量は0~2.0%、Ni含有量は0~2.0%、Mo含有量は0~1.0%、V含有量は0~0.3%、Cr含有量は0~2.0%とする。また、Cu、Ni、Mo、VおよびCuは、それぞれの含有量が0.01%未満では上記効果を十分に得ることができない。そのため、Cu含有量の下限は0.01%が好ましく、0.02%がより好ましい。Ni含有量の下限は0.01%、Mo含有量の下限は0.01%、V含有量の下限は0.01%、Cr含有量の下限は0.01%がそれぞれ好ましい。また、Cu含有量の上限は1.2%、Ni含有量の上限は0.6%、Mo含有量の上限は0.7%、V含有量の上限は0.2%、Cr含有量の上限は1.2%がそれぞれ好ましい。 
 以上が本発明の熱延鋼板の基本的な化学組成である。本発明の熱延鋼板の化学組成の残部は、鉄および不純物からなる。なお、不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。 
 なお、上記の元素以外の元素として、鉄の一部に代えて、Zr、Sn、Co、ZnおよびWの1種以上を合計で1%以下含有させても本発明の熱延鋼板の優れた圧延方向の疲労特性および加工性は損なわれないことを確認している。これらの元素のうちSnは、熱間圧延時に疵が発生する恐れがあるのでSn含有量の上限は0.05%が好ましい。 
 以上のような組織と組成を有する本発明の熱延鋼板は、表面に溶融亜鉛めっき処理による溶融亜鉛めっき層、さらには、めっき後合金化処理をして合金化亜鉛めっき層を備えたものとすることで、耐食性を向上することができる。また、めっき層は、純亜鉛に限るものでなく、Si、Mg、Al、Fe、Mn、Ca、Zr等の元素を含有させ、更なる耐食性の向上を図ってもよい。このようなめっき層を備えることにより、本発明の熱延鋼板の優れた打抜き疲労特性および加工性を損なうものではない。 
 また、本発明の熱延鋼板は、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理、ノンクロ処理等による表面処理層の何れを有していても本発明の効果が得られる。 
 3.本発明の熱延鋼板の製造方法
 前述のミクロ組織を有する熱延鋼板が得られるのであれば、その製造方法は特に制約がないが、たとえば、以下の工程[a]~[h]を備える製造方法によれば、本発明の熱延鋼板を安定して得ることができる。以下では各工程の詳細を一例として説明する。 
 [a]スラブ鋳造工程
 熱間圧延に先行するスラブの製造方法は特に限定するものではない。すなわち、高炉や電炉などによる鋼の溶製に引き続き、各種の2次製錬を行って上述した化学組成となるように調整し、次いで、通常の連続鋳造、薄スラブ鋳造などの方法でスラブを鋳造すればよい。その際、本発明の成分範囲に制御できるのであれば、原料にはスクラップを使用しても構わない。 
 [b]スラブ加熱工程
 鋳造されたスラブは、熱間圧延に当たり所定の温度に加熱される。連続鋳造の場合には一旦低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、特に冷却することなく連続鋳造に引き続き、直接加熱して熱間圧延してもよい。スラブの加熱時間は、(A)式で規定する時間t1(s)以上とする。
 t1(s)=1.4×10-6×Exp{3.2×104/(T1+273)}・・・(A)
 ただし、T1(℃):均熱帯におけるスラブの平均温度である。 
 加熱時間をこのように規定した理由は以下の通りである。鋳造後のスラブの組織中では、スラブの中央にMnの偏析が存在する。そのため、スラブの加熱が十分でない場合、圧延により得られた熱延鋼板の板厚中央部にMnの偏析が残る。Mnはオーステナイトを安定化させるため、圧延後の冷却中にMn偏析に沿ってオーステナイトが残留し易い領域ができる。よって、低温でオーステナイトから変態したマルテンサイトまたは残留したオーステナイトが、Mn偏析に沿って存在し易くなり、熱延鋼板の板厚中央部の硬質相の圧延方向の長さを増大させる。 
 本発明者らが鋭意検討を重ねたところ、硬質相の圧延方向の長さを20μm以下とするには、スラブの加熱時間を(A)式で規定される時間t1(s)以上とする必要があることを知見した。スラブの加熱時間を十分に長くすることにより、Mnの拡散を促進でき、硬質相の圧延方向の長さを低減できたものと考えられる。スラブ加熱温度の上限は特に定めなくても本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくない。このことから、スラブ加熱温度は1300℃未満とすることが好ましい。また、スラブ加熱温度の下限は1150℃とするのが好ましい。スラブの加熱時間は、加熱開始からの経過時間ではなく、スラブを所定の加熱温度(例えば1150℃以上、1300℃未満の温度)に保持している時間である。 
 [c]粗圧延工程
 スラブ加熱工程の後は、加熱炉より抽出したスラブに対して特に待つことなく熱間圧延の粗圧延工程を開始し粗バーを得る。粗圧延工程においては、粗圧延中の合計圧下率を50%以上とし、かつ粗圧延中に2回以上、好ましくは3回以上スラブ表層を下記(B)式で表わされるAr3変態点以下に冷却する。具体的には、粗圧延工程を多パス熱間圧延とし、先のパスを経たスラブの表層をAr3変態点以下に一旦冷却し、Ar3変態点よりも高い温度に復熱させる。表層が復熱したスラブを後のパスで圧延し、スラブの表層をAr3変態点以下に再び冷却する。この過程を繰り返す。なお、本発明におけるスラブ表層の温度とは、スラブ表面から深さ方向に1mmの部分におけるスラブの温度であり、例えば伝熱計算から推測可能である。スラブ最表面のみでなく、スラブ内部の温度をAr3点以下に冷却することで、複熱の効果が大きくなる。
 Ar3(℃)=901-325×C+33×Si+287×P+40×Al-92×(Mn+Mo+Cu)-46×Ni ・・・ (B)
 ただし、各元素記号は、それぞれの元素の含有量(質量%)を意味する。 
 粗圧延条件を以上のように規定した理由は次のとおりである。圧延方向の疲労特性が良好な熱延鋼板を得る本発明の効果を得るには、熱延鋼板において、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5以上であり、かつ圧延方向から見た<001>方位のX線ランダム強度比が1.0未満であることが必須である。このように結晶方位を制御するには、鋼板に剪断力を作用させることにより、<011>方位および<111>方位をなるべく強く、板厚の中心に近い部分まで発達させることが重要である。通常、粗圧延中の剪断力の作用によって形成される組織の影響は、粗圧延後の再結晶によって排除されてしまう。しかし、本発明者らの検討によると、粗圧延中に一旦スラブ表層をAr3変態点以下に冷却することで、粗圧延中の組織が最終組織に好ましい影響を及ぼすことが明らかになった。以下に考えられるメカニズムを記す。 
 粗圧延中に十分剪断力を加え、一旦スラブ表層をAr3変態点以下に冷却すると、表層周辺の組織は一部オーステナイトからフェライトに変態する。このときのフェライトは粗圧延中の剪断力の影響を受けているため、圧延方向から見て、<111>方位と<011>方位が増大し、<001>方位が減少する。 
 次のパスまでに表層のフェライトは復熱してオーステナイトに逆変態する。その際、オーステナイトは変態前のフェライトの結晶方位と一定の方位関係を有する方位に逆変態する。逆変態した表層オーステナイトが更に粗圧延され、再度Ar3変態点以下に冷却されると、表層組織の一部は再度オーステナイトからフェライトに変態する。変態前のオーステナイトの結晶方位は、以前のフェライトの結晶方位の影響を受けているため、変態後のフェライトの<111>方位と<011>方位は前パス後よりさらに増大する。 
 このように、粗圧延中に、各パスにおいて十分な剪断力を加え、かつAr3変態点以下に冷却して表層を変態させることを繰り返せば、表層近傍の<111>方位と<011>方位は増大し、<001>方位は減少する。この効果を十分に発揮するには、粗圧延中の圧下率を50%以上として十分に剪断力を加えることが必要であり、本工程においては、スラブ表層をAr3変態点以下に2回以上、好ましくは3回以上冷却する。 
 [d]仕上圧延工程
 粗圧延工程に続く仕上圧延工程では、下記(C)式から求められる形状比Xが2.3以上である圧延を2パス以上、1100℃以下のスラブ表層温度で行い、合計圧延率を40%以上とする。  
Figure JPOXMLDOC01-appb-M000001
 ただし、L:圧延ロールの直径、hin:圧延ロール入側の板厚、hout:圧延ロール出側の板厚である。 
 本発明者らは、1100℃以下の圧延で、熱間圧延の剪断力を鋼板の奥深くまで作用させるためには、熱間圧延の全パス数のうち、少なくとも2パスで、上記(C)式で規定する形状比Xが2.3以上を満足する必要があることを見出した。形状比Xは、下記(C1)~(C3)式で表されるように、圧延ロールおよび鋼鈑の接触弧長ldと平均板厚hmとの比である。
 X=ld/hm・・・(C1)
 ld=(L×(hin-hout)/2)1/2・・・(C2)
 hm=(hin+hout)/2・・・(C3)
 上記(C)式によって求められる形状比Xが2.3以上であっても、圧延のパス数が1パスでは、剪断歪みの導入深さが不十分である。剪断歪みの導入深さが不十分であると、圧延方向から見たフェライトの<111>方位と<011>方位への配向が弱くなり、その結果、圧延方向の疲労特性が低下する。したがって、形状比Xが2.3以上であるパス数を2パス以上とする。 
 仕上圧延工程における圧延のパス数は多いほど好ましい。パス数を3以上とする場合には全パスにおいて形状比Xを2.3以上としてもよい。剪断層の厚みを増加させるためには、形状比Xの値も大きい方が好ましい。形状比Xの値は2.5以上が好ましく、3.0以上がより好ましい。 
 形状比Xが2.3以上である圧延は、高温で行うと、その後の再結晶によってヤング率を高める集合組織が破壊されることがある。そのため、形状比Xを2.3以上とするパス数を限定する圧延は、スラブ表層温度が1100℃以下の状態で行う。また、剪断歪の導入量が大きい程、鋼板の圧延方向の疲労特性を向上させる、圧延方向から見て<111>方位および<011>方位の結晶粒が発達する。この効果は1100℃以下の合計圧下率が40%以上のときに顕著であるため、1100℃以下の合計圧下率は40%以上とする。 
 仕上圧延の最終パスでの圧下は(T2-100)℃以上(T2+20)℃未満、好ましくは(T2-100)℃以上T2(℃)未満とし、その圧下率は3%以上40%未満とする。圧下率は、10%以上40%未満が好ましい。T2は下記(D)式で規定される温度である。
 T2(℃)=870+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V・・・(D)
 ただし、各元素記号は、それぞれの元素の含有量(質量%)を意味する。 
 この最終パスでの圧下条件は、板厚中央部の硬質相のアスペクト比を制御する為に極めて重要である。(T2-100)℃以上(T2+20)℃未満の温度域で圧延を行うことで、板厚中央部の硬質相のアスペクト比が増大する原因は、再結晶が抑制された状態で圧延を行うことで、オーステナイトのアスペクト比が増大し、その形状が硬質相にも受け継がれたためと考えられる。この硬質相のアスペクト比を増大する効果を発揮するためには、最終圧下の圧下率を3%以上にする必要がある。40%以上の圧延は、圧延機に大きな負担がかかるため、3%以上40%未満の圧下率が好ましい。 
 最終パスでの圧下を(T2-100)℃未満の温度域で行った場合、フェライトとオーステナイトの二相域での圧延となり、フェライトが加工硬化する結果、鋼板の延性が低下する。また、(T2+20)℃以上の温度域で行った場合、板厚中央部の硬質相のアスペクト比が小さくなる。これは、オーステナイトの再結晶が促進され、オーステナイトのアスペクト比が減少することが、硬質相の形態にも影響するものと考えられる。そのため、最終パスでの圧下は(T2-100)℃以上(T2+20)℃未満の温度域で行う。この条件で圧下することにより、硬質相のアスペクト比は3以上となる。 
 [e]第1冷却工程
 仕上圧延工程に続く第1冷却工程では、仕上圧延の最終圧下温度から750℃までの平均冷却速度を60℃/s以上とする。これは、冷却速度が60℃/s未満では、板厚中央部の硬質相の板厚方向の長さが20μm以上となる場合があるからである。冷却速度と硬質相の板厚方向の長さとが関連する原因は定かではないが、冷却速度60℃/s以上では仕上圧延の最終圧下で導入された転位が回復しにくく、フェライト変態の核として働くため、板厚中央部の未変態オーステナイトがフェライトにより分断され、結果として硬質相の板厚方向の長さが低減した可能性がある。 
 鋼板の厚板分野においては、硬質相のアスペクト比制御による疲労き裂伝播の抑制を指向した例があるものの、穴広げ性などの加工性との両立を報告した文献は無かった。これは、厚板分野においては板厚中央部まで圧延ひずみが届きにくいことと、板厚が厚いため板厚中央部の冷却速度が確保できず、転位の回復が進んだ結果、フェライト変態の核が十分に導入できず、硬質相の長さを低減できなかったことが一因と推察される。 
 [f]均熱工程
 第1冷却工程に続く均熱工程では、600℃以上750℃未満の温度域で5s以上保持する。均熱工程はフェライトを主体とするミクロ組織を得るために必須の工程である。保持時間を5s以上とするのは、保持時間が5s以下ではフェライトがミクロ組織の主体にならず、または硬質相の面積分率が20%以上となるため、延性および穴広げ率が低下するからである。 
 [g]第2冷却工程
 均熱工程に続く第2冷却工程では、下記(E)式で規定される温度T3(℃)に対し、T3(℃)以上600℃未満の温度域における平均冷却速度を50℃/s以上とする。平均冷却速度を50℃/s以上とするのは、平均冷却速度が50℃/s未満である場合、組織中にベイナイトおよびパーライトが生成し、硬質相の分率を確保することが難しく、切り欠き疲労特性の劣化が生じるからである。
 T3(℃)=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo・・・(E)
 ただし、各元素記号は、それぞれの元素の含有量(質量%)を意味する。 
 [h]巻取り工程
 第2冷却工程の後、鋼板の巻き取りを行う。巻き取り時の鋼板の温度(巻き取り温度)は上記(E)式で規定するT3(℃)以下とする。T3(℃)を超えて高い温度で巻き取った場合、組織中にベイナイトおよびパーライトが生成し、硬質相の分率を確保することが難しく、打抜き疲労特性の劣化が生じるからである。 
 以上の製造工程により、本発明の熱延鋼板が製造される。 
 なお、上記工程[a]から[h]までの全工程終了後においては、鋼板形状の矯正や可動転位導入などにより延性の向上を図ることを目的として、圧下率0.1%以上2%以下のスキンパス圧延を施すことが好ましい。また、全工程終了後は、得られた熱延鋼板の表面に付着しているスケールの除去を目的として、必要に応じて得られた熱延鋼板に対して酸洗してもよい。更に、酸洗した後には、得られた熱延鋼板に対してインラインまたはオフラインで圧下率10%以下のスキンパスまたは冷間圧延を施しても構わない。 
 本発明の熱延鋼板は、本発明で規定する圧延工程の他に、通常の熱延工程である連続鋳造、酸洗等を経て製造されるものであるが、本発明で規定する工程以外の工程は、その一部を抜いて製造を行ったとしても本発明の効果である優れた圧延方向の疲労特性および加工性を確保可能である。 
 また、一旦、熱延鋼板を製造した後、延性の向上を目的に、オンラインあるいはオフラインで、100~600℃の温度範囲で熱処理を行ったとしても、本発明の効果である優れた圧延方向の疲労特性および加工性は確保可能である。
 上記工程を経て製造された熱延鋼板に、溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う、あるいは、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理、ノンクロ処理等による表面処理を行う、といった工程を付加しても良い。
 4.熱延鋼板の特性の評価方法
 (1)引張強度特性
 熱延鋼板の機械的性質のうち引張強度特性(引張強さ、全伸び)は、JIS Z 2241 2011に準拠して評価する。試験片はJIS Z 2241 2011の5号試験片とし、鋼板の板幅の1/4W(鋼板の幅方向端部から鋼板の幅方向に鋼板の幅の1/4の長さの位置を意味する。以下同様)または3/4W位置から圧延方向を長手として採取する。 
 (2)穴広げ率
 熱延鋼板の穴広げ率は、日本鉄鋼連盟規格JFS T 1001-1996記載の試験方法に準拠した穴広げ試験により評価する。試験片は引張試験片採取位置と同様の位置から採取し、円筒パンチで打ち抜き穴を設ける。本発明における加工性に優れた鋼板とは、(引張強さ(MPa))×(全伸び(%))≧18000かつ(引張強さ(MPa))×(穴広げ率(%))≧35000を満たす鋼板を指す。 
 (3)疲労特性
 図1は、疲労試験に用いる試験片の形状および寸法を示す模式図であり、図1(a)は切り欠きが無い場合の疲労強度を測定する試験片の平面図および正面図を示し、図1(b)は切り欠きを有する場合の疲労強度を測定する試験片の平面図および正面図を示す。 
 熱延鋼板の圧延方向の疲労特性の評価には、図1に示す形状および寸法の試験片を使用する。試験片は、引張試験片採取位置と同様の位置から圧延方向が長辺になるように採取する。図1(a)に示す試験片は切り欠きが無い場合の疲労強度を得るための試験片である。図1(b)に示す試験片は切り欠き材の疲労強度を得るための打抜き試験片であり、自動車部品の実使用での疲労特性評価に近付けるために打抜きは穴広げ試験片同様に打抜き穴1を円筒パンチで打抜く。打抜きクリアランスは10%とする。いずれの疲労試験片にも、最表層より0.05mm程度の深さまで、表面粗さ仕上記号で三山仕上の研削を施す。 
 この試験片を用いて応力比R=0.1、周波数15~25Hzの条件で、応力制御の引張―引張疲労試験を行う。本発明における圧延方向の疲労特性に優れた鋼板とは、上述の切り欠きの無い疲労試験片で得られた1000万回時間強度を、引張試験で得られた引張強さで除した値(疲労限度比)が0.55以上であり、打抜き疲労試験で得られた1000万回時間強度を、引張試験で得られた引張強さで除した値(打抜き疲労限度比)が0.30以上の鋼板を指す。 
 以下、実施例によって本発明をより具体的に説明するが、本発明は、これらの実施例により限定されるものではない。
 表1に示す化学組成を有する溶鋼を製造した。 
Figure JPOXMLDOC01-appb-T000002
 表1を参照して、鋼A~Iの化学組成は本発明で規定する化学組成の範囲内であった。一方、鋼aはC含有量が低すぎ、鋼bはC含有量が高すぎた。鋼cはP含有量が高すぎ、鋼dはS含有量が高すぎた。アンダーラインは、成分量が発明範囲外であることを示す。
 鋼A~Jおよび鋼a~dの化学組成の溶鋼を用いて、上述の工程[a]~[h]により熱延鋼板を製造した。各工程の実施条件は、表2および表3に示す条件とした。工程[d]では、1100℃以下での圧延をP1~P6の6パスとした。表2および表3に示す鋼A~Jおよび鋼a~dは表1に示す化学組成の溶鋼に対応し、使用した溶鋼を意味する。T1(℃)は、加熱炉均熱帯の平均温度を測定し、均熱帯におけるスラブの平均温度とした。P1~P6は、仕上圧延工程における第1パス~第6パスを意味する。 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 製造した熱延鋼板について、フェライト、硬質相(マルテンサイトおよびオーステナイト)およびその他の組織の面積分率を求め、フェライト粒、硬質相の形状、X線ランダム強度比を測定した。また、引張強度特性、穴広げ率および疲労特性を測定した。これらの各特性の測定条件は、上述の測定条件を適用した。疲労試験片は、図1に示す形状および寸法とし、試験片の厚さは3mmとした。各特性の測定結果を表4および表5に示す。熱延鋼板の鋼種はめっきを施さない熱延鋼板(HR)、めっき後合金化処理を施さない溶融亜鉛めっき鋼板(GI)または合金化溶融亜鉛めっき鋼板(GA)とした。 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2~5に示すように、鋼A-1、B-1、C-1、C-3、C-5、C-7、D-1、E-1、E-3、E-5、E-7、E-9、E-10、E-13、E-14、E-17、E-18、F-1、G-1、H-1、I-1およびJ-1は、鋼の化学組成およびミクロ組織が本発明の規定を満たす例であり、一方、鋼C-2、C-4、C-6、C-8、E-2、E-4、E-6、E-8、E-11、E-12、E-15、E-16、a-1、b-1、c-1およびd-1は、鋼の化学組成またはミクロ組織が本発明の規定を満たさなかった例である。C-6~C-8の「その他の組織」はいずれもベイナイトであった。 
 鋼A-1等、本発明例の熱延鋼板は、いずれも硬質相の面積分率、板厚中央部に存在する硬質相のうちアスペクト比が3以上のものの割合、板厚中央部に存在する硬質相の圧延方向の長さ、フェライト粒の平均アスペクト比、およびX線ランダム強度比がいずれも本発明の規定を満足していた。また、本発明例の熱延鋼板は、いずれも(引張強さ(MPa))×(全伸び(%))≧18000かつ(引張強さ(MPa))×(穴広げ率(%))≧35000を満たし、疲労限度が0.55以上かつ打ち抜き疲労限度が0.30以上であった。 
 比較例である鋼C-2は、工程[e]の最終圧下温度から750℃までの平均冷却速度が43℃/sと低すぎた。そのため、板厚中央部の硬質相の圧延方向が22.9μmと長く、(引張強さ(MPa))×(穴広げ率(%))≧35000を満たさなかった。 
 鋼C-4は、工程[f]の600℃以上750℃未満の温度域での保持時間が3.1sと短すぎたため、硬質相の面積分率が83.0%と高く、フェライトがミクロ組織の主体とならなかった。そのため、延性が低く、(引張強さ(MPa))×(全伸び(%))≧18000を満たさなかった。 
 鋼C-6は、工程[g]のT3(℃)以上600℃未満の温度域における平均冷却速度が低すぎた。また、鋼C-8は、工程[h]の巻き取り温度が513℃であり、T3(494℃)よりも高かった。そのため、熱延鋼板の組織中にベイナイトが生成し、硬質相の面積分率が3%未満と低かった。その結果、圧延方向の打ち抜き疲労限度比が0.3未満と低い値であった。 
 鋼E-2は、工程[b]のスラブ加熱時間が1168sであり、(A)式で規定する時間t1(1244s)よりも短かった。そのため、板厚中央部の硬質相の圧延方向が25.5μmと長く、(引張強さ(MPa))×(穴広げ率(%))≧35000を満たさなかった。 
 鋼E-4は、工程[c]の粗圧延中の合計圧下率が46%と低かった。鋼E-6は、工程[c]の粗圧延中にスラブ表層をAr3変態点以下に冷却した回数が1回だけであった。鋼E-8は、工程[d]での6回の圧延パスのうち、形状比Xが2.3以上を満たしたものが1パスだけであった。鋼E-11は、工程[d]での1100℃以下の圧延の圧下率が35%と低かった。そのため、これらの鋼では、圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5未満と低く、一方、圧延方向から見た<001>方位のX線ランダム強度が1.0よりも大きかった。その結果、いずれも圧延方向の疲労限度比が0.55未満と低い値であった。 
 鋼E-12は、工程[d]での仕上げ圧延の最終パスでの圧下温度が762℃と、(D)式で規定するT2(877℃)よりも100℃を超えて低かった。そのため、フェライト粒の平均アスペクト比が6.3と大きく、引張試験時にフェライト粒が加工硬化して鋼板の延性が低下した。その結果、(引張強さ(MPa))×(全伸び(%))≧18000を満たさなかった。 
 鋼E-15は、工程[d]での仕上げ圧延の最終パスでの圧下温度が913℃と、(D)式で規定するT2(877℃)よりも20℃を超えて高かった。鋼E-16は、工程[d]での仕上げ圧延の最終パスでの圧下率が2%と低かった。そのため、いずれも板厚中央部の硬質相のうち、アスペクト比が3以上のものの割合が60%未満と低く、圧延方向の打ち抜き疲労限度比が0.3未満と低い値であった。 
 鋼a-1は、C含有量が0.018%と低すぎたため、圧延方向の打ち抜き疲労限度比が0.3未満と低い値であった。 
 鋼b-1は、C含有量が0.254%と高すぎた。また、鋼d-1はS含有量が0.0361%と高すぎた。そのため、いずれも穴広げ性が低く、(引張強さ(MPa))×(穴広げ率(%))≧35000を満たさなかった。 
 鋼c-1はP含有量が0.155%と高すぎたため、加工性が低く、(引張強さ(MPa))×(全伸び(%))≧18000および(引張強さ(MPa))×(穴広げ率(%))≧35000のいずれも満たさなかった。
 本発明によれば、圧延方向の疲労特性と加工性に優れた熱延鋼板を提供することができる。本発明は板厚8mm以下の鋼板に好適に利用できる。本発明に係る熱延鋼板は、自動車用材料の足回り部品などの疲労寿命を延ばすことが可能となるため、産業上の貢献が顕著である。
 1.疲労試験片の打抜き穴

Claims (6)

  1.  化学組成が、質量%で、
     C:0.03~0.2%、
     Mn:0.1~3.0%、
     P:0.10%以下、
     S:0.03%以下、
     Al+Si:0.2~3.0%、
     N:0%を超え、0.01%以下、
     O:0%を超え、0.01%以下、
     Ti:0~0.3%、
     Nb:0~0.3%、
     Mg:0~0.01%、
     Ca:0~0.01%、
     REM:0~0.1%、
     B:0~0.01%、
     Cu:0~2.0%、
     Ni:0~2.0%、
     Mo:0~1.0%、
     V:0~0.3%、
     Cr:0~2.0%、
     残部:鉄および不純物であり、
     ミクロ組織が、フェライトを主体とし、面積分率で、マルテンサイトおよび/またはオーステナイトで構成される硬質相が3%以上20%未満であり、
     板厚中央部に存在する硬質相のうちアスペクト比が3以上のものが60%以上を占め、
     板厚中央部に存在する硬質相の圧延方向の長さが20μm未満であり、
     フェライト粒の平均アスペクト比が5未満であり、
     圧延方向から見た<011>方位および<111>方位のX線ランダム強度比の和が3.5以上であり、かつ圧延方向から見た<001>方位のX線ランダム強度比が1.0以下である、熱延鋼板。
  2.  質量%で、Ti:(0.005+48/14[N]+48/32[S])%以上0.3%以下、Nb:0.01~0.3%から選択される一種以上を含む、請求項1に記載の熱延鋼板。
     ただし、[N]はNの含有量(質量%)、[S]はSの含有量(質量%)を意味する。
  3.  質量%で、Mg:0.0005~0.01%、Ca:0.0005~0.01%、REM:0.0005~0.1%から選択される一種以上を含む、請求項1に記載の熱延鋼板。
  4.  質量%で、B:0.0002~0.01%を含む、請求項1に記載の熱延鋼板。
  5.  質量%で、Cu:0.01~2.0%、Ni:0.01~2.0%、Mo:0.01~1.0%、V:0.01~0.3%、Cr:0.01~2.0%から選択される一種以上を含む、請求項1に記載の熱延鋼板。
  6.  表面に溶融亜鉛めっき層、または合金化亜鉛めっき層を有する、請求項1に記載の熱延鋼板。
PCT/JP2015/070079 2014-07-14 2015-07-13 熱延鋼板 WO2016010005A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/323,617 US9896737B2 (en) 2014-07-14 2015-07-13 Hot-rolled steel sheet
KR1020177000216A KR101897932B1 (ko) 2014-07-14 2015-07-13 열연 강판
EP15821845.3A EP3153598B1 (en) 2014-07-14 2015-07-13 Hot-rolled steel sheet
BR112016030919A BR112016030919A2 (pt) 2014-07-14 2015-07-13 Chapa de aço laminada a quente
JP2016534425A JP6304381B2 (ja) 2014-07-14 2015-07-13 熱延鋼板
CN201580037109.5A CN106661690B (zh) 2014-07-14 2015-07-13 热轧钢板
MX2016016578A MX2016016578A (es) 2014-07-14 2015-07-13 Lamina de acero laminada en caliente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144500 2014-07-14
JP2014144500 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016010005A1 true WO2016010005A1 (ja) 2016-01-21

Family

ID=55078497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070079 WO2016010005A1 (ja) 2014-07-14 2015-07-13 熱延鋼板

Country Status (9)

Country Link
US (1) US9896737B2 (ja)
EP (1) EP3153598B1 (ja)
JP (1) JP6304381B2 (ja)
KR (1) KR101897932B1 (ja)
CN (1) CN106661690B (ja)
BR (1) BR112016030919A2 (ja)
MX (1) MX2016016578A (ja)
TW (1) TWI575083B (ja)
WO (1) WO2016010005A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206764A (ja) * 2016-05-20 2017-11-24 新日鐵住金株式会社 穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板及びその製造方法
WO2023007876A1 (ja) 2021-07-27 2023-02-02 日本製鉄株式会社 熱延鋼板
EP3940092A4 (en) * 2019-03-11 2023-03-01 Nippon Steel Corporation HOT ROLLED STEEL SHEET
EP3940093A4 (en) * 2019-03-11 2023-03-08 Nippon Steel Corporation HOT ROLLED STEEL SHEET

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978072B1 (ko) * 2017-06-27 2019-05-13 현대제철 주식회사 테일러 웰디드 블랭크용 강재 및 이를 이용한 핫 스탬핑 부품의 제조방법
CN110484328B (zh) * 2019-08-16 2021-11-30 鸿源新能源科技(广州)有限公司 一种用于机械设备的抗磨润滑油添加剂及其制备方法
JP6743262B1 (ja) * 2019-10-09 2020-08-19 株式会社フジクラ 酸化物超電導線材
KR102307927B1 (ko) * 2019-11-22 2021-09-30 주식회사 포스코 내구성 및 연신율이 우수한 후물 변태조직강 및 그 제조방법
KR20220110823A (ko) * 2020-01-27 2022-08-09 닛폰세이테츠 가부시키가이샤 열연 강판
KR102397583B1 (ko) * 2020-09-25 2022-05-13 주식회사 포스코 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
KR102409896B1 (ko) * 2020-10-23 2022-06-20 주식회사 포스코 성형성이 우수한 고강도 후물 강판 및 그 제조방법
CN114672739B (zh) * 2022-04-20 2023-08-29 攀钢集团攀枝花钢铁研究院有限公司 一种逆相变钒微合金化轻质高强钢及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150197A (ja) * 1997-06-06 1999-02-23 Kawasaki Steel Corp 耐衝撃特性および耐疲労特性に優れた高強度高加工性熱延鋼板
JP2004091924A (ja) * 2002-08-12 2004-03-25 Kobe Steel Ltd 伸びフランジ性に優れた高強度鋼板
JP2004256836A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 強度−伸びバランスおよび疲労特性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2009024227A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 成形性に優れる複合組織鋼板およびその製造方法
JP2011052293A (ja) * 2009-09-03 2011-03-17 Nippon Steel Corp 成形性及び疲労特性に優れた複合組織鋼板並びにその製造方法
WO2014019844A1 (en) * 2012-08-03 2014-02-06 Tata Steel Ijmuiden Bv A process for producing hot-rolled steel strip and a steel strip produced therewith

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840479B2 (ja) 1991-05-10 1998-12-24 株式会社神戸製鋼所 疲労強度と疲労亀裂伝播抵抗の優れた高強度熱延鋼板の製造方法
JP3037855B2 (ja) 1993-09-13 2000-05-08 新日本製鐵株式会社 耐疲労亀裂進展特性の良好な鋼板およびその製造方法
JP3386726B2 (ja) 1997-09-11 2003-03-17 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
TW426744B (en) 1997-09-11 2001-03-21 Kawasaki Steel Co Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JP3636872B2 (ja) 1997-09-18 2005-04-06 Jfeスチール株式会社 超微細組織を有する高張力熱延鋼板の製造方法
JP3927384B2 (ja) * 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
JP4367091B2 (ja) 2002-12-20 2009-11-18 Jfeスチール株式会社 耐疲労特性に優れ、かつ強度−延性バランスに優れた高強度熱延鋼板およびその製造方法
JP4926406B2 (ja) * 2004-04-08 2012-05-09 新日本製鐵株式会社 疲労き裂伝播特性に優れた鋼板
JP5037415B2 (ja) 2007-06-12 2012-09-26 新日本製鐵株式会社 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP5088631B2 (ja) 2008-09-17 2012-12-05 新日本製鐵株式会社 疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法
CA2850091C (en) 2011-09-30 2016-06-28 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 mpa or more and manufacturing method therefor
RU2585889C2 (ru) * 2011-09-30 2016-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный горячеоцинкованный стальной лист, имеющий превосходное сопротивление замедленному разрушению, и способ его изготовления
RU2605014C2 (ru) 2012-09-26 2016-12-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Лист двухфазной стали и способ его изготовления

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150197A (ja) * 1997-06-06 1999-02-23 Kawasaki Steel Corp 耐衝撃特性および耐疲労特性に優れた高強度高加工性熱延鋼板
JP2004091924A (ja) * 2002-08-12 2004-03-25 Kobe Steel Ltd 伸びフランジ性に優れた高強度鋼板
JP2004256836A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 強度−伸びバランスおよび疲労特性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2009024227A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 成形性に優れる複合組織鋼板およびその製造方法
JP2011052293A (ja) * 2009-09-03 2011-03-17 Nippon Steel Corp 成形性及び疲労特性に優れた複合組織鋼板並びにその製造方法
WO2014019844A1 (en) * 2012-08-03 2014-02-06 Tata Steel Ijmuiden Bv A process for producing hot-rolled steel strip and a steel strip produced therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206764A (ja) * 2016-05-20 2017-11-24 新日鐵住金株式会社 穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板及びその製造方法
EP3940092A4 (en) * 2019-03-11 2023-03-01 Nippon Steel Corporation HOT ROLLED STEEL SHEET
EP3940093A4 (en) * 2019-03-11 2023-03-08 Nippon Steel Corporation HOT ROLLED STEEL SHEET
WO2023007876A1 (ja) 2021-07-27 2023-02-02 日本製鉄株式会社 熱延鋼板
KR20230158061A (ko) 2021-07-27 2023-11-17 닛폰세이테츠 가부시키가이샤 열연 강판

Also Published As

Publication number Publication date
EP3153598A4 (en) 2017-11-29
KR20170015471A (ko) 2017-02-08
CN106661690A (zh) 2017-05-10
EP3153598B1 (en) 2020-09-09
BR112016030919A2 (pt) 2017-08-22
TW201612332A (en) 2016-04-01
EP3153598A1 (en) 2017-04-12
MX2016016578A (es) 2017-04-27
JP6304381B2 (ja) 2018-04-04
US20170145538A1 (en) 2017-05-25
KR101897932B1 (ko) 2018-09-12
JPWO2016010005A1 (ja) 2017-04-27
US9896737B2 (en) 2018-02-20
TWI575083B (zh) 2017-03-21
CN106661690B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
JP6319442B2 (ja) 熱延鋼板
JP6304381B2 (ja) 熱延鋼板
JP6443593B1 (ja) 高強度鋼板
JP6443592B1 (ja) 高強度鋼板
KR101758003B1 (ko) 열연 강판
EP2738274B1 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same
JP4324072B2 (ja) 延性に優れた軽量高強度鋼とその製造方法
WO2012014926A1 (ja) 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
KR101649456B1 (ko) 냉연 강판, 전기 아연계 도금 냉연 강판, 용융 아연 도금 냉연 강판, 합금화 용융 아연 도금 냉연 강판 및 그들의 제조 방법
JP2010196115A (ja) 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP5720612B2 (ja) 成形性及び低温靭性に優れた高強度熱延鋼板及びその製造方法
JP2008056993A (ja) 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP6763479B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4379618B2 (ja) 高張力熱延鋼板及びその製造方法
JP6866933B2 (ja) 熱延鋼板及びその製造方法
JP5821810B2 (ja) 細粒鋼板の製造方法
JP2011168861A (ja) 高強度熱延鋼板およびその製造方法
WO2019103120A1 (ja) 熱延鋼板及びその製造方法
JP6264861B2 (ja) 加工性に優れた高ヤング率冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法
JP2004211126A (ja) 超微細粒組織を有し伸びフランジ性に優れる溶融亜鉛めっき冷延鋼板およびその製造方法
JP6668662B2 (ja) 疲労特性と成形性に優れた鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016578

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015821845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15323617

Country of ref document: US

Ref document number: 2015821845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020177000216

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030919

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016030919

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161229