WO2021149756A1 - 磁気ギアード回転電機 - Google Patents

磁気ギアード回転電機 Download PDF

Info

Publication number
WO2021149756A1
WO2021149756A1 PCT/JP2021/002000 JP2021002000W WO2021149756A1 WO 2021149756 A1 WO2021149756 A1 WO 2021149756A1 JP 2021002000 W JP2021002000 W JP 2021002000W WO 2021149756 A1 WO2021149756 A1 WO 2021149756A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
peripheral surface
electric machine
casing
Prior art date
Application number
PCT/JP2021/002000
Other languages
English (en)
French (fr)
Inventor
梅田 彰彦
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP21744350.6A priority Critical patent/EP4075644B1/en
Priority to FIEP21744350.6T priority patent/FI4075644T3/fi
Priority to US17/792,826 priority patent/US20230041827A1/en
Priority to CN202180009182.7A priority patent/CN114982104A/zh
Publication of WO2021149756A1 publication Critical patent/WO2021149756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators

Definitions

  • the present disclosure relates to a magnetic geared rotary electric machine.
  • the present application claims priority over Japanese Patent Application No. 2020-010232 filed on January 24, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a magnetic geared rotary electric machine in which a low-speed rotor (first rotor), a high-speed rotor (second rotor), and a stator are coaxially rotatable relative to each other.
  • first rotor low-speed rotor
  • second rotor high-speed rotor
  • stator stator
  • the high-speed rotor is rotated by the magnetomotive force of a coil provided on the stator, so that the low-speed rotor, which is an output shaft, rotates at a predetermined reduction ratio due to harmonic flux.
  • a magnetic geared rotary electric machine as described above, it is common that the rotor is rotatably supported by a rolling bearing with respect to the stator.
  • dimensional tolerances of the stator and rotor deformation due to their own weight or external force, wear due to aging, and dimensional changes may occur. Therefore, the air gap between the stator and the rotor may change. As a result, the stable operation of the magnetic geared rotary electric machine is hindered.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a magnetic geared rotary electric machine capable of properly maintaining an air gap for a long period of time.
  • the magnetic geared rotary electric machine includes a casing, a stator core fixed to the casing and forming an annular shape about an axis, a coil provided in a slot of the stator core, and the above.
  • a first having a stator having a plurality of stator magnets provided inside the stator core at intervals in the circumferential direction, and a pole piece having a plurality of pole pieces provided inside the stator at intervals in the circumferential direction of the axis.
  • FIG. 5 is a cross-sectional view taken along the line II-II of FIG. It is a figure which looked at the magnetic geared rotary electric machine which concerns on 1st Embodiment of this disclosure from the axial direction.
  • It is a hardware block diagram of the control device which concerns on 1st Embodiment of this disclosure.
  • It is a functional block diagram of the control device which concerns on 1st Embodiment of this disclosure.
  • sectional drawing which shows the structure of the magnetic geared rotary electric machine which concerns on 2nd Embodiment of this disclosure.
  • the magnetic geared rotary electric machine 100 includes a stator 1, a first rotor 2, a second rotor 3, a casing 4, a bearing B, an actuator 8, and a gap detection unit Sg. , And a control device 90.
  • the magnetic geared rotary electric machine 100 is attached to a rotary shaft 6 extending along the axis Ac.
  • the first rotor 2 and the second rotor 3 rotate around the axis Ac to function as an electric motor.
  • a rotational force (torque) is applied to the rotating shaft 6 from the outside, it functions as a generator by the induced electromotive force accompanying the rotation of the first rotor 2 and the second rotor 3.
  • the casing 4 has an annular shape centered on the axis line Ac. A space is formed inside the casing 4.
  • the stator 1 is provided on the inner surface of the casing 4 that faces inward in the radial direction with respect to the axis Ac (casing inner peripheral surface 5A).
  • the stator 1 has a stator core 1A, a plurality of coils C, and a plurality of stator magnets 1B.
  • the stator core 1A has an annular back yoke 71 centered on the axis Ac, and a plurality of teeth 7T protruding inward in the radial direction from the back yoke 71 and arranged at intervals in the circumferential direction.
  • the teeth 7T has a teeth main body 72 extending radially inward from the back yoke 71, and a teeth tip portion 73 integrally provided at the radial inner end of the teeth main body 72.
  • the tooth tip portion 73 projects toward both sides in the circumferential direction.
  • a coil C is attached to the teeth body 72.
  • the coil C is formed by winding a copper wire or the like around the teeth body 72.
  • the area surrounded by the back yoke 71, the pair of tooth bodies 72 adjacent to each other, and the tip end portion 73 of the teeth is a slot S for accommodating the coil C.
  • a plurality of stator magnets 1B are arranged so as to be adjacent to each other in the circumferential direction on the inner peripheral surface of the stator core 1A, that is, the inner surface of the tooth tip portion 73 in the radial direction.
  • the stator magnet 1B is a permanent magnet such as a ferrite magnet or a neodymium magnet.
  • the poles of the stator magnets 1B adjacent to each other are different. That is, the stator magnets 1B having different poles are alternately arranged in the circumferential direction.
  • the first rotor 2 is provided inside the stator 1.
  • the first rotor 2 has a disk portion 5, a first rotor main body 2H, and a pole piece 2P.
  • the disk portion 5 has a disk shape centered on the axis line Ac, and is attached to the rotating shaft 6.
  • the first rotor main body 2H is attached to the outer peripheral side of the disk portion 5.
  • the first rotor main body 2H has a cylindrical tubular portion 21 centered on the axis line Ac, and a pair of support portions 22 projecting outward in the radial direction from the outer peripheral surface of the tubular portion 21.
  • the tubular portion 21 is supported on the inner peripheral surface of the casing 4 via a bearing B (outer bearing B1) described later.
  • a plurality of pole pieces 2P are provided on the radial outer edge of the pair of support portions 22.
  • the pole piece 2P is a magnetic material, and generates a high frequency of magnetic flux by interacting with the magnetic force of the stator magnet 1B and the rotor magnet 3B described later. As shown in FIG. 2, a plurality of pole pieces 2P are provided at intervals in the circumferential direction.
  • the second rotor 3 is provided between the pair of support portions 22 in the first rotor main body 2H.
  • the second rotor 3 has a rotor core 3A and a rotor magnet 3B.
  • the rotor core 3A has an annular shape centered on the axis line Ac.
  • the inner peripheral surface of the rotor core 3A is rotatably supported via the bearing B (inner bearing B2) by the outer peripheral surface of the tubular portion 21 of the first rotor main body 2H.
  • a plurality of rotor magnets 3B are arranged in the circumferential direction on the outer peripheral surface of the rotor core 3A.
  • the rotor magnet 3B faces outward in the radial direction with respect to the pole piece 2P described above.
  • Outer bearing configuration As shown in FIG. 3, a plurality of outer bearings B1 (movable bearings) are provided (three as an example) at intervals in the circumferential direction of the axis Ac. In the example of FIG. 3, a pair of outer bearings B1 (lower bearing BL) is provided below the axis line Ac extending in the horizontal direction, and one outer bearing B1 (upper bearing BU) is provided above.
  • the outer bearing B1 supports the outer peripheral surface of the tubular portion 21 (the outer peripheral surface of the tubular portion 2S) described above, and is movable in a direction including a surface orthogonal to the axis line Ac.
  • the outer bearing B1 has a movable support portion 8A and a roller portion 8R.
  • the movable support portion 8A is supported by the above-mentioned casing 4.
  • the movable support portion 8A has a rod shape extending from the casing 4 toward the tubular portion 21 in a plane orthogonal to the axis line Ac.
  • a roller portion 8R is provided at the tip of the movable support portion 8A (the end on the side close to the tubular portion 21).
  • the roller portion 8R is a wheel that can rotate around a rotation axis extending in a direction parallel to the axis line Ac.
  • the roller portion 8R supports the tubular portion 21 by rotating while contacting the outer peripheral surface 2S of the tubular portion.
  • the actuator 8 is attached to the base end (the end opposite to the tip) of the movable support portion 8A.
  • a solenoid, a stepping motor, or the like driven by an electric signal received from the outside is preferably used as the actuator 8.
  • the movable support portion 8A can freely move in the direction including the plane orthogonal to the axis line Ac.
  • the actuator 8 operates based on an electric signal transmitted from the control device 90 described later. That is, the actuator 8 is electrically connected to the control device 90 by a signal line.
  • a gap detection unit Sg is provided on the inner peripheral surface of the casing 4 (casing inner peripheral surface 5A).
  • the gap detection unit Sg detects the air gap, which is the radial separation distance between the stator 1 (stator magnet 1B) and the outer peripheral surface of the first rotor 2 (first rotor outer peripheral surface 22S), in a non-contact manner.
  • a capacitance type distance sensor is preferably used as the gap detection unit Sg.
  • the value of the air gap detected by the gap detection unit Sg is input to the control device 90 described later. That is, the gap detection unit Sg is electrically connected to the control device 90 by a signal line (see FIG. 3).
  • the control device 90 includes a CPU 91 (Central Processing Unit), a ROM 92 (Read Only Memory), a RAM 93 (Random Access Memory), an HDD 94 (Hard Disk Drive), and a signal transmission / reception module 95 (I / O: Input). / Output).
  • the signal transmission / reception module 95 receives the value of the air gap detected by the gap detection unit Sg described above as an electric signal. Further, the signal transmission / reception module 95 transmits an electric signal for controlling the drive of the actuator 8 to the actuator 8 described above.
  • the signal transmission / reception module 95 may transmit / receive an amplified signal via, for example, a charge amplifier or the like.
  • the CPU 91 of the control device 90 has a control unit 81, a storage unit 82, a determination unit 83, and a drive unit 84 by executing a program stored in the own device in advance.
  • the control unit 81 controls the operations of the storage unit 82, the determination unit 83, and the drive unit 84.
  • the storage unit 82 stores in advance the relationship between the appropriate air gap value and the position coordinates of each of the outer bearings B1 (roller unit 8R) described above as a table.
  • the determination unit 83 collates the detection result of the gap detection unit Sg with the table stored in the storage unit 82, and determines whether or not the air gap needs to be adjusted (that is, the movement of the outer bearing B1). do. Further, the determination unit 83 calculates the amount of movement of the outer bearing B1 when it is necessary to move the outer bearing B1.
  • the drive unit 84 drives the actuator 8 based on the determination result of the determination unit 83.
  • the magnetic geared rotary electric machine 100 when used as a generator, a rotational force (torque) around the axis Ac is applied to the rotary shaft 6. As a result, the first rotor 2 and the second rotor 3 rotate due to the rotation of the rotating shaft 6. An induced electromotive force is generated in the coil C as the first rotor 2 and the second rotor 3 rotate. By taking out this electric power to the outside, the magnetic geared rotary electric machine 100 can be used as a generator.
  • the first rotor 2 is rotatably supported with respect to the stator 1 via a rolling bearing.
  • the dimensional tolerance of the stator 1 and the rotor, deformation due to its own weight or external force, wear due to aged use, and dimensional change may occur. Therefore, the air gap between the stator 1 and the first rotor 2 may change. As a result, the stable operation of the magnetic geared rotary electric machine may be hindered.
  • the first rotor 2 is supported by the above-mentioned outer bearing B1 (movable bearing).
  • the outer peripheral surface (cylinder outer peripheral surface 2S) of the first rotor 2 is supported by a plurality of outer bearings B1.
  • these outer bearings B1 can be moved by the actuator 8 in a direction including a plane orthogonal to the axis line Ac.
  • the outer bearing B1 is moved according to the amount of the change to open the air gap before the change. It can be restored.
  • the air gap can be properly maintained for a long period of time. This makes it possible to stably operate the magnetic geared rotary electric machine 100 for a longer period of time.
  • the first rotor 2 can be supported in a smoothly rotatable state by the roller portion 8R provided at the tip of the movable support portion 8A.
  • control device 90 drives the actuator 8 based on the detection result of the gap detection unit Sg. As a result, when a change occurs in the air gap, it can be immediately detected and the air gap can be adjusted autonomously.
  • the capacitance type sensor is used as the gap detection unit Sg, the separation distance (air gap) between the stator 1 and the first rotor 2 is accurately detected in a non-contact state. can do. Therefore, the gap detection unit Sg does not interfere with the rotation of the first rotor 2. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the first embodiment of the present disclosure has been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure.
  • the inner bearing B2 can also be configured to be the above-mentioned movable bearing. It is also possible to adopt a configuration in which only the inner bearing B2 is a movable bearing.
  • the second embodiment of the present disclosure will be described with reference to FIG.
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the shapes of the casing 4 and the first rotor 2 are different from those of the first embodiment.
  • the casing 4 and the first rotor 2 extend in a direction in which they are inclined with respect to the axis line Ac.
  • the magnetic geared rotary electric machine 200 according to the present embodiment further includes a rotor moving unit 8B.
  • the casing 4 and the first rotor main body 2H extend from the inside to the outside in the radial direction from one side in the axial direction Ac to the other side.
  • the inner peripheral surface of the stator 1 (stator magnet 1B) extends from the outer side in the radial direction to the inner side in the direction from one side to the other side in the axial direction Ac.
  • the outer peripheral surface of the first rotor 2 (first rotor outer peripheral surface 22S) facing the inner peripheral surface from the radial direction also extends from the outer side to the inner side in the radial direction from one side to the other side in the axial direction Ac. ing.
  • the first rotor 2 can be moved in the axial direction Ac by the rotor moving portion 8B. That is, by driving the rotor moving portion 8B, the first rotor 2 is displaced relative to the stator 1.
  • the operation of the rotor moving unit 8B is controlled by the processing of the control device 90 based on the detection result of the gap detecting unit Sg, as in the configuration described in the first embodiment.
  • the inner peripheral surface of the stator 1 and the outer peripheral surface of the first rotor 2 extend inward from the outer side in the radial direction from one side to the other side in the axial direction Ac. ing. Therefore, for example, when the first rotor 2 is moved to the other side in the axis Ac direction, the separation distance (air gap) between the stator 1 and the first rotor 2 changes in a direction of becoming smaller. On the contrary, when the first rotor 2 is moved to one side in the axial direction Ac, the air gap between the stator 1 and the first rotor 2 changes in a larger direction.
  • the air gap can be easily adjusted only by moving the first rotor 2 by the rotor moving portion 8B.
  • the air gap is properly maintained for a long period of time, and the magnetic geared rotary electric machine 100 can be operated stably.
  • the second embodiment of the present disclosure has been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure. For example, it is also possible to combine the configuration of the second embodiment with the configuration of the outer bearing B1 (movable bearing) described in the first embodiment. Further, in the second embodiment, the configuration in which the entire casing 4 and the first rotor 2 are inclined with respect to the axis Ac has been described. However, in order to optimize the air gap by moving the first rotor 2 in the axial direction Ac as described above, at least the inner peripheral surface of the stator 1 and the outer peripheral surface of the first rotor 2 (the outer peripheral surface of the first rotor).
  • the magnetic geared rotary electric machine 100 includes a casing 4, a stator core 1A fixed to the casing 4 and forming an annular shape about an axis Ac, and a coil provided in a slot S of the stator core 1A.
  • a first rotor 2 having a pole piece 2P provided with, a rotor core 3A provided inside the first rotor 2, and a plurality of rotor magnets 3B provided at intervals in the circumferential direction on the rotor core 3A.
  • a second rotor 3 having a magnet, and a plurality of movable movable rotors 3 provided on the casing 4 that are in contact with at least one outer peripheral surface of the first rotor 2 and the second rotor 3 and are arranged at intervals in the circumferential direction.
  • a bearing and an actuator 8 for moving these movable bearings in a direction including a plane orthogonal to the axis Ac are provided.
  • At least one outer peripheral surface of the first rotor 2 and the second rotor 3 is supported by a plurality of movable bearings. Further, these movable bearings can be moved by the actuator 8 in a direction including a plane orthogonal to the axis line Ac. As a result, when the separation distance (air gap) between the stator 1 and the first rotor 2 changes, the movable bearing is moved according to the amount of the change to restore the air gap before the change. can do. As a result, the air gap can be properly maintained for a long period of time.
  • the movable bearing is provided at a movable support portion 8A that is supported so as to be relatively displaceable with respect to the casing 4 and at the tip of the movable support portion 8A. It may have a roller portion 8R that rotates while abutting on the outer peripheral surface.
  • At least one of the first rotor 2 and the second rotor 3 can be supported in a smoothly rotatable state by the roller portion 8R provided at the tip of the movable support portion 8A.
  • the magnetic geared rotary electric machine 100 is provided in the casing 4 and detects an air gap which is a radial separation distance between the first rotor 2 and the stator 1.
  • a detection unit Sg and a control device 90 for driving the actuator 8 based on the detection result of the gap detection unit Sg may be further provided.
  • the control device 90 drives the actuator 8 based on the detection result of the gap detection unit Sg. As a result, when a change occurs in the air gap, it can be immediately detected and the air gap can be adjusted autonomously.
  • the gap detection unit Sg may be a capacitance type sensor.
  • the capacitance type sensor is used as the gap detection unit Sg, the separation distance (air gap) between the stator 1 and the first rotor 2 can be accurately detected in a non-contact state. Can be done. Therefore, the gap detection unit Sg does not interfere with the rotation of the first rotor 2. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the inner peripheral surface of the stator 1 and the outer peripheral surface of the first rotor 2 facing the inner peripheral surface in the radial direction are on one side in the axis Ac direction.
  • a rotor moving portion 8B that extends from the outer side in the radial direction to the inner side in the radial direction and moves the first rotor 2 in the axial direction Ac may be further provided.
  • the inner peripheral surface of the stator 1 and the outer peripheral surface of the first rotor 2 extend from the outer side to the inner side in the radial direction from one side to the other side in the axial direction Ac. Therefore, for example, when the first rotor 2 is moved to the other side in the axis Ac direction, the separation distance (air gap) between the stator 1 and the first rotor 2 changes in a direction of becoming smaller. On the contrary, when the first rotor 2 is moved to one side in the axial direction Ac, the air gap between the stator 1 and the first rotor 2 changes in a larger direction. In this way, the air gap can be easily adjusted only by moving the first rotor 2 by the rotor moving portion 8B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

磁気ギアード回転電機は、ケーシングと、ステータコア、コイル、及びステータコアの内側に設けられたステータ磁石を有するステータと、ステータの内側に設けられたポールピースを有する第一ロータと、第一ロータの内側に設けられたロータコア、及びロータコアに周方向に間隔をあけて設けられた複数のロータ磁石を有する第二ロータと、ケーシングに設けられて、第一ロータ及び第二ロータの少なくとも一方の外周面に当接するとともに周方向に間隔をあけて配置された複数の可動軸受と、これら可動軸受を軸線に直交する面を含む方向に移動させるアクチュエータと、を備える。

Description

磁気ギアード回転電機
 本開示は、磁気ギアード回転電機に関する。
 本願は、2020年1月24日に出願された特願2020-010232号に対して優先権を主張し、その内容をここに援用する。
 下記特許文献1には、低速ロータ(第一ロータ)、高速ロータ(第二ロータ)、ステータが同軸に相対回転可能とされた磁気ギア―ド回転電機が開示されている。
 磁気ギア―ド回転電機を、例えばモータとして用いる場合には、ステータに設けたコイルの起磁力により高速ロータを回転させることで、高調波磁束により出力軸である低速ロータが所定の減速比で回転する。
特開2014-163431号公報
 上記のような磁気ギアード回転電機では、ステータに対してロータが、転がり軸受を介して回転可能に支持されることが一般的である。しかしながら、ステータやロータの寸法公差や自重または外力による変形、経年使用による摩耗や寸法の変化が生じる場合がある。このため、ステータとロータとの間のエアギャップが変化する虞がある。その結果、磁気ギアード回転電機の安定的な運用が阻害されてしまう。
 本開示は上記課題を解決するためになされたものであって、長期にわたってエアギャップを適正に維持することが可能な磁気ギアード回転電機を提供することを目的とする。
 上記課題を解決するために、本開示に係る磁気ギアード回転電機は、ケーシングと、前記ケーシングに固定されて軸線を中心として環状をなすステータコア、該ステータコアのスロット内に設けられたコイル、及び、前記ステータコアの内側に周方向に間隔をあけて複数が設けられたステータ磁石を有するステータと、該ステータの内側で、前記軸線の周方向に間隔をあけて複数が設けられたポールピースを有する第一ロータと、該第一ロータの内側に設けられたロータコア、及び、該ロータコアに周方向に間隔をあけて設けられた複数のロータ磁石を有する第二ロータと、前記ケーシングに設けられて、前記第一ロータ及び前記第二ロータの少なくとも一方の外周面に当接するとともに周方向に間隔をあけて配置された複数の可動軸受と、これら可動軸受を、前記軸線に直交する面を含む方向に移動させるアクチュエータと、を備える。
 本開示によれば、長期にわたってエアギャップを適正に維持することが可能な磁気ギアード回転電機を提供することができる。
本開示の第一実施形態に係る磁気ギアード回転電機の構成を示す断面図である。 図1のII-II線における断面図である。 本開示の第一実施形態に係る磁気ギアード回転電機を軸線方向から見た図である。 本開示の第一実施形態に係る制御装置のハードウェア構成図である。 本開示の第一実施形態に係る制御装置の機能ブロック図である。 本開示の第二実施形態に係る磁気ギアード回転電機の構成を示す断面模式図である。
[第一実施形態]
(磁気ギアード回転電機の構成)
 以下、本開示の第一実施形態に係る磁気ギアード回転電機100について、図1から図5を参照して説明する。図1から図3に示すように、磁気ギアード回転電機100は、ステータ1と、第一ロータ2と、第二ロータ3と、ケーシング4と、軸受Bと、アクチュエータ8と、ギャップ検出部Sgと、制御装置90と、を備えている。磁気ギアード回転電機100は、軸線Acに沿って延びる回転軸6に取り付けられている。外部から電力供給した場合、第一ロータ2、及び第二ロータ3が軸線Ac回りに回転することで電動機として機能する。一方で、回転軸6に外部から回転力(トルク)を与えた場合、第一ロータ2、及び第二ロータ3の回転に伴う誘導起電力によって発電機として機能する。
(ケーシング、ステータの構成)
 ケーシング4は、軸線Acを中心とする円環状をなしている。ケーシング4の内部には空間が形成されている。ステータ1は、このケーシング4の内面のうち、軸線Acに対する径方向内側を向く面(ケーシング内周面5A)に設けられている。
 図2に示すように、ステータ1は、ステータコア1Aと、複数のコイルCと、複数のステータ磁石1Bと、を有している。ステータコア1Aは、軸線Acを中心とする円環状のバックヨーク71と、バックヨーク71から径方向内側に突出するとともに、周方向に間隔をあけて配列された複数のティース7Tと、を有している。ティース7Tは、バックヨーク71から径方向内側に延びるティース本体72と、ティース本体72の径方向内側の端部に一体に設けられたティース先端部73と、を有している。ティース先端部73は、周方向の両側に向かって張り出している。
 ティース本体72にはコイルCが取り付けられている。コイルCは、銅線等をティース本体72の周囲に巻き掛けることで形成されている。バックヨーク71と、互いに隣接する一対のティース本体72、及びティース先端部73とによって囲まれた領域は、コイルCを収容するためのスロットSとされている。
 ステータコア1Aの内周面、つまりティース先端部73の径方向内側の面には、周方向に隣接するように複数のステータ磁石1Bが配列されている。ステータ磁石1Bは、例えばフェライト磁石やネオジム磁石のような永久磁石である。互いに隣接するステータ磁石1B同士では、極が異なっている。つまり、異なる極のステータ磁石1Bが周方向に交互に配列されている。
(第一ロータの構成)
 図1に示すように、第一ロータ2は、ステータ1の内側に設けられている。第一ロータ2は、円板部5と、第一ロータ本体2Hと、ポールピース2Pと、を有している。円板部5は、軸線Acを中心とする円板状をなし、回転軸6に取り付けられている。円板部5の外周側には、第一ロータ本体2Hが取り付けられている。第一ロータ本体2Hは、軸線Acを中心とする円筒状の筒部21と、この筒部21の外周面から径方向外側に張り出す一対の支持部22と、を有している。筒部21は、後述する軸受B(外側軸受B1)を介してケーシング4の内周面上で支持されている。一対の支持部22の径方向外側の端縁には、複数のポールピース2Pが設けられている。ポールピース2Pは、磁性体であり、ステータ磁石1B、及び後述するロータ磁石3Bの磁力との相互作用により、磁束の高周波を発生させる。図2に示すように、ポールピース2Pは、周方向に間隔をあけて複数設けられている。
(第二ロータの構成)
 図1に示すように、第二ロータ3は、第一ロータ本体2Hにおける一対の支持部22同士の間に設けられている。第二ロータ3は、ロータコア3Aと、ロータ磁石3Bと、を有している。ロータコア3Aは、軸線Acを中心とする円環状をなしている。ロータコア3Aの内周面は、第一ロータ本体2Hにおける筒部21の外周面によって、軸受B(内側軸受B2)を介して回転可能に支持されている。図2に示すように、ロータコア3Aの外周面には、複数のロータ磁石3Bが周方向に複数配列されている。ロータ磁石3Bは、上述のポールピース2Pに対して径方向外向きに対向している。
(外側軸受の構成)
 図3に示すように、外側軸受B1(可動軸受)は、軸線Acの周方向に間隔をあけて複数(一例として3つ)設けられている。図3の例では、水平方向に延びる軸線Acの下方に一対の外側軸受B1(下部軸受BL)が設けられ、上方に1つの外側軸受B1(上部軸受BU)が設けられている。
 外側軸受B1は、上述した筒部21の外周面(筒部外周面2S)を支持するとともに、軸線Acに直交する面を含む方向に移動可能とされている。具体的には、外側軸受B1は、可動支持部8Aと、ローラー部8Rと、を有している。可動支持部8Aは、上述のケーシング4上によって支持されている。可動支持部8Aは、軸線Acに直交する面内で、ケーシング4から筒部21に向かって延びる棒状をなしている。可動支持部8Aの先端(筒部21に近接する側の端部)には、ローラー部8Rが設けられている。ローラー部8Rは、軸線Acに平行な方向に延びる回動軸回りに回動可能な車輪である。ローラー部8Rは、筒部外周面2Sに当接しながら回動することで、当該筒部21を支持している。
 可動支持部8Aの基端(先端とは反対側の端部)には、アクチュエータ8が取り付けられている。アクチュエータ8として具体的には、外部から受け付けた電気信号によって駆動するソレノイドやステッピングモータ等が好適に用いられる。このアクチュエータ8を駆動させることで、可動支持部8Aは、軸線Acに直交する面を含む方向に自在に移動することが可能とされている。アクチュエータ8は、後述する制御装置90から送出された電気信号に基づいて動作する。つまり、アクチュエータ8は、信号線によって制御装置90に電気的に接続されている。
(ギャップ検出部の構成)
 図1に示すように、ケーシング4の内周面(ケーシング内周面5A)には、ギャップ検出部Sgが設けられている。ギャップ検出部Sgは、ステータ1(ステータ磁石1B)と、第一ロータ2の外周面(第一ロータ外周面22S)との間の径方向の離間距離であるエアギャップを非接触で検出する。ギャップ検出部Sgとして具体的には、静電容量型の距離センサが好適に用いられる。ギャップ検出部Sgが検出したエアギャップの値は、後述する制御装置90に入力される。つまり、ギャップ検出部Sgは、信号線によって制御装置90に電気的に接続されている(図3参照)。
(制御装置の構成)
 図4に示すように、制御装置90は、CPU91(Central Processing Unit)、ROM92(Read Only Memory)、RAM93(Random Access Memory)、HDD94(Hard Disk Drive)、信号送受信モジュール95(I/O:Input/Output)を備えるコンピュータである。信号送受信モジュール95は、上述のギャップ検出部Sgが検出したエアギャップの値を電気信号として受信する。また、信号送受信モジュール95は、上述のアクチュエータ8に、当該アクチュエータ8の駆動を制御する電気信号を送信する。なお、信号送受信モジュール95は、例えばチャージアンプ等を介して増幅された信号を送受信してもよい。
 図5に示すように、制御装置90のCPU91は予め自装置で記憶するプログラムを実行することにより、制御部81、記憶部82、判定部83、及び駆動部84、を有する。制御部81は、記憶部82、判定部83、及び駆動部84の動作を制御する。記憶部82は、適正なエアギャップの値と、上述の各外側軸受B1(ローラー部8R)の位置座標との関係をテーブルとして予め記憶している。
 判定部83は、ギャップ検出部Sgの検出結果と、記憶部82に格納されたテーブルとを照合して、エアギャップの調整(つまり、外側軸受B1の移動)が必要であるか否かを判定する。さらに、判定部83は、外側軸受B1の移動が必要である場合には、その移動量を算出する。駆動部84は、判定部83の判定結果に基づいて、アクチュエータ8を駆動する。
(作用効果)
 次に、上述の磁気ギアード回転電機100の動作について説明する。磁気ギアード回転電機100を電動機として用いる場合、まずコイルCに外部から電力を供給する。これにより、コイルCが励磁される。このコイルCの磁力によって、第二ロータ3が軸線Ac回りに回転する。さらに、第二ロータ3が回転することによって、第一ロータ2が回転する。第一ロータ2の回転数は、第一ロータ2の極数Ph、及び第二ロータ3の極対数Nsに基づく減速比のもとで減速されている。具体的には、減速比Gは、G=Ph/Nsとなる。
 一方で、磁気ギアード回転電機100を発電機として用いる場合には、回転軸6に軸線Ac回りの回転力(トルク)を与える。これにより、回転軸6の回転によって第一ロータ2、及び第二ロータ3が回転する。第一ロータ2、及び第二ロータ3の回転に伴って、コイルCで誘導起電力が発生する。この電力を外部に取り出すことで、磁気ギアード回転電機100を発電機として用いることが可能となる。
 ところで、上記のような磁気ギアード回転電機100では、ステータ1に対して第一ロータ2が、転がり軸受を介して回転可能に支持されることが従来一般的であった。しかしながら、ステータ1やロータの寸法公差や自重または外力による変形、経年使用による摩耗や寸法の変化が生じる場合がある。このため、ステータ1と第一ロータ2との間のエアギャップが変化する虞がある。その結果、磁気ギアード回転電機の安定的な運用が阻害されてしまう可能性があった。
 そこで、本実施形態では、第一ロータ2を上述した外側軸受B1(可動軸受)によって支持する構成を採っている。この構成によれば、第一ロータ2の外周面(筒部外周面2S)は、複数の外側軸受B1によって支持されている。さらに、これら外側軸受B1は、アクチュエータ8によって軸線Acに直交する面を含む方向に移動することが可能とされている。これにより、ステータ1と第一ロータ2との間の離間距離(エアギャップ)が変化した場合には、当該変化の量に応じて外側軸受B1を移動させることで、変化する前のエアギャップを復元することができる。その結果、長期にわたってエアギャップを適正に維持することができる。これにより、磁気ギアード回転電機100をより長期にわたって安定的に運用することが可能となる。
 さらに、上記構成によれば、可動支持部8Aの先端に設けられたローラー部8Rによって、第一ロータ2を、円滑に回動可能な状態で支持することができる。
 加えて、上記構成によれば、ギャップ検出部Sgの検出結果に基づいて制御装置90がアクチュエータ8を駆動する。これにより、エアギャップに変化が生じた場合には、直ちにこれを検知し、エアギャップを自律的に適正化することができる。
 また、上記構成によれば、ギャップ検出部Sgとして、静電容量型センサを用いることから、ステータ1と第一ロータ2との間の離間距離(エアギャップ)を非接触の状態で正確に検出することができる。このため、ギャップ検出部Sgが第一ロータ2の回転を妨げることない。これにより、さらに安定的に磁気ギアード回転電機100を運用することができる。
 以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第一実施形態では、外側軸受B1のみが可動軸受とされ、この可動軸受によって第一ロータ2のみが支持されている例について説明した。しかしながら、外側軸受B1に加えて内側軸受B2も上述の可動軸受とする構成を採ることも可能である。また、内側軸受B2のみを可動軸受とする構成を採ることも可能である。
[第二実施形態]
 次に、本開示の第二実施形態について、図6を参照して説明する。なお、上記の第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、ケーシング4、及び第一ロータ2の形状が第一実施形態とは異なっている。ケーシング4、及び第一ロータ2は、軸線Acに対して傾斜する方向に延びている。また、本実施形態に係る磁気ギアード回転電機200は、ロータ移動部8Bをさらに備えている。
 より具体的には、ケーシング4、及び第一ロータ本体2Hは、軸線Ac方向の一方側から他方側に向かうに従って、径方向内側から外側に向かって延びている。これにより、ステータ1(ステータ磁石1B)の内周面は、軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に向かって延びている。この内周面に径方向から対向する第一ロータ2の外周面(第一ロータ外周面22S)も同様に、軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に向かって延びている。
 さらに、第一ロータ2は、ロータ移動部8Bによって、軸線Ac方向に移動可能とされている。つまり、ロータ移動部8Bを駆動することによって、第一ロータ2は、ステータ1に対して相対変位する。詳しくは図示しないが、ロータ移動部8Bは、第一実施形態で説明した構成と同様に、ギャップ検出部Sgの検出結果に基づく制御装置90の処理によってその動作が制御される。
 上記構成によれば、ステータ1の内周面、及び第一ロータ2の外周面(第一ロータ外周面22S)が、軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に延びている。したがって、例えば第一ロータ2を軸線Ac方向他方側に移動させた場合、これらステータ1と第一ロータ2との間の離間距離(エアギャップ)は小さくなる方向に変化する。反対に、第一ロータ2を軸線Ac方向一方側に移動させた場合、これらステータ1と第一ロータ2との間のエアギャップは大きくなる方向に変化する。このように、第一ロータ2をロータ移動部8Bによって移動させることのみによって、容易にエアギャップを調節することができる。その結果、長期にわたってエアギャップが適正に維持され、磁気ギアード回転電機100を安定的に運用することができる。
 以上、本開示の第二実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、第二実施形態の構成に、第一実施形態で説明した外側軸受B1(可動軸受)の構成を組み合わせることも可能である。また、上記第二実施形態では、ケーシング4と第一ロータ2の全体が軸線Acに対して傾斜している構成について説明した。しかしながら、上記のように第一ロータ2を軸線Ac方向に移動させることでエアギャップを適正化する上では、少なくともステータ1の内周面、及び第一ロータ2の外周面(第一ロータ外周面22S)のみが、軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に延びていればよい。言い換えれば、これら内周面及び外周面を除く他の部材の構成は設計や仕様に応じて適宜変更することが可能である。
[付記]
 各実施形態に記載の磁気ギアード回転電機100は、例えば以下のように把握される。
(1)第1の態様に係る磁気ギアード回転電機100は、ケーシング4と、前記ケーシング4に固定されて軸線Acを中心として環状をなすステータコア1A、該ステータコア1AのスロットS内に設けられたコイルC、及び、前記ステータコア1Aの内側に周方向に間隔をあけて複数が設けられたステータ磁石1Bを有するステータ1と、該ステータ1の内側で、前記軸線Acの周方向に間隔をあけて複数が設けられたポールピース2Pを有する第一ロータ2と、該第一ロータ2の内側に設けられたロータコア3A、及び、該ロータコア3Aに周方向に間隔をあけて設けられた複数のロータ磁石3Bを有する第二ロータ3と、前記ケーシング4に設けられて、前記第一ロータ2及び前記第二ロータ3の少なくとも一方の外周面に当接するとともに周方向に間隔をあけて配置された複数の可動軸受と、これら可動軸受を、前記軸線Acに直交する面を含む方向に移動させるアクチュエータ8と、を備える。
 上記構成によれば、第一ロータ2及び第二ロータ3の少なくとも一方の外周面は、複数の可動軸受によって支持されている。さらに、これら可動軸受は、アクチュエータ8によって軸線Acに直交する面を含む方向に移動することが可能とされている。これにより、ステータ1と第一ロータ2との間の離間距離(エアギャップ)が変化した場合には、当該変化の量に応じて可動軸受を移動させることで、変化する前のエアギャップを復元することができる。その結果、長期にわたってエアギャップを適正に維持することができる。
(2)第2の態様に係る磁気ギアード回転電機100では、前記可動軸受は、前記ケーシング4に対して相対変位可能に支持されている可動支持部8Aと、該可動支持部8Aの先端に設けられ、前記外周面に当接しながら回動するローラー部8Rと、を有していてもよい。
 上記構成によれば、可動支持部8Aの先端に設けられたローラー部8Rによって、第一ロータ2及び第二ロータ3の少なくとも一方を、円滑に回動可能な状態で支持することができる。
(3)第3の態様に係る磁気ギアード回転電機100は、前記ケーシング4内に設けられ、前記第一ロータ2と前記ステータ1との間の径方向の離間距離であるエアギャップを検出するギャップ検出部Sgと、該ギャップ検出部Sgの検出結果に基づいて、前記アクチュエータ8を駆動する制御装置90と、をさらに備えていてもよい。
 上記構成によれば、ギャップ検出部Sgの検出結果に基づいて制御装置90がアクチュエータ8を駆動する。これにより、エアギャップに変化が生じた場合には、直ちにこれを検知し、エアギャップを自律的に適正化することができる。
(4)第4の態様に係る磁気ギアード回転電機100では、前記ギャップ検出部Sgは、静電容量型センサであってもよい。
 上記構成によれば、ギャップ検出部Sgとして、静電容量型センサを用いることから、ステータ1と第一ロータ2との間の離間距離(エアギャップ)を非接触の状態で正確に検出することができる。このため、ギャップ検出部Sgが第一ロータ2の回転を妨げることない。これにより、さらに安定的に磁気ギアード回転電機100を運用することができる。
(5)第5の態様に係る磁気ギアード回転電機100では、前記ステータ1の内周面、及び該内周面に径方向から対向する前記第一ロータ2の外周面は、前記軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に延び、前記第一ロータ2を前記軸線Ac方向に移動させるロータ移動部8Bをさらに備えていてもよい。
 上記構成によれば、ステータ1の内周面、及び第一ロータ2の外周面が、軸線Ac方向一方側から他方側に向かうに従って、径方向外側から内側に延びている。したがって、例えば第一ロータ2を軸線Ac方向他方側に移動させた場合、これらステータ1と第一ロータ2との間の離間距離(エアギャップ)は小さくなる方向に変化する。反対に、第一ロータ2を軸線Ac方向一方側に移動させた場合、これらステータ1と第一ロータ2との間のエアギャップは大きくなる方向に変化する。このように、第一ロータ2をロータ移動部8Bによって移動させることのみによって、容易にエアギャップを調節することができる。
 本開示によれば、長期にわたってエアギャップを適正に維持することが可能な磁気ギアード回転電機を提供することができる。
100,200 磁気ギアード回転電機
1 ステータ
1A ステータコア
1B ステータ磁石
2 第一ロータ
21 筒部
22 支持部
22S 第一ロータ外周面
2H 第一ロータ本体
2P ポールピース
2S 筒部外周面
3 第二ロータ
3A ロータコア
3B ロータ磁石
4 ケーシング
5 円板部
5A ケーシング内周面
6 回転軸
8 アクチュエータ
8A 可動支持部
8B ロータ移動部
8R ローラー部
71 バックヨーク
72 ティース本体
73 ティース先端部
81 制御部
82 記憶部
83 判定部
84 駆動部
90 制御装置
91 CPU
92 ROM
93 RAM
94 HDD
95 信号送受信モジュール
Ac 軸線
B 軸受
B1 外側軸受(可動軸受)
B2 内側軸受
BL 下部軸受
BU 上部軸受
C コイル
S スロット
Sg ギャップ検出部

Claims (5)

  1.  ケーシングと、
     前記ケーシングに固定されて軸線を中心として環状をなすステータコア、該ステータコアのスロット内に設けられたコイル、及び、前記ステータコアの内側に周方向に間隔をあけて複数が設けられたステータ磁石を有するステータと、
     該ステータの内側で、前記軸線の周方向に間隔をあけて複数が設けられたポールピースを有する第一ロータと、
     該第一ロータの内側に設けられたロータコア、及び、該ロータコアに周方向に間隔をあけて設けられた複数のロータ磁石を有する第二ロータと、
     前記ケーシングに設けられて、前記第一ロータ及び前記第二ロータの少なくとも一方の外周面に当接するとともに周方向に間隔をあけて配置された複数の可動軸受と、
     これら可動軸受を、前記軸線に直交する面を含む方向に移動させるアクチュエータと、を備える磁気ギアード回転電機。
  2.  前記可動軸受は、
     前記ケーシングに対して相対変位可能に支持されている可動支持部と、
     該可動支持部の先端に設けられ、前記外周面に当接しながら回動するローラー部と、を有する請求項1に記載の磁気ギアード回転電機。
  3.  前記ケーシング内に設けられ、前記第一ロータと前記ステータとの間の径方向の離間距離であるエアギャップを検出するギャップ検出部と、
     該ギャップ検出部の検出結果に基づいて、前記アクチュエータを駆動する制御装置と、をさらに備える請求項1又は2に記載の磁気ギアード回転電機。
  4.  前記ギャップ検出部は、静電容量型センサである請求項3に記載の磁気ギアード回転電機。
  5.  前記ステータの内周面、及び該内周面に径方向から対向する前記第一ロータの外周面は、前記軸線方向一方側から他方側に向かうに従って、径方向外側から内側に延び、
     前記第一ロータを前記軸線方向に移動させるロータ移動部をさらに備える請求項1から4のいずれか一項に記載の磁気ギアード回転電機。
PCT/JP2021/002000 2020-01-24 2021-01-21 磁気ギアード回転電機 WO2021149756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21744350.6A EP4075644B1 (en) 2020-01-24 2021-01-21 Magnetic-geared electric rotary machine
FIEP21744350.6T FI4075644T3 (fi) 2020-01-24 2021-01-21 Magneettitoiminen pyörivä sähkökone
US17/792,826 US20230041827A1 (en) 2020-01-24 2021-01-21 Magnetic geared rotary electric machine
CN202180009182.7A CN114982104A (zh) 2020-01-24 2021-01-21 磁齿轮旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020010232A JP7388934B2 (ja) 2020-01-24 2020-01-24 磁気ギアード回転電機
JP2020-010232 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149756A1 true WO2021149756A1 (ja) 2021-07-29

Family

ID=76992498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002000 WO2021149756A1 (ja) 2020-01-24 2021-01-21 磁気ギアード回転電機

Country Status (6)

Country Link
US (1) US20230041827A1 (ja)
EP (1) EP4075644B1 (ja)
JP (1) JP7388934B2 (ja)
CN (1) CN114982104A (ja)
FI (1) FI4075644T3 (ja)
WO (1) WO2021149756A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534511A (ja) * 2000-05-22 2003-11-18 クルップ ポリシウス アクチェンゲゼルシャフト 回転管状体を傾斜可能に支持するためのローラー支持システム
JP2006211837A (ja) * 2005-01-28 2006-08-10 Hitachi Ltd プラント設備
JP2014163431A (ja) 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2020010232A (ja) 2018-07-10 2020-01-16 キヤノン株式会社 電子機器、その制御方法、およびそのプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2358527C3 (de) * 1973-11-20 1980-04-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Radiales aktives magnetisches Lager
EP2237398A1 (en) * 2009-04-03 2010-10-06 Siemens Aktiengesellschaft Method and arrangement to adjust an air-gap
EP2697893B1 (en) * 2011-04-12 2016-01-13 Boulder Wind Power, Inc. Air gap control systems and methods
DE102011078475B4 (de) * 2011-06-30 2013-05-23 Hanning Elektro-Werke Gmbh & Co. Kg Dynamische Ausgleichsvorrichtung eines Rotationskörpers
DE102012202842A1 (de) * 2012-02-24 2013-08-29 Siemens Aktiengesellschaft Magnetische Lagerung mit Kraftkompensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534511A (ja) * 2000-05-22 2003-11-18 クルップ ポリシウス アクチェンゲゼルシャフト 回転管状体を傾斜可能に支持するためのローラー支持システム
JP2006211837A (ja) * 2005-01-28 2006-08-10 Hitachi Ltd プラント設備
JP2014163431A (ja) 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2020010232A (ja) 2018-07-10 2020-01-16 キヤノン株式会社 電子機器、その制御方法、およびそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075644A4

Also Published As

Publication number Publication date
FI4075644T3 (fi) 2024-01-18
EP4075644A1 (en) 2022-10-19
EP4075644B1 (en) 2023-12-27
EP4075644A4 (en) 2023-02-08
JP7388934B2 (ja) 2023-11-29
CN114982104A (zh) 2022-08-30
US20230041827A1 (en) 2023-02-09
JP2021118609A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP4225001B2 (ja) 電動機
CN100444503C (zh) 采用微调结构的无刷电动机
US5917263A (en) Switched reluctance motor
JP2002204541A (ja) 永久磁石型回転電動機
JP4849974B2 (ja) ブラシレスモータ
JP2008289283A (ja) 磁気軸受部を有する電動機
JP6278432B1 (ja) コアレスモータ
EP2006558A2 (en) Magnetic bearing device and machine tool with such a device
JP2001275326A (ja) モータ
JP4120347B2 (ja) 回転電機
WO2021149756A1 (ja) 磁気ギアード回転電機
JP2010183648A (ja) 永久磁石回転電機及びそれを用いた電動車両
JP2004166369A (ja) 回転電機
JP2003074661A (ja) 二つの回転体を利用した直線駆動装置
JP2008148516A (ja) 回転電機
WO2017221994A1 (ja) コアレスモータ
JP3255236B2 (ja) 2自由度アクチュエータ
JP2011182569A (ja) インナーロータ型モータ
JPH0314936Y2 (ja)
KR100531807B1 (ko) 스위치드 릴럭턴스 모터의 소음저감구조
JP5821277B2 (ja) アクチュエータ
JP2002199655A (ja) 高速電動機
JP2005176588A (ja) モータ内蔵ローラ
JPH034153Y2 (ja)
JP3159335B2 (ja) 渦巻き形可変空隙モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021744350

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE