WO2021135252A1 - 一种一维金属氧化物/碳化物复合材料及其制备方法 - Google Patents

一种一维金属氧化物/碳化物复合材料及其制备方法 Download PDF

Info

Publication number
WO2021135252A1
WO2021135252A1 PCT/CN2020/108936 CN2020108936W WO2021135252A1 WO 2021135252 A1 WO2021135252 A1 WO 2021135252A1 CN 2020108936 W CN2020108936 W CN 2020108936W WO 2021135252 A1 WO2021135252 A1 WO 2021135252A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
preparation
carbide composite
composite material
metal
Prior art date
Application number
PCT/CN2020/108936
Other languages
English (en)
French (fr)
Inventor
张晓伟
王戈
高鸿毅
Original Assignee
苏州阿德旺斯新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911419839.8A external-priority patent/CN111105935B/zh
Priority claimed from CN201911410023.9A external-priority patent/CN111129468B/zh
Application filed by 苏州阿德旺斯新材料有限公司 filed Critical 苏州阿德旺斯新材料有限公司
Publication of WO2021135252A1 publication Critical patent/WO2021135252A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention claims the priority of a Chinese patent application filed in the Chinese Patent Office with the application number 201911410023.9 and the title of the invention "a one-dimensional metal oxide/carbide composite material and its preparation method". The entire content of the application is approved The citation is incorporated in the present invention.
  • the present invention claims the priority of a Chinese patent application filed in the Chinese Patent Office with the application number 201911419839.8 and the title of the invention "a one-dimensional metal oxide/carbide composite material and its preparation method”. The entire content of the application is approved The citation is incorporated in the present invention.
  • the invention relates to the field of inorganic nano functional material synthesis, in particular to a one-dimensional metal oxide/carbide composite material and a preparation method thereof.
  • Porous carbon materials have very important applications in the fields of electrocatalysis, batteries, capacitors, sensors, and gas adsorption due to their large specific surface area, good adsorption and conductivity.
  • the simple carbon material lacks active sites that can be directly utilized, which results in that it is usually used as a carrier material and needs to be combined with other active materials to achieve a wider range of applications.
  • the commonly used method is to introduce active materials, mainly including noble metals, transition metal oxides, etc., and composite them with porous carbon materials through a loading method to improve their catalytic, adsorption and electrochemical activities.
  • the synthetic methods of such supported complexes are usually more complicated, the loading of active substances is generally small, the active sites are few, and the dispersibility is also poor, which affects the improvement of its comprehensive performance.
  • pure porous carbon materials are relatively stable in an inert environment, but their thermal stability is significantly reduced in an oxygen environment. If the porous carbon material is combined with the metal active center to generate metal carbide, it can improve its stability and activity while ensuring its excellent structural performance and good electrical conductivity. Moreover, when the metal carbide is combined with other metal materials to form a metal/metal oxide/metal carbide composite material, the synergy between them can further improve its electrochemical properties.
  • the synthesis of carbides usually adopts high-temperature thermal reduction methods. The high-temperature environment used generally needs to reach above 1000°C, and the energy consumption is large. The resulting carbides are often bulk materials, which do not have good catalysis, adsorption and electricity. Chemical activity. However, although the one-dimensional porous carbide with higher activity can be obtained by using the template method, the synthesis process is very complicated.
  • Metal-Organic Frameworks are a novel porous solid material composed of metal ions or metal clusters and organic ligands. Due to the porosity, high specific surface area, tailorability, multiple active sites and other characteristics of this type of material, it has extremely important applications in the fields of gas storage, carbon dioxide capture, molecular separation, catalysis, drug or other material carriers, etc. . According to the different spatial dimensions of the structure, metal-organic framework materials can generally be divided into one-dimensional, two-dimensional and three-dimensional metal-organic framework materials.
  • low-dimensional MOFs materials such as one-dimensional MOFs
  • MOFs materials not only have the intrinsic characteristics of MOFs materials, but also have the structural characteristics of low-dimensional nanomaterials, which often exhibit more unique physical and chemical properties, such as high long diameter. Ratio, abundant surface active sites, etc.
  • the purpose of the present invention is to provide a one-dimensional metal oxide/carbide composite material and a preparation method thereof.
  • the preparation method provided by the present invention uses a one-dimensional metal organic framework material as a precursor for the first time, and through one-step calcination and pyrolysis, a one-dimensional metal oxide/carbide composite material can be obtained; the obtained one-dimensional metal oxide/carbide The composite material still maintains a good one-dimensional morphology, and has a large specific surface area, high dispersion, more exposed active sites and good electrical conductivity; the preparation method is simple, low energy consumption, low raw material cost, and easy to scale up production.
  • Metal-organic framework materials have both dispersed metal sites, large specific surface area, and rich porous structure.
  • the organic ligands usually contain carbon and oxygen, especially one-dimensional MOFs, which also have low-dimensionality.
  • the material has excellent physical and chemical properties. Therefore, it is of great practical significance to use one-dimensional MOFs as precursors to obtain one-dimensional metal oxide/carbide composite materials through a simple, environmentally friendly and low energy consumption method.
  • an embodiment of the present invention provides a method for preparing a one-dimensional metal oxide/carbide composite material.
  • the preparation method includes the following steps: calcining the one-dimensional metal organic framework material; wherein, calcining The temperature is 200-600°C.
  • the calcination temperature is 300-500°C; optionally 400°C.
  • the calcination time is 10-200 min; optionally 60-150 min.
  • the one-dimensional metal organic frame material includes a one-dimensional linear metal organic frame material, a one-dimensional tubular metal organic frame material, a one-dimensional rod-shaped metal organic frame material, or a one-dimensional strip
  • the one-dimensional metal-organic frame material includes a one-dimensional strip-shaped metal-organic frame material.
  • the one-dimensional strip-shaped metal organic frame material has an aspect ratio ⁇ 10, and has a dimension of 50-200 nm in the width direction.
  • the one-dimensional strip-shaped MOFs not only have the good electrical conductivity and mechanical properties of one-dimensional nano-materials, but also have quasi-two-dimensional characteristics, produce metal active sites with lower surface energy and higher exposure, and are useful in catalysis and other aspects. Has more favorable structural characteristics.
  • the calcination is performed in a tube furnace.
  • an auxiliary gas is introduced during calcination, and the auxiliary gas includes one or more of nitrogen, oxygen, air, helium, hydrogen, and argon.
  • the temperature is increased to the calcination temperature at a heating rate of 2-20° C./min.
  • the one-dimensional strip-shaped metal organic framework material is prepared by a preparation method including the following steps: mixing a transition metal salt with a solvent, and adding a solution of an organic ligand and a base After mixing, transfer to the reactor, treat at 160-180°C for 5-20h, and dry.
  • the molar ratio of the metal ion to the organic ligand is 1:1-2.
  • the treatment is performed at 165-175°C for 5-15 hours; optionally, the treatment is performed at 170°C for 8-15 hours.
  • the transition metal salt includes Ni(NO 3 ) 2 , Co(NO 3 ) 2 , Fe(NO 3 ) 2 , Fe(NO 3 ) 3 , Mn(NO 3) ) 2 , NiCl 2 , CoCl 2 , FeCl 2 , FeCl 3 , MnCl 2 , NiCl 2 , one or more of VCl 3 ; optionally, the transition metal salt includes Ni(NO 3 ) 2 , or Ni( A mixture of NO 3 ) 2 and Co(NO 3 ) 2 ; further alternatively, when the transition metal salt is a mixture of Ni(NO 3 ) 2 and Co(NO 3 ) 2 , the ratio of Ni 2+ and Co 2+ The molar ratio is 1-10:1-10.
  • the solvent includes one or more of water, methanol, ethanol, ethylene glycol, propylene glycol, butylene glycol, and N,N-dimethylformamide; optional Preferably, the solvent is water.
  • the organic ligand includes one or more of terephthalic acid, trimellitic acid, 2'-methylimidazole, 4,4'-diphthalic acid
  • the organic ligand is 4,4'-biphthalic acid.
  • the alkali includes one or more of sodium hydroxide, potassium hydroxide, triethylamine, and sodium formate; optionally, the alkali is sodium hydroxide.
  • the embodiment of the present invention also provides a one-dimensional metal oxide/carbide composite material prepared by the above preparation method.
  • the one-dimensional metal oxide/carbide composite material has a hollow structure.
  • the one-dimensional metal oxide/carbide composite material has a tubular structure.
  • the embodiment of the present invention also provides the application of the above-mentioned preparation method and the above-mentioned one-dimensional metal oxide/carbide composite material in electrocatalysis, battery, capacitor, sensor or gas adsorption.
  • the method for preparing a one-dimensional metal oxide/carbide composite material uses a one-dimensional metal organic framework material as a precursor for the first time, and generates a one-dimensional metal through a one-step pyrolysis process at a specific temperature.
  • Metal oxide/carbide composite material the obtained one-dimensional metal oxide/carbide composite material still maintains a good one-dimensional morphology, and has a large specific surface area, high dispersion, more exposed active sites and good Electrical conductivity; simple preparation method, low energy consumption, low raw material cost, and easy to scale up production.
  • Metal-organic framework materials have both dispersed metal sites, large specific surface area, and rich porous structure.
  • the organic ligands usually contain carbon and oxygen, especially one-dimensional MOFs, which also have low-dimensionality.
  • the material has excellent physical and chemical properties. Therefore, it is of great practical significance to use one-dimensional MOFs as precursors to obtain one-dimensional metal oxide/carbide composite materials through a simple, environmentally friendly and low energy consumption method.
  • the calcination of one-dimensional MOFs is divided into two stages: the first stage is the dehydration stage, since the metal organic framework is a porous material , The adsorbed water and bound water existing in the pores gradually evaporate during the heating process, and the temperature at this stage is in the range of 30-300°C; when the temperature continues to rise, the framework of MOFs begins to dissociate to produce metal oxides and carbides.
  • the higher the temperature and the longer the time, the more complete the dissociation, and the low temperature will cause the metal-organic framework structure to be incompletely cracked, and the resulting product will be impure; but at the same time, the increase in temperature will also cause the nanomaterials to shrink and agglomerate.
  • Spontaneous agglomeration of the obtained metal oxides/carbides cannot maintain the advantages of the original one-dimensional structure; therefore, controlling the temperature and time of the dissociation stage is very important for the morphology of the final product.
  • the method for preparing one-dimensional metal oxide/carbide composite materials selects one-dimensional strip-shaped MOFs and provides a method for preparing one-dimensional strip-shaped MOFs.
  • the selection of synthesis conditions especially the strict control of processing temperature and processing time, accelerates the speed of crystal nucleation and orientation growth, effectively preventing its edge self-assembly, thereby forming dispersed nano-ribbon metal with high aspect ratio Organic framework;
  • the obtained one-dimensional strip-shaped MOFs the length is in the micrometer scale, the width and thickness are in the nanometer scale, the aspect ratio is ⁇ 10, and the width direction has a certain scale (50-200nm), which has a one-dimensional nanomaterial While having good electrical conductivity and mechanical properties, it has quasi-two-dimensional characteristics, and other one-dimensional MOFs produce lower surface energy and higher exposure of metal active sites, and has more favorable structural characteristics in terms of catalysis.
  • the method for preparing one-dimensional metal oxide/carbide composite materials provided in the embodiments of the present invention can obtain different one-dimensional metal-organic framework materials by changing the metal source according to the needs of different scenarios, thereby obtaining one-dimensional metal-organic framework materials with different compositions.
  • Three-dimensional metal oxide/carbide composite material, the method is controllable and simple and easy to implement.
  • the one-dimensional metal oxide/carbide composite material provided in the embodiment of the present invention has a large specific surface area, high dispersibility, more exposed active sites and good conductivity. It is used in electrocatalysis, batteries, and capacitors. , Sensors, and gas adsorption fields have very good application prospects.
  • the one-dimensional metal oxide/carbide composite material has a hollow structure, and it is speculated that the one-dimensional strip-shaped MOFs formed a hollow structure after the edges were curled during the high-temperature calcination process.
  • FIG. 1 is a SEM (scanning electron microscope) image of the one-dimensional strip-shaped metal organic frame material prepared in Example 2 of the present invention.
  • Fig. 2 is an SEM image of a nickel-cobalt oxide/carbide composite material prepared in Example 2 of the present invention.
  • Fig. 3 is an XRD (X-ray diffraction) chart of the nickel-cobalt oxide/carbide composite material prepared in Example 2 of the present invention.
  • Fig. 4 is a graph showing the electrocatalytic oxygen evolution reaction result of the nickel-cobalt oxide/carbide composite material prepared in Example 2 of the present invention.
  • the raw materials used are all commercially available products.
  • 4,4'-biphthalic acid (CAS No. 787-70-2) was purchased from Aladdin Industrial Corporation with a purity of 97%.
  • a method for preparing a one-dimensional metal oxide/carbide composite material includes the following steps:
  • step a Put the one-dimensional strip-shaped metal organic frame material prepared in step a into a porcelain cup, transfer it into a tube furnace, and pass oxygen into it, raise it to 400°C at a temperature increase rate of 10°C/min, calcinate for 2h, and wait for cooling Afterwards, a fluffy black powder is obtained, which is a one-dimensional metal oxide/carbide composite material—nickel oxide/nickel carbide composite material.
  • a method for preparing a one-dimensional metal oxide/carbide composite material includes the following steps:
  • the SEM (Scanning Electron Microscope) picture of the one-dimensional strip-shaped metal organic framework material prepared above is shown in Figure 1.
  • Figure 1 is a nano strip-shaped structure with a length in the micrometer scale, and a width and thickness in the nanometer scale.
  • the aspect ratio is greater than or equal to 10, and has a certain scale (50-200nm) in the width direction; it has the characteristics of one-dimensional nanomaterial structure and quasi-two-dimensional characteristics.
  • step a Put the one-dimensional strip-shaped metal organic frame material obtained in step a into a porcelain cup, transfer it into a tube furnace, pass in air, raise the temperature to 400°C at a rate of 10°C/min, and calcinate for 2h, and wait for cooling. Then a one-dimensional metal oxide/carbide composite material—nickel cobalt oxide/carbide composite material is obtained.
  • the SEM image of the nickel-cobalt oxide/carbide composite material prepared above is shown in Figure 2. It can be seen from Figure 2 that the obtained nickel-cobalt oxide/carbide composite material has a good one-dimensional tubular structure, and it can be observed that it is composed of nanometers.
  • the particle composition is presumed to be the metal oxide/carbide nanoparticles produced by the one-dimensional nano-strip metal organic framework after being calcined at an appropriate temperature.
  • the nickel-cobalt oxide/carbide composite material prepared above is a one-dimensional material, and its XRD (X-ray diffraction) spectrum is shown in Fig. 3. From the XRD characteristic curve of Fig. 3, the characteristics of nickel-cobalt oxide and carbide can be observed There is no characteristic peak of the metal-organic framework material, which proves that the metal-organic framework is completely dissociated to obtain the metal oxide/carbide composite material under this synthesis condition.
  • a method for preparing a one-dimensional metal oxide/carbide composite material includes the following steps:
  • step a Put the one-dimensional strip-shaped metal organic frame material obtained in step a into a porcelain cup, transfer it into a tube furnace, blow in air, raise the temperature at a rate of 20°C/min to 500°C, and calcinate for 1h, and wait for cooling. Then a one-dimensional metal oxide/carbide composite material—nickel cobalt oxide/carbide composite material is obtained.
  • a method for preparing a metal oxide/carbide composite material includes the following steps:
  • Embodiment 2 The main difference from Embodiment 2 lies in: the synthesis conditions of the metal organic framework material are different, and the details are as follows:
  • the synthesis temperature has a great influence on the morphology of MOFs, and the synthesis time has a great influence on the crystallinity or aspect ratio of MOFs.
  • the size of the obtained metal organic framework material is about 1 ⁇ m, which is a flower-like structure composed of nanobelts (about 50 nm in width and about 20 nm in thickness).
  • the obtained material is a sea urchin-like metal organic framework material composed of nanorods.
  • the strip-shaped MOFs provided in Examples 1-3 are more dispersed, have a larger specific surface area, and expose more metal active sites, and have more favorable structural characteristics in terms of catalysis.
  • step a Put the flower-like structure metal organic frame material obtained in step a into a porcelain cup, transfer it into a tube furnace, pass in oxygen, and raise it to 400°C at a heating rate of 10°C/min and calcinate it for 2h. After cooling, it will be obtained.
  • the nickel-cobalt oxide/carbide composite material obtained in Comparative Example 1 is nanoflower-like. Compared with the flower-shaped metal oxide/carbide composite material, the tubular metal oxide/carbide composite material provided in Examples 1-3 has better structural characteristics and better catalytic performance.
  • Electrocatalytic tests were performed on the nickel-cobalt oxide/carbide composite material and its precursor one-dimensional strip-shaped metal organic frame material prepared in Example 2.
  • the test instrument is the Princeton PMC 1000&500 electrochemical workstation.
  • the three electrodes are the Ag/AgCl electrode as the reference electrode, the graphite rod as the counter electrode, and the glassy carbon electrode with the catalyst sample (0.2mg/cm 2 ) as the working electrode.
  • the test is carried out in the system, and the test condition is 1M KOH aqueous solution.
  • Figure 4 shows that the one-dimensional metal oxide/carbide composite material—the nickel-cobalt oxide/carbide composite material has a higher ratio than its precursor (one-dimensional strip metal organic framework). Material) better catalytic performance.
  • An embodiment of the present invention provides a one-dimensional metal oxide/carbide composite material and a preparation method thereof.
  • the preparation method includes the following steps: calcining the one-dimensional metal organic framework material; wherein the calcining temperature is 200-600 °C; for the first time, the preparation method uses a one-dimensional metal-organic framework material as a precursor, and through one-step calcination and pyrolysis, a one-dimensional metal oxide/carbide composite material can be obtained; it still maintains a good one-dimensional morphology, and It has a large specific surface area, high dispersibility, more exposed active sites and good electrical conductivity; the preparation method is simple, low energy consumption, low raw material cost, and easy to scale up production.
  • the one-dimensional metal oxide/carbide composite material provided by the present invention has a large specific surface area, high dispersibility, more exposed active sites and good conductivity. It is used in electrocatalysis, batteries, capacitors, sensors, gas adsorption, etc. The field has very good application prospects.

Abstract

本发明实施例涉及无机纳米功能材料合成领域,具体涉及一种一维金属氧化物/碳化物复合材料及其制备方法。所述制备方法包括下述步骤:将一维金属有机框架材料进行煅烧;其中,煅烧温度为200-600℃;所述制备方法首次以一维金属有机框架材料为前驱体,且通过一步煅烧热解,即可获得一维金属氧化物/碳化物复合材料;获得的一维金属氧化物/碳化物复合材料仍维持良好的一维形貌,且具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性;制备方法简便,能耗低,原料成本低,易于放大生产。本发明提供的一维金属氧化物/碳化物复合材料,具有良好的一维形貌,且具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性。

Description

一种一维金属氧化物/碳化物复合材料及其制备方法
交叉引用
本发明要求在中国专利局提交的、申请号为201911410023.9、发明名称为“一种一维金属氧化物/碳化物复合材料及其制备方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。本发明要求在中国专利局提交的、申请号为201911419839.8、发明名称为“一种一维金属氧化物/碳化物复合材料及其制备方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及无机纳米功能材料合成领域,具体涉及一种一维金属氧化物/碳化物复合材料及其制备方法。
背景技术
多孔碳材料由于具有较大的比表面积、良好的吸附性和导电性等特性,使其在电催化、电池、电容器、传感器以及气体吸附等领域具有非常重要的应用。但是单纯的碳材料缺乏可以直接利用的活性位点,导致其通常是作为载体材料,需要与其他活性材料相复合才能实现更广泛的应用。为了解决这一问题,普遍采用的方法是引入活性物质,主要包括贵金属、过渡金属氧化物等,通过负载的方法将其与多孔碳材料相复合,从而提高其催化、吸附和电化学活性。但是,这类负载型复合物的合成方法通常比较复杂,活性物质的负载量一般较小,活性位点较少,分散性也较差,影响其综合性能的提升。
此外,单纯的多孔碳材料在惰性环境中比较稳定,但是在有氧环境中其热稳定性显著下降。而如果将多孔碳材料与金属活性中心化合,生成金属碳化物,则能够在保证其优异结构性能和良好导电性的同时,提高其稳定性和活性。并且,当金属碳化物与其他金属材料结合形成金属/金属氧化物/金属碳化物复合材料时,通过互相之间的协同作用,还可以进一步提升其电化学等性能。但是碳化物的合成通常是采用高温热还原的方法,使用的高温环境一般需要达到1000℃以上,能耗较大,生成的碳化物也往往是块材,不具备很好的催化、吸附和电化学活性。而采用模板法虽然能够得到活性较高的一维多孔碳化物,但合成过程非常复杂。
金属有机框架(Metal-Organic Frameworks,MOFs)材料是由金属离子或者金属簇和有机配体构成的一种新颖的多孔固体材料。由于该类材料的多孔性、高比表面积、可裁剪性、多活性位点等特点,使其在气体储存、二氧化碳捕集、分子分离、催化、药物或者其它材料载体等领域具有极其重要的应用。根据结构的空间维度不同,金属有机框架材料通常可以分为一维、二维和三维金属有机框架材料。相比于三维结构,低维MOFs材料(如一维MOFs)除了具有MOFs材料的本征特性之外,还具有低维纳米材料的结构特性,往往表现出更加独特的物理化学性质,如高长径比、丰富的表面活性位点等。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
发明目的
为解决上述技术问题,本发明的目的在于提供一种一维金属氧化物/碳化物复合材料及其制备方法。本发明提供的制备方法,首次以一维金属有机框架材料为前驱体,且通过一步煅烧热解,即可获得一维金属氧化物/碳化物复合材料;获得的一维金属氧化物/碳化物复合材料仍维持良好的一维形貌,且具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性;制备方法简便,能耗低,原料成本低,易于放大生产。金属有机框架材料(MOFs)材料本身既具有分散的金属位点、大比表面积、丰富的多孔结构,而其有机配体部分通常含有碳元素和氧元素,尤其是一维MOFs还兼具低维材料优异的物理化学特性,因此,将一维MOFs作为前驱体,通过简单、环保和低能耗的方法获得一维金属氧化物/碳化物的复合材料具有非常重要的实际意义。
解决方案
为实现本发明目的,本发明实施例提供了一种一维金属氧化物/碳化物复合材料的制备方法,所述制备方法包括下述步骤:将一维金属有机框架材料进行煅烧;其中,煅烧温度为200-600℃。
上述制备方法在一种可能的实现方式中,所述煅烧温度为300-500℃;可选地为400℃。
上述制备方法在一种可能的实现方式中,煅烧时间为10-200min;可选地为60-150min。
上述制备方法在一种可能的实现方式中,所述一维金属有机框架材料包括一维线状金属有机框架材料、一维管状金属有机框架材料、一维棒状金属有机框架材料或一维条带状金属有机框架材料中的一种或多种;可选地,所述一维金属有机框架材料包括一维条带状金属有机框架材料。
上述制备方法在一种可能的实现方式中,所述一维条带状金属有机框架材料的长宽比≥10,且在宽度方向有50-200nm的尺度。所述一维条带状MOFs在具有一维纳米材料的良好的导电性能和机械性能的同时,具有准二维特征,产生更低表面能和更高暴露的金属活性位点,在催化等方面具有更加有利的结构特性。
上述制备方法在一种可能的实现方式中,所述煅烧在管式炉中进行。
上述制备方法在一种可能的实现方式中,煅烧时通入辅助气体,所述辅助气体包括:氮气、氧气、空气、氦气、氢气、氩气中的一种或多种。
上述制备方法在一种可能的实现方式中,以2-20℃/min的升温速率升至煅烧温度。
上述制备方法在一种可能的实现方式中,所述一维条带状金属有机框架材料由包括下述步骤的制备方法制得:将过渡金属盐与溶剂混合,加入有机配体和碱的溶液中,混合后转移到反应釜中,160-180℃处理5-20h,干燥。
上述制备方法在一种可能的实现方式中,金属离子与有机配体的摩尔比为1:1-2。
上述制备方法在一种可能的实现方式中,混合后转移到反应釜中后,165-175℃处理5-15h;可选地,170℃处理8-15h。
上述制备方法在一种可能的实现方式中,所述过渡金属盐包括Ni(NO 3) 2,Co(NO 3) 2,Fe(NO 3) 2,Fe(NO 3) 3,Mn(NO 3) 2,NiCl 2,CoCl 2,FeCl 2,FeCl 3,MnCl 2,NiCl 2,VCl 3的一种或几种;可选地,所述过渡金属盐包括Ni(NO 3) 2,或Ni(NO 3) 2和Co(NO 3) 2的混合物;进一步可选地,所述过渡金属盐为Ni(NO 3) 2和Co(NO 3) 2的混合物时,Ni 2+和Co 2+的摩尔比为1-10:1-10。
上述制备方法在一种可能的实现方式中,所述溶剂包括水、甲醇、乙醇、乙二醇、丙二醇、丁二醇、N,N-二甲基甲酰胺的一种或多种;可选地,所述溶剂为水。
上述制备方法在一种可能的实现方式中,所述有机配体包括对苯二甲酸,均苯三甲酸,2’-甲基咪唑,4,4’-联苯二甲酸的一种或多种;可选地,所述有机配体为4,4’-联苯二甲酸。
上述制备方法在一种可能的实现方式中,所述碱包括氢氧化钠,氢氧化钾,三乙胺,甲酸钠的一种或几种;可选地,所述碱为氢氧化钠。
本发明实施例还提供了上述制备方法制得的一维金属氧化物/碳化物复合材料。
上述一维金属氧化物/碳化物复合材料在一种可能的实现方式中,所述一维金属氧化物/碳化物复合材料为空心结构。
上述一维金属氧化物/碳化物复合材料在一种可能的实现方式中,所述一维金属氧化物/碳化物复合材料为管状结构。
本发明实施例还提供了上述制备方法、上述一维金属氧化物/碳化物复合材料在电催化、电池、电容器、传感器或气体吸附中的应用。
有益效果
(1)本发明实施例中提供的一维金属氧化物/碳化物复合材料的制备方法,首次以一维金属有机框架材料为前驱体,且在特定温度下通过一步煅烧热解,生成一维金属氧化物/碳化物复合材料;获得的一维金属氧化物/碳化物复合材料仍维持良好的一维形貌,且具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性;制备方法简便,能耗低,原料成本低,易于放大生产。
金属有机框架材料(MOFs)材料本身既具有分散的金属位点、大比表面积、丰富的多孔结构,而其有机配体部分通常含有碳元素和氧元素,尤其是一维MOFs还兼具低维材料优异的物理化学特性,因此,将一维MOFs作为前驱体,通过简单、环保和低能耗的方法获得一维金属氧化物/碳化物的复合材料具有非常重要的实际意义。
(2)本发明实施例中提供的一维金属氧化物/碳化物复合材料的制备方法,一维MOFs的煅烧分为两个阶段:第一阶段为失水阶段,由于金属有机框架为多孔材料,孔洞中存在的吸附水和结合水在升温过程中逐渐蒸发,此阶段温度在30-300℃范围;当温度继续升高,MOFs骨架开始解离,产生金属氧化物和碳化物。在解离阶段,温度越高,时间越长,解离越完全,而温度低会造成金属有机骨架结构裂解不完全,所得产物不纯;但同时温度的升高也会造成纳米材料收缩团聚,使所得金属氧化物/碳化物发生自发 团聚,无法保持原有一维结构优势;因此,控制解离阶段的温度和时间,对于终产物的形貌非常重要。
(3)本发明实施例中提供的一维金属氧化物/碳化物复合材料的制备方法,选用了一维条带状MOFs,并提供了一维条带状MOFs的制备方法,通过对特定的合成条件的选择,尤其是对处理温度和处理时间的严格控制,使得晶体成核与取向生长的速度加快,有效防止了其边缘自组装,从而形成分散的高长径比的纳米条带状金属有机框架;获得的一维条带状MOFs,长度在微米尺度,宽度和厚度在纳米尺度,长宽比≥10,且在宽度方向有一定尺度(50-200nm),其在具有一维纳米材料的良好的导电性能和机械性能的同时,具有准二维特征,与其他一维MOFs产生更低表面能和更高暴露的金属活性位点,在催化等方面具有更加有利的结构特性。
(4)本发明实施例中提供的一维金属氧化物/碳化物复合材料的制备方法,根据不同场景需要,更换金属源即可得到不同的一维金属有机框架材料,从而获得不同组成的一维金属氧化物/碳化物复合材料,方法可控且简单易行。
(5)本发明实施例中提供的一维金属氧化物/碳化物复合材料,具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性,在电催化、电池、电容器、传感器以及气体吸附等领域具有很好的应用前景。
且所述一维金属氧化物/碳化物复合材料为空心结构,推测是一维条带状MOFs在高温煅烧过程中边缘卷曲后形成了空心结构。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
图1是本发明实施例2制得的一维条带状金属有机框架材料的SEM(扫描电子显微镜)图。
图2是本发明实施例2制得的镍钴氧化物/碳化物复合材料的SEM图。
图3是本发明实施例2制得的镍钴氧化物/碳化物复合材料的XRD(X射线衍射)图。
图4是本发明实施例2制得的镍钴氧化物/碳化物复合材料的电催化析 氧反应结果图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实施例中,对于本领域技术人员熟知的原料、元件、方法、手段等未作详细描述,以便于凸显本发明的主旨。
以下实施例中,所用原料均为市售商品,其中,4,4’-联苯二甲酸(CAS号为787-70-2)购自Aladdin Industrial corporation,纯度为97%。
实施例1
一种一维金属氧化物/碳化物复合材料的制备方法,包括下述步骤:
a.一维条带状金属有机框架材料的制备:
取Ni(NO 3) 2·6H 2O(1.2mM)加入6mL水中,再在搅拌状态下加入12mL 4,4’-联苯二甲酸(1.2mM)和氢氧化钠(2.4mM)的水溶液中,搅拌均匀后,放入反应釜中,170℃处理12h,离心、洗涤,干燥,即得一维条带状金属有机框架材料。
b.一维金属氧化物/碳化物复合材料的制备:
将步骤a制得的一维条带状金属有机框架材料放入瓷盅内,转移入管式炉中,通入氧气,以10℃/min的升温速率升至400℃,煅烧2h,待冷却后得到蓬松的黑色粉末,其为一维金属氧化物/碳化物复合材料——氧化镍/碳化镍复合材料。
实施例2
一种一维金属氧化物/碳化物复合材料的制备方法,包括下述步骤:
a.一维条带状金属有机框架材料的制备:
取Ni(NO 3) 2·6H 2O(0.6mM),Co(NO 3) 2·6H 2O(0.6mM)加入6mL水中, 再在搅拌状态下加入12mL 4,4’-联苯二甲酸(1.2mM)和氢氧化钠(2.4mM)的水溶液中,搅拌均匀后,放入反应釜中,170℃处理12h,离心、洗涤,干燥,即得一维条带状金属有机框架材料。
上述制得的一维条带状金属有机框架材料的SEM(扫描电子显微镜)图见图1;由图1可知,其为纳米条带状结构,长度在微米尺度,宽度和厚度在纳米尺度,长宽比≥10,且在宽度方向有一定尺度(50-200nm);其具有一维纳米材料结构特征的同时,具有准二维特征。
b.一维金属氧化物/碳化物复合材料的制备:
将步骤a制得的一维条带状金属有机框架材料放入瓷盅内,转移入管式炉中,通入空气,以10℃/min的升温速率升至400℃下煅烧2h,待冷却后得到一维金属氧化物/碳化物复合材料——镍钴氧化物/碳化物复合材料。
上述制得的镍钴氧化物/碳化物复合材料的SEM图见图2,由图2可知,所得镍钴氧化物/碳化物复合材料呈现良好的一维管状结构,并且可观察到其由纳米颗粒组成,推测是一维纳米条带状金属有机框架经合适的温度煅烧后产生的金属氧化物/碳化物纳米颗粒。
上述制得的镍钴氧化物/碳化物复合材料为一维材料,其XRD(X射线衍射)谱图见图3,从图3的XRD特征曲线可以观察到镍钴氧化物和碳化物的特征峰,而无金属有机框架材料特征峰,证明在此合成条件下,金属有机框架完全解离得到金属氧化物/碳化物复合材料。
实施例3
一种一维金属氧化物/碳化物复合材料的制备方法,包括下述步骤:
a.一维条带状金属有机框架材料的制备:
取Ni(NO 3) 2·6H 2O(0.3mM),Co(NO 3) 2·6H 2O(0.9mM)加入6mL水中,再在搅拌状态下加入12mL 4,4’-联苯二甲酸(2.4mM)和氢氧化钠(2.4mM)的水溶液中,搅拌均匀后,放入反应釜中,170℃处理8h,离心、洗涤,干燥,即得一维条带状金属有机框架材料。
b.一维金属氧化物/碳化物复合材料的制备:
将步骤a制得的一维条带状金属有机框架材料放入瓷盅内,转移入管式炉中,通入空气,以20℃/min的升温速率升至500℃下煅烧1h,待冷却后得到一维金属氧化物/碳化物复合材料——镍钴氧化物/碳化物复合材料。
对比例1
一种金属氧化物/碳化物复合材料的制备方法,包括下述步骤:
与实施例2的不同之处主要在于:金属有机框架材料的合成条件不同,具体如下:
a.金属有机框架材料的制备:
取Ni(NO 3) 2·6H 2O(1mM),Co(NO 3) 2·6H 2O(1mM)加入10mL水中,再在搅拌状态下加入22mL 4,4’-联苯二甲酸(2mM)和氢氧化钠(4mM)的水溶液中,搅拌均匀后,放入反应釜中,150℃处理12h,离心、洗涤,干燥,即得金属有机框架材料。
合成温度对MOFs的形貌影响非常大,合成时间对MOFs的结晶度或长径比影响较大。如:本对比例改变合成温度后,得到的金属有机框架材料的尺寸在1μm左右,为由纳米带(宽约50nm,厚约20nm)组成的花状结构。而当在室温或低温下合成时,得到的材料为纳米棒组成的海胆状的金属有机框架材料。
与花状或海胆状MOFs相比,实施例1-3提供的条带状MOFs更分散,比表面积更大,暴露的金属活性位点更多,在催化等方面具有更加有利的结构特性。
b.金属氧化物/碳化物复合材料的制备:
将步骤a制得的花状结构金属有机框架材料放入瓷盅内,转移入管式炉中,通入氧气,以10℃/min的升温速率升至400℃下煅烧2h,待冷却后得到金属氧化物/碳化物复合材料——镍钴氧化物/碳化物复合材料。
与实施例2获得的分散的一维管状结构不同,对比例1得到的镍钴氧化物/碳化物复合材料为纳米花状。与花状金属氧化物/碳化物复合材料相比,实施例1-3提供的管状金属氧化物/碳化物复合材料,结构特性更好,催化性能等更优。
试验例
对实施例2制得的镍钴氧化物/碳化物复合材料及其前驱体一维条带状金属有机框架材料进行电催化测试。测试仪器为Princeton PMC 1000&500电化学工作站,在以Ag/AgCl电极为参比电极,以石墨棒为对电极,以滴有催化剂样品(0.2mg/cm 2)的玻碳电极为工作电极的三电极体系中进行测试,测试条件为1M的KOH水溶液。电催化析氧反应结果见图4;由图4可知,一维金属氧化物/碳化物复合材料——镍钴氧化物/碳化物复合材料具有比其前驱体(一维条带状金属有机框架材料)更优异的催化性能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明实施例提供的一种一维金属氧化物/碳化物复合材料及其制备方法,所述制备方法包括下述步骤:将一维金属有机框架材料进行煅烧;其中,煅烧温度为200-600℃;所述制备方法首次以一维金属有机框架材料为前驱体,且通过一步煅烧热解,即可获得一维金属氧化物/碳化物复合材料;其仍维持良好的一维形貌,且具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性;制备方法简便,能耗低,原料成本低,易于放大生产。本发明提供的一维金属氧化物/碳化物复合材料,具有大比表面积、高分散性、更多暴露的活性位点和良好的导电性,在电催化、电池、电容器、传感器以及气体吸附等领域具有很好的应用前景。

Claims (10)

  1. 一种一维金属氧化物/碳化物复合材料的制备方法,所述制备方法包括下述步骤:将一维金属有机框架材料进行煅烧;其中,煅烧温度为200-600℃。
  2. 根据权利要求1所述的制备方法,其特征在于,所述煅烧温度为300-500℃;
    和/或,煅烧时间为10-200min;可选地为60-150min。
  3. 根据权利要求1所述的制备方法,其特征在于,所述一维金属有机框架材料包括一维线状金属有机框架材料、一维管状金属有机框架材料、一维棒状金属有机框架材料或一维条带状金属有机框架材料中的一种或多种;可选地,所述一维金属有机框架材料包括一维条带状金属有机框架材料。
  4. 根据权利要求3所述的制备方法,其特征在于,所述一维条带状金属有机框架材料由包括下述步骤的制备方法制得:将过渡金属盐与溶剂混合,加入有机配体和碱的溶液中,混合后转移到反应釜中,160-180℃处理5-20h,干燥。
  5. 根据权利要求4所述的制备方法,其特征在于,所述一维条带状金属有机框架材料的长宽比≥10,在宽度方向有50-200nm的尺度;
    和/或,混合后转移到反应釜中后,165-175℃处理5-15h;可选地,170℃处理8-15h。
  6. 根据权利要求4所述的制备方法,其特征在于,金属离子与有机配体的摩尔比为1:1-2;
    和/或,所述过渡金属盐包括Ni(NO 3) 2,Co(NO 3) 2,Fe(NO 3) 2,Fe(NO 3) 3,Mn(NO 3) 2,NiCl 2,CoCl 2,FeCl 2,FeCl 3,MnCl 2,NiCl 2,VCl 3的一种或几种;可选地,所述过渡金属盐包括Ni(NO 3) 2,或Ni(NO 3) 2和Co(NO 3) 2的混合物;进一步可选地,所述过渡金属盐为Ni(NO 3) 2和Co(NO 3) 2的混合物时,Ni 2+和Co 2+的摩尔比为1-10:1-10;
    和/或,所述溶剂包括水、甲醇、乙醇、乙二醇、丙二醇、丁二醇、N,N-二甲基甲酰胺的一种或多种;
    和/或,所述有机配体包括对苯二甲酸,均苯三甲酸,2’-甲基咪唑,4,4’-联苯二甲酸的一种或多种;可选地,所述有机配体为4,4’-联苯二甲酸;
    和/或,所述碱包括氢氧化钠,氢氧化钾,三乙胺,甲酸钠的一种或几种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述煅烧在管式炉中进行;
    和/或,煅烧时通入辅助气体,所述辅助气体包括:氮气、氧气、空气、氦气、氢气、氩气中的一种或多种;
    和/或,以2-20℃/min的升温速率升至煅烧温度。
  8. 权利要求1-7任一项所述的制备方法制得的一维金属氧化物/碳化物复合材料。
  9. 根据权利要求8所述的一维金属氧化物/碳化物复合材料,其特征在于,所述一维金属氧化物/碳化物复合材料为空心结构;
    或,所述一维金属氧化物/碳化物复合材料为管状结构。
  10. 权利要求1-7任一项所述的制备方法或权利要求8-9任一项所述的一维金属氧化物/碳化物复合材料在电催化、电池、电容器、传感器或气体吸附中的应用。
PCT/CN2020/108936 2019-12-31 2020-08-13 一种一维金属氧化物/碳化物复合材料及其制备方法 WO2021135252A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911419839.8A CN111105935B (zh) 2019-12-31 2019-12-31 一种一维金属氧化物/碳化物复合材料及其制备方法
CN201911410023.9A CN111129468B (zh) 2019-12-31 2019-12-31 一种一维金属氧化物/碳化物复合材料及其制备方法
CN201911410023.9 2019-12-31
CN201911419839.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135252A1 true WO2021135252A1 (zh) 2021-07-08

Family

ID=76687284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108936 WO2021135252A1 (zh) 2019-12-31 2020-08-13 一种一维金属氧化物/碳化物复合材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2021135252A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388753A (zh) * 2021-12-13 2022-04-22 安徽大学 边缘氮掺杂多孔空心碳纳米棒材料的制备方法、制得的材料及其应用
CN114988387A (zh) * 2022-04-29 2022-09-02 暨南大学 一种空心微米碳材料的制备方法及其应用
CN115058616A (zh) * 2022-06-16 2022-09-16 中国人民解放***箭军工程大学 一维微纳分级结构Co/C/CNTs复合吸波材料及其制备方法
CN116060067A (zh) * 2023-01-05 2023-05-05 中国医学科学院药用植物研究所 基于二维金属碳化物和过渡金属氧化物的复合材料及其在检测山奈酚中的应用
WO2023097744A1 (zh) * 2021-12-03 2023-06-08 苏州科技大学 多维度组装光热相变材料及其制备方法
CN117353046A (zh) * 2023-12-05 2024-01-05 南昌大学 一种中空多层复合电磁吸波材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445079A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 一种均相多元多孔氧化物材料、制备方法及其用途
CN104868102A (zh) * 2015-06-10 2015-08-26 中南大学 一种钠离子电池硫化锌基负极材料及其制备方法
CN111105935A (zh) * 2019-12-31 2020-05-05 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111129468A (zh) * 2019-12-31 2020-05-08 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445079A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 一种均相多元多孔氧化物材料、制备方法及其用途
CN104868102A (zh) * 2015-06-10 2015-08-26 中南大学 一种钠离子电池硫化锌基负极材料及其制备方法
CN111105935A (zh) * 2019-12-31 2020-05-05 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111129468A (zh) * 2019-12-31 2020-05-08 苏州阿德旺斯新材料有限公司 一种一维金属氧化物/碳化物复合材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097744A1 (zh) * 2021-12-03 2023-06-08 苏州科技大学 多维度组装光热相变材料及其制备方法
CN114388753A (zh) * 2021-12-13 2022-04-22 安徽大学 边缘氮掺杂多孔空心碳纳米棒材料的制备方法、制得的材料及其应用
CN114988387A (zh) * 2022-04-29 2022-09-02 暨南大学 一种空心微米碳材料的制备方法及其应用
CN115058616A (zh) * 2022-06-16 2022-09-16 中国人民解放***箭军工程大学 一维微纳分级结构Co/C/CNTs复合吸波材料及其制备方法
CN115058616B (zh) * 2022-06-16 2023-08-08 中国人民解放***箭军工程大学 一维微纳分级结构Co/C/CNTs复合吸波材料及其制备方法
CN116060067A (zh) * 2023-01-05 2023-05-05 中国医学科学院药用植物研究所 基于二维金属碳化物和过渡金属氧化物的复合材料及其在检测山奈酚中的应用
CN117353046A (zh) * 2023-12-05 2024-01-05 南昌大学 一种中空多层复合电磁吸波材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2021135252A1 (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN108963276B (zh) 用于催化氧还原的非贵金属催化剂及其制备方法
CN111129468B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN107946560B (zh) 碳限域金属或金属氧化物复合纳米结构材料及其制备方法和应用
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
KR101446116B1 (ko) 탄소나노튜브 제조용 금속촉매의 제조방법 및 이를 이용한 탄소나노튜브의 제조방법
CN113371693B (zh) 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
Li et al. Engineering coordination polymer-derived one-dimensional porous S-doped Co 3 O 4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors
CN110272035B (zh) 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
CN111105935B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
Li et al. High proportion of 1 T phase MoS2 prepared by a simple solvothermal method for high-efficiency electrocatalytic hydrogen evolution
CN111167495B (zh) 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
US20130252806A1 (en) Ag/MnyOx/C CATALYST, PREPARATION AND APPLICATION THEREOF
US11534739B2 (en) Lignite char supported nano-cobalt composite catalyst and preparation method thereof
CN113649045B (zh) 一种以Ni-MOF为前驱体的改性氮化钛纳米管及其制备方法和应用
Kong et al. Soft-confinement conversion of Co-Salen-organic-frameworks to uniform cobalt nanoparticles embedded within porous carbons as robust trifunctional electrocatalysts
CN111203250A (zh) 一种一维双金属碳化物及其制备方法
Xu et al. A review of cobalt monoxide and its composites for supercapacitors
CN111495380A (zh) 一种碳纳米管催化剂的制备方法及一种碳纳米管
CN112436156A (zh) 一种锌-空气电池及其制备方法与应用
Abu Hatab et al. MOF-Derived Cobalt@ Mesoporous Carbon as Electrocatalysts for Oxygen Evolution Reaction: Impact of Organic Linker
Yang et al. PtRuAgCoNi High-Entropy Alloy Nanoparticles for High-Efficiency Electrocatalytic Oxidation of 5-Hydroxymethylfurfural
CN112779550B (zh) 一种三维微米管状析氢反应电催化剂及其制备方法
CN115475641A (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN112436157B (zh) 三维碳纳米管丛林及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910913

Country of ref document: EP

Kind code of ref document: A1