WO2021135022A1 - 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备 - Google Patents

带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备 Download PDF

Info

Publication number
WO2021135022A1
WO2021135022A1 PCT/CN2020/088763 CN2020088763W WO2021135022A1 WO 2021135022 A1 WO2021135022 A1 WO 2021135022A1 CN 2020088763 W CN2020088763 W CN 2020088763W WO 2021135022 A1 WO2021135022 A1 WO 2021135022A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
electrical isolation
isolation layer
resonator
Prior art date
Application number
PCT/CN2020/088763
Other languages
English (en)
French (fr)
Inventor
庞慰
杨清瑞
张孟伦
Original Assignee
诺思(天津)微***有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微***有限责任公司 filed Critical 诺思(天津)微***有限责任公司
Priority to EP20910346.4A priority Critical patent/EP4087131A4/en
Publication of WO2021135022A1 publication Critical patent/WO2021135022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02133Means for compensation or elimination of undesirable effects of stress
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H2009/155Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques

Definitions

  • the present invention relates to the field of semiconductors, and in particular to a bulk acoustic wave resonator, a filter, an electronic device having the resonator or the filter, and a method for manufacturing the bulk acoustic wave resonator.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode;
  • the resonator further includes an electrode connection part, an electrical isolation layer and an electrode pin;
  • the electrode connection portion covers the electrical isolation layer, and one end of the electrode connection portion is electrically connected to the top electrode, and the other end is suitable for electrical connection to the electrode pin;
  • a part of the electrical isolation layer forms electrical isolation between the electrode connection portion of the resonator and the bottom electrode
  • At least a portion of the electrical isolation layer covers at least a portion of the end surface of the piezoelectric layer and the end surface of the bottom electrode to form electrical isolation between the electrode connection portion and the bottom electrode.
  • the embodiment of the present invention also relates to a method for manufacturing a bulk acoustic wave resonator, the bulk acoustic wave resonator comprising: a substrate; a bottom electrode; a top electrode; a piezoelectric layer disposed between the bottom electrode and the top electrode; an acoustic mirror,
  • the method includes the steps:
  • the bottom electrode and piezoelectric layer that is, etch and pattern the bottom electrode layer and piezoelectric film layer to form the bottom electrode and piezoelectric layer of the resonator;
  • a conductive metal layer is deposited, the conductive metal layer covers a portion of the top surface of the piezoelectric layer and an electrical isolation layer to form a top electrode and an electrode connection portion, the electrode connection portion is electrically connected to the top electrode, and the electrical isolation The layer provides an electrical isolation space between the electrode connection part and the bottom electrode.
  • the embodiment of the present invention also relates to a filter including the above-mentioned bulk acoustic wave resonator.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or the above-mentioned resonator.
  • Fig. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • FIG. 4-8 are process diagrams exemplarily showing the method of manufacturing the bulk acoustic wave resonator in FIG. 1 according to an exemplary embodiment of the present invention
  • FIG. 4A shows an alternative to the structure shown in FIG. 4
  • FIG. 4B shows another example of the structure shown in FIG. 4
  • FIG. 8A shows the structure shown in FIG. 8
  • FIG. 8 An optional embodiment, a schematic cross-sectional view of a structure formed by depositing conductive metal on the electrode connection portion of the bottom electrode when the top electrode and the electrode connection layer are arranged;
  • FIG. 9-11 are process diagrams exemplarily showing the method of manufacturing the bulk acoustic wave resonator in FIG. 2 according to an exemplary embodiment of the present invention, and FIG. 11A shows a possible structure as the structure shown in FIG. 11
  • FIG. 11A shows a possible structure as the structure shown in FIG. 11
  • FIGS. 12-13 are process diagrams exemplarily showing a method of manufacturing the bulk acoustic wave resonator in FIG. 3 according to an exemplary embodiment of the present invention.
  • the present invention uses a top-down processing method to directly grow a piezoelectric layer after the bottom electrode is grown, or prepare a bulk acoustic wave resonator on a single crystal piezoelectric layer with a bottom electrode obtained by other methods (such as bonding) , By adding air or dielectric isolation layer, the top electrode is led out.
  • the invention can also minimize the parasitic capacitance between the top and bottom electrodes in the non-resonant region, thereby ensuring that the electromechanical coupling coefficient of the resonator will not decrease.
  • the manufacturing methods of the present invention all adopt conventional process steps, are simple to operate, easy to manufacture on a large scale, and have high device stability.
  • Substrate usually the material can be monocrystalline silicon, gallium arsenide, sapphire, quartz, lithium niobate, silicon carbide, etc.
  • the 20 Acoustic mirror.
  • it is an air cavity.
  • a Bragg reflector or other equivalent acoustic reflection structure can also be used.
  • the cavity can be a through hole formed by etching on the back side, or a cavity formed in the substrate.
  • the cavity structure may also be an air gap structure formed above the substrate.
  • Electrode/top electrode Gold (Au), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), titanium tungsten (TiW), aluminum ( Al), titanium (Ti) or a combination of the above metals or their alloys, the electrode materials of the two layers are generally the same, but they can also be different.
  • Electrode connection part the same material as the top electrode.
  • Electrode pin the material is the same as the bottom electrode.
  • Piezoelectric film or piezoelectric layer Piezoelectric film or piezoelectric layer, polycrystalline or single crystal AlN, rare earth element doped AlN, lead zirconate titanate (PZT), zinc oxide (ZnO), single crystal lithium niobate (LiNbO 3 ), niobic acid Materials such as potassium (KNbO 3 ) or lithium tantalate (LiTaO 3 ), but not limited to the above materials.
  • Dielectric layer Dielectric layer, optional AlN, rare earth doped AlN, silicon nitride, silicon dioxide and other dielectric materials.
  • Dielectric layer or air gap where the dielectric material can be AlN, rare earth doped AlN, silicon nitride, silicon dioxide and other dielectric materials.
  • the overlapping area of the bottom electrode, the piezoelectric layer, the top electrode and the acoustic mirror in the thickness direction of the resonator constitutes the effective area of the resonator.
  • Fig. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the electrical isolation layer 70 is a single non-conductive dielectric layer, which may be a void layer or a solid non-conductive dielectric layer.
  • Fig. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • 70 is an air gap
  • 60 is a dielectric layer. Locally introducing an air gap 70 near the effective area of the resonator can improve the isolation between the top electrode and the bottom electrode. By using the dielectric layer 60, the floating span of the top electrode can be reduced, thereby improving structural stability.
  • the electrical isolation layer includes two layers, a layer 70 that can be etched and released (a void layer after release) and a solid non-conductive dielectric layer 60.
  • the layer 70 may not be released.
  • the electrical isolation layer is an isolation layer including two solid non-conductive dielectric layers.
  • the gap layer 70 covers a part of the top surface of the piezoelectric layer 50
  • the dielectric layer 60 also covers a part of the top surface of the piezoelectric layer 50.
  • the right end of the gap layer 70 is in the dielectric layer 60. The inner side of the right end or closer to the center of the resonator.
  • the positional relationship between the layer 70 and the layer 60 is not limited to this.
  • Fig. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • the isolation layer is not only deposited under the top electrode, but also deposited in a region other than the region shown in FIG. 2, for example, it can cover the electrode pins or the electrode connection part of the bottom electrode.
  • the structure shown in FIG. 3 in addition to the coverage area shown in FIG.
  • the electrical isolation layer also covers the electrode pins and/or the bottom electrode of the resonator located outside the effective area;
  • the resonator further includes at least one conductive through hole 45, the conductive through hole 45 passes through the additional electrical isolation layer and is electrically connected to the corresponding electrode pin or the bottom electrode, wherein the additional electrical isolation layer
  • the electrode connecting portion 41 is electrically connected to the electrode pins 42 via an electrical through hole 45 passing through the other electrical isolation layer.
  • the electrode connection portion 41 covers the electrical isolation layer 60/70, and one end of the electrode connection portion 41 is electrically connected to the top electrode 40, and the other end is suitable for electrical connection to the electrode pin 42; A part of the isolation layer forms electrical isolation between the electrode connection portion 41 of the resonator and the bottom electrode 30.
  • the electrode connection layer 41 and the top electrode 40 can be deposited in the same layer at the same time, so that the electrode connection portion can have the same thickness as the top electrode.
  • the end surface of the piezoelectric layer 50 and the end surface of the bottom electrode 30 form a coplanar slope.
  • the included angle between the inclined surface and the top surface of the substrate is in the range of 10-85°, and further, is in the range of 15-75°.
  • the electrical isolation layer 60/70 covers the end surface of the piezoelectric layer 50 and the end surface of the electrode pin 42, and also covers a part of the top surface of the piezoelectric layer 50. Further, the electrical isolation layer 60/70 covers one end of the piezoelectric layer 50 and falls into the acoustic mirror.
  • the electrode connecting portion 41 includes an inclined section 41A connected with the top electrode 40 and a horizontal section 41B connected with the inclination.
  • the electrical isolation layer 60/70 forms electrical isolation between the electrode pin 42 and the bottom electrode 30 in the lateral direction of the resonator.
  • the electrode pins 42 can be arranged in the same layer as the bottom electrode 30, and the same layer space between the electrode pins 42 and the bottom electrode 30 in the lateral direction is filled by a part of the electrical isolation layer 60/70.
  • the electrical isolation layer 60/70 covers a portion of the top surface of the piezoelectric layer 50, and the electrical isolation layer covers a portion of the top surface of the electrode pin 42; and the electrical isolation layer 60/70 is on the electrode pin
  • the portion between 42 and the bottom electrode 30 has a concave shape with respect to the portion of the electrical isolation layer covering the top surface of the top electrode and the top surface of the electrode pin.
  • the electrical isolation layer 70 is provided between the electrode connection portion 41 and the electrode pin 42 in the thickness direction of the resonator on the left side in FIG. 1.
  • FIGS. 1 to 3 The method of manufacturing the structure shown in FIGS. 1 to 3 will be exemplarily described below with reference to FIGS. 4-12.
  • FIG. 4-8 are process diagrams exemplarily showing a method of manufacturing the bulk acoustic wave resonator in FIG. 1 according to an exemplary embodiment of the present invention.
  • Fig. 4A shows another exemplary cross-sectional view of a bottom electrode layer and a piezoelectric film layer provided on a substrate with an acoustic mirror cavity (to be released) on the upper surface as an alternative embodiment of the structure shown in Fig. 4, for example A substrate as shown in FIG.
  • FIG. 4A can be obtained, in which a cavity 20 filled with a sacrificial layer has been embedded in the substrate 10, and a complete bottom electrode 30 and a piezoelectric layer 50 are provided at the same time.
  • a sacrificial layer with protrusions is preset on the surface of the substrate 10 to finally form the cavity 20, and at the same time it has a complete bottom electrode 30 and a piezoelectric layer 50.
  • the cross-sectional view is as shown in Fig. 5, and the upper picture in Fig. 5 shows the manufacture of the bulk acoustic wave resonator in Fig. 1
  • the schematic cross-sectional view of the process diagram of the method, the bottom diagram in FIG. 5 is the top view of the top diagram, and the top view in FIG. 5 shows the bottom electrode part and the piezoelectric layer material part separated from the resonator ( Figure 5 corresponds to 50a), and the piezoelectric layer (corresponding to 50b in FIG. 5) and the bottom electrode 30 used to form the body region of the resonator.
  • the sides of the piezoelectric layer and the electrode layer can be etched into a topography with a certain inclination angle ⁇ , and the angle range is between 10 degrees and 85 degrees. Further, from 15 degrees to 75 degrees.
  • a dielectric layer or sacrificial layer 70 is first deposited between the electrode pins 42 and the piezoelectric layer 50, as shown in FIG. 7.
  • a metal layer (including the top electrode 40 and the electrode connecting portion 41) is deposited, and the top electrode 40 and the electrode connecting portion 41 are patterned by photolithography, etching, or stripping processes to form the structure shown in FIG. 8.
  • FIG. 8A shows a schematic cross-sectional view of a structure formed by depositing conductive metal on the electrode connection portion of the bottom electrode as an alternative embodiment of the structure shown in FIG. 8 when the top electrode and the electrode connection layer are provided.
  • the metal layer simultaneously covers the electrode connection part or the pins of the bottom electrode, so that the electrode pins of the bottom electrode are thickened to further reduce the resistivity.
  • the air cavity at the bottom of the resonator is obtained by back etching method. If the isolation layer 70 is a sacrificial layer material, the sacrificial layer is further released to form an air gap structure. If the isolation layer 70 is silicon dioxide, hydrofluoric acid is used for humidification. The method is released, and the structure shown in Figure 1 is obtained.
  • a dielectric layer 60 is first deposited as an isolation layer between the bottom electrode and the electrode pins, as shown in FIG. 9.
  • the upper diagram in FIG. 9 is a schematic cross-sectional view showing a process diagram of the method for manufacturing the bulk acoustic wave resonator in FIG. 2, and the lower diagram in FIG. 9 is a top view of the upper diagram.
  • FIG. 10 is a schematic cross-sectional view showing a process diagram of the method of manufacturing the bulk acoustic wave resonator in FIG. 2, and the lower diagram in FIG. 10 is a top view of the upper diagram.
  • FIG. 11A shows a schematic cross-sectional view of a structure formed by depositing conductive metal on the electrode connection portion of the bottom electrode as an alternative embodiment of the structure shown in FIG. 11 when the top electrode and the electrode connection layer are provided.
  • the electrode pins of the bottom electrode are thickened, which can further reduce the resistivity.
  • the air cavity at the bottom of the resonator is obtained by the back etching method, and the sacrificial layer 70 is further released to form an air gap structure, and the structure shown in FIG. 2 is obtained.
  • the upper diagram in FIG. 12 is a schematic cross-sectional view showing a process diagram of the method for manufacturing the bulk acoustic wave resonator in FIG. 3, and the lower diagram in FIG. 12 is a top view of the upper diagram.
  • FIG. 13 is a schematic cross-sectional view showing a process diagram of the method for manufacturing the bulk acoustic wave resonator in FIG. 3, and the lower diagram in FIG. 13 is a top view of the upper diagram.
  • the patterned top electrode 40 and the electrode connecting portion 41 are obtained by metal sputtering, photolithography, etching, or stripping, and then the isolation layer 60 above the electrode pins 42 is etched, and a conductive material with good conductivity is deposited or sputtered. The metal layer connects the top electrode 40 with the top electrode pin 42. Finally, the air cavity at the bottom of the resonator is obtained by the back side etching method, and the sacrificial layer 70 is further released to form an air gap structure, and the structure shown in FIG. 3 is obtained.
  • the inner side means the side close to the center of the resonator in the transverse direction of the resonator
  • the outer side means the side far from the center of the resonator in the transverse direction of the resonator
  • the direction toward the inner side or inward means In the direction toward the center of the resonator, the direction toward the outside or outward, that is, the direction away from the center of the resonator.
  • the bulk acoustic wave resonator according to the present invention can be used to form a filter.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode;
  • the resonator further includes an electrode connection part, an electrical isolation layer and an electrode pin;
  • the electrode connection portion covers the electrical isolation layer, and one end of the electrode connection portion is electrically connected to the top electrode, and the other end is suitable for electrical connection to the electrode pin;
  • a part of the electrical isolation layer forms electrical isolation between the electrode connection portion of the resonator and the bottom electrode
  • At least a portion of the electrical isolation layer covers at least a portion of the end surface of the piezoelectric layer and the end surface of the bottom electrode to form electrical isolation between the electrode connection portion and the bottom electrode.
  • the electrode connection part and the top electrode have the same thickness.
  • the end surface of the piezoelectric layer and the end surface of the bottom electrode form a coplanar slope.
  • the angle between the inclined surface and the top surface of the base is in the range of 10-85°.
  • the angle between the inclined surface and the top surface of the base is in the range of 15-75°.
  • the electrical isolation layer also covers a part of the top surface of the piezoelectric layer and the end surface of the piezoelectric layer;
  • the electrical isolation layer includes an end portion covering the top surface of the piezoelectric layer, and the end portion is located inside the edge of the acoustic mirror.
  • the electrode connecting portion includes an inclined section connected with the top electrode and a horizontal section connected with the inclination.
  • At least a part of the electrical isolation layer forms electrical isolation between the electrode pins and the bottom electrode in the lateral direction of the resonator.
  • the electrode pins and the bottom electrode are arranged in the same layer;
  • the same layer space in the lateral direction between the electrode pin and the bottom electrode is filled with a part of the electrical isolation layer.
  • the electrical isolation layer covers a part of the top surface of the electrode pin.
  • the electrical isolation layer covers a part of the top surface of the electrode pin
  • the portion of the electrical isolation layer between the electrode pin and the bottom electrode has a concave shape relative to the portion of the electrical isolation layer covering the top surface of the top electrode and the top surface of the electrode pin.
  • the electrode connecting portion and the top electrode have the same thickness
  • the electrical isolation layer has a portion provided between the electrode connection part and the electrode pin in the thickness direction of the resonator on one side of the electrode pin.
  • the resonator further includes another electrical isolation layer covering the electrode pins and/or the bottom electrode of the resonator located outside the effective area;
  • the resonator further includes at least one conductive through hole, the conductive through hole passes through the additional electrical isolation layer to be electrically connected to the corresponding electrode pin or the bottom electrode,
  • the electrode connecting portion is electrically connected to the electrode pins via electrical through holes passing through the additional electrical isolation layer.
  • the electrical isolation layer is a single non-conductive dielectric layer or a single void layer
  • the electrical isolation layer includes a non-conductive dielectric layer and a gap layer, at least a part of the gap layer is located between the electrode connection portion and the non-conductive dielectric layer in the thickness direction of the resonator; or
  • the electrical isolation layer includes two different non-conductive dielectric layers.
  • a part of the void layer covers a part of the top surface of the piezoelectric layer
  • Both a part of the void layer and a part of the non-conductive dielectric layer cover a part of the top surface of the piezoelectric layer.
  • the piezoelectric layer is a single crystal piezoelectric film.
  • a method for manufacturing a bulk acoustic wave resonator comprising: a substrate; a bottom electrode; a top electrode; a piezoelectric layer arranged between the bottom electrode and the top electrode; an acoustic mirror, the method comprising the steps :
  • the bottom electrode and piezoelectric layer that is, etch and pattern the bottom electrode layer and piezoelectric film layer to form the bottom electrode and piezoelectric layer of the resonator;
  • a conductive metal layer is deposited, the conductive metal layer covers a portion of the top surface of the piezoelectric layer and an electrical isolation layer to form a top electrode and an electrode connection portion, the electrode connection portion is electrically connected to the top electrode, and the electrical isolation The layer provides an electrical isolation space between the electrode connection part and the bottom electrode.
  • the method further includes the steps of: releasing the electrical isolation layer; or
  • a non-conductive dielectric layer and a sacrificial layer are sequentially provided, the sacrificial layer covers at least a part of the non-conductive dielectric layer, and the method further includes the step of releasing the sacrificial layer to A gap layer is formed between the electrode connection part and the non-conductive dielectric layer in the thickness direction of the resonator.
  • the end surface of the piezoelectric layer and the end surface of the bottom electrode form a coplanar slope, and the angle between the slope and the top surface of the substrate is at Within the range of 10-85°.
  • the electrical isolation layer is made to cover a part of the top surface of the piezoelectric layer and the end surface of the piezoelectric layer.
  • the portion of the electrical isolation layer covering the piezoelectric layer has an inclined surface and a horizontal plane in contact with the inclined surface;
  • the electrode connecting portion covers the inclined surface and the horizontal surface to form a bridge structure of the top electrode.
  • the method further includes the step of: removing the piezoelectric layer portion of the discrete component to expose the bottom electrode portion serving as the electrode pin;
  • the conductive metal layer covers the electrical isolation layer, a part of the top surface of the piezoelectric layer, and the electrode pins.
  • one side of the electrical isolation layer covers a part of the top surface of the electrode pin, and the other side covers a part of the top surface of the piezoelectric layer, and the electrical isolation layer is on the electrode
  • the part between the pin and the top electrode has a recessed part.
  • the electrical isolation layer also covers the electrode pins, or also covers the electrode pins and the part of the bottom electrode outside the effective area;
  • the method further includes the steps of: providing conductive vias electrically connected to the electrode pins;
  • the step of providing the conductive via it further includes electrically connecting the electrode connecting portion with the conductive via.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-16.
  • An electronic device comprising the filter according to 25 or the bulk acoustic wave resonator according to any one of 1-16.
  • the electronic equipment here includes but is not limited to intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种体声波谐振器,包括:基底;底电极;顶电极;压电层,设置在底电极与顶电极之间;声学镜,其中:所述谐振器还包括电极连接部、电学隔离层和电极引脚;所述电极连接部覆盖所述电学隔离层、且电极连接部的一端与顶电极电连接、另一端适于与电极引脚电连接;所述电学隔离层的一部分在谐振器的电极连接部与底电极之间形成电学隔离;且所述电学隔离层的至少一部分覆盖所述压电层的端面的至少一部分以及底电极的端面,以在电极连接部与底电极之间形成电学隔离。本发明还公开了一种体声波谐振器的制造方法,一种具有该谐振器的滤波器及具有该滤波器或谐振器的电子设备。

Description

带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备 技术领域
本发明涉及半导体领域,尤其涉及一种体声波谐振器,一种滤波器,一种具有该谐振器或该滤波器的电子设备,以及一种体声波谐振器的制造方法。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
在传统体声波谐振器中,多采用自下而上的加工方式,其关键步骤是,在溅射底电极后对底电极先进行图形化再继续生长压电层,从而导致压电层在电极边缘处容易发生断裂或晶向改变导致机电耦合系数下降。
此外,在单晶体声波谐振器中,由于单晶生长对界面材料、界面结晶度、界面洁净度、粗糙度、平整度要求极高,因此,不能直接在已经图形化的底电极上生长单晶材料,多采用背面刻蚀的方法沉积底电极,增加了工艺难度以及晶圆级器件封装的复杂度(需要正面和背面两侧封装)。
发明内容
为解决或缓解现有技术中的技术问题的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
底电极;
顶电极;
压电层,设置在底电极与顶电极之间;
声学镜,
其中:
所述谐振器还包括电极连接部、电学隔离层和电极引脚;
所述电极连接部覆盖所述电学隔离层、且电极连接部的一端与顶电极电连接、另一端适于与电极引脚电连接;
所述电学隔离层的一部分在谐振器的电极连接部与底电极之间形成电学隔离;且
所述电学隔离层的至少一部分覆盖所述压电层的端面的至少一部分以及底电极的端面,以在电极连接部与底电极之间形成电学隔离。
本发明的实施例还涉及一种体声波谐振器的制造方法,所述体声波谐振器包括:基底;底电极;顶电极;压电层,设置在底电极与顶电极之间;声学镜,所述方法包括步骤:
在基底上提供覆盖基底的底电极层与覆盖底电极的压电薄膜层;
图形化底电极与压电层,即刻蚀和图形化底电极层与压电薄膜层,以形成谐振器的底电极与压电层;
提供电学隔离层,所述电学隔离层至少覆盖压电层的端面的一部分以及所述底电极的端面;和
沉积导电金属层,所述导电金属层覆盖压电层的顶面的一部分以及电学隔离层,以形成顶电极以及电极连接部,所述电极连接部与所述顶电极电连接,所述电学隔离层为电极连接部与底电极之间提供电学隔离的空间。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中 的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图;
图2为根据本发明的另一个示例性实施例的体声波谐振器的剖面示意图;
图3为根据本发明的再一个示例性实施例的体声波谐振器的剖面示意图;
图4-8为根据本发明的一个示例性实施例的、示例性示出制造图1中的体声波谐振器的方法的工艺过程图,图4A示出作为图4中所示结构的可选实施例,在基底内设置有声学镜空腔(待释放)的基底上设置底电极层与压电薄膜层的另外的示例性剖视图,图4B示出作为图4中所示结构的另一个可选实施例,在基底上表面上设置有声学镜空腔(待释放)的基底上设置底电极层与压电薄膜层的另外的示例性剖视图,图8A示出作为图8中所示的结构的可选实施例,在设置顶电极以及电极连接层时在底电极的电极连接部上沉积导电金属而形成的结构的剖视示意图;
图9-11为根据本发明的一个示例性实施例的、示例性示出制造图2中的体声波谐振器的方法的工艺过程图,图11A示出作为图11中所示的结构的可选实施例,在设置顶电极以及电极连接层时在底电极的电极连接部上沉积导电金属而形成的结构的剖视示意图;
图12-13为根据本发明的一个示例性实施例的、示例性示出制造图3中的体声波谐振器的方法的工艺过程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
本发明通过自上而下的加工方式,在生长完底电极后直接生长压电层, 或者通过其他方式(如:键合)获得的具有底电极的单晶压电层上制备体声波谐振器,通过增加空气或介质隔离层,将顶电极引出。本发明还可最大限度的减小在非谐振区域顶底电极之间的寄生电容,从而可以保证谐振器的机电耦合系数不会下降。本发明的制造方法均采用常规工艺步骤,操作简单,容易大规模制造,器件稳定性高。
在本发明中,各附图标记如下:
10:基底,通常材料可选单晶硅,砷化镓,蓝宝石,石英,铌酸锂,碳化硅等。
20:声学镜,所述实例中为空气腔,也可采用布拉格反射层或其它等效声学反射结构,所述空腔可以是背面刻蚀形成的通孔,也可以是形成在基底中的空腔结构,还可以是形成于基底上方的空气隙结构。
30/40:底电极/顶电极,可采用金(Au)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)或以上金属的复合或其合金,两层电极材料一般相同,但也可以不同。
45:导电通孔,可以采用上述金属材料。
41:电极连接部,材料同顶电极。
42:电极引脚,材料同底电极。
50:压电层薄膜或压电层,多晶或单晶AlN,稀土元素掺杂AlN,锆钛酸铅(PZT)、氧化锌(ZnO),单晶铌酸锂(LiNbO 3)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料,但不局限于以上材料。
60:介质层,可选AlN、稀土元素掺杂AlN、氮化硅、二氧化硅等介质材料。
70:介质层或空气隙,其中介质材料可选AlN、稀土元素掺杂AlN、氮化硅、二氧化硅等介质材料。
在本发明中,底电极、压电层、顶电极和声学镜在谐振器的厚度方向上的重叠区域构成谐振器的有效区域。
图1为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图。在图1所示的结构中,电学隔离层70为单层不导电介质层,其可以 是空隙层,也可以是固态的不导电介质层。
图2为根据本发明的另一个示例性实施例的体声波谐振器的剖面示意图。图2中,70为空气隙,60为介质层。在靠近谐振器有效区域的位置局部引入空气隙70可以提高顶电极与底电极之间的隔离度,通过使用介质层60可以使顶电极悬空跨度减小,从而提高结构稳定性。
在图2中,电学隔离层包括了两层,即可被刻蚀释放的层70(释放后即为空隙层)和固态不导电介质层60。当然层70也可以不释放,此时电学隔离层为包括了两层固态不导电介质层的隔离层。如图2所示,空隙层70覆盖压电层50的顶面的一部分,同时介质层60也覆盖压电层50的顶面的一部分,在图2中,空隙层70的右端处于介质层60的右端的内侧或者更靠近谐振器的中心。不过,层70与层60之间的位置关系不限于此。
图3为根据本发明的再一个示例性实施例的体声波谐振器的剖面示意图。在图3中,隔离层不仅沉积在顶电极的下方,也沉积在图2中所示的区域以外的区域,例如可以覆盖电极引脚,也可以覆盖底电极的电极连接部。换言之,在图3所示的结构中,电学隔离层除了如图1-2中的覆盖区域之外,还覆盖电极引脚和/或所述谐振器的位于有效区域之外的底电极;所述谐振器还包括至少一个导电通孔45,所述导电通孔45穿过所述另外的电学隔离层而与对应的电极引脚或底电极电连接,其中,在所述另外的电学隔离层覆盖电极引脚的情况下,所述电极连接部41经由穿过所述另外的电学隔离层的电学通孔45与电极引脚42电连接。
基于图1-图3的结构,可知,电极连接部41覆盖电学隔离层60/70、且电极连接部41的一端与顶电极40电连接、另一端适于与电极引脚42电连接;电学隔离层的一部分在谐振器的电极连接部41与底电极30之间形成电学隔离。
如能够理解的,如后面制造方法中提及的,电极连接层41与顶电极40可同层同时沉积,从而电极连接部可以与顶电极具有相同的厚度。
如图1-3中所示,所述压电层50的端面与所述底电极30的端面形成共面的斜面。所述斜面与基底的顶面之间的夹角(例如参见图5中的θ)在10-85°的范围内,进一步的,在15-75°的范围内。
例如参见图1和图2,电学隔离层60/70的至少一部分覆盖压电层50的端面以及电极引脚42的端面,还覆盖压电层50的顶面的一部分。进一步的,电学隔离层60/70覆盖在压电层50的一端落入声学镜内。此外,如图1所示,所述电极连接部41包括与顶电极40连接的倾斜段41A以及与所述倾斜度相接的水平段41B。
如图1-3所示,所述电学隔离层60/70的至少一部分在谐振器的横向方向上在电极引脚42与底电极30之间形成电学隔离。
如图1-3所示,电极引脚42可以与底电极30同层布置,电极引脚42与底电极30之间在横向方向上的同层空间由电学隔离层60/70的一部分填充。
如图1-3所示,电学隔离层60/70覆盖压电层50的顶面的一部分,电学隔离层覆盖电极引脚42的顶面的一部分;且电学隔离层60/70在电极引脚42与底电极30之间的部分,相对于电学隔离层的覆盖顶电极的顶面以及电极引脚的顶面的部分,具有下凹的形状。
例如参见图1,电学隔离层70在图1中的左侧在谐振器的厚度方向上被设置在电极连接部41与电极引脚42之间。
下面参照附图4-12示例性描述制造图1-图3中所示的结构的方法。
图4-8为根据本发明的一个示例性实施例的、示例性示出制造图1中的体声波谐振器的方法的工艺过程图。
首先获得如图4所示的基底10,在基底10上已经具有完整底电极30和完整压电层50。在基底10上形成具有完整底电极30和完整压电层50的结构不限于图4所示。图4A示出作为图4中所示结构的可选实施例,在上表面设置有声学镜空腔(待释放)的基底上设置底电极层与压电薄膜层的另外的示例性剖视图,例如可以获得如图4A所示的基底,在基底10中已经预埋了具有牺牲层填充的空腔20,并同时具有完整底电极30和压电层50。或者,如图4B所示,在基底10表面预置了突起的牺牲层以便最终形成空腔20,并同时具有完整的底电极30和压电层50。
然后,以图4所示的结构为基础继续说明,也可以在如图4A和图4B所示的结构上继续进行。
采用光刻、刻蚀技术在压电层及底电极上同时制作出底电极图形,其截面图如图5中的所示,图5中上图为示出制造图1中的体声波谐振器的方法的工艺过程图的剖视示意图,图5中的下图为上图的俯视图,在图5中的俯视图中,示出了与谐振器分立的底电极部分与压电层材料部分(图5中对应于50a),以及用于形成谐振器的主体区域的压电层(图5中对应于50b)与底电极30。为了保证隔离层可以完整覆盖底电极和压电层的侧壁,可以将压电层和电极层的侧面刻蚀成具有一定倾角θ的形貌,该角度范围在10度到85度之间,进一步的,从15度到75度。
继续采用光刻、刻蚀等工艺选择性刻蚀压电层使得顶电极引脚42以及底电极引脚露出,其剖视图和俯视图如图6所示。
在图6的基础上,制造图1所示谐振器结构的步骤接着如下:
在电极引脚42与压电层50之间先沉积一层介质层或者牺牲层70,如图7所示。
而后沉积金属层(包括顶电极40以及电极连接部41)并用光刻、刻蚀或剥离工艺将顶电极40和电极连接部41图形化,形成如图8所示结构。
图8A示出作为图8中所示的结构的可选实施例,在设置顶电极以及电极连接层时在底电极的电极连接部上沉积导电金属而形成的结构的剖视示意图。在图8A中的结构中,金属层会同时覆盖底电极的电极连接部分或者引脚,使底电极的电极引脚增厚,以进一步减小电阻率。
最后通过背面刻蚀方法得到谐振器底部的空气腔,若隔离层70为牺牲层材料,则进一步释放牺牲层从而形成空气隙结构,如隔离层70为二氧化硅,则采用氢氟酸进行湿法释放,得到如图1所示结构。
在图6的基础上,制造图2所示谐振器结构的步骤接着如下:
在底电极与电极引脚之间先沉积一层介质层60做隔离层,如图9所示。图9中上图为示出制造图2中的体声波谐振器的方法的工艺过程图的剖视示意图,图9中的下图为上图的俯视图。
然后在隔离层60上沉积一层较薄的牺牲层70,如图10所示。图10中上图为示出制造图2中的体声波谐振器的方法的工艺过程图的剖视示意图,图10中的下图为上图的俯视图。
而后沉积顶电极金属层40和电极连接部层41,并用光刻、刻蚀或剥离工艺将顶电极和电极连接部图形化,形成如图11所示结构。图11A示出作为图11中所示的结构的可选实施例,在设置顶电极以及电极连接层时在底电极的电极连接部上沉积导电金属而形成的结构的剖视示意图,在图11A的结构中,底电极的电极引脚增厚,可以进一步减小电阻率。
最后通过背面刻蚀方法得到谐振器底部的空气腔,并进一步释放牺牲层70从而形成空气隙结构,得到如图2所示结构。
在图6的基础上,制造图3所示谐振器结构的步骤接着如下:
在表面沉积一层隔离层60,并通过刻蚀或者剥离工艺使得隔离层图形化仅露出器件有效区域,如图12所示。图12中上图为示出制造图3中的体声波谐振器的方法的工艺过程图的剖视示意图,图12中的下图为上图的俯视图。
在隔离层60之上,在有效区域与顶电极的电极引脚之间生长一层较薄的牺牲层70,如图13所示。图13中上图为示出制造图3中的体声波谐振器的方法的工艺过程图的剖视示意图,图13中的下图为上图的俯视图。
再通过金属溅射、及光刻刻蚀或剥离等工艺获得图形化的顶电极40、电极连接部41,随后刻蚀电极引脚42上方的隔离层60,并沉积或溅射导电性能良好的金属层将顶电极40与顶电极引脚42相连接。最后通过背面刻蚀方法得到谐振器底部的空气腔,并进一步释放牺牲层70从而形成空气隙结构,得到如图3所示结构。
在本发明中,内侧表示在谐振器的横向方向上靠近谐振器的中心的一侧,而外侧表示在谐振器的横向方向上远离谐振器的中心的一侧;朝向内侧或向内的方向即朝向谐振器的中心的方向上,朝向外侧或向外的方向即远离谐振器的中心的方向。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
底电极;
顶电极;
压电层,设置在底电极与顶电极之间;
声学镜,
其中:
所述谐振器还包括电极连接部、电学隔离层和电极引脚;
所述电极连接部覆盖所述电学隔离层、且电极连接部的一端与顶电极电连接、另一端适于与电极引脚电连接;
所述电学隔离层的一部分在谐振器的电极连接部与底电极之间形成电学隔离;且
所述电学隔离层的至少一部分覆盖所述压电层的端面的至少一部分以及底电极的端面,以在电极连接部与底电极之间形成电学隔离。
2、根据1所述的谐振器,其中:
所述电极连接部与所述顶电极具有相同的厚度。
3、根据1所述的谐振器,其中:
所述压电层的端面与所述底电极的端面形成共面的斜面。
4、根据3所述的谐振器,其中:
所述斜面与基底的顶面之间的夹角在10-85°的范围内。
5、根据4所述的谐振器,其中:
所述斜面与基底的顶面之间的夹角在15-75°的范围内。
6、根据1所述的谐振器,其中:
电学隔离层还覆盖压电层的顶面的一部分以及压电层的端面;或
电学隔离层包括覆盖压电层的顶面的端部,所述端部处于声学镜的边缘的内侧。
7、根据6所述的谐振器,其中:
所述电极连接部包括与顶电极连接的倾斜段以及与所述倾斜度相接的水平段。
8、根据1-7中任一项所述的谐振器,其中:
所述电学隔离层的至少一部分在谐振器的横向方向上在电极引脚与 底电极之间形成电学隔离。
9、根据8所述的谐振器,其中:
所述电极引脚与所述底电极同层布置;
电极引脚与底电极之间在横向方向上的同层空间由所述电学隔离层的一部分填充。
10、根据9所述的谐振器,其中:
电学隔离层覆盖电极引脚的顶面的一部分。
11、根据6所述的谐振器,其中:
电学隔离层覆盖电极引脚的顶面的一部分;且
电学隔离层在电极引脚与底电极之间的部分,相对于电学隔离层的覆盖顶电极的顶面以及电极引脚的顶面的部分,具有下凹的形状。
12、根据11所述的谐振器,其中:
所述电极连接部与所述顶电极具有相同的厚度;且
所述电学隔离层在电极引脚的一侧存在在谐振器的厚度方向上被设置在电极连接部与电极引脚之间的部分。
13、根据1-12中任一项所述的谐振器,其中:
所述谐振器还包括另外的电学隔离层,所述另外的电学隔离层覆盖电极引脚和/或所述谐振器的位于有效区域之外的底电极;
所述谐振器还包括至少一个导电通孔,所述导电通孔穿过所述另外的电学隔离层而与对应的电极引脚或底电极电连接,
其中,在所述另外的电学隔离层覆盖电极引脚的情况下,所述电极连接部经由穿过所述另外的电学隔离层的电学通孔与电极引脚电连接。
14、根据1-13中任一项所述的谐振器,其中:
所述电学隔离层为单层不导电介质层或单层空隙层;或
所述电学隔离层包括不导电介质层以及空隙层,所述空隙层的至少一部分在谐振器的厚度方向上位于电极连接部与所述不导电介质层之间;或者
所述电学隔离层包括两层不同的不导电介质层。
15、根据14所述的谐振器,其中:
所述空隙层的一部分覆盖所述压电层的顶面的一部分;或
所述空隙层的一部分以及所述不导电介质层的一部分均覆盖所述压电层的顶面的一部分。
16、根据1-15中任一项所述的谐振器,其中:
所述压电层为单晶压电薄膜。
17、一种体声波谐振器的制造方法,所述体声波谐振器包括:基底;底电极;顶电极;压电层,设置在底电极与顶电极之间;声学镜,所述方法包括步骤:
在基底上提供覆盖基底的底电极层与覆盖底电极的压电薄膜层;
图形化底电极与压电层,即刻蚀和图形化底电极层与压电薄膜层,以形成谐振器的底电极与压电层;
提供电学隔离层,所述电学隔离层至少覆盖压电层的端面的一部分以及所述底电极的端面;和
沉积导电金属层,所述导电金属层覆盖压电层的顶面的一部分以及电学隔离层,以形成顶电极以及电极连接部,所述电极连接部与所述顶电极电连接,所述电学隔离层为电极连接部与底电极之间提供电学隔离的空间。
18、根据17所述的方法,其中:
所述方法还包括步骤:释放电学隔离层;或者
在提供电学隔离层的步骤中,依次提供不导电介质层以及牺牲层,所述牺牲层覆盖所述不导电介质层的至少一部分,且所述方法还包括步骤:释放所述牺牲层,以在谐振器的厚度方向上在电极连接部与不导电介质层之间形成空隙层。
19、根据17所述的方法,其中:
在图形化底电极与压电层的步骤中,使得所述压电层的端面与所述底电极的端面形成共面的斜面,且所述斜面的与基底的顶面之间的夹角在10-85°的范围内。
20、根据17所述的方法,其中:
在提供电学隔离层的步骤中,使得所述电学隔离层覆盖压电层的顶面的一部分以及压电层的端面。
21、根据20所述的方法,其中:
在提供电学隔离层的步骤中,使得电学隔离层的覆盖压电层的部分具 有斜面以及与该斜面相接的水平面;且
在沉积导电金属层的步骤中,所述电极连接部覆盖所述斜面以及所述水平面,以形成顶电极的桥结构。
22、根据17-21中的任一项所述的方法,其中:
在图形化底电极与压电层的步骤中,形成与所述底电极和压电层分立的分立件;
所述方法还包括步骤:移除分立件的压电层部分以露出作为电极引脚的底电极部分;
沉积导电金属层的步骤中,所述导电金属层覆盖电学隔离层、压电层的顶面的一部分以及电极引脚。
23、根据22所述的方法,其中:
在提供电学隔离层的步骤中,所述电学隔离层的一侧覆盖电极引脚的顶面的一部分,另一侧覆盖压电层的顶面的一部分,且电学隔离层在横向方向上在电极引脚与顶电极之间的部分具有凹陷部分。
24、根据22所述的方法,其中:
在提供电学隔离层的步骤中,使得电学隔离层还覆盖所述电极引脚,或者还覆盖所述电极引脚以及底电极处于有效区域之外的部分;
所述方法还包括步骤:提供电连接电极引脚的导电通孔;且
在提供导电通孔的步骤中,还包括使得电极连接部与所述导电通孔电连接。
25、一种滤波器,包括根据1-16中任一项所述的体声波谐振器。
26、一种电子设备,包括根据25所述的滤波器或者根据1-16中任一项所述的体声波谐振器。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (26)

  1. 一种体声波谐振器,包括:
    基底;
    底电极;
    顶电极;
    压电层,设置在底电极与顶电极之间;
    声学镜,
    其中:
    所述谐振器还包括电极连接部、电学隔离层和电极引脚;
    所述电极连接部覆盖所述电学隔离层、且电极连接部的一端与顶电极电连接、另一端适于与电极引脚电连接;
    所述电学隔离层的一部分在谐振器的电极连接部与底电极之间形成电学隔离;且
    所述电学隔离层的至少一部分覆盖所述压电层的端面的至少一部分以及底电极的端面,以在电极连接部与底电极之间形成电学隔离。
  2. 根据权利要求1所述的谐振器,其中:
    所述电极连接部与所述顶电极具有相同的厚度。
  3. 根据权利要求1所述的谐振器,其中:
    所述压电层的端面与所述底电极的端面形成共面的斜面。
  4. 根据权利要求3所述的谐振器,其中:
    所述斜面与基底的顶面之间的夹角在10-85°的范围内。
  5. 根据权利要求4所述的谐振器,其中:
    所述斜面与基底的顶面之间的夹角在15-75°的范围内。
  6. 根据权利要求1所述的谐振器,其中:
    电学隔离层还覆盖压电层的顶面的一部分以及压电层的端面;或
    电学隔离层包括覆盖压电层的顶面的端部,所述端部处于声学镜的边缘的内侧。
  7. 根据权利要求6所述的谐振器,其中:
    所述电极连接部包括与顶电极连接的倾斜段以及与所述倾斜度相接的水平段。
  8. 根据权利要求1-7中任一项所述的谐振器,其中:
    所述电学隔离层的至少一部分在谐振器的横向方向上在电极引脚与底电极之间形成电学隔离。
  9. 根据权利要求8所述的谐振器,其中:
    所述电极引脚与所述底电极同层布置;
    电极引脚与底电极之间在横向方向上的同层空间由所述电学隔离层的一部分填充。
  10. 根据权利要求9所述的谐振器,其中:
    电学隔离层覆盖电极引脚的顶面的一部分。
  11. 根据权利要求6所述的谐振器,其中:
    电学隔离层覆盖电极引脚的顶面的一部分;且
    电学隔离层在电极引脚与底电极之间的部分,相对于电学隔离层的覆盖顶电极的顶面以及电极引脚的顶面的部分,具有下凹的形状。
  12. 根据权利要求11所述的谐振器,其中:
    所述电极连接部与所述顶电极具有相同的厚度;且
    所述电学隔离层在电极引脚的一侧存在在谐振器的厚度方向上被设置在电极连接部与电极引脚之间的部分。
  13. 根据权利要求1-12中任一项所述的谐振器,其中:
    所述谐振器还包括另外的电学隔离层,所述另外的电学隔离层覆盖电极引脚和/或所述谐振器的位于有效区域之外的底电极;
    所述谐振器还包括至少一个导电通孔,所述导电通孔穿过所述另外的电学隔离层而与对应的电极引脚或底电极电连接,
    其中,在所述另外的电学隔离层覆盖电极引脚的情况下,所述电极连接部经由穿过所述另外的电学隔离层的电学通孔与电极引脚电连接。
  14. 根据权利要求1-13中任一项所述的谐振器,其中:
    所述电学隔离层为单层不导电介质层或单层空隙层;或
    所述电学隔离层包括不导电介质层以及空隙层,所述空隙层的至少一部分在谐振器的厚度方向上位于电极连接部与所述不导电介质层之间;或者
    所述电学隔离层包括两层不同的不导电介质层。
  15. 根据权利要求14所述的谐振器,其中:
    所述空隙层的一部分覆盖所述压电层的顶面的一部分;或
    所述空隙层的一部分以及所述不导电介质层的一部分均覆盖所述压电层的顶面的一部分。
  16. 根据权利要求1-15中任一项所述的谐振器,其中:
    所述压电层为单晶压电薄膜。
  17. 一种体声波谐振器的制造方法,所述体声波谐振器包括:基底;底电极;顶电极;压电层,设置在底电极与顶电极之间;声学镜,所述方法包括步骤:
    在基底上提供覆盖基底的底电极层与覆盖底电极的压电薄膜层;
    图形化底电极与压电层,即刻蚀和图形化底电极层与压电薄膜层,以形成谐振器的底电极与压电层;
    提供电学隔离层,所述电学隔离层至少覆盖压电层的端面的一部分以及所述底电极的端面;和
    沉积导电金属层,所述导电金属层覆盖压电层的顶面的一部分以及电学隔离层,以形成顶电极以及电极连接部,所述电极连接部与所述顶电极电连接,所述电学隔离层为电极连接部与底电极之间提供电学隔离的空间。
  18. 根据权利要求17所述的方法,其中:
    所述方法还包括步骤:释放电学隔离层;或者
    在提供电学隔离层的步骤中,依次提供不导电介质层以及牺牲层,所述牺牲层覆盖所述不导电介质层的至少一部分,且所述方法还包括步骤:释放所述牺牲层,以在谐振器的厚度方向上在电极连接部与不导电介质层之间形成空隙层。
  19. 根据权利要求17所述的方法,其中:
    在图形化底电极与压电层的步骤中,使得所述压电层的端面与所述底电极的端面形成共面的斜面,且所述斜面的与基底的顶面之间的夹角在10-85°的范围内。
  20. 根据权利要求17所述的方法,其中:
    在提供电学隔离层的步骤中,使得所述电学隔离层覆盖压电层的顶面的一部分以及压电层的端面。
  21. 根据权利要求20所述的方法,其中:
    在提供电学隔离层的步骤中,使得电学隔离层的覆盖压电层的部分具有斜面以及与该斜面相接的水平面;且
    在沉积导电金属层的步骤中,所述电极连接部覆盖所述斜面以及所述水平面,以形成顶电极的桥结构。
  22. 根据权利要求17-21中的任一项所述的方法,其中:
    在图形化底电极与压电层的步骤中,形成与所述底电极和压电层分立的分立件;
    所述方法还包括步骤:移除分立件的压电层部分以露出作为电极引脚的底电极部分;
    沉积导电金属层的步骤中,所述导电金属层覆盖电学隔离层、压电层的顶面的一部分以及电极引脚。
  23. 根据权利要求22所述的方法,其中:
    在提供电学隔离层的步骤中,所述电学隔离层的一侧覆盖电极引脚的顶面的一部分,另一侧覆盖压电层的顶面的一部分,且电学隔离层在横向方向上在电极引脚与顶电极之间的部分具有凹陷部分。
  24. 根据权利要求22所述的方法,其中:
    在提供电学隔离层的步骤中,使得电学隔离层还覆盖所述电极引脚,或者还覆盖所述电极引脚以及底电极处于有效区域之外的部分;
    所述方法还包括步骤:提供电连接电极引脚的导电通孔;且
    在提供导电通孔的步骤中,还包括使得电极连接部与所述导电通孔电连接。
  25. 一种滤波器,包括根据权利要求1-16中任一项所述的体声波谐振器。
  26. 一种电子设备,包括根据权利要求25所述的滤波器或者根据权利要求1-16中任一项所述的体声波谐振器。
PCT/CN2020/088763 2019-12-31 2020-05-06 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备 WO2021135022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20910346.4A EP4087131A4 (en) 2019-12-31 2020-05-06 ELECTRICAL INSULATION LAYER VOLUME WAVE RESONATOR AND PROCESS FOR ITS MANUFACTURE, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911419042.8 2019-12-31
CN201911419042.8A CN111030634B (zh) 2019-12-31 2019-12-31 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2021135022A1 true WO2021135022A1 (zh) 2021-07-08

Family

ID=70201474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088763 WO2021135022A1 (zh) 2019-12-31 2020-05-06 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备

Country Status (3)

Country Link
EP (1) EP4087131A4 (zh)
CN (1) CN111030634B (zh)
WO (1) WO2021135022A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030634B (zh) * 2019-12-31 2021-04-16 诺思(天津)微***有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN111600566B (zh) * 2020-04-21 2021-06-01 诺思(天津)微***有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
CN112134542B (zh) * 2020-06-01 2022-07-12 诺思(天津)微***有限责任公司 体声波谐振器、体声波谐振器组件及制造方法、滤波器及电子设备
CN111917393B (zh) * 2020-06-22 2021-06-01 诺思(天津)微***有限责任公司 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110597A1 (en) * 2003-10-30 2005-05-26 Larson John D.Iii Film bulk acoustic resonator (FBAR) devices with simplified packaging
EP1548935A1 (en) * 2003-12-24 2005-06-29 Interuniversitair Microelektronica Centrum Vzw Micromachined film bulk acoustic resonator
US20060202779A1 (en) * 2005-03-14 2006-09-14 Fazzio R S Monolithic vertical integration of an acoustic resonator and electronic circuitry
CN103051302A (zh) * 2011-10-12 2013-04-17 苏州敏芯微电子技术有限公司 横向体声波谐振器、制备方法及应用该谐振器的振荡器
CN105680813A (zh) * 2016-02-25 2016-06-15 锐迪科微电子(上海)有限公司 一种薄膜体声波谐振器及其制造方法
CN111030634A (zh) * 2019-12-31 2020-04-17 诺思(天津)微***有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469599B1 (en) * 2003-04-18 2010-11-03 Samsung Electronics Co., Ltd. Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof
JP4280198B2 (ja) * 2004-04-30 2009-06-17 株式会社東芝 薄膜圧電共振器
JP4663401B2 (ja) * 2005-05-23 2011-04-06 京セラ株式会社 薄膜バルク音響波共振子およびフィルタならびに通信装置
US20090053401A1 (en) * 2007-08-24 2009-02-26 Maxim Integrated Products, Inc. Piezoelectric deposition for BAW resonators
US9634642B2 (en) * 2014-05-30 2017-04-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising vertically extended acoustic cavity
KR101973423B1 (ko) * 2014-12-08 2019-04-29 삼성전기주식회사 음향 공진기 및 그 제조 방법
CN105262455B (zh) * 2015-10-09 2018-07-31 锐迪科微电子(上海)有限公司 一种高可靠性的薄膜体声波谐振器及其制造方法
CN107181472B (zh) * 2016-03-10 2020-11-03 中芯国际集成电路制造(上海)有限公司 薄膜体声波谐振器、半导体器件及其制造方法
JP6923365B2 (ja) * 2017-06-08 2021-08-18 太陽誘電株式会社 弾性波デバイス
CN109150127B (zh) * 2018-07-27 2022-10-28 开元通信技术(厦门)有限公司 薄膜体声波谐振器及其制作方法、滤波器
CN109889179A (zh) * 2018-12-26 2019-06-14 天津大学 谐振器和梯形滤波器
CN109981069B (zh) * 2019-03-13 2022-03-15 电子科技大学 具有隔离层的薄膜体声波谐振器制备方法及体声波谐振器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110597A1 (en) * 2003-10-30 2005-05-26 Larson John D.Iii Film bulk acoustic resonator (FBAR) devices with simplified packaging
EP1548935A1 (en) * 2003-12-24 2005-06-29 Interuniversitair Microelektronica Centrum Vzw Micromachined film bulk acoustic resonator
US20060202779A1 (en) * 2005-03-14 2006-09-14 Fazzio R S Monolithic vertical integration of an acoustic resonator and electronic circuitry
CN103051302A (zh) * 2011-10-12 2013-04-17 苏州敏芯微电子技术有限公司 横向体声波谐振器、制备方法及应用该谐振器的振荡器
CN105680813A (zh) * 2016-02-25 2016-06-15 锐迪科微电子(上海)有限公司 一种薄膜体声波谐振器及其制造方法
CN111030634A (zh) * 2019-12-31 2020-04-17 诺思(天津)微***有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087131A4 *

Also Published As

Publication number Publication date
EP4087131A1 (en) 2022-11-09
CN111030634B (zh) 2021-04-16
EP4087131A4 (en) 2023-06-21
CN111030634A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021135022A1 (zh) 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
US6924717B2 (en) Tapered electrode in an acoustic resonator
CN111049490B (zh) 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
JP7259005B2 (ja) 薄膜バルク音響波共振器ならびにその製造方法
JP4345049B2 (ja) 薄膜音響共振器及びその製造方法
US7501068B2 (en) Method for manufacturing resonator
TWI264139B (en) Structure and fabrication procedures to achieve high-Q and low insertion loss film bulk acoustic resonators
JP7130841B2 (ja) 薄膜バルク音響波共振器及びその製造方法
WO2021109444A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
US10829364B2 (en) MEMS transducer and method for manufacturing the same
JP7269719B2 (ja) 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
WO2020132997A1 (zh) 单晶压电薄膜体声波谐振器及其形成方法
CN113708740B (zh) 压电薄膜体声波谐振器及其制备方法
CN112787614A (zh) 一种薄膜拉姆波谐振器、滤波器及其制造方法
US20210281237A1 (en) Acoustic wave device and manufacturing method thereof
JP2020014088A (ja) 弾性波共振器、フィルタ並びにマルチプレクサ
WO2021197500A1 (zh) 半导体器件及其制造方法、具有半导体器件的电子设备
WO2022012438A1 (zh) 薄膜体声波谐振器及其制造方法
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2021109426A1 (zh) 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
JP2005303573A (ja) 薄膜圧電共振器及びその製造方法
CN114268290A (zh) 一种高q值单晶薄膜体声波谐振器的制备方法
JP2022507320A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910346

Country of ref document: EP

Effective date: 20220801