WO2021135309A1 - 一种岩石润湿性评价方法 - Google Patents

一种岩石润湿性评价方法 Download PDF

Info

Publication number
WO2021135309A1
WO2021135309A1 PCT/CN2020/111477 CN2020111477W WO2021135309A1 WO 2021135309 A1 WO2021135309 A1 WO 2021135309A1 CN 2020111477 W CN2020111477 W CN 2020111477W WO 2021135309 A1 WO2021135309 A1 WO 2021135309A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
humidity
tested
rock
wettability
Prior art date
Application number
PCT/CN2020/111477
Other languages
English (en)
French (fr)
Inventor
李沛
张金川
牛嘉亮
王锡伟
刘飏
唐玄
陈世敬
魏晓亮
Original Assignee
中国地质大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质大学(北京) filed Critical 中国地质大学(北京)
Publication of WO2021135309A1 publication Critical patent/WO2021135309A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • G01N5/025Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content for determining moisture content

Definitions

  • This application relates to the technical field of rock reservoir evaluation, in particular to a method for evaluating rock wettability.
  • the wettability of shale determines the microscopic distribution characteristics of fluid in the pores and fractures of the reservoir, and also affects the fluid seepage characteristics inside the pores and the adsorption capacity of methane gas on the surface of the pores. In addition, wettability will also affect the capillary force of the reservoir, thereby controlling the distribution, accumulation and flow of oil and gas in the reservoir, and affecting the ultimate oil and gas recovery rate.
  • shale reservoirs have the characteristics of micro-nano pores, low porosity and ultra-low permeability. The wettability not only controls the distribution of gas and water in the pores, but also further affects the adsorption and desorption of methane gas, and also has a controlling effect on the formation of shale gas. .
  • Quantitative methods include contact angle method and spontaneous
  • qualitative methods such as imbibition method, drainage method (Amott method) and USBM (United States Bureau of Mines) method, including microscopic inspection, flotation method, glass sliding method, relative permeability curve method, permeability and Saturation relationship curve, capillary pressure curve, capillary measurement method or NMR nuclear magnetic resonance method, etc.
  • the measurement method is complicated, the test environment is harsh, the reproducibility is poor, the limitation is high, and the reliability of the data is revealed.
  • this application provides a method for evaluating rock wettability.
  • a method for evaluating the wettability of rocks comprising the following steps:
  • Step a Dry the rock sample to obtain the sample to be tested, and record its mass m;
  • Step b Prepare a saturated salt solution and place it at the bottom of a sealed container
  • Step c Disperse the sample to be tested evenly on a sample container with a mass of m b , record the total mass m 1 of the sample container and the sample to be tested, and then place the sample container in the saturated salt solution Above
  • Step d Vacuuming the sealed container, when the sealed container reaches a predetermined humidity, start to observe and record the total mass of the sample container and the sample to be tested regularly, until the difference between the total mass of the two adjacent times When ⁇ 2% of the mass of the sample to be tested, return the pressure in the sealed container to atmospheric pressure, and record m f of the total mass of the sample container and the sample to be tested;
  • Step e Collect evaluation parameters for constant humidity time h, humidity and water content ⁇ , and wetting rate ⁇ , where the constant humidity time h is the time difference between recording m 1 and m f ; the humidity and water content ⁇ adopts the formula Obtain; the wetting rate ⁇ : the wetting curve formed by the mass and time of the sample to be tested, the slope of the wetting curve is obtained by mathematical fitting, which is the wetting rate.
  • the rocks mentioned in this application include but are not limited to shale, tight sandstone, conventional sandstone or carbonate rock, etc.
  • a saturated saline solution is placed in a sealed container.
  • a humidity balance will be reached within a certain range of the solution and the air interface above it.
  • the humidity range continues to expand until a stable and uniform humidity field is formed inside the entire sealed container. Therefore, when the rock sample to be tested is placed in the sealed container, the rock sample will be gradually wetted by water molecules in the air, and finally achieve the internal harmony of the rock. The humidity balance in the internal space of the sealed container. During this process, the rock is completely wetted.
  • the time it takes to reach the wetting balance, the rate of wetting, and the slope of the wetting curve can all be used to evaluate the wettability of different types of rocks. Because the wetting experiment belongs to the wetting scale of gas molecules, it can penetrate deep into the original microscopic pores and cracks of the rock, so it can accurately reflect the mixed wettability of the rock.
  • This application performs a balance humidity recovery test on a rock sample, and quantitatively evaluates the wettability of the rock in the three dimensions of accurately obtained measurement values, constant weight duration, constant humidity rate, and water content, with high test accuracy and high reliability of the results; and There is no requirement on the specifications of the sample to be tested, and the preparation method is low. It is suitable for various types of rocks. At the same time, the evaluation method is not interfered by external factors and has high reproducibility.
  • the drying conditions are: the temperature is 100°C-120°C, and the time is 8-24h.
  • the saturated salt solution is a saturated solution of potassium sulfate, a saturated solution of magnesium chloride, or a saturated solution of sodium chloride, but is not limited to these three salt solutions.
  • step c water is sprinkled on the sample to be tested to form a wet sample, and the total mass of the sample container and the wet sample is recorded, and then in step d, regular observation and recording of the sample container and the wet sample are started.
  • the total mass, and the moisture content of the wet sample is 10-20%.
  • Spraying a certain amount of deionized water or distilled water on the sample to be tested can ensure that the wetted luster of the sample surface is darkened or the particles start to disperse and no longer agglomerate, which is beneficial to the balance humidity recovery test and shortens the test time.
  • the vacuum pressure of the vacuum treatment to the sealed container is 0.03-0.05 atm.
  • the vacuum treatment creates a negative pressure inside the sealed container, which can promote the humidity balance of the air above the saturated saline solution and shorten the humidity balance time of the sample to be tested.
  • gas impurities and excess water vapor can be removed to avoid impurities
  • the gas is adsorbed by the sample to be tested.
  • the preferred vacuum pressure is to ensure that the sealed container is not easily opened by external force, and to ensure the smooth progress of the equilibrium humidity recovery test.
  • the predetermined humidity is the humidity of the saturated salt water to form a constant humidity solution under the condition of constant temperature and pressure in the sealed container.
  • the saturated saline solution forms a constant humidity solution at a specific pressure and temperature, and maintains the three-phase thermodynamic equilibrium. Therefore, at a specific pressure and temperature, the humidity of the saturated saline solution is fixed. For example, under the conditions of a temperature of 30°C and a pressure of 0.04 atm, the relative humidity of a saturated solution of potassium sulfate is 98%, the relative humidity of a saturated solution of magnesium chloride is 33%, and the relative humidity of a saturated solution of sodium chloride is 75%.
  • the time interval for observing and recording the total mass of the sample container and the sample to be tested is 22-25h.
  • a saturated saline solution is placed in a sealed container.
  • a humidity balance will be reached within a certain range of the solution and the air interface above it.
  • the humidity range continues to expand until a stable and uniform humidity field is formed inside the entire sealed container. Therefore, when the rock sample to be tested is placed in the sealed container, the rock sample will be gradually wetted by water molecules in the air, and finally achieve the internal harmony of the rock. The humidity balance in the internal space of the sealed container. During this process, the rock is completely wetted.
  • the time it takes to reach the wetting balance, the rate of wetting, and the slope of the wetting curve can all be used to evaluate the wettability of different types of rocks. Because the wetting experiment belongs to the wetting scale of gas molecules, it can penetrate deep into the original microscopic pores and cracks of the rock, so it can accurately reflect the mixed wettability of the rock.
  • This application performs a balance humidity recovery test on a rock sample, and quantitatively evaluates the wettability of the rock in the three dimensions of accurately obtained measurement values, constant weight duration, constant humidity rate, and water content, with high test accuracy and high reliability of the results; and There is no requirement on the specifications of the sample to be tested, and the preparation method is low. It is suitable for various types of rocks. At the same time, the evaluation method is not interfered by external factors and has high reproducibility.
  • Figure 1 is a schematic diagram of a device used in the evaluation method provided by an embodiment of the present application.
  • Fig. 2 is a humidity change curve of a shale sample provided by an embodiment of the present application
  • Fig. 3 is an intersection diagram of the wetting rate and the wetting angle provided by an embodiment of the present application
  • Fig. 4 is a curve of the mass change rate and time of the shale sample provided by the embodiment of the present application.
  • FIG. 5 is an intersection diagram of h and contact angle during constant humidity use according to an embodiment of the present application.
  • Fig. 6 is an intersection diagram of moisture content and contact angle provided by an embodiment of the present application.
  • Vacuum dryer 1. Gas drying tower; 3. Concentrated sulfuric acid bottle; 4. Anti-suck bottle; 5. Vacuum pump; 6. Thermohygrometer; 7. Sample to be tested; 8. Sample container; 9. , Saturated saline solution.
  • the device used in the evaluation method includes a vacuum dryer 1, a gas drying tower 2, a concentrated sulfuric acid bottle 3, an anti-sucking bottle 4, and a vacuum pump 5.
  • the air outlet of the vacuum dryer 1 is connected to the gas drying tower 2.
  • the gas drying tower 2 is in communication with a concentrated sulfuric acid bottle 3, the concentrated sulfuric acid bottle 3 is in communication with the anti-suckback bottle 4, and the other end of the anti-suckback bottle 4 is in communication with the vacuum pump 5.
  • Anhydrous calcium sulfate is placed inside the gas drying tower 2.
  • an M-1 shale powder sample is taken as an example to provide a shale wettability evaluation method, which includes the following steps:
  • Step a Dry the shale sample M-1 at 100°C for 24 hours to obtain the sample 7 to be tested, and record its mass m;
  • Step b Prepare a saturated saline solution 9 and place it at the bottom of the vacuum dryer 1 as shown in FIG. 1;
  • Step c Disperse the test sample 7 (M-1) evenly on a sample container 8 with a mass of m b , and spray distilled water on the test sample 7 to form a wet sample, and the moisture content of the wet sample is 16% , Record the total mass m 1 of the sample container 8 and the wet sample, then place the sample container 8 above the saturated saline solution 9, and put a thermometer and hygrometer 6 in the vacuum dryer 1, and then use Vaseline sealed vacuum dryer 1;
  • Step d Turn on the vacuum pump 5, and the moist air drawn from the vacuum dryer 1 first passes through the gas drying tower 2 containing desiccant to remove CO 2 and part of water vapor, and then passes through the concentrated sulfuric acid bottle 3 to remove water vapor. Finally, the anti-sucking bottle 4 is used to prevent the back sucking of the concentrated sulfuric acid bottle 3. After removing the water vapor and acid gas, it is finally discharged to the atmosphere by the vacuum pump 5.
  • the discharged gas is mainly N 2 and O 2 ;
  • Step e Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step d Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step f Collect evaluation parameters for constant humidity time h, humidity and water content ⁇ , and wetting rate ⁇ , where the constant humidity time h is the time difference between recording m 1 and m f ; the humidity and water content ⁇ adopts the formula Obtain; the wetting rate ⁇ : the wetting curve formed by the mass and time of the sample 7 to be tested, and the slope of the wetting curve is obtained by mathematical fitting, which is the wetting rate.
  • the temperature of the environment in which the above-mentioned device is located is maintained at 30°C.
  • the humidity recovery test was carried out in potassium sulfate saturated solution, magnesium chloride saturated solution and sodium chloride saturated solution.
  • the predetermined relative humidity of potassium sulfate saturated solution was 98%, and magnesium chloride
  • the predetermined relative humidity of the saturated solution is 33%, and the predetermined relative humidity of the saturated sodium chloride solution is 75%.
  • an M-5 shale powder sample is taken as an example to provide a shale wettability evaluation method.
  • the equipment used is the same as that of the embodiment 1 and includes the following steps:
  • Step a Dry the shale sample M-5 at 120°C for 8 hours to obtain the sample 7 to be tested, and record its mass m;
  • Step b Prepare a saturated saline solution 9 and place it at the bottom of the vacuum dryer 1 as shown in FIG. 1;
  • Step c Disperse the test sample 7 (M-5) evenly on a sample container 8 with a mass of m b , and spray distilled water on the test sample 7 to form a wet sample, and the moisture content of the wet sample is 20% , Record the total mass m 1 of the sample container 8 and the wet sample, then place the sample container 8 above the saturated saline solution 9, and put a thermometer and hygrometer 6 in the vacuum dryer 1, and then use Vaseline sealed vacuum dryer 1;
  • Step d Turn on the vacuum pump 5, and the moist air drawn from the vacuum dryer 1 first passes through the gas drying tower 2 containing desiccant to remove CO 2 and part of water vapor, and then passes through the concentrated sulfuric acid bottle 3 to remove water vapor. Finally, the anti-sucking bottle 4 is used to prevent the back sucking of the concentrated sulfuric acid bottle 3. After removing the water vapor and acid gas, it is finally discharged to the atmosphere by the vacuum pump 5.
  • the discharged gas is mainly N 2 and O 2 ;
  • Step e Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step d Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step f Collect evaluation parameters for constant humidity time h, humidity and water content ⁇ , and wetting rate ⁇ , where the constant humidity time h is the time difference between recording m 1 and m f ; the humidity and water content ⁇ adopts the formula Obtain; the wetting rate ⁇ : the wetting curve formed by the mass and time of the sample 7 to be tested, and the slope of the wetting curve is obtained by mathematical fitting, which is the wetting rate.
  • the temperature of the environment in which the above-mentioned device is located is maintained at 30°C.
  • the humidity recovery test was carried out in potassium sulfate saturated solution, magnesium chloride saturated solution and sodium chloride saturated solution.
  • the predetermined relative humidity of potassium sulfate saturated solution was 98%, and magnesium chloride
  • the predetermined relative humidity of the saturated solution is 33%, and the predetermined relative humidity of the saturated sodium chloride solution is 75%.
  • an M-7 shale powder sample is taken as an example to provide a shale wettability evaluation method.
  • the device used is the same as that of embodiment 1, including the following steps:
  • Step a Dry the shale sample M-7 at 110°C for 12 hours to obtain the sample 7 to be tested, and record its mass m;
  • Step b Prepare a saturated saline solution 9 and place it at the bottom of the vacuum dryer 1 as shown in FIG. 1;
  • Step c Disperse the sample 7 (M-7) to be tested evenly on a sample container 8 with a mass of m b , and spray distilled water on the sample 7 to be tested to form a wet sample, and the moisture content of the wet sample is 10% , Record the total mass m 1 of the sample container 8 and the wet sample, then place the sample container 8 above the saturated saline solution 9, and put a thermometer and hygrometer 6 in the vacuum dryer 1, and then use Vaseline sealed vacuum dryer 1;
  • Step d Turn on the vacuum pump 5, and the moist air drawn from the vacuum dryer 1 first passes through the gas drying tower 2 containing desiccant to remove CO 2 and part of water vapor, and then passes through the concentrated sulfuric acid bottle 3 to remove water vapor. Finally, the anti-suck bottle 4 is used to prevent the concentrated sulfuric acid bottle 3 from sucking. After removing the water vapor and acid gas, it is finally discharged to the atmosphere by the vacuum pump 5.
  • the discharged gas is mainly N 2 and O 2 ;
  • the vacuum pump 5 is turned on, when the vacuum pressure in the vacuum dryer 1 is 0.05atm (the glass cover of the vacuum dryer 1 cannot be pushed with both hands at this time), turn off the vacuum pump 5 and close the air outlet valve of the vacuum dryer 1 at the same time;
  • the thermometer and hygrometer 6 in the vacuum dryer 1 when the displayed humidity reaches the predetermined humidity, start timing, turn on the vacuum dryer 1 after 24 hours, and record the total mass m 2 of the sample container 8 and the sample 7 to be tested , And then put the sample container 8 back in the vacuum dryer 1;
  • Step e Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step d Perform a loop operation according to step d, and record the total mass m n of the sample container 8 and the sample 7 to be tested respectively.
  • Step f Collect evaluation parameters for constant humidity time h, humidity and water content ⁇ , and wetting rate ⁇ , where the constant humidity time h is the time difference between recording m 1 and m f ; the humidity and water content ⁇ adopts the formula Obtain; the wetting rate ⁇ : the wetting curve formed by the mass and time of the sample 7 to be tested, and the slope of the wetting curve is obtained by mathematical fitting, which is the wetting rate.
  • the temperature of the environment in which the above-mentioned device is located is maintained at 30°C.
  • the humidity recovery test was carried out in potassium sulfate saturated solution, magnesium chloride saturated solution and sodium chloride saturated solution.
  • the predetermined relative humidity of potassium sulfate saturated solution was 98%, and magnesium chloride
  • the predetermined relative humidity of the saturated solution is 33%, and the predetermined relative humidity of the saturated sodium chloride solution is 75%.
  • argon ion polishing was used to clean and polish the surfaces of the three parallel block samples of M-1, M-5 and M-7 shale, and then the static contact angle method was used to continuously test the contact angle (more Calculate the average of the second measurements), usually the contact angle is less than 90° for wetting, and greater than 90° is for non-wetting.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种岩石润湿性评价方法,将岩石样品置于放有饱和盐水溶液(9)的封闭容器内,饱和盐水溶液(9)在封闭容器内形成恒定的湿度氛围,在一定时间内岩石样品不断吸取空气中水分,直至达到恒重,最终可通过获取恒湿变化曲线,计算恒重时长、恒湿速率以及含水率来定量评价岩石润湿性。该评价方法对岩石样品做平衡湿度恢复试验,以准确获得的测量值恒重时长、恒湿速率以及含水率三个维度对岩石润湿性进行定量评价,测试准确度和结果的可靠性高;而且对待测样品的规格无要求,制备方法要求低,适用于各种类型的岩石,同时该评价方法不受外界因素干扰,重现性高。

Description

一种岩石润湿性评价方法
本申请要求于2019年12月31日提交的中国专利申请No.CN201911409224.7的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及岩石储层评价技术领域,尤其涉及一种岩石润湿性评价方法。
背景技术
岩石润湿性在常规砂岩和碳酸盐岩储层中研究的较为普遍,但是常规储层具有较高的孔隙度和渗透率,而页岩、致密砂岩等非常规岩石储层通常具有特低孔渗,岩石组分和孔隙结构都具有强非均质性特点,对其润湿性的研究更具挑战性。
页岩润湿性决定了流体在储层孔隙及裂缝中的微观分布特征,还会影响孔隙内部流体渗流特征及孔隙表面对甲烷气体的吸附能力。此外,润湿性还会影响储层毛细管力,从而控制储层中油气分布、储集和流动,并影响油气最终采收率。同时页岩储层具有微纳米孔隙发育、低孔超低渗特点,润湿性不仅控制孔隙中气水分布,还会进一步影响甲烷气体的吸附解吸方式,对页岩气成藏也具有控制作用。
目前在非常规储层评价领域,特别是煤层气和页岩气领域,用于评价页岩润湿性的方法主要分为定量法和定性法两大类,其中定量法包括接触角法、自发渗吸法、排驱法(Amott法)和USBM(美国矿务局)法等,定性的方法较多,包括显微镜监检测、浮选法、玻璃滑动法、相对渗透率曲线法、渗透率和饱和度关系曲线、毛管压力曲线、毛细测量法或NMR核磁共振法等。这些方法的测量方式复杂,对样品规格要求严格,无法适用于不同类型样品,而且测试环境要求严苛,受外界因素干扰过多,重现性差,无法获得稳定确定的测量值;同时单一的测试方法局限性高,无法保证测试的准确度,测试结果的可靠性较低。
技术问题
测量方式复杂、测试环境严苛、重现性差、局限性高、数据的可靠***底。
技术解决方案
针对现有润湿性测量方法存在的测量方式复杂、测试环境严苛、重现性差、局限性高、数据的可靠***底的问题,本申请提供一种岩石润湿性评价方法。
为达到上述发明目的,本申请实施例采用了如下的技术方案:
一种岩石润湿性评价方法,所述评价方法包括以下步骤:
步骤a、将岩石样品干燥,得到待测样品,记录其质量m;
步骤b、配制饱和盐溶液并置于密封容器的底部;
步骤c、将所述待测样品均匀分散在质量为m b的盛样器皿上,记录盛样器皿与待测样品的总质量m 1,然后将所述盛样器皿置于所述饱和盐溶液的上方;
步骤d、对所述密封容器进行抽真空处理,当所述密封容器内达到预定湿度时,开始定期观测并记录盛样器皿与待测样品的总质量,直至相邻两次总质量的差值≤所述待测样品质量的2%时,将所述密封容器内的压力恢复至大气压,并记录盛样器皿与待测样品的总质量的m f
步骤e、采集评价参数恒湿用时h、湿度含水率δ和润湿速率ε,所述恒湿用时h为记录m 1与m f的时间差;所述湿度含水率δ采用公式
Figure dest_path_image001
得到;所述润湿速率ε:所述待测样品的质量与时间形成的润湿曲线,采用数学拟合获得所述润湿曲线的斜率,即为润湿速率。
本申请所说的岩石,包括但不限于页岩、致密砂岩、常规砂岩或碳酸盐岩等。
相对于现有技术,本申请提供的岩石润湿性评价方法,具有以下优势:
本申请在密封容器内放置饱和盐水溶液,在恒温恒压的条件下,随着饱和盐水溶液的蒸发和凝结,会在溶液及其上方空气界面一定范围内达到一种湿度平衡,随着时间推移,湿度范围不断扩大直至整个密封容器内部形成稳定均匀的湿度场,因此,将待测的岩石样品置于该密封容器内,岩石样品会逐渐被空气中水分子所润湿,最终实现岩石内部和密封容器内部空间的湿度平衡,在此过程中,岩石被彻底润湿,其达到润湿平衡的耗时、润湿的速率以及润湿曲线的斜率都可以用来评价不同类型岩石的润湿性,由于该润湿实验属于气体分子润湿尺度,可深入岩石原始微观孔裂隙,因此可以准确反映岩石的混合润湿性。
本申请对岩石样品做平衡湿度恢复试验,以准确获得的测量值恒重时长、恒湿速率以及含水率三个维度对岩石润湿性进行定量评价,测试准确度和结果的可靠性高;而且对待测样品的规格无要求,制备方法要求低,适用于各种类型的岩石,同时该评价方法不受外界因素干扰,重现性高。
优选地,步骤a中,所述干燥的条件为:温度为100℃-120℃,时间为8-24h。
优选地,步骤b中,所述饱和盐溶液为硫酸钾饱和溶液、氯化镁饱和溶液或氯化钠饱和溶液,但不限于这三种盐溶液。
优选地,步骤c中,在所述待测样品上洒水形成湿样,并记录盛样器皿与湿样的总质量,然后在步骤d中开始定期观测并记录盛样器皿与所述湿样的总质量,且所述湿样的含水率为10-20%。
在待测样品上喷洒一定量的去离子水或蒸馏水,可以保证待测样品表面的润湿光泽变暗或者颗粒开始分散,不再粘聚,有利于平衡湿度恢复试验的进行,缩短试验时间。
优选地,步骤d中,所述抽真空处理至所述密封容器内的真空压力为0.03-0.05atm。
抽真空处理使得密封容器内部形成负压,可促使饱和盐水溶液上方的空气建立湿度平衡,缩短待测样品湿度平衡时间,同时在真空处理过程中,还可以除去气体杂质和多余水蒸气,避免杂质气体被待测样品吸附。
优选的真空压力是保证密封容器的不易被外力打开,保证平衡湿度恢复试验的顺利进行。
优选地,步骤d中,所述预定湿度为所述饱和盐水在所述密封容器内恒温恒压条件下形成恒湿溶液所具有的湿度。
饱和盐水溶液在特定的压力和温度下,形成恒湿溶液,保持三相热力学平衡,因此,在特定的压力和温度下,饱和盐水溶液的湿度是固定的。如温度为30℃、压力为0.04atm的条件下,硫酸钾饱和溶液的相对湿度为98%,氯化镁饱和溶液的相对湿度为33%,氯化钠饱和溶液的相对湿度为75%。
优选地,步骤d中,所述观测并记录盛样器皿与待测样品的总质量的时间间隔为22-25h。
有益效果
本申请在密封容器内放置饱和盐水溶液,在恒温恒压的条件下,随着饱和盐水溶液的蒸发和凝结,会在溶液及其上方空气界面一定范围内达到一种湿度平衡,随着时间推移,湿度范围不断扩大直至整个密封容器内部形成稳定均匀的湿度场,因此,将待测的岩石样品置于该密封容器内,岩石样品会逐渐被空气中水分子所润湿,最终实现岩石内部和密封容器内部空间的湿度平衡,在此过程中,岩石被彻底润湿,其达到润湿平衡的耗时、润湿的速率以及润湿曲线的斜率都可以用来评价不同类型岩石的润湿性,由于该润湿实验属于气体分子润湿尺度,可深入岩石原始微观孔裂隙,因此可以准确反映岩石的混合润湿性。
本申请对岩石样品做平衡湿度恢复试验,以准确获得的测量值恒重时长、恒湿速率以及含水率三个维度对岩石润湿性进行定量评价,测试准确度和结果的可靠性高;而且对待测样品的规格无要求,制备方法要求低,适用于各种类型的岩石,同时该评价方法不受外界因素干扰,重现性高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的评价方法采用的装置示意图;
图2是本申请实施例提供的页岩样品的湿度变化曲线;
图3是本申请实施例提供的润湿速率与润湿角的交汇图;
图4是本申请实施例提供的页岩样品的质量变化率与时间的曲线;
图5是本申请实施例提供的恒湿用时h与接触角的交会图;
图6是本申请实施例提供的含水率与接触角的交会图。
其中,1、真空干燥器;2、气体干燥塔;3、浓硫酸瓶;4、防倒吸瓶;5、真空泵;6、温湿度计;7、待测样品;8、盛样器皿;9、饱和盐水溶液。
本申请的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例1
参见图1,所述评价方法采用的装置包括真空干燥器1、气体干燥塔2、浓硫酸瓶3、防倒吸瓶4和真空泵5,真空干燥器1的出气口与气体干燥塔2连通,所述气体干燥塔2与浓硫酸瓶3连通,所述浓硫酸瓶3与所述防倒吸瓶4连通,且防倒吸瓶4的另一端与所述真空泵5连通。所述气体干燥塔2内部放置有无水硫酸钙。
本实施例以M-1页岩粉末样品为例,提供一种页岩润湿性评价方法,包括以下步骤:
步骤a、将页岩样品M-1在100℃的条件下干燥24h,得到待测样品7,记录其质量m;
步骤b、配制饱和盐水溶液9,置于如图1所示的真空干燥器1的底部;
步骤c、将所述待测样品7(M-1)均匀分散在质量为m b的盛样器皿8上,并在待测样品7上喷洒蒸馏水形成湿样,湿样的含水率为16%,记录盛样器皿8与湿样的总质量m 1,然后将所述盛样器皿8置于所述饱和盐水溶液9的上方,同时在真空干燥器1中放入温湿度计6,然后用凡士林密封好真空干燥器1;
步骤d、打开真空泵5,从真空干燥器1中汲取的湿空气首先通过含有干燥剂的气体干燥塔2,用于除去CO 2和部分水蒸气,再次通过浓硫酸瓶3用于除去水蒸气,最后通过防倒吸瓶4,用于防止浓硫酸瓶3的倒吸,再除去水蒸气和酸性气体后,最后再经真空泵5排到大气中,此时排放的气体主要为N 2和O 2;真空泵5打开后,当真空干燥器1内的真空压力为0.04atm时(此时用双手无法推开真空干燥器1的玻璃盖),关闭真空泵5,同时关闭真空干燥器1的出气阀门;然后观察真空干燥器1内的温湿度计6,当其显示的湿度达到预定湿度时,开始计时,24h后打开真空干燥器1,并记录盛样器皿8与待测样品7的总质量m 2,然后将所述盛样器皿8重新置于所述真空干燥器1;
步骤e、按照步骤d进行循环操作,分别记录盛样器皿8与待测样品7的总质量m n,当相邻两次总质量的差值≤所述待测样品7质量的2%时,将所述真空干燥器1内的压力恢复至大气压,并记录盛样器皿8与待测样品7的总质量的m f
步骤f、采集评价参数恒湿用时h、湿度含水率δ和润湿速率ε,所述恒湿用时h为记录m 1与m f的时间差;所述湿度含水率δ采用公式
Figure dest_path_image002
得到;所述润湿速率ε:所述待测样品7的质量与时间形成的润湿曲线,采用数学拟合获得所述润湿曲线的斜率,即为润湿速率。
上述装置所处的环境的温度保持在30℃。
按照实施例1的方法,分别在硫酸钾饱和溶液、氯化镁饱和溶液和氯化钠饱和溶液中进行湿度恢复试验,在室温30℃的条件下,硫酸钾饱和溶液的预定相对湿度为98%,氯化镁饱和溶液的预定相对湿度为33%,氯化钠饱和溶液的预定相对湿度为75%。
实施例2
本实施例以M-5页岩粉末样品为例,提供一种页岩润湿性评价方法,其采用的装置与实施例1的相同包括以下步骤:
步骤a、将页岩样品M-5在120℃的条件下干燥8h,得到待测样品7,记录其质量m;
步骤b、配制饱和盐水溶液9,置于如图1所示的真空干燥器1的底部;
步骤c、将所述待测样品7(M-5)均匀分散在质量为m b的盛样器皿8上,并在待测样品7上喷洒蒸馏水形成湿样,湿样的含水率为20%,记录盛样器皿8与湿样的总质量m 1,然后将所述盛样器皿8置于所述饱和盐水溶液9的上方,同时在真空干燥器1中放入温湿度计6,然后用凡士林密封好真空干燥器1;
步骤d、打开真空泵5,从真空干燥器1中汲取的湿空气首先通过含有干燥剂的气体干燥塔2,用于除去CO 2和部分水蒸气,再次通过浓硫酸瓶3用于除去水蒸气,最后通过防倒吸瓶4,用于防止浓硫酸瓶3的倒吸,再除去水蒸气和酸性气体后,最后再经真空泵5排到大气中,此时排放的气体主要为N 2和O 2;真空泵5打开后,当真空干燥器1内的真空压力为0.03atm时(此时用双手无法推开真空干燥器1的玻璃盖),关闭真空泵5,同时关闭真空干燥器1的出气阀门;然后观察真空干燥器1内的温湿度计6,当其显示的湿度达到预定湿度%时,开始计时,24h后打开真空干燥器1,并记录盛样器皿8与待测样品7的总质量m 2,然后将所述盛样器皿8重新置于所述真空干燥器1;
步骤e、按照步骤d进行循环操作,分别记录盛样器皿8与待测样品7的总质量m n,当相邻两次总质量的差值≤所述待测样品7质量的2%时,将所述真空干燥器1内的压力恢复至大气压,并记录盛样器皿8与待测样品7的总质量的m f
步骤f、采集评价参数恒湿用时h、湿度含水率δ和润湿速率ε,所述恒湿用时h为记录m 1与m f的时间差;所述湿度含水率δ采用公式
Figure dest_path_image003
得到;所述润湿速率ε:所述待测样品7的质量与时间形成的润湿曲线,采用数学拟合获得所述润湿曲线的斜率,即为润湿速率。
上述装置所处的环境的温度保持在30℃。
按照实施例2的方法,分别在硫酸钾饱和溶液、氯化镁饱和溶液和氯化钠饱和溶液中进行湿度恢复试验,在室温30℃的条件下,硫酸钾饱和溶液的预定相对湿度为98%,氯化镁饱和溶液的预定相对湿度为33%,氯化钠饱和溶液的预定相对湿度为75%。
实施例3
本实施例以M-7页岩粉末样品为例,提供一种页岩润湿性评价方法,其采用的装置与实施例1的相同包括以下步骤:
步骤a、将页岩样品M-7在110℃的条件下干燥12h,得到待测样品7,记录其质量m;
步骤b、配制饱和盐水溶液9,置于如图1所示的真空干燥器1的底部;
步骤c、将所述待测样品7(M-7)均匀分散在质量为m b的盛样器皿8上,并在待测样品7上喷洒蒸馏水形成湿样,湿样的含水率为10%,记录盛样器皿8与湿样的总质量m 1,然后将所述盛样器皿8置于所述饱和盐水溶液9的上方,同时在真空干燥器1中放入温湿度计6,然后用凡士林密封好真空干燥器1;
步骤d、打开真空泵5,从真空干燥器1中汲取的湿空气首先通过含有干燥剂的气体干燥塔2,用于除去CO 2和部分水蒸气,再次通过浓硫酸瓶3用于除去水蒸气,最后通过防倒吸瓶4,用于防止浓硫酸瓶3的倒吸,再除去水蒸气和酸性气体后,最后再经真空泵5排到大气中,此时排放的气体主要为N 2和O 2;真空泵5打开后,当真空干燥器1内的真空压力为0.05atm时(此时用双手无法推开真空干燥器1的玻璃盖),关闭真空泵5,同时关闭真空干燥器1的出气阀门;然后观察真空干燥器1内的温湿度计6,当其显示的湿度达到预定湿度时,开始计时,24h后打开真空干燥器1,并记录盛样器皿8与待测样品7的总质量m 2,然后将所述盛样器皿8重新置于所述真空干燥器1;
步骤e、按照步骤d进行循环操作,分别记录盛样器皿8与待测样品7的总质量m n,当相邻两次总质量的差值≤所述待测样品7质量的2%时,将所述真空干燥器1内的压力恢复至大气压,并记录盛样器皿8与待测样品7的总质量的m f
步骤f、采集评价参数恒湿用时h、湿度含水率δ和润湿速率ε,所述恒湿用时h为记录m 1与m f的时间差;所述湿度含水率δ采用公式
Figure dest_path_image004
得到;所述润湿速率ε:所述待测样品7的质量与时间形成的润湿曲线,采用数学拟合获得所述润湿曲线的斜率,即为润湿速率。
上述装置所处的环境的温度保持在30℃。
按照实施例3的方法,分别在硫酸钾饱和溶液、氯化镁饱和溶液和氯化钠饱和溶液中进行湿度恢复试验,在室温30℃的条件下,硫酸钾饱和溶液的预定相对湿度为98%,氯化镁饱和溶液的预定相对湿度为33%,氯化钠饱和溶液的预定相对湿度为75%。
为了验证本实验结果,同时利用氩离子抛光对M-1、M-5和M-7三个页岩的平行块状样品表面进行清洁抛光,然后分别采用静态接触角法连续测试接触角(多次测求均值),通常接触角<90°为润湿,大于90°为不润湿。
将实施例1-3记录的用于评价润湿性的参数恒湿用时h、湿度含水率δ和润湿速率ε以及测试的接触角数据列表如下:
表1 润湿评价参数
Figure dest_path_image005
通过记录实施例1-3过程中的数据分别绘制不同页岩样品的湿度变化曲线,如图2所示,并对其斜率进行拟合,获得其润湿速率ε,并将绘制润湿速率与润湿角的交汇图,如图3所示;绘制不同页岩样品的质量变化率与时间的曲线,如图4所示,以及恒湿用时h与接触角的交会图,如图5所示;同时绘制含水率与接触角的交会图,如图6所示。
结合图2、图3以及表1中可以看出,斜率大小的绝对值与接触角呈负相关,即斜率越大,接触角越小,其润湿性越好,反映了页岩粉末在初期的润湿效果,润湿性好的样品初期更易快速润湿,质量变化速率快,同时也表明本实验结果与接触角测量结果的一致性。
结合图4、图5以及表1可以看出,页岩样品基本在4天内就达到了湿度平衡(质量变化小于2%),不同样品的恒湿时长不一样,一定程度可反映其润湿性好坏,页岩的润湿性越好,吸湿时间越长,达到恒湿的用时越长,因此润湿性由强到弱大概为:M-7>M-5>M-1,与之相对应的接触角验证实验结果相一致。
通常润湿性强的样品最终含水率较高,结合图6及表1可以看出,含水率与接触角同样为负相关关系,即含水率越高接触角越小,则润湿性越好,同样与接触角结果具有一致性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (7)

  1. 一种岩石润湿性评价方法,其特征在于:所述评价方法包括以下步骤:
    步骤a、将岩石样品干燥,得到待测样品,记录其质量m;
    步骤b、配制饱和盐溶液并置于密封容器中;
    步骤c、将所述待测样品均匀分散在质量为m b的盛样器皿上,并记录盛样器皿与待测样品的总质量m 1,然后将所述盛样器皿置于所述饱和盐溶液的上方;
    步骤d、对所述密封容器进行抽真空处理,当所述密封容器内达到预定湿度时,开始定期观测并记录盛样器皿与待测样品的总质量,直至相邻两次总质量的差值≤所述待测样品质量的2%时,将所述密封容器内的压力恢复至大气压,并记录盛样器皿与待测样品的总质量的m f
    步骤e、采集评价参数恒湿用时h、湿度含水率δ和润湿速率ε,所述恒湿用时h为记录m 1与m f的时间差;所述湿度含水率δ采用公式
    Figure dest_path_image001
    得到;所述润湿速率ε:所述待测样品的质量与时间形成的润湿曲线,采用数学拟合获得所述润湿曲线的斜率,即为润湿速率。
  2. 如权利要求1所述的岩石润湿性评价方法,其特征在于:步骤a中,所述干燥的条件为:温度为100℃-120℃,时间为8-24h。
  3. 如权利要求1所述的岩石润湿性评价方法,其特征在于:步骤b中,所述饱和盐溶液为硫酸钾饱和溶液、氯化镁饱和溶液或氯化钠饱和溶液。
  4. 如权利要求1所述的岩石润湿性评价方法,其特征在于:步骤c中,在所述待测样品上洒水形成湿样,记录盛样器皿与湿样的总质量,并在步骤d中开始定期观测并记录盛样器皿与所述湿样的总质量,且所述湿样的含水率为10-20%。
  5. 如权利要求1所述的岩石润湿性评价方法,其特征在于:步骤d中,所述抽真空处理至所述密封容器内的真空压力为0.03-0.05atm。
  6. 如权利要求1所述的岩石润湿性评价方法,其特征在于:步骤d中,所述预定湿度为所述饱和盐水在所述密封容器内恒温恒压条件下形成恒湿溶液所具有的湿度。
  7. 如权利要求1所述的页岩润湿性评价方法,其特征在于:步骤d中,所述定期观测并记录盛样器皿与待测样品的总质量的时间间隔为22-25h。
PCT/CN2020/111477 2019-12-31 2020-08-26 一种岩石润湿性评价方法 WO2021135309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911409224.7A CN111175169A (zh) 2019-12-31 2019-12-31 一种岩石润湿性评价方法
CN201911409224.7 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135309A1 true WO2021135309A1 (zh) 2021-07-08

Family

ID=70649114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111477 WO2021135309A1 (zh) 2019-12-31 2020-08-26 一种岩石润湿性评价方法

Country Status (2)

Country Link
CN (1) CN111175169A (zh)
WO (1) WO2021135309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252363A (zh) * 2021-12-09 2022-03-29 上海兰钧新能源科技有限公司 极片浸润吸液量的测定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175169A (zh) * 2019-12-31 2020-05-19 中国地质大学(北京) 一种岩石润湿性评价方法
CN111896427A (zh) * 2020-07-31 2020-11-06 中国石油大学(华东) 一种基于环境扫描电镜检测致密岩石混合润湿性的方法
CN111982755A (zh) * 2020-08-28 2020-11-24 中国石油大学(华东) 一种定量测试粉末状岩石润湿性的方法
CN112378818B (zh) * 2020-10-29 2021-08-06 中国石油大学(北京) 一种页岩储层润湿性评价方法及装置
CN113063700A (zh) * 2021-03-12 2021-07-02 中国石油大学(华东) 可控湿度的气体扩散实验装置和方法
CN113090239B (zh) * 2021-04-23 2022-02-11 中国地质大学(北京) 基于共振技术模拟改善页岩裂缝的设备及模拟方法
CN113310839B (zh) * 2021-05-28 2022-04-08 中国科学院武汉岩土力学研究所 一种可控水头的软岩吸湿试验装置及试验方法
CN114112773A (zh) * 2021-10-15 2022-03-01 自然资源部天津海水淡化与综合利用研究所 一种反渗透膜分离层吸湿性能测试方法
CN117233065A (zh) * 2023-11-16 2023-12-15 中国地质大学(武汉) 一种页岩相对渗透率的确定方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544911A (zh) * 2003-11-27 2004-11-10 中国科学院武汉岩土力学研究所 土壤最大吸湿含水率的测量装置及其测量方法
CN101196460A (zh) * 2007-10-26 2008-06-11 辽河石油勘探局 一种岩石润湿性的评价方法
JP2012013646A (ja) * 2010-07-05 2012-01-19 Kajima Corp 吸放湿量測定装置及び吸放湿量測定方法
CN105823706A (zh) * 2015-01-05 2016-08-03 中国石油天然气股份有限公司 气润湿性测试方法
CN110595953A (zh) * 2019-09-04 2019-12-20 西南石油大学 一种页岩混合润湿性的实验测试装置及方法
CN111175169A (zh) * 2019-12-31 2020-05-19 中国地质大学(北京) 一种岩石润湿性评价方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234008B1 (en) * 1999-12-08 2001-05-22 Massachusetts Institute Of Technology Method and apparatus for the direct measurement of moisture characteristics of porous samples of soil, wood, concrete and the like
CN2658742Y (zh) * 2003-11-27 2004-11-24 中国科学院武汉岩土力学研究所 土壤最大吸湿含水率的测量装置
CN102393320A (zh) * 2011-09-21 2012-03-28 中国科学院武汉岩土力学研究所 一种不同含水率岩石试验样品的制备方法
CN203990662U (zh) * 2014-04-14 2014-12-10 中铁第四勘察设计院集团有限公司 标准吸湿含水率实验恒温恒湿箱
CN104914000B (zh) * 2015-06-15 2018-06-05 三峡大学 一种可控温湿度的自动实时称量***
CN105115793B (zh) * 2015-06-26 2017-12-22 河海大学 一种快速制备不同含水饱和度试样的方法
CN207689304U (zh) * 2018-01-09 2018-08-03 长安大学 一种测定土样吸水质量及吸水速率的装置
CN109030292B (zh) * 2018-09-26 2019-12-17 西南石油大学 一种致密岩石润湿性确定的新方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544911A (zh) * 2003-11-27 2004-11-10 中国科学院武汉岩土力学研究所 土壤最大吸湿含水率的测量装置及其测量方法
CN101196460A (zh) * 2007-10-26 2008-06-11 辽河石油勘探局 一种岩石润湿性的评价方法
JP2012013646A (ja) * 2010-07-05 2012-01-19 Kajima Corp 吸放湿量測定装置及び吸放湿量測定方法
CN105823706A (zh) * 2015-01-05 2016-08-03 中国石油天然气股份有限公司 气润湿性测试方法
CN110595953A (zh) * 2019-09-04 2019-12-20 西南石油大学 一种页岩混合润湿性的实验测试装置及方法
CN111175169A (zh) * 2019-12-31 2020-05-19 中国地质大学(北京) 一种岩石润湿性评价方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252363A (zh) * 2021-12-09 2022-03-29 上海兰钧新能源科技有限公司 极片浸润吸液量的测定方法

Also Published As

Publication number Publication date
CN111175169A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021135309A1 (zh) 一种岩石润湿性评价方法
Benavente et al. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone
Richards et al. Capillary conductivity values from moisture yield and tension measurements on soil columns
CN102905515B (zh) 用于估计液体的张力、势和活度的二面体传感器
CN109030292A (zh) 一种致密岩石润湿性确定的新方法
CN111650108B (zh) 一种测定泥页岩岩石有效孔隙度的方法及装置
CN109238911B (zh) 一种基于土中水分蒸发曲线预测土-水特征曲线vg模型的方法
CN113075102B (zh) 一种建立多孔介质自发渗吸量与时间关系数学模型的方法
US9612167B2 (en) Method for determining adsorption heat and wetting heat of a surface and a measuring cell of a calorimeter
Cheng et al. Effect of water on methane diffusion in coal under temperature and pressure: A LF-NMR experimental study on successive depressurization desorption
CN105823706B (zh) 气润湿性测试方法
Villani et al. Characterizing the pore structure of carbonated natural wollastonite
Simril et al. Sorption of Water by Cellophane
Okasha Investigation of the effect of temperature and pressure on interfacial tension and wettability
RU2497098C1 (ru) Способ определения смачиваемости
CN208172274U (zh) 一种测量数据更精准的混合云室
Sherwood EFFECTS OF HEAT ON CHEMICAL GLASSWARE.
RU2550569C1 (ru) Способ определения смачиваемости
CN115755195A (zh) 一种储层岩石模拟生产条件下的润湿性表征方法
Gardner Diffusivity of soil water during sorption as affected by temperature
CN114965539A (zh) 页岩气水置换检测方法及***
US2145203A (en) Method of analysis
Stone Solubility of water in liquid carbon dioxide
CN112504904B (zh) 一种岩石不同含水条件下气体吸附等温线测试分析方法
CN104678767B (zh) 任意调节二氧化碳通量和泄漏及反扩散系数的方法及标准装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909178

Country of ref document: EP

Kind code of ref document: A1