WO2021134846A1 - 内嵌有减速装置的电机 - Google Patents

内嵌有减速装置的电机 Download PDF

Info

Publication number
WO2021134846A1
WO2021134846A1 PCT/CN2020/072960 CN2020072960W WO2021134846A1 WO 2021134846 A1 WO2021134846 A1 WO 2021134846A1 CN 2020072960 W CN2020072960 W CN 2020072960W WO 2021134846 A1 WO2021134846 A1 WO 2021134846A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutating
nutating gear
gear
output shaft
swash plate
Prior art date
Application number
PCT/CN2020/072960
Other languages
English (en)
French (fr)
Inventor
王小椿
帅梅
Original Assignee
北京智能大艾机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京智能大艾机器人科技有限公司 filed Critical 北京智能大艾机器人科技有限公司
Publication of WO2021134846A1 publication Critical patent/WO2021134846A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings

Definitions

  • the present disclosure designs a deceleration system using a motor and a deceleration device. More specifically, the present disclosure relates to a motor with a deceleration device embedded therein.
  • the existing deceleration system includes a motor and a deceleration device.
  • the motor drives the input part of the deceleration device through an input shaft.
  • the deceleration device decelerates the input from the motor and transmits the decelerated motion to the output shaft.
  • the driven device is connected.
  • the motor, input shaft, deceleration device, output shaft and the setting to be driven are coaxially arranged in sequence, which takes up a relatively large volume of space.
  • the motor, the reduction gear and the setting to be driven are arranged separately from each other and connected to each other through the input shaft and the output shaft, this undoubtedly increases the length of the reduction system along the input/output shaft direction.
  • the motor rotates at a high speed, it increases.
  • the large axial length has the problem of the stability of the input shaft and the output shaft deviating from the axial direction, which affects the performance of the reduction system.
  • the purpose of the present invention is to solve the above-mentioned shortcomings of the existing deceleration system, and to provide a motor with a deceleration device embedded therein, which occupies a small space and has improved stability.
  • this article provides a motor with a deceleration device embedded therein, including: a housing; an input mechanism disposed in the housing, the input mechanism including a stator and a rotor, the stator being attached to the housing
  • the deceleration device is provided in the housing, the deceleration device includes a driving part and a driven part, wherein the driving part is located in the rotor of the input mechanism and is fixedly connected to the rotor; and the output shaft, It is driven by the driven part of the reduction gear.
  • the speed reduction device is a nutation speed reducer, including: a nutation gear, one end surface of the nutation gear is formed with a tooth surface; a non-nutation gear, which is fixedly arranged On the housing, one end surface of the non-nutating gear is formed with a tooth surface, wherein the end surface of the non-nutating gear formed with the tooth surface and the end surface of the nutating gear formed with the tooth surface mesh with each other And a drive swash plate, connected to the input mechanism and driven by the input mechanism, the first side of the drive swash plate abuts against the other end surface of the nutating gear that is not formed with a tooth surface;
  • the driving swash plate is the driving part, and the nutating gear is the driven part, and the first side of the driving swash plate is inclined with respect to a plane perpendicular to the rotation axis of the output shaft
  • the output shaft passes through the inner peripheral side of the nutating gear and the non-nut
  • the motor further includes a second nutating reducer
  • the second nutating reducer includes: a second nutating gear, one of the second nutating gears A tooth surface is formed on the end surface; a second non-nutating gear is fixedly arranged on the housing, one end surface of the second non-nutating gear is formed with a tooth surface, wherein the second non-nutating gear is formed with The end surface of the tooth surface and the end surface formed with the tooth surface of the second nutating gear mesh with each other; wherein the second nutating gear is also the driven member; and the driving swash plate and the first side With respect to the second side in contact with the other end surface of the second nutating gear that is not formed with a tooth surface, and the second side is disposed obliquely with respect to a plane perpendicular to the rotation axis of the output shaft, the output The shaft further penetrates the inner peripheral side of the second nutating gear and the second non-nutating gear
  • the motor according to one or more of the present invention, wherein the first side of the drive swash plate is in contact with the nutating gear through a thrust ball bearing, and the drive swash plate is opposite to the first side
  • the second side is in contact with the housing through a thrust ball bearing.
  • the motor according to one or more embodiments of the present invention, wherein the first side of the driving swash plate is in contact with the nutating gear through a thrust ball bearing, and the second side of the driving swash plate is passed through The thrust ball bearing is in contact with the second nutating gear.
  • annular input mechanism is provided with a plurality of flanges on its inner wall, and the flanges extend radially from the axis of the output shaft for Position the drive swash plate.
  • the motor according to one or more embodiments of the present invention, wherein the output shaft is connected to the nutating gear via a torque transmission member, and is connected to the non-nutating gear via a bearing.
  • the motor according to one or more embodiments of the present invention, wherein the torque transmission component is a ball and cage universal joint, and the torque transmission component is connected to the nutating gear and the output shaft through an end face corrugated spline Connected.
  • the reducer is a harmonic reducer
  • the harmonic reducer includes: a rigid wheel fixedly connected to the housing; a flexible wheel arranged at the On the inner circumference side of the rigid wheel, the output shaft is fixedly connected to the flex wheel; and a wave generator is arranged on the inner side of the flex wheel and presses against the inner side of the flex wheel, the wave generator Connected to and driven by the ring input mechanism, wherein the wave generator is the active part, and the flexspline is the driven part.
  • the motor according to one or more embodiments of the present invention, wherein the input mechanism is a rope drum or a cylindrical motor.
  • Fig. 1A is a cross-sectional view of a built-in motor according to an embodiment of the present invention.
  • Fig. 1B is an exploded view of the built-in motor of Fig. 1A.
  • Fig. 2A is a perspective view of a nutating reducer according to an embodiment of the present invention.
  • Fig. 2B is a side view of the nutating gear of the nutating reducer in Fig. 2A.
  • Fig. 2C is a partial enlarged view of the nutating reducer in Fig. 2A.
  • Fig. 2D is a schematic diagram of the meshing relationship of gears of a nutating reducer according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the driving swash plate of the nutating reducer in Fig. 1.
  • Fig. 4 is a cross-sectional view of a built-in motor according to another embodiment of the present invention.
  • Fig. 5 is a cross-sectional view of a built-in motor according to another embodiment of the present invention.
  • FIG. 1A is a cross-sectional view of the in-line motor 100 according to an embodiment of this document
  • FIG. 1B is an exploded view of the in-line motor 100.
  • the structure of the built-in motor 100 will be described in detail below with reference to FIGS. 1A and 1B.
  • the motor 100 generally includes a housing 110, an input mechanism 120 and a reduction gear 130.
  • the housing 110 includes a side wall 111 and a top wall 112 provided at one end of the side wall 111.
  • the housing 110 defines an internal space 113 enclosed in the side wall 111 and the top wall 112.
  • an input mechanism 120 is provided, and the input mechanism 120 is provided on the inner side of the side wall 111.
  • the input mechanism 120 may include a stator 121 and a rotor 122, wherein the stator 121 is fixedly connected to the side wall 111, and the rotor 122 is fixedly connected to the deceleration device 130 (the active component of the deceleration device 130), thereby driving the deceleration device 130.
  • the active part of the reduction gear is fixedly connected to the inner opening of the ring-shaped rotor 122, so that the active part of the reduction gear is formed to be embedded in the rotor 122. in.
  • the deceleration device 130 decelerates the movement input from the input mechanism 120, and outputs the decelerated movement to other devices to be driven through the output shaft 150 connected to the driven part of the deceleration device 130.
  • the deceleration device 130 has a substantially annular shape and has an opening at the center thereof.
  • the output shaft 150 is positioned to pass through the central opening of the reduction gear 130 and is positioned in the central opening, and passes through the inner space 113 in the central axial direction of the annular side wall 111.
  • One end of the output shaft 150 is positioned in the top wall 112 via the stop cover 114, and is connected to the top wall 112 through, for example, a sleeve 143 and a bearing 144, so that the output shaft 150 can rotate relative to the housing 110.
  • the other end of the output shaft 150 is exposed from the housing 110 from the side opposite to the top wall 112 so as to be connected with other devices to be driven by the output shaft 150.
  • the housing 110 may have a bottom wall opposite to the top wall 112, and the output shaft 150 is exposed from the bottom wall and connected to the bottom wall through a sleeve and a bearing, so that The output shaft 150 is positioned on the bottom wall and can rotate relative to the bottom wall.
  • the built-in motor 100 thus constructed makes full use of the internal space of the motor 100.
  • the input member 120 composed of the rotor 122 and the stator 121 is disposed on the side wall 111, and the active part of the deceleration device 130 is embedded in the radially inward space of the rotor 122, instead of inserting
  • the conventional structure in which the deceleration device and the motor are separated and connected to each other through the input shaft greatly reduces the space occupied by the deceleration system with the deceleration device and the motor.
  • the deceleration device 130 has a substantially annular shape, the output shaft 150 can be inserted in the central opening of the deceleration device 130 and penetrate the motor 100.
  • This design makes the input member 120, the reduction gear 130 and the output shaft 130 of the motor 100 overlap each other in thickness, instead of the coaxially arranged mechanism of the motor, input shaft, reduction gear, and output shaft in the traditional structure, thereby significantly shortening the reduction
  • the length of the system along the direction of the input/output shaft increases the stability of the deceleration system at work and improves the performance of the deceleration system.
  • the circular input mechanism 120 may be a rope drum or a cylindrical motor, but the present invention is not limited to this, and may also be other input mechanisms with circular rotating parts.
  • the deceleration device 130 may be a nutating decelerator.
  • the present invention is not limited to this, and the deceleration device 130 may also be other deceleration devices having a ring shape, for example, a harmonic reducer.
  • the reduction gear 130 is a nutating speed reducer
  • the reduction gear 130 has a nutating gear 131, a non-nutating gear 132, and a drive swash plate 133.
  • the input mechanism 120 is connected with the drive swash plate 133 to drive the drive swash plate 133 to rotate, so when the speed reduction device is a nutating reducer, the drive swash plate 133 is used as an active component.
  • the driving swash plate 133 is in contact with the nutating gear 131 to drive the nutating gear 131 to perform a nutating motion along with the rotation of the driving swash plate 133.
  • FIG. 2A shows a nutating gear 210 and a non-nutating gear 220 of a nutating reducer 200 according to an embodiment of this document, wherein the nutating gear 210 and the non-nutating gear 220 are respectively equivalent to FIGS. 1A and The nutating gear 131 and the non-nutating gear 132 in 1B.
  • the nutating gear 210 is a face gear, that is, the tooth surface 230 of the nutating gear 210 is formed on one end surface of the nutating gear 210 instead of being formed on the outer circumference or the inner circumference of the nutating gear 210.
  • the force on the gear with the tooth surface formed on the end surface of the gear during operation is spread over the entire thickness direction of the gear, because the gear has a better thickness in the thickness direction. Therefore, the gear with tooth surface formed on one side can effectively prevent the deformation caused during operation.
  • the non-nutating gear 220 has a tooth surface 240 on one end surface thereof.
  • the tooth surface 240 and the tooth surface 230 face each other and mesh with each other in a nutation transmission manner during operation.
  • the number of teeth on the tooth surface 230 and the number of teeth on the tooth surface 240 generally differ by one tooth.
  • the tooth surface 230 may have 1 tooth less than the tooth surface 240, or the tooth surface 230 may have 1 tooth more than the tooth surface 240.
  • FIG. 2B shows a side view of the nutating gear 210.
  • the straight line OP is placed along the tooth surface 230 around the center O.
  • the surface formed by one revolution in the circumferential direction is called the indexing surface of the nutating gear 210, and the center O is the center point of the indexing surface.
  • Any generatrix on the indexing surface of the nutating gear 210 (for example, the straight line PO in FIG. 2B) has an included angle ⁇ POO' with the central axis OO' of the nutating gear 210.
  • the non-nutating gear 220 also has a similar indexing surface, and any generatrix on it also has an angle with its axis.
  • the angle between the index surface and the axis of the gear depends on the number of teeth formed on the tooth surface. For example, for a gear with 45 teeth, the angle between the index surface and the axis is either greater than 90° or smaller than 90°.
  • the index surface is formed as an inner conical surface with the center of the index surface concave toward the gear or a convex conical surface convex outward.
  • the angle between the indexing surface and the axis is getting closer and closer to 90°, that is, as the number of teeth of the gear increases, the indexing surface is getting closer and closer to the plane.
  • one of the nutating gear and the non-nutating gear is formed as an internal bevel gear, and the other gear is formed as an external bevel gear.
  • the precise machining of internal bevel gears is very challenging.
  • CNC machine tools are generally used for machining, which brings increased costs.
  • at each instant during the nutation cycle of the nutation gear only a small part of the teeth between the two gears mesh with each other, and most of the teeth do not contact (for example, The part surrounded by dotted line B in Fig. 2A is the same).
  • the traditional nutation reducer have the problems of small bearing capacity and unstable transmission.
  • the inventor found that the indexing surfaces of the two gears in the nutation reducer are forcibly set to be roughly flat, independent of the number of teeth of the gears, which can significantly increase the number of teeth that mesh with each other during nutation.
  • the angles between the respective indexing surfaces of the nutating gear 210 and the non-nutating gear 220 and the respective axes are both 88° to 91° , Specifically between 88° and 90°.
  • the sum of the angles between the respective indexing surfaces of the nutating gear 210 and the non-nutating gear 220 and the respective axes is less than 180°.
  • the indexing surface of one of the nutating gear 210 and the non-nutating gear 220 is a flat surface (that is, the included angle is 90°), and the indexing surface of the other gear is a slightly convex convex conical surface (that is, clamping The angle is greater than 88° and less than 90°), or both the nutating gear 210 and the non-nutating gear 220 are slightly convex convex conical surfaces.
  • the nutating gear 210 is There will be more teeth meshing and transmission between the non-nutating gear 220 and each other.
  • the nutating reducer 200 has simple machining processing and low manufacturing cost.
  • FIG. 2C shows a partial enlarged schematic view of the nutation reducer 200 surrounded by the dashed line A in FIG. 2A. As shown in FIG. 2C, when the tooth surface 230 is partially meshed with the tooth surface 240, the part 231 of the tooth surface 230 and the part 241 of the tooth surface 240 are in contact with each other.
  • the working tooth surface 241 of the nutating gear 220, and the other part 232 of the tooth surface 230 and the other part 242 of the tooth surface 240 are separated from each other, which are called the non-working tooth surface 232 and the non-nutating gear of the nutating gear 210 220 of the non-working tooth surface 242.
  • the nutating gear 210 can perform a nutating motion. Under the action of the nutating motion of the nutating gear 210 and the meshing of the tooth surface 230 and the tooth surface 240, the nutating gear 210 and the non-chapting
  • the movable gears 220 can rotate relative to each other.
  • the nutation reducer 200 can decelerate the rotational motion input thereto, and output the decelerated rotational motion.
  • the nutating gear 210 makes one rotation of the nutating gear, and the contacting working tooth surface 231 and the working tooth surface 241 contact each other in a sliding manner. Therefore, the nutating gear 210 only pushes the non-nutating gear 220 to rotate a small amount per nutation. Angle, so as to achieve a larger transmission ratio between the nutating gear 210 and the non-nutating gear 220. In the case where the nutating gear 210 and the non-nutating gear 220 differ by one tooth, the pin gear rotates by one tooth every time the nutating gear 210 rotates one revolution.
  • FIG. 2D shows that the tooth surface 230 of the nutating gear 210 and the tooth surface 140 of the non-nutating gear 220 are in contact with each other at point P and engage in meshing transmission.
  • the line PM shows the normal direction of the tooth surface 240 at point P
  • the line PN shows that the non-nutating gear 220 is at point P when the tooth surface 230 is in contact with the tooth surface 240 at point P. Relative to the direction of movement of the nutating gear 210.
  • the tooth surface 230 pushes the tooth surface 140 at point P to make the non-nutating gear 220 rotate in the Y direction, so the line PN is parallel In the Y direction.
  • the tooth surface 240 forces the tooth surface 230 to move at point P, thereby forcing the non-nutating gear 220 to rotate in a direction opposite to the Y direction.
  • the angle ⁇ formed between the line PM and PN is the pressure angle when the tooth surface 230 and the tooth surface 240 are in contact.
  • the size of the pressure angle indicates the work efficiency between the tooth surface 230 and the tooth surface 240 when they are in contact (ie, transmission efficiency).
  • transmission efficiency the work efficiency between the tooth surface 230 and the tooth surface 240 when they are in contact.
  • indicates the pressure angle when the tooth surface 230 and the tooth surface 240 are in contact
  • indicates the friction angle between the tooth surface 230 and the tooth surface 240.
  • the friction angle is the inherent property of the tooth surface 230 and the tooth surface 240. It depends on the material used to make the nutating gear 210 and the non-nutating gear 220 and the lubricating material used, and it is generally between 3° and 5°. For example, if the friction angle between the tooth surface 230 and the tooth surface 240 is 3°, the pressure angle when the tooth surface 230 and the tooth surface 240 are in contact is preferably between 37° and 47°. The friction angle between the two is 5°, and the pressure angle when the tooth surface 230 and the tooth surface 240 are in contact is preferably between 35° and 45°.
  • nutation reducer 200 with a specific index surface and pressure angle is described in conjunction with FIGS. 2A-2D, the conventional nutation reducer can also be used, and the present invention is not limited to this.
  • FIG. 3 shows a schematic diagram of the driving swash plate 133 in the nutating reducer 130.
  • Figure 3 omits other parts to make it clearer.
  • the driving swash plate 133 is connected to the rotor 122 of the input mechanism 120 at its outer periphery, so that the input mechanism 110 can drive the driving swash plate 133 to rotate.
  • the annular input mechanism 110 is formed with a plurality of flanges 123 on its inner peripheral side, and these flanges 123 extend radially inward from the inner peripheral side of the rotor 122, and the drive swash plate 133 is driven by a fastener 124 (For example, bolts) are connected to the flange 123.
  • the output shaft 150 passes through the central opening of the drive swash plate 133 through the bearing 145, so that the output shaft 150 and the drive swash plate 133 rotate independently of each other.
  • the drive swash plate 133 has a first side surface 136 and a second side surface 137, the first side surface 136 and the bottom wall 112 contact, for example, by using a thrust ball bearing 141 to abut the first side surface 136 to the bottom wall 112 , So that the drive swash plate 133 can rotate independently of the bottom wall 112 and always abuts against the bottom wall 112 during the rotation.
  • the second side surface 137 of the driving swash plate 133 is inclined with respect to the plane 151, and the second side surface 137 and the plane 151 form an included angle ⁇ (ie, nutation angle).
  • the plane 151 is perpendicular to the rotation axis 152 of the output shaft 150.
  • the second side surface 137 is in contact with the end surface of the nutating gear 131 without a tooth surface.
  • the driving swash plate 133 and the nutating gear 131 can be It rotates independently, and the nutating gear 131 always abuts on the second side surface 137 of the driving swash plate 133 during the rotation.
  • the second side surface 137 of the driving swash plate 133 is inclined with respect to the plane 151, when the driving swash plate 133 is rotated, the nutation gear 131 abutting on the driving swash plate 133 will be on the drive swash plate 133.
  • the nutation movement is driven by the inclined second side surface 137.
  • the non-nutating gear 132 is fixed to the side wall 111.
  • the non-nutating gear 132 may be further fixed to the inner side of the top wall.
  • the top wall may not be provided.
  • the end surface of the non-nutating gear 132 without a tooth surface may be used as a part of the housing to surround the internal space 113.
  • the output shaft 150 passes through the central opening of the non-nutating gear 132 through the bearing 146 so that the output shaft 150 can rotate independently of the non-nutating gear 132.
  • the input mechanism 120 drives the swash plate 133 to rotate, and the drive swash plate 133 further drives the nutating gear 131 to perform a nutating motion, so that the nutating gear 131 performs a nutating motion every time the input mechanism 120 rotates one circle.
  • the nutating gear 131 and the non-nutating gear 132 Through the meshing transmission between the nutating gear 131 and the non-nutating gear 132, each time the nutating gear 131 performs a nutating motion, the nutating gear 131 and the non-nutating gear 132 relatively rotate at a reduced speed.
  • the nutating gear 131 Since the non-nutating gear 132 is fixed, the nutating gear 131 performs a nutating motion relative to the non-nutating gear through the meshing transmission between the nutating gear 131 and the non-nutating gear 132.
  • the output shaft 150 passes through the central opening of the nutating gear 131, and the output shaft 150 is connected to the central opening of the nutating gear 131 at its outer periphery, so that the nutating gear 131 further drives the output shaft 150 to rotate synchronously, so it is used as a reduction gear
  • the nutating gear 131 serves as a driven member. In this way, the higher rotational movement of the input mechanism 120 can be decelerated to a lower rotational movement by the nutating reducer 130 and the decelerated rotational movement can be transmitted to the output shaft.
  • the output shaft 150 is connected to the nutating gear 131 through a torque transmitting member 134 so as to transmit the rotational torque of the nutating gear 131 to the output shaft 150.
  • the torque transmission component 134 may be a ball and cage universal joint or a Hooke hinge. Of course, it can also be other torque transmitting components, such as flexible components (such as bellows, corrugated membranes, and spring diaphragms). Compared with the torque transmission component of the ball cage or the Hooke hinge, the torque transmission component using the flexible component has a smaller volume, and the vibration between it and another component due to the nutating motion of the nutating gear is caused by the flexible component Absorption, thereby increasing the transmission stability.
  • the torque transmission component 134 may be connected to the output shaft 150 through the corrugated end face spline to transmit torque. The present invention is not limited to this, and other connection methods may also be used.
  • FIG. 4 shows a schematic diagram of a built-in motor 300 according to another embodiment of the present invention.
  • the motor 300 has a structure similar to that of the motor 100.
  • the motor 300 generally includes a housing 310, an input mechanism 320, and a deceleration device 330.
  • the housing 310 includes an annular side wall 311.
  • the housing 310 defines an internal space enclosed in the side wall 311.
  • an input mechanism 320 having a ring shape is provided, and the input mechanism 320 has the same structure as the input mechanism 120 shown in FIGS. 1A and 1B, and will not be repeated here.
  • the rotor 322 of the input mechanism 320 is coupled with the deceleration device 330 to drive the deceleration device 330.
  • the deceleration device 330 decelerates the movement input from the input mechanism 320, and outputs the decelerated movement to other devices to be driven through the output shaft 350 connected to the deceleration device 330.
  • the deceleration device 330 has a substantially annular shape and has an opening at the center thereof.
  • the output shaft 350 is positioned to pass through the central opening of the reduction gear 330 and is positioned in the central opening, and passes through the inner space in the central axial direction of the annular side wall 311.
  • the output shaft 330 is exposed from the housing 310 for connection with other devices to be driven by the output shaft 330.
  • the reduction gear 330 is also a nutating reducer. However, the reduction device 330 is different from the reduction device 130 shown in FIGS. 1A and 1B in that the reduction device 330 has two nutating gears 331 and 334 and two non-nutating gears 332 and 335.
  • the structures of the nutating gears 331, 334 and the non-nutating gears 332, 335 are the same as the nutating gear 131 and the non-nutating gear 132 shown in FIGS. 1A and 1B, and will not be repeated here.
  • the outer circumference of the driving swash plate 333 is connected to the input mechanism 320 so that the driving swash plate 333 is driven by the input mechanism 320 to rotate.
  • the output shaft 350 passes through the central opening of the drive swash plate 333 via the bearing 345, so that the output shaft 350 and the drive swash plate 333 can rotate independently of each other.
  • the two side surfaces of the drive swash plate 333 respectively contact the end surfaces of the nutating gears 331 and 334 where tooth surfaces are not formed.
  • the nutating gears 331, 334 abut on the driving swash plate 333 via thrust ball bearings 341 and 342, so that the driving swash plate 333 and the nutating gears 331, 334 can rotate independently, and during rotation
  • the nutating gears 331 and 334 always abut on the side of the driving swash plate 333.
  • Both side surfaces of the driving swash plate 333 are inclined with respect to a plane perpendicular to the central axis of the output shaft 350, and the two side surfaces of the driving swash plate 333 are at an included angle (ie, nutation angle) with the plane. Therefore, when the driving swash plate 333 rotates, the nutation gears 331 and 334 abutting on the driving swash plate 333 will simultaneously perform a nutating motion under the driving of the two inclined sides of the driving swash plate 133.
  • the non-nutating gears 332 and 335 are fixed to the side wall 311.
  • the end surfaces of the non-nutating gears 332 and 335 without tooth surfaces may be used as a part of the housing to surround the internal space.
  • the output shaft 350 is positioned on the non-nutating gear 335 via the stop cover 312, and is further fixed on the side wall 311 In the defined internal space.
  • the output shaft 350 passes through the central opening of the non-nutating gear 335 through a sleeve 343 and a bearing 344, for example, so that the output shaft 350 can rotate relative to the non-nutating gear 335.
  • the output shaft 350 passes through the central opening of the non-nutating gear 332 through the bearing 346 so that the output shaft 350 can rotate independently of the non-nutating gear 332.
  • the input mechanism 320 drives the swash plate 333 to rotate, and the drive swash plate 333 further drives the nutating gears 331 and 334 to perform a nutating motion, so that every time the input mechanism 320 rotates one revolution, the nutating gears 331 and 334 perform a nutating motion.
  • the nutating gears 331, 334 and the non-nutating gears 332, 335 reduce speed The latter rotation speed performs relative rotation. Similar to the reduction gear 130 shown in FIGS.
  • the nutation gears 331 and 334 will be driven by the meshing transmission between the nutation gear and the non-nutation gear.
  • the nutating motion rotates at a decelerated speed with respect to the non-nutating gears 332 and 335 while rotating.
  • the output shaft 350 passes through the central openings of the nutating gears 331, 334, and the output shaft 350 is connected to the central openings of the nutating gears 331, 334 at its outer periphery, so that the nutating gears 331, 334 simultaneously drive the output shaft 350 for synchronization Spin.
  • the output shaft 350 is connected to the nutating gears 331 and 334 through torque transmitting members 336 and 337, respectively, so as to transmit the rotational torque of the nutating gears 331 and 334 to the output shaft 350.
  • the torque transmitting members 336 and 337 have the same structure as the torque transmitting member 134 shown in FIGS. 1A and 1B, and will not be repeated here.
  • the reduction gear 330 Compared with the reduction gear 130 of FIGS. 1A and 1B, the reduction gear 330 has two nutating gears and two non-nutating gears, so the transmission efficiency of the nutating reducer can be improved and energy loss can be reduced. At the same time, the symmetrical layout design can balance the axial force of the drive swash plate and improve the stability of the nutation reducer.
  • FIG. 5 shows a cross-sectional view of an in-line motor 400 according to another embodiment.
  • the motor 400 generally includes a housing 410, an input mechanism 420 and a deceleration device 430.
  • the housing 410 includes a side wall 411 and a top wall 412 and a bottom wall 413 provided at both ends of the side wall 411 to surround the internal space 414.
  • an input mechanism 420 is provided, and the input mechanism 420 is provided on the inner side of the side wall 411.
  • the annular input mechanism 420 is further designed in a bowl-like shape.
  • the deceleration device 430 decelerates the movement input from the input mechanism 420, and outputs the decelerated movement to other devices to be driven through the output shaft 450 connected to the output part of the deceleration device 430.
  • the deceleration device 430 has a substantially annular shape and has an opening at the center thereof.
  • the output shaft 450 is positioned to pass through the central opening of the reduction gear 430 and is positioned in the central opening, and passes through the inner space 414 in the central axial direction of the annular side wall 411.
  • One end of the output shaft 450 is positioned in the top wall 412 via the stop cover 415, and is connected to the top wall 412 by, for example, a sleeve 443 and a bearing 441, so that the output shaft 450 can rotate relative to the housing 410.
  • the other end of the output shaft 450 is connected to the bottom wall 413 through the bearing 442 and exposed from the bottom wall, so that the output shaft 450 can rotate relative to the housing 410.
  • the speed reduction device 430 is a harmonic speed reducer
  • the harmonic speed reducer 430 includes a rigid wheel, a flexible wheel and a wave generator.
  • the rigid wheel is fixedly connected to the housing 410
  • the flexible wheel is arranged on the inner peripheral side of the rigid wheel and is connected to the output shaft 450 so as to transmit the rotational motion decelerated by the deceleration device 430 to the output shaft 450.
  • the wave generator is arranged on the inner peripheral side of the flexspline and is connected to the input mechanism 420 at its outer periphery, so that the input mechanism 420 can drive the wave generator to rotate.
  • the output shaft 450 is inserted in the harmonic reducer 430 through the sleeve 444 and the bearing 445, so that the output shaft 450 can rotate independently of the wave generator and the input mechanism 420.
  • the rigid wheel is a rigid gear with an inner ring gear
  • the flexspline is a flexible gear with an outer ring gear.
  • the wave generator is a component that makes the flexspline produce controllable elastic deformation.
  • the wave generator forces the cross-section of the flexspline from a circular shape to an ellipse shape.
  • the teeth near the two ends of the long axis are completely meshed with the teeth of the rigid wheel, while the teeth near the ends of the short shaft are completely meshed. Then it is completely disengaged from the rigid wheel, and the teeth of other sections are in a transitional state of meshing and disengagement.
  • the built-in motor 400 thus constructed makes full use of the internal space 414 of the motor 400.
  • the input member 420 is disposed on the annular side wall 411, and the deceleration device 430 is embedded in the further radially inward space of the input member 420, instead of separating the deceleration device from the motor and Through the traditional structure in which the input shafts are connected to each other, this greatly reduces the space occupied by the reduction system with the reduction gear and the motor.
  • the deceleration device 430 has a substantially annular shape, the input shaft 430 can be inserted in the central opening of the deceleration device 430 and pass through the housing of the motor 400.
  • This design makes the input part and output part of the motor 400 overlap each other, instead of the coaxially arranged mechanism of the motor, input shaft, reduction gear, and output shaft in the traditional structure, thereby significantly shortening the reduction system along the input/output shaft.
  • the length of the deceleration system increases the stability of the deceleration system at work and improves the performance of the deceleration system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)

Abstract

本文提供了一种内嵌有减速装置的电机,包括壳体;输入机构,设置在所述壳体内,所述输入机构包括定子和转子,所述定子附接至所述壳体的内壁;减速装置,设置在所述壳体内,所述减速装置包括主动部件和从动部件,其中所述主动部件位于所述输入机构的转子内并与所述转子固接;以及输出轴,其由所述减速装置的从动部件驱动。本文所提供的内嵌式电机减少了使用电机和减速装置的减速***沿着输出轴向方向的厚度,大大降低了占用空间,同时提供了减速***在工作时的稳定性。

Description

内嵌有减速装置的电机 技术领域
本公开内容设计使用电机和减速装置的减速***,更具体而言,本公开内容涉及一种内嵌有减速装置的电机。
背景技术
目前现有的减速***包括电机和减速装置,其中电机通过输入轴驱动减速装置的输入部件,减速装置将来自电机的输入进行减速,并将减速后的运动传递给输出轴,该输出轴与待被驱动的设备相连。
对于现有的减速***,通常其电机、输入轴、减速装置和输出轴和待驱动设置是同轴依次布置的,占用的空间体积比较大。同时,由于电机、减速装置和待驱动设置彼此分离设置,并通过输入轴和输出轴彼此连接,这无疑增大了减速***沿着输入/输出轴方向上的长度,在电机高速旋转时,增大的轴向长度存在输入轴和输出轴偏离轴向方向的稳定性的问题,从而影响了减速***的性能。
因此,急需研发一种占用空间体积较小并具有改良的稳定性的减速***。
发明内容
本发明的目的在于解决现有减速***存在的上述缺陷,并提供了一种内嵌有减速装置的电机,该电机占用空间体积较小并具有改良的稳定性。
为了实现上述目的,本文提供了内嵌有减速装置的电机,包括:壳体;输入机构,设置在所述壳体内,所述输入机构包括定子和转子,所述定子附接至所述壳体的内壁;减速装置,设置在所述壳体内,所述减速装置包括主动部件和从动部件,其中所述主动部件位于所述输入机构的转子内并与所述转子固接;以及输出轴,其由所述减速装置的从动部件驱动。
根据本发明的一个或多个实施方式的电机,其中所述减速装置为章动减速器,包括:章动齿轮,所述章动齿轮的一个端面形成有齿面;非章动齿轮,固定设置于所述壳体上,所述非章动齿轮的一个端面形成有齿面,其中所述非章 动齿的形成有齿面的端面和所述章动齿轮的形成有齿面的端面彼此啮合;以及驱动斜盘,与所述输入机构相连并受所述输入机构驱动,所述驱动斜盘的第一侧抵靠至所述章动齿轮的未形成有齿面的另一端面;其中所述驱动斜盘是所述主动部件,并且所述章动齿轮是所述从动部件,并且所述驱动斜盘的所述第一侧相对于与所述输出轴的旋转轴垂直的平面倾斜设置,所述输出轴穿设在所述章动齿轮和所述非章动齿轮的内周侧,并与所述章动齿轮的内周侧固定连接。
根据本发明的一个或多个实施方式的电机,其中,电机进一步包括第二章动减速器,所述第二章动减速器包括:第二章动齿轮,所述第二章动齿轮的一个端面形成有齿面;第二非章动齿轮,固定设置于所述壳体上,所述第二非章动齿轮的一个端面形成有齿面,其中所述第二非章动齿的形成有齿面的端面和所述第二章动齿轮的形成有齿面的端面彼此啮合;其中所述第二章动齿轮也是所述从动部件;并且所述驱动斜盘的与所述第一侧相对于第二侧与所述第二章动齿轮的未形成有齿面的另一端面接触,并且所述第二侧相对于与所述输出轴的旋转轴垂直的平面倾斜设置,所述输出轴进一步穿设在所述第二章动齿轮和所述第二非章动齿轮的内周侧,并与所述第二章动齿轮的内周侧固定连接。
根据本发明的一个或多个的电机,其中,所述驱动斜盘的所述第一侧通过推力球轴承与所述章动齿轮接触,所述驱动斜盘的与所述第一侧相对的第二侧通过推力球轴承与所述壳体接触。
根据本发明的一个或多个实施方式的电机,其中,所述驱动斜盘的所述第一侧通过推力球轴承与所述章动齿轮接触,所述驱动斜盘的所述第二侧通过推力球轴承与所述第二章动齿轮接触。
根据本发明的一个或多个实施方式的电机,其中,所述环形输入机构在其内壁上设置有多个凸缘,所述凸缘从向所述输出轴的轴心径向延伸,用于定位所述驱动斜盘。
根据本发明的一个或多个实施方式的电机,其中,所述输出轴经由扭矩传递部件与所述章动齿轮连接,并经由轴承与所述非章动齿轮连接。
根据本发明的一个或多个实施方式的电机,其中,所述扭矩传递部件是球笼式万向节,并且所述扭矩传递部件通过端面波纹花键与所述章动齿轮和所述输出轴相连。
根据本发明的一个或多个实施方式的电机,其中,所述减速器是谐波减速 器,所述谐波减速器包括:刚轮,固定连接于所述壳体;柔轮,设置在所述刚轮的内圆周侧,所述输出轴与所述柔轮固定连接;以及波发生器,设置在所述柔轮的内侧并与所述柔轮的内侧相互压紧,所述波发生器与所述环形输入机构连接并受所述环形输入机构的驱动,其中所述波发生器是所述主动部件,所述柔轮是所述从动部件。
根据本发明的一个或多个实施方式的电机,其中,所述输入机构是绳筒或筒形电机。
附图说明
图1A为根据本发明的一个实施方式的内嵌式电机的截面图。
图1B为图1A的内嵌式电机的***图。
图2A为根据本发明的一个实施方式的章动减速器的立体图。
图2B为图2A中章动减速器的章动齿轮的侧视图。
图2C为图2A中章动减速器的局部放大图。
图2D为根据本发明的一个实施方式的章动减速器的齿轮啮合关系的示意图。
图3为图1中章动减速器的驱动斜盘的示意图。
图4是根据本发明的另一个实施方式的内嵌式电机的截面图。
图5是根据本发明的另一个实施方式的内嵌式电机的截面图。
具体实施方式
为了使本发明的特征和优点更加清楚,下面将结合附图对本发明作进一步的说明,应注意,附图中所示出的实施方式是以解释本发明的方式而被提供的,且不应被视为对本发明的限制。
请参照图1A和图1B,图1A是根据本文的一个实施方式的内嵌式电机100的截面图,图1B是内嵌式电机100的***图。下面结合图1A和图1B对内嵌式电机100的结构进行详细说明。
电机100大体上包括壳体110、输入机构120和减速装置130。在图1A和1B所示的电机100中,壳体110包括侧壁111和设置在侧壁111的一端的顶壁112。壳体110定义了包围在侧壁111和顶壁112内的内部空间113。在 内部空间113中,设置有具有输入机构120,输入机构120设置在侧壁111的内侧。具体而言,输入机构120可以包括定子121和转子122,其中定子121与侧壁111固定连接,转子122与减速装置130(减速装置130的主动部件)固定连接,从而驱动减速装置130。具体而言,如图1所示,当转子122形成为环状的情况下,减速装置的主动部件固定连接至环状转子122的内部开口内,使得减速装置的主动部件形成为嵌入在转子122中。减速装置130的对来自输入机构120输入的运动进行减速,并通过与减速装置130的从动部件连接的输出轴150将被减速后的运动输出至待被驱动的其他装置。减速装置130具有大致环形的形状并具有位于其中心的开口。输出轴150经设置为穿过减速装置130的中心开口而定位在该中心开口中,并在环形侧壁111的中心轴向方向上穿过内部空间113。输出轴150的一端经由挡盖114定位在顶壁112内,并例如通过轴套143和轴承144与顶壁112连接,从而使得输出轴150可相对于壳体110旋转。输出轴150的另一端从与顶壁112相对的一侧从壳体110露出,以便与其它待被输出轴150驱动的其他装置连接。虽然图1A和1B中没有示出,在一些实施方式中,壳体110可具有与顶壁112相对的底壁,输出轴150从底壁露出,并通过轴套和轴承与底壁连接,使得输出轴150定位在底壁上并可相对于底壁旋转。
如此构造的内嵌式电机100充分利用了电机100的内部空间。具体而言,在电机100中,将由转子122和定子121构成的输入构件120设置在侧壁111上,并将减速装置130的主动部件嵌入转子122的径向向内的空间中,以代替将减速装置与电机分离设置并通过输入轴彼此连接的传统构造,这大大减少了具有减速装置和电机的减速***的占用空间。此外,由于减速装置130具有大致环形的形状,使得的输出轴150能够穿设在减速装置130的中心开口中并贯穿电机100。此设计使得电机100的输入构件120、减速装置130和输出轴130在厚度上彼此重叠,来代替传统结构中的电机、输入轴、减速装置、输出轴同轴设置的机构,从而显著缩短了减速***沿着输入/输出轴方向上的长度,增大了减速***在工作时的稳定性,提高了减速***的性能。
在一些实施方式中,环形的输入机构120可以是绳筒或筒形电机,但本发明不以此为限,也可以是具有环形旋转部件的其他输入机构。
将结合图1A和1B对减速装置130的结构进行说明。在一些实施方式中, 减速装置130可以是章动减速器。但本发明不以此为限,减速装置130也可以是其他具有环形形状的减速装置,例如,谐波减速器等。在减速装置130是章动减速器的实施方式中,减速装置130具有章动齿轮131、非章动齿轮132以及驱动斜盘133。输入机构120与驱动斜盘133相连以驱动驱动斜盘133进行旋转,故当减速装置是章动减速器时,驱动斜盘133作为主动部件。驱动斜盘133与章动齿轮131接触,以驱动章动齿轮131随着驱动斜盘133的旋转而进行章动运动。
参见图2A,图2A示出了根据本文的一个实施方式的章动减速器200的章动齿轮210和非章动齿轮220,其中章动齿轮210和非章动齿轮220分别相当于图1A和1B中的章动齿轮131和非章动齿轮132。
如图2A所示,章动齿轮210为端面齿轮,即,章动齿轮210的齿面230形成在章动齿轮210的一个端面上,而不是形成在章动齿轮210的外侧圆周或内侧圆周。相较于将齿面形成在齿轮的外侧圆周或内侧圆周,在齿轮端面形成有齿面的齿轮在工作时受到的作用力分摊在齿轮的整个厚度方向上,由于齿轮在厚度方向上具有更好的刚性,因此在一侧形成有齿面的齿轮可以有效地防止在工作时导致的变形。同样,非章动齿轮220在其一个端面上具有齿面240。齿面240与齿面230相互面对并在工作时以章动传动的方式相互啮合。齿面230的齿的数量与齿面240上的齿的数量通常相差1齿。例如,齿面230可比齿面240少1齿,或齿面230可比齿面240多1齿。
参见图2B,图2B示出了章动齿轮210的侧视图。如图2B所示,假定在齿面230中的每一个齿的齿根和齿尖之间具有朝向章动齿轮210的中心O延伸的直线OP,那么将直线OP围绕中心O沿着齿面230在圆周方向上转动一周而形成的面称为章动齿轮210的分度面,中心O为该分度面的中心点。章动齿轮210的分度面上的任意一条母线(例如图2B中的直线PO)与章动齿轮210的中心轴线OO’具有夹角∠POO’。虽然没有示出,与章动齿轮210相似,非章动齿轮220同样具有类似的分度面,并且其上任意一条母线与其轴线也具有夹角。
在传统的齿轮设计中,齿轮的分度面和轴线之间的夹角取决于形成在齿面上的齿数。例如,对于具有45齿的齿轮,其分度面和轴线之间的夹角要么比90°大,要么比90°小。换句话说,其分度面形成为分度面的中心朝向齿轮凹入 的内圆锥面或朝外凸出的凸圆锥面。随着齿轮的齿数的增加,其分度面和轴线之间的夹角越来越接近90°,也就是说,随着齿轮的齿数的增加,其分度面越来越接***面。
在传统的章动减速器中,章动齿轮和非章动齿轮中的其中一个齿轮形成为内锥齿轮,另一个齿轮形成为外锥齿轮。然而,在齿轮制造行业中,内锥齿轮的精确机械加工是很具有挑战性的,为了能够制造精确的内锥齿轮,一般主要使用数控机床进行加工,其带来了成本的增加。同时,对于传统的章动减速器,在章动齿轮章动一周期间的每一个瞬时,两个齿轮之间只有很小一部分的齿彼此进行啮合传动,而绝大部分的齿并没有接触(例如图2A中由虚线B所围绕的部分一样)。举例来说,对于具有45齿的章动齿轮而言,在其章动一周的期间,仅有2-3齿会与非章动齿轮进行啮合传动,而剩下的齿在此期间始终彼此分离。这使得传统章动减速器存在承载力小,传动不平稳的问题。发明人发现,将章动减速器中的两个齿轮的分度面强制设定为大致平面,而不取决于齿轮的齿数,这能够显著增加在章动期间相互啮合传动的齿数。
具体而言,在图2A和2B所示的章动减速器200中,章动齿轮210和非章动齿轮220各自的分度面和各自轴线之间的夹角均介于88°至91°,具体是介于88°至90°之间。并且章动齿轮210和非章动齿轮220各自的分度面和各自轴线之间的夹角的角度之和小于180°。例如,章动齿轮210和非章动齿轮220中其中一个齿轮的分度面是平面(即夹角为90°),而另一个齿轮的分度面是略微外凸的凸圆锥面(即夹角大于88°且小于90°),或者章动齿轮210和非章动齿轮220均为略微外凸的凸圆锥面。发明人发现,对于由具有如上特点的分度面的章动齿轮210和非章动齿轮220中所构成的摆线针轮副100,在章动齿轮210章动一周的期间,章动齿轮210和非章动齿轮220之间会有更多的齿彼此啮合传动。例如,对于具有45齿的章动齿轮210而言,在其章动一周的期间,章动齿轮210和非章动齿轮220之间将会有12-13齿相互啮合传动,这大大增加了章动减速器的承载能力和传动稳定性。此外,由于章动齿轮210和非章动齿轮220具有形成为大致平面或略微上凸或下凹的圆锥面的分度面,来替代传统的章动减速器中所使用的内锥齿轮,因此,相较于传统的章动减速器轮,根据该实施方式的章动减速器200机械加工简单,制造成本低。
如上文所述,由于章动齿轮210的齿面230的齿的数量与非章动齿轮220 的齿面240上的齿的数量不同,因此,在章动齿轮210和非章动齿轮220相互啮合时,齿面230和齿面240并不是完全啮合,而是部分啮合在一起。请参照图2C,图2C示出了由图2A中的虚线A所包围的章动减速器200的局部放大示意图。如图2C所示,齿面230和齿面240部分啮合时,齿面230的齿的一部分231与齿面240的齿的一部分241相互接触,称为章动齿轮210的工作齿面231和非章动齿轮220的工作齿面241,同时齿面230的齿的另一部分232与齿面240的齿的另一部分242相互分离,称为章动齿轮210的非工作齿面232和非章动齿轮220的非工作齿面242。在章动减速器200工作时,章动齿轮210可进行章动运动,在章动齿轮210的章动运动和齿面230和齿面240的部分啮合的作用下,章动齿轮210和非章动齿轮220可彼此进行相对旋转。应注意,虽然在图2C中示出了齿面230和齿面240在某个时刻的部分啮合状态,然而,在章动齿轮210进行章动运动时,齿面230中的每个齿的一部分会与齿面140的对应齿的一部分以彼此滑动的方式接触。因此,只要在章动齿轮210的章动运动期间的任意时刻齿面230的一部分和齿面240的一部分进行了接触,那个齿面230和齿面240的这些相互接触的部分都称为工作齿面。与此相反,在章动齿轮210的章动运动期间的任意时刻,齿面230与齿面240都不彼此接触的部分称为非工作齿面。
章动减速器200可以对输入至其的旋转运动进行减速,并输出减速后的旋转运动。章动齿轮210每章动一周,相互接触的工作齿面231和工作齿面241彼此以滑动的方式接触一次,因此,章动齿轮210每章动一周仅推动非章动齿轮220旋转很小的角度,从而实现章动齿轮210和非章动齿轮220之间较大的传动比。在章动齿轮210与非章动齿轮220相差1齿的情况下,章动齿轮210每章动一周,针齿轮旋转一齿。
参照图2D,图2D中示出了章动齿轮210的齿面230和非章动齿轮220的齿面140在P点处互相接触并进行啮合传动。如图2D所述,线PM示出了齿面240在P点处的法线方向,线PN示出了齿面230在P点处与齿面240接触时非章动齿轮220在P点处相对于章动齿轮210的运动方向。由于章动齿轮210进行章动运动,因此在章动齿轮210固定不转的情况下,齿面230在P点处推动齿面140使得非章动齿轮220沿着Y方向转动,因此线PN平行于Y方向。当然,在非章动齿轮220固定不转的情况下,齿面240在P点处迫使齿 面230运动,从而迫使非章动齿轮220沿着与Y方向相反的方向转动。线PM与PN之间所成的夹角α为齿面230和齿面240接触时的压力角。压力角的大小指示了齿面230和齿面240接触时这两者之间的做功效率(即,传动效率)。发明人发现,当章动齿轮210和非章动齿轮220的齿形经构造使得上述压力角为合适的角度时,由章动齿轮210和非章动齿轮220构成的章动减速器200具有最优的传动效率。在一些实施方式中,当齿面230和齿面240接触时的压力角满足关系式45°-β-5°≤α≤45°-β+5°时,可具有最优的传动效率。上述关系式中,α指示齿面230和齿面240接触时的压力角,β指示齿面230和齿面240之间的摩擦角,该摩擦角为齿面230和齿面240的固有属性,其取决于制造章动齿轮210和非章动齿轮220的材料与使用的润滑材料,其一般介于3°至5°之间。举例而言,若齿面230和齿面240之间的摩擦角为3°,则齿面230和齿面240接触时的压力角优选为介于37°至47°之间,若两者之间的摩擦角为5°,则齿面230和齿面240接触时的压力角优选为介于35°至45°之间。
虽然结合图2A-2D描述了具有特定分度面和压力角的章动减速器200,但也可以使用其中常规的章动减速器,本发明并不以此为限。
参见图3,图3示出的章动减速器130中的驱动斜盘133的示意图。图3省去了其他部件,以使得更加清楚。如图3所示,驱动斜盘133在其外周连接至输入机构120的转子122,使得输入机构110能够驱动驱动斜盘133旋转。在本文的实施方式中,环形输入机构110在其内周侧形成有多个凸缘123,这些凸缘123从转子122的内周侧径向向内延伸,驱动斜盘133通过紧固件124(例如,螺栓)与凸缘123连接。输出轴150通过轴承145穿设在驱动斜盘133的中央开口中,使得输出轴150和驱动斜盘133的彼此独立地旋转。
结合图1和图3,驱动斜盘133具有第一侧面136和第二侧面137,第一侧面136和底壁112接触,例如通过使用推力球轴承141将第一侧面136抵靠至底壁112,使得驱动斜盘133能够独立于底壁112旋转并在旋转期间始终抵靠在底壁112上。驱动斜盘133的第二侧面137相对于平面151倾斜设置,第二侧面137与平面151成一夹角α(即,章动角)。平面151垂直于输出轴150的旋转轴线152。第二侧面137与章动齿轮131中未形成有齿面的端面接触,例如通过使用推力球轴承142将章动齿轮131抵靠至第二侧面137,使得 驱动斜盘133和章动齿轮131能够独立地旋转,并在旋转期间章动齿轮131始终抵靠在驱动斜盘133的第二侧面137上。如上所述,由于驱动斜盘133的第二侧面137相对于平面151倾斜设置,则在驱动斜盘133旋转时,抵靠在驱动斜盘133上的章动齿轮131会在驱动斜盘133的倾斜的第二侧面137的带动下进行章动运动。
继续参见图1,非章动齿轮132固定至侧壁111上。在设置有与底壁112相对的顶壁时,非章动齿轮132可以进一步固定至顶壁的内侧。在一些实施方式中,也可以不设置顶壁,在这种情况下,非章动齿轮132的未形成有齿面的端面可以作为壳体的一部分以包围内部空间113。
输出轴150通过轴承146穿设在非章动齿轮132的中央开口中,使得输出轴150能够独立于非章动齿轮132旋转。如上文所述,输入机构120驱动驱动斜盘133旋转,驱动斜盘133进一步驱动章动齿轮131进行章动运动,使得输入机构120每旋转一周,章动齿轮131进行一次章动运动。通过章动齿轮131和非章动齿轮132之间的啮合传动,章动齿轮131每进行一次章动运动,章动齿轮131和非章动齿轮132以减速后的转速进行相对旋转。由于非章动齿轮132固定,因此,通过章动齿轮131和非章动齿轮132之间的啮合传动,章动齿轮131相对于非章动齿轮进行章动运动。输出轴150穿设在章动齿轮131的中央开口中,并且输出轴150在其外周与章动齿轮131的中央开口连接,使得章动齿轮131进一步驱动输出轴150进行同步旋转,故当减速装置是章动减速器时,章动齿轮131作为从动部件。如此,可以通过章动减速器130将输入机构120的较高旋转运动减速为较低的旋转运动并将减速后的旋转运动传递至输出轴。
在一些实施方式中,输出轴150通过扭矩传递部件134与章动齿轮131连接,以便将章动齿轮131的旋转扭矩传递给输出轴150。扭矩传递部件134可以是球笼式万向节或虎克铰。当然也可以是其他扭矩传递部件,例如柔性部件(诸如波纹管、波纹膜、弹簧膜片)。与球笼或虎克铰的扭矩传递部件相比,使用柔性部件的扭矩传递部件具有更小的体积,并且由于章动齿轮的章动运动而导致的其与另外部件之间的震动被柔性部件吸收,从而增加了传动稳定性。扭矩传递部件134可以通过端面波纹花键与输出轴150连接以传递扭矩,本发明不以此为限,也可以使用其他连接方式。
参见图4,图4示出了根据本发明另一个实施方式的内嵌式电机300的示意图。电机300具有与电机100类似的结构。电机300大体上包括壳体310、输入机构320和减速装置330。壳体310包括环形的侧壁311。壳体310定义了包围在侧壁311内的内部空间。在内部空间中,设置有具有环形形状的输入机构320,输入机构320与图1A和1B中示出的输入机构120具有相同的构造,在此不再赘述。输入机构320的转子322与减速装置330耦接,从而驱动减速装置330。减速装置330对来自输入机构320输入的运动进行减速,并通过与减速装置330连接的输出轴350将被减速后的运动输出至待被驱动的其他装置。减速装置330具有大致环形的形状并具有位于其中心的开口。输出轴350经设置为穿过减速装置330的中心开口而定位在该中心开口中,并在环形侧壁311的中心轴向方向上穿过内部空间。输出轴330从壳体310露出,以便与其它待被输出轴330驱动的其他装置连接。
减速装置330也是章动减速器。但减速装置330和图1A和1B示出的减速装置130的不同之处在于减速装置330具有两个章动齿轮331和334,以及两个非章动齿轮332和335。章动齿轮331、334以及非章动齿轮332、335的结构与图1A和1B中示出的章动齿轮131和非章动齿轮132相同,在此不再赘述。在减速装置330中,驱动斜盘333的外周连接至输入机构320,使得驱动斜盘333在输入机构320的驱动下旋转。输出轴350经由轴承345穿设在驱动斜盘333的中心开口中,使得输出轴350和驱动斜盘333能够彼此独立地旋转。驱动斜盘333的两个侧面分别接触章动齿轮331、334的未形成有齿面的端面上。在一些实施方式中,章动齿轮331、334经由推力球轴承341和342而抵靠至驱动斜盘333上,使得驱动斜盘333和章动齿轮331、334能够独立地旋转,并在旋转期间章动齿轮331、334始终抵靠在驱动斜盘333的侧面上。驱动斜盘333两个侧面均相对于与输出轴350的中心轴线垂直的平面倾斜设置,驱动斜盘333两个侧面与该平面均呈一夹角(即,章动角)。因此,在驱动斜盘333旋转时,抵靠在驱动斜盘333上的章动齿轮331、334会在驱动斜盘133的倾斜的两个侧面的带动下同时进行章动运动。
非章动齿轮332、335固定至侧壁311上。在一些实施方式中,非章动齿轮332、335的未形成有齿面的端面可以作为壳体的一部分以包围内部空间。当将非章动齿轮332、335的未形成有齿面的端面作为壳体的一部分时,输出 轴350经由挡盖312定位在非章动齿轮335上,并进一步被定为在由侧壁311定义的内部空间中。输出轴350例如通过轴套343和轴承344而穿设在非章动齿轮335的中央开孔中,从而使得输出轴350可相对于非章动齿轮335旋转。输出轴350通过轴承346穿设在非章动齿轮332的中央开口中,使得输出轴350能够独立于非章动齿轮332旋转。
输入机构320驱动驱动斜盘333旋转,驱动斜盘333进一步驱动章动齿轮331、334进行章动运动,使得输入机构320每旋转一周,章动齿轮331、334进行一次章动运动。通过章动齿轮331、334和非章动齿轮332、335之间的啮合传动,章动齿轮331、334每进行一次章动运动,章动齿轮331、334和非章动齿轮332、335以减速后的转速进行相对旋转。与图1A和1B中示出的减速装置130类似,由于非章动齿轮332、335固定,因此,通过章动齿轮和非章动齿轮之间的啮合传动,章动齿轮331、334会一边进行章动运动,一边相对于非章动齿轮332、335以减速后的转速进行旋转。输出轴350穿设在章动齿轮331、334的中央开口中,并且输出轴350在其外周与章动齿轮331、334的中央开口连接,使得章动齿轮331、334同时驱动输出轴350进行同步旋转。如此,可以通过章动减速器330将输入机构320的较高旋转运动减速为较低的旋转运动并将减速后的旋转运动传递至输出轴。输出轴350分别通过扭矩传递部件336、337与章动齿轮331、334相连,以便将章动齿轮331、334的旋转扭矩传递给输出轴350。扭矩传递部件336、337与图1A和1B示出的扭矩传递部件134具有相同的构造,在此不再赘述。
与图1A和1B的减速装置130相比,减速装置330具有两个章动齿轮和两个非章动齿轮,故可以提高章动减速器的传动效率,降低能量损耗。同时,对称布局的设计可以平衡驱动斜盘的轴向受力,提高章动减速器的稳定性。
参照图5,图5示出了根据另一实施方式的内嵌式电机400的剖面图。如图5所示,电机400大体上包括壳体410、输入机构420和减速装置430。壳体410包括侧壁411和设置在侧壁411的两端的顶壁412和底壁413,以包围内部空间414。在内部空间414中,设置有输入机构420,输入机构420设置在侧壁411的内侧。环形的输入机构420进一步被设计为碗状的形状。减速装置430对来自输入机构420输入的运动进行减速,并通过与减速装置430的输出部分连接的输出轴450将被减速后的运动输出至待被驱动的其他装置。减速 装置430具有大致环形的形状并具有位于其中心的开口。输出轴450经设置为穿过减速装置430的中心开口而定位在该中心开口中,并在环形侧壁411的中心轴向方向上穿过内部空间414。输出轴450的一端经由挡盖415定位在顶壁412内,并例如通过轴套443和轴承441与顶壁412连接,从而使得输出轴450可相对于壳体410旋转。输出轴450的另一端从通过轴承442与底壁413连接并从底壁露出,从而使得输出轴450可相对于壳体410旋转。
在本实施方式中,减速装置430为谐波减速器,谐波减速器430包括刚轮、柔轮和波发生器。所述刚轮与壳体410固定连接的,所述柔轮设置在刚轮的内周侧并与输出轴450连接,以便将经减速装置430减速后的旋转运动传递至输出轴450,所述波发生器设置在所述柔轮的内周侧并在其外周与输入机构420相连,以使得输入机构420能够驱动波发生器旋转。输出轴450通过轴套444和轴承445穿设在谐波减速器430中,使得输出轴450能够独立于波发生器和与输入机构420旋转。
在谐波减速器430中,刚轮是带有内齿圈的刚性齿轮,柔轮是带有外齿圈的柔性齿轮,波发生器是使柔轮产生可控弹性变形的构件,当波发生器装入柔轮中时,波发生器迫使柔轮的剖面由原先的圆形变成椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开,并且其他区段的齿处于啮合和脱离的过渡状态。在谐波减速器430工作时,随着波发生器的旋转,柔轮的变形不断改变,使柔轮与刚轮的啮合状态也不断改变,从而使得柔轮相对刚轮沿波发生器旋转方向的相反方向的缓慢旋转,以实现减速作用。
如此构造的内嵌式电机400充分利用了电机400的内部空间414。具体而言,在电机400中,将输入构件420设置在环形侧壁411上,并将减速装置430嵌入输入构件420的进一步径向向内的空间中,以代替将减速装置与电机分离设置并通过输入轴彼此连接的传统构造,这大大减少了具有减速装置和电机的减速***的占用空间。此外,由于减速装置430具有大致环形的形状,使得输入轴430能够穿设在减速装置430的中心开口中并穿过电机400的壳体。此设计使得电机400的输入部分和输出部分彼此重叠,来代替传统结构中的电机、输入轴、减速装置、输出轴同轴设置的机构,从而显著缩短了减速***沿着输入/输出轴方向上的长度,增大了减速***在工作时的稳定性,提高了减 速***的性能。
当然,本文还可有其它多种实施方式,在不背离本文精神及其实质的情况下,熟悉本领域的技术人员当可根据本文作出各种相应的改变和变形,但这些相应的改变和变形都应属于本文所附的权利要求的保护范围。

Claims (10)

  1. 一种内嵌有减速装置的电机,包括:
    壳体;
    输入机构,设置在所述壳体内,所述输入机构包括定子和转子,所述定子附接至所述壳体的内壁;
    减速装置,设置在所述壳体内,所述减速装置包括主动部件和从动部件,其中所述主动部件位于所述输入机构的转子内并与所述转子固接;以及
    输出轴,其由所述减速装置的从动部件驱动。
  2. 根据权利要求1所述的电机,其特征在于,所述减速装置为章动减速器,包括:
    章动齿轮,所述章动齿轮的一个端面形成有齿面;
    非章动齿轮,固定设置于所述壳体上,所述非章动齿轮的一个端面形成有齿面,其中所述非章动齿的形成有齿面的端面和所述章动齿轮的形成有齿面的端面彼此啮合;以及
    驱动斜盘,与所述输入机构相连并受所述输入机构驱动,所述驱动斜盘的第一侧抵靠至所述章动齿轮的未形成有齿面的另一端面;其中
    所述驱动斜盘是所述主动部件,并且所述章动齿轮是所述从动部件,并且
    所述驱动斜盘的所述第一侧相对于与所述输出轴的旋转轴垂直的平面倾斜设置,
    所述输出轴穿设在所述章动齿轮和所述非章动齿轮的内周侧,并与所述章动齿轮的内周侧固定连接。
  3. 根据权利要求2所述的电机,其特征在于,进一步包括第二章动减速器,所述第二章动减速器包括:
    第二章动齿轮,所述第二章动齿轮的一个端面形成有齿面;
    第二非章动齿轮,固定设置于所述壳体上,所述第二非章动齿轮的一个端面形成有齿面,其中所述第二非章动齿的形成有齿面的端面和所述第二章动齿轮的形成有齿面的端面彼此啮合;其中
    所述第二章动齿轮也是所述从动部件;并且
    所述驱动斜盘的与所述第一侧相对于第二侧与所述第二章动齿轮的未形成有齿面的另一端面接触,并且所述第二侧相对于与所述输出轴的旋转轴垂直的平面倾斜设置,
    所述输出轴进一步穿设在所述第二章动齿轮和所述第二非章动齿轮的内周侧,并与所述第二章动齿轮的内周侧固定连接。
  4. 根据权利要求2所述的电机,其特征在于,所述驱动斜盘的所述第一侧通过推力球轴承与所述章动齿轮接触,所述驱动斜盘的与所述第一侧相对的第二侧通过推力球轴承与所述壳体接触。
  5. 根据权利要求3所述的电机,其特征在于,所述驱动斜盘的所述第一侧通过推力球轴承与所述章动齿轮接触,所述驱动斜盘的所述第二侧通过推力球轴承与所述第二章动齿轮接触。
  6. 根据权利要求2或3所述的电机,其特征在于,所述环形输入机构在其内壁上设置有多个凸缘,所述凸缘从向所述输出轴的轴心径向延伸,用于定位所述驱动斜盘。
  7. 根据权利要求2或3所述的电机,其特征在于,所述输出轴经由扭矩传递部件与所述章动齿轮连接,并经由轴承与所述非章动齿轮连接。
  8. 根据权利要求7所述的电机,其特征在于,所述扭矩传递部件是球笼式万向节,并且所述扭矩传递部件通过端面波纹花键与所述章动齿轮和所述输出轴相连。
  9. 根据权利要求1所述的电机,其特征在于,所述减速器是谐波减速器,所述谐波减速器包括:
    刚轮,固定连接于所述壳体;
    柔轮,设置在所述刚轮的内圆周侧,所述输出轴与所述柔轮固定连接;以 及
    波发生器,设置在所述柔轮的内侧并与所述柔轮的内侧相互压紧,所述波发生器与所述环形输入机构连接并受所述环形输入机构的驱动,其中
    所述波发生器是所述主动部件,所述柔轮是所述从动部件。
  10. 根据权利要求1所述的电机,其特征在于,所述输入机构是绳筒或筒形电机。
PCT/CN2020/072960 2020-01-03 2020-01-19 内嵌有减速装置的电机 WO2021134846A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010005474.0A CN113078773B (zh) 2020-01-03 2020-01-03 内嵌有减速装置的电机
CN202010005474.0 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021134846A1 true WO2021134846A1 (zh) 2021-07-08

Family

ID=76608622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072960 WO2021134846A1 (zh) 2020-01-03 2020-01-19 内嵌有减速装置的电机

Country Status (2)

Country Link
CN (1) CN113078773B (zh)
WO (1) WO2021134846A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198460A (zh) * 2021-12-22 2022-03-18 姜虹 一种章动减速器
EP4273420A4 (en) * 2021-12-22 2024-07-10 Jiang Hong PAIR OF GEARS AND NUTATION SPEED REDUCER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116044958A (zh) * 2022-12-05 2023-05-02 浙江夏厦精密制造股份有限公司 一种减速器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263761A (ja) * 2009-05-07 2010-11-18 Planet Techno:Kk 変速機内蔵モーター
CN103459891A (zh) * 2011-03-16 2013-12-18 日本精工株式会社 摩擦辊式减速机以及电动汽车用驱动装置
CN203562879U (zh) * 2013-10-17 2014-04-23 晁会岩 一种一体嵌入电机
CN106151472A (zh) * 2015-04-15 2016-11-23 浙江宁波智动机器人技术有限公司 一种具有润滑功能的谐波减速器
CN207442626U (zh) * 2017-12-08 2018-06-01 福建工程学院 一种非接触式章动减速电机
CN208982611U (zh) * 2018-08-17 2019-06-14 北京智能大艾机器人科技有限公司 一种端面齿摆线针轮副和章动减速装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263761A (ja) * 2009-05-07 2010-11-18 Planet Techno:Kk 変速機内蔵モーター
CN103459891A (zh) * 2011-03-16 2013-12-18 日本精工株式会社 摩擦辊式减速机以及电动汽车用驱动装置
CN203562879U (zh) * 2013-10-17 2014-04-23 晁会岩 一种一体嵌入电机
CN106151472A (zh) * 2015-04-15 2016-11-23 浙江宁波智动机器人技术有限公司 一种具有润滑功能的谐波减速器
CN207442626U (zh) * 2017-12-08 2018-06-01 福建工程学院 一种非接触式章动减速电机
CN208982611U (zh) * 2018-08-17 2019-06-14 北京智能大艾机器人科技有限公司 一种端面齿摆线针轮副和章动减速装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198460A (zh) * 2021-12-22 2022-03-18 姜虹 一种章动减速器
US11933385B2 (en) 2021-12-22 2024-03-19 Hong Jiang Nutation reducer
EP4273420A4 (en) * 2021-12-22 2024-07-10 Jiang Hong PAIR OF GEARS AND NUTATION SPEED REDUCER

Also Published As

Publication number Publication date
CN113078773B (zh) 2023-03-10
CN113078773A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021134846A1 (zh) 内嵌有减速装置的电机
CN108468758B (zh) 减速机
US9145919B2 (en) Speed-reduction transmission bearing
KR101724659B1 (ko) 역 사이클로이드 감속기
JP7466255B2 (ja) 歯車対及び章動減速機
US11841072B2 (en) Transverse cycloidal-pin gear pair and nutation deceleration device
WO2020057164A1 (zh) 矢量摆线变速单元
CN108799415B (zh) 摆线型减速机
CN111442064B (zh) 具动平衡的摆线型减速机
CN109780163B (zh) 一种往复式圆柱正弦端面活齿减速器
US3595103A (en) Angular drive arrangement
WO2023116409A1 (zh) 一种章动减速器
JPS6040845A (ja) 原軸と従軸間の回転運動伝達装置
JPH0510400A (ja) 減速機
WO2021184423A1 (zh) 双球面摆线滚子章动传动装置
CN210461387U (zh) 一种旋转精度高的双波线滚珠减速轴承
TWM579232U (zh) 複差動減速器
KR20090099202A (ko) 하모닉 감속기
CN111895058A (zh) 一种减速机的成型设计方法
TWM573804U (zh) 偏心式減速裝置
KR100991515B1 (ko) 볼 내림 형태의 고속 감속기
CN212928684U (zh) 减速机及具有其的动力输出设备
TWI820817B (zh) 共軛凸輪式減速機
JP6273832B2 (ja) 分割型保持器、一方向クラッチ及び発電装置用の継手
KR102543898B1 (ko) 내치 기어를 플레인 베어링 방식으로 변환시킴으로써 구름 효과가 증대되고 인가 하중이 분산되어 출력 성능과 내구성이 개선된 싸이클로이드 감속기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910458

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20910458

Country of ref document: EP

Kind code of ref document: A1