WO2021127910A1 - 线性振动电机 - Google Patents

线性振动电机 Download PDF

Info

Publication number
WO2021127910A1
WO2021127910A1 PCT/CN2019/127604 CN2019127604W WO2021127910A1 WO 2021127910 A1 WO2021127910 A1 WO 2021127910A1 CN 2019127604 W CN2019127604 W CN 2019127604W WO 2021127910 A1 WO2021127910 A1 WO 2021127910A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
vibration
magnetic steel
auxiliary
magnetic
Prior art date
Application number
PCT/CN2019/127604
Other languages
English (en)
French (fr)
Inventor
凌芳华
浦晓峰
张玉林
周晓荣
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/127604 priority Critical patent/WO2021127910A1/zh
Publication of WO2021127910A1 publication Critical patent/WO2021127910A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the utility model relates to a motor, in particular to a linear vibration motor used in the field of mobile electronic products.
  • the related art linear vibration motor includes a base having a housing space, a vibration unit, an elastic component or bearing fixed to the base and suspending the vibration unit in the housing space, and fixed to the base to
  • the coil unit that drives the vibration unit to vibrate interacts with the magnetic field generated by the vibration unit through the electric field generated by the coil unit, thereby driving the vibration unit to make a reciprocating linear motion to generate vibration.
  • the technical problem to be solved by the utility model is to provide a linear vibration motor with simple assembly, good vibration performance and high reliability.
  • the present utility model provides a linear vibration motor, which includes:
  • a guide housing including a body and a guide channel penetrating the body;
  • a vibration unit the vibration unit is accommodated in the guide channel and forms a sliding connection, and the vibration unit includes a magnetic steel unit;
  • a coil unit the coil unit is sleeved on the outside of the guide housing to drive the vibrating unit to vibrate along the axial direction of the guide channel;
  • the auxiliary magnetic steel unit is fixed to the guide housing and is spaced apart from the vibration unit, and the auxiliary magnetic steel unit is located in the magnetic field of the magnetic steel unit to generate vibrations for restoring the vibration The vibration restoring force of the vibration displacement of the unit, and,
  • the conductive damping unit includes two groups, the two groups of conductive damping units are respectively fixed to the guide housing, and are respectively located at opposite ends of the coil unit along the vibration direction of the vibration unit, so The conductive damping unit is located in the magnetic field of the magnetic steel unit to generate a damping force that hinders the movement of the vibration unit.
  • the auxiliary magnetic steel unit includes two groups, which are respectively arranged at opposite ends of the coil unit along the vibration direction of the vibration unit, and each group of the auxiliary magnetic steel unit includes two auxiliary magnetic steels, And are respectively fixed on opposite sides of the guide shell along the direction perpendicular to the vibration.
  • each group of the conductive damping unit includes two conductive damping monomers arranged oppositely; the two conductive damping monomers are respectively fixed on opposite sides of the guide housing along a direction perpendicular to the vibration direction .
  • the two auxiliary magnets of the same group of the auxiliary magnetic steel unit are respectively embedded in the two conductive damping units of the same group of the conductive damping unit.
  • the two conductive damping monomers of the same group of the conductive damping unit are respectively located on opposite sides of the guide housing, and the two auxiliary magnets 1 of the same group of the auxiliary magnetic steel unit are respectively located Fixed on the other opposite sides of the guide shell.
  • the two sets of conductive damping units are respectively attached and fixed on opposite sides of the guide housing along the vibration direction of the vibration unit and at least partially cover the guide channel.
  • the magnetic steel unit includes a magnetic steel and a soft magnetic block attached to the magnetic pole of the magnetic steel.
  • the magnetic steel includes two, and the soft magnetic block is sandwiched and fixed between the two magnetic steels.
  • the vibration unit further includes a mass block, which is attached to a side of the magnetic steel away from the soft magnetic block along the vibration direction.
  • the magnetization directions of the two magnets are parallel to the vibration direction, and the magnetization directions are opposite; the magnetization directions of the two auxiliary magnets of each group of the auxiliary magnet unit are perpendicular to The vibration direction, and the magnetic pole of the side of the auxiliary magnetic steel close to the magnetic steel is opposite to the magnetic pole of the side of the magnetic steel away from the soft magnetic block.
  • the linear vibration motor further includes two housing plates fixed to the guide housing, the two housing plates are respectively located at opposite ends of the guide housing along the axial direction of the guide channel, and The housing plate at least partially covers the guide channel.
  • the linear vibration motor of the present invention adds a conductive damping unit in addition to the auxiliary magnetic steel unit, and the conductive damping unit is fixed to the coil unit along the vibration direction of the vibration unit. The ends.
  • the vibrating unit vibrates, the magnetic steel moves with the vibration of the vibrating unit, and the magnetic field formed by the magnetic steel also moves. Therefore, the magnetic field strength of different parts of the conductive damping unit also changes.
  • the conductive damping unit generates a local eddy current, thereby generating a back electromotive force that hinders the vibration of the vibration unit, that is, generates a damping force that hinders the movement of the vibration unit.
  • the damping force changes with the vibration of the vibration unit, so the present invention will provide better vibration performance and better reliability.
  • Figure 1 is an exploded view of a part of the three-dimensional structure of the first embodiment of the sound generating device of the present invention
  • Figure 2 is a schematic diagram of the three-dimensional structure of the first embodiment of the sound generating device of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A in Figure 1;
  • FIG. 4 is an exploded view of a part of the three-dimensional structure of the second embodiment of the sound generating device of the present invention.
  • Figure 5 is a three-dimensional schematic diagram of the second embodiment of the sound generating device of the utility model
  • Figure 6 is an exploded view of a part of the three-dimensional structure of the third embodiment of the sound generating device of the present invention.
  • Figure 7 is a three-dimensional schematic diagram of the third embodiment of the sound generating device of the utility model
  • the present invention provides a linear vibration motor 100, which includes a guide housing 1, a vibration unit 2, a coil unit 3, an auxiliary magnetic steel unit 4, a housing plate 5, and a conductive damping unit 6.
  • the guide housing 1 includes a main body 11, a guide channel 12 penetrating the main body 11, a first receiving groove 13 and a ring-shaped second receiving groove 14 recessed by the outer surface of the guide housing 1.
  • the guide channel 12 is used to accommodate the vibration unit 2 and provide a vibration space for the vibration unit 2.
  • the first receiving groove 13 includes two groups, and they are arranged on opposite sides of the second receiving groove 14 at intervals along the vibration direction of the vibration unit 2.
  • the vibration unit 2 is accommodated in the guide channel 12 and forms a sliding connection, thereby forming a sliding vibration mode.
  • the vibration unit 2 includes a magnetic steel unit 21 and a mass 22.
  • the magnetic steel unit 21 is used to interact with the coil unit 3 to provide driving force.
  • the magnetic steel unit 21 includes a magnetic steel 211 and a soft magnetic block 212 attached to the magnetic pole of the magnetic steel 211.
  • the magnetic steel 211 includes two; the soft magnetic block 212 is sandwiched and fixed between the two magnetic steels 211 for magnetic conduction.
  • the number of the magnetic steel 211 and the soft magnetic block 212 is not limited to the above example.
  • the mass 22 is used as a counterweight to increase the weight of the vibration unit 2 to achieve the purpose of increasing the vibration amplitude of the vibration unit 2 and improving the vibration performance.
  • the mass block 22 includes two masses and is attached to a side of the magnetic steel 211 away from the soft magnetic block 212 along the vibration direction.
  • the coil unit 3 is sleeved on the outside of the guide housing 1 to drive the vibration unit 2 to vibrate along the axial direction of the guide channel 1.
  • the coil unit 3 is accommodated and fixed in the second accommodating groove 14.
  • the fixing effect can be enhanced, and on the other hand, the overall volume of the linear vibration motor 100 can be reduced.
  • the auxiliary magnetic steel unit 4 is fixed to the guide housing 1 and is spaced apart from the vibration unit 2.
  • the auxiliary magnetic steel unit 4 is located in the magnetic field of the magnetic steel unit 21 to generate a vibration restoring force for restoring the vibration displacement of the vibration unit 2, that is, to provide recovery for the reciprocating vibration of the vibration unit 2 in the horizontal vibration direction force.
  • the auxiliary magnetic steel unit 4 includes two groups, which are respectively provided at opposite ends of the coil unit 3 along the vibration direction of the vibration unit 2.
  • each group of the auxiliary magnetic steel unit 4 includes two auxiliary magnetic steels 41, and the two auxiliary magnetic steels 41 are respectively disposed on opposite sides of the guide housing 1 along the direction perpendicular to the vibration direction.
  • the structure and number of each group of auxiliary magnetic steel units 4 are not limited to the above examples.
  • the two sets of auxiliary magnetic steel units 4 are accommodated and fixed in the two sets of first accommodating slots 13 respectively.
  • the fixing effect can be enhanced, and on the other hand, the overall volume of the linear vibration motor 100 can be reduced.
  • the magnetizing directions of the two magnets 211 of the magnet unit 21 are both parallel to the vibration direction, and the magnetizing directions are opposite; two of each group of auxiliary magnet units 4
  • the magnetization direction of the auxiliary magnet 41 is perpendicular to the vibration direction, and the magnetic pole of the auxiliary magnet 41 close to the magnet 211 and the magnet 211 far away from the soft magnetic block 212 The poles are opposite.
  • the coil unit 3 interacts with the magnet unit 21 to provide a reciprocating driving force for the vibrating unit 2, and the auxiliary magnet unit 4 provides a vibrating reciprocating restoring force during the vibrating reciprocating movement of the vibrating unit 2.
  • the housing plate 5 includes two bodies 11 respectively fixed to the guide housing 1, and the two housing plates 5 are respectively located at opposite ends of the guide housing 1 along the axial direction of the guide channel 12, namely It is fixed to opposite ends of the main body 11, and the shell plate 5 at least partially covers the guide channel 12. In this embodiment, both of the two shell plates 5 completely cover the guide channel 12.
  • the conductive damping unit 6 is located in the magnetic field of the magnetic steel unit 21 to generate a damping force that hinders the movement of the vibration unit 2.
  • the conductive damping unit 6 includes two groups, and the two groups of the damping units 6 are respectively fixed to the guide.
  • the housing 1 is located at opposite ends of the coil unit 3 along the vibration direction of the vibration unit 2 respectively.
  • the conductive damping unit 6 is made of a material with high conductivity, such as copper.
  • each group of the conductive damping unit 6 includes two oppositely arranged conductive damping units 61, and the two conductive damping units 61 in each group are perpendicular to the The vibration directions are respectively fixed on opposite sides of the guide housing 1; specifically, the two conductive damping monomers 61 of the same group of the conductive damping unit 6 are respectively located on opposite sides of the guide housing 1
  • the two auxiliary magnets 41 of the same group of auxiliary magnet units 4 are respectively fixed on the other opposite sides of the guide housing 1.
  • the magnetic steel unit 21 reciprocates under the drive of the driving force, thereby driving the magnetic field formed by the magnetic steel unit 21 to move.
  • the conductive damping unit 6 is in a stationary state relative to the magnetic steel unit 21,
  • the magnetic field strength of the conductive damping unit 6 changes due to the movement of the magnetic field, that is, at different vibration moments, the magnetic field strengths of different parts of the conductive damping unit 6 are also different, and local eddy currents are generated, thereby generating a reaction that hinders the vibration of the vibrating unit 2 To electromotive force, produce electromagnetic damping effect.
  • the greater the magnetic field changes the higher the frequency of vibration of the vibrating unit 2 and the greater the stroke, which can make the electromagnetic damping effect better.
  • the coil unit 3 interacts with the magnetic steel unit 21 to provide a reciprocating driving force for the vibration unit 2, and the auxiliary magnetic steel unit 4 provides a vibration reciprocating restoring force during the vibration reciprocating movement of the vibration unit 2.
  • the conductive damping unit 6 It is located in the magnetic field of the magnetic steel unit 21 to generate a damping force that hinders the movement of the vibration unit 2. Using the principle of resonance, driven by the driving force, the maximum vibration displacement is generated near the resonance frequency of the auxiliary magnetic steel unit 4 and the conductive damping unit 6, so as to obtain the maximum shock feeling.
  • the linear vibration motor 100 relies on voltage to adjust the vibration of the vibration unit 2 to obtain different vibration intensities, and the operation is simple and convenient. Under a certain high voltage, the vibration unit 2 can collide with the housing plate 5 to obtain a collision effect and bring more user experience.
  • the present invention provides a linear vibration motor 100', which includes a guide housing 1', a vibration unit 2', a coil unit 3', an auxiliary magnetic steel unit 4', and a conductive Damping unit 5'.
  • the guide housing 1' includes a body 11', a guide channel 12' penetrating the body 11', a first receiving groove 13' and a second receiving groove formed by the outer surface of the guide housing 1'recessed 14'.
  • the guide channel 12' is used for accommodating the vibration unit 2'and provides a vibration space for the vibration unit 2'.
  • the first receiving groove 13' includes two groups, and they are arranged on opposite sides of the second receiving groove 14' at intervals along the vibration direction of the vibrating unit 2'.
  • the vibration unit 2' is housed in the guide channel 12' and forms a sliding connection, thereby forming a sliding vibration mode.
  • the vibration unit 2' includes a magnetic steel unit 21' and a mass 22'.
  • the magnetic steel unit 21' is used to interact with the coil unit 3'to provide driving force.
  • the magnetic steel unit 21' includes a magnetic steel 211' and a soft magnetic block 212' attached to the magnetic pole of the magnetic steel 211'.
  • the magnetic steel 211' includes two; the soft magnetic block 212' is sandwiched and fixed between the two magnetic steels 211' for magnetic conduction.
  • the number of the magnetic steel 211' and the soft magnetic block 212' is not limited to the above example.
  • the mass 22' is used as a counterweight to increase the weight of the vibrating unit 2'to achieve the purpose of increasing the vibration amplitude of the vibrating unit 2'and improving the vibration performance.
  • the mass block 22' includes two and is attached to the side of the magnetic steel 211' away from the soft magnetic block 212' along the vibration direction.
  • the coil unit 3' is sleeved on the outside of the guide housing 1'to drive the vibration unit 2'to vibrate along the axial direction of the guide channel 1'.
  • the coil unit 3' is accommodated and fixed in the second accommodating groove 14'.
  • the fixing effect can be enhanced, and on the other hand, the overall volume of the linear vibration motor 100' can be reduced.
  • the auxiliary magnetic steel unit 4' is fixed to the guide housing 1'and is spaced apart from the vibration unit 2'.
  • the auxiliary magnetic steel unit 4' is located in the magnetic field of the magnetic steel unit 21' to generate a vibration restoring force for restoring the vibration displacement of the vibration unit 2', that is, the vibration unit 2'in the horizontal vibration direction Reciprocating vibration provides restoring force.
  • the auxiliary magnetic steel unit 4' includes two groups, and they are respectively provided at opposite ends of the coil unit 3'along the vibration direction of the vibration unit 2'.
  • each group of the auxiliary magnet unit 4' includes two auxiliary magnets 41', and the two auxiliary magnets 41' are respectively fixed to the guide housing 1'along the direction perpendicular to the vibration direction. Opposite sides.
  • the structure and number of each group of auxiliary magnetic steel units 4' are not limited to the above examples.
  • the two sets of the auxiliary magnetic steel units 4' are respectively accommodated and fixed in the two sets of the first accommodating grooves 13'.
  • the fixing effect can be enhanced, and on the other hand, the overall volume of the linear vibration motor 100' can be reduced.
  • the magnetizing direction of the magnet unit 21' and the auxiliary magnet unit 4' is the same as the magnetizing direction of the magnet unit 21 and the auxiliary magnet unit 4 in the first embodiment.
  • the magnetizing directions of the two magnets 211' of the steel unit 21' are parallel to the vibration direction, and the magnetizing directions are opposite; the magnetizing directions of the two auxiliary magnets 41' in each group of the auxiliary magnet unit 4'
  • the magnetic direction is perpendicular to the vibration direction, and the magnetic pole of the auxiliary magnet 41 ′ close to the magnet 211 ′ is opposite to the magnetic pole of the magnet 211 ′ away from the soft magnetic block 212 ′.
  • the coil unit 3' interacts with the magnet unit 21' to provide the vibrating unit 2'with a reciprocating driving force, and the auxiliary magnet unit 4'provides a vibrating and reciprocating restoring force during the vibrating reciprocating movement of the vibrating unit 2'.
  • the conductive damping unit 5' is located in the magnetic field of the magnetic steel unit 21' to generate a damping force that hinders the movement of the vibration unit 2'.
  • the conductive damping unit 5' includes two groups, which are respectively fixed to the guide housing 1. ', and are respectively fixed to opposite ends of the coil unit 3'along the vibration direction of the vibration unit 2'.
  • the conductive damping unit 5' is made of a material with high conductivity, such as copper.
  • the two sets of conductive damping units 6' are attached and fixed to opposite sides of the guide housing 1'along the vibration direction of the vibration unit 2', and at least partially cover the guide.
  • Channel 12' in this embodiment, the conductive damping unit 6'completely covers the guide channel 12'.
  • the magnetic steel unit 21' is driven by the driving force to reciprocate, thereby driving the magnetic field formed by the magnetic steel unit 21' to move.
  • the conductive damping unit 5' is relative to the magnetic steel unit 21'.
  • the magnetic field strength of the conductive damping unit 5' changes due to the movement of the magnetic field, that is, at different vibration moments, the magnetic field strengths of different parts of the conductive damping unit 5'are also different, and local eddy currents are generated, which hinders the The reverse electromotive force of the vibration of the vibrating unit 2'produces an electromagnetic damping effect.
  • the greater the magnetic field changes the higher the frequency of vibration of the vibrating unit 2'and the greater the stroke, which can make the electromagnetic damping effect better.
  • the coil unit 3' interacts with the magnet unit 21' to provide the vibrating unit 2'with a reciprocating driving force, and the auxiliary magnet unit 4'provides a vibrating and reciprocating restoring force during the vibration reciprocating movement of the vibrating unit 2', and is conductive
  • the damping unit 5' is located in the magnetic field of the magnetic steel unit 21' to generate a damping force that hinders the movement of the vibration unit 2'.
  • the linear vibration motor 100' relies on voltage to adjust the vibration of the vibration unit 2'to obtain different vibration intensities, and the operation is simple and convenient. Under a certain high voltage, the vibration unit 2'can collide with the conductive damping unit 5'to obtain a collision effect and bring more user experience.
  • the present invention provides a linear vibration motor 100", which includes a guide housing 1", a vibration unit 2", a coil unit 3", an auxiliary magnetic steel unit 4", and a housing plate. 5" and conductive damping unit 6".
  • the guide housing 1" includes a main body 11", a guide channel 12" penetrating the main body 11", and a ring-shaped receiving groove 13" recessed from the outer surface of the guide housing 1".
  • the guide channel 12" is used for accommodating the vibration unit 2" and provides a vibration space for the vibration unit 2".
  • the vibration unit 2" is accommodated in the guide channel 12" and forms a sliding connection, thereby forming a sliding vibration mode.
  • the vibration unit 2" includes a magnetic steel unit 21" and a mass 22".
  • the magnetic steel unit 21" is used to interact with the coil unit 3" to provide driving force.
  • the magnetic steel unit 21" includes a magnetic steel 211" and a soft magnetic block 212" attached to the magnetic pole of the magnetic steel 211".
  • the magnetic steel 211" includes two; the soft magnetic block 212" is sandwiched and fixed between the two magnetic steels 211" for magnetic conduction.
  • the magnetic steel 211" is The number of the soft magnetic blocks 212" is not limited to the above example.
  • the mass 22" is used as a counterweight to increase the weight of the vibration unit 2" to achieve the purpose of increasing the vibration amplitude of the vibration unit 2" and improving the vibration performance.
  • the mass block 22" includes two masses and is attached to the side of the magnetic steel 211" away from the soft magnetic block 212" along the vibration direction.
  • the coil unit 3" is sleeved on the outside of the guide housing 1" to drive the vibrating unit 2" to vibrate along the axial direction of the guide channel 1".
  • the coil unit 3" is received and fixed in the receiving groove 13".
  • the fixing effect can be enhanced, and on the other hand, the overall volume of the linear vibration motor 100" can be reduced.
  • the auxiliary magnetic steel unit 4" is fixed to the guide housing 1" and is spaced apart from the vibration unit 2".
  • the auxiliary magnetic steel unit 4" is located in the magnetic field of the magnetic steel unit 21" to generate The vibration restoring force to restore the vibration displacement of the vibrating unit 2", that is, to provide restoring force for the reciprocating vibration of the vibrating unit 2" in the horizontal vibration direction.
  • the auxiliary magnetic steel unit 4" includes two groups, which are respectively arranged at opposite ends of the coil unit 3" along the vibration direction of the vibration unit 2".
  • each group of the auxiliary magnet unit 4" includes two auxiliary magnets 41", and the two auxiliary magnets 41" are respectively fixed to the guide housing 1" along the direction perpendicular to the vibration direction. Opposite sides.
  • the structure and number of each group of auxiliary magnetic steel units 4" are not limited to the above examples.
  • the magnetizing direction of the magnet unit 21" and the auxiliary magnet unit 4" is the same as the magnetizing direction of the magnet unit 21 and the auxiliary magnet unit 4 in the first embodiment.
  • the magnetizing directions of the two magnets 211" of the steel unit 21" are parallel to the vibration direction, and the magnetizing directions are opposite; the magnetizing directions of the two auxiliary magnets 41" in each group of auxiliary magnet units 4" are The magnetic direction is perpendicular to the vibration direction, and the magnetic pole of the auxiliary magnet 41" close to the magnet 211" is opposite to the magnetic pole of the magnet 211" away from the soft magnetic block 212".
  • the coil unit 3" interacts with the magnet unit 21" to provide the vibrating unit 2" with a reciprocating driving force, and the auxiliary magnet unit 4" provides a vibrating and reciprocating restoring force during the vibrating reciprocating movement of the vibrating unit 2".
  • the housing plate 5" includes two bodies 11" which are respectively fixed to the guide housing 1", and the two housing plates 5" are respectively located on the guide housing 1" along the axial direction of the guide channel 12".
  • the two opposite ends of the housing 11" are fixed to the opposite ends of the main body 11", and the housing plate 5" at least partially covers the guide channel 12".
  • the two housing plates 5" completely cover the guide channel 12 ".
  • the conductive damping unit 6" is located in the magnetic field of the magnetic steel unit 21" to generate a damping force that hinders the movement of the vibration unit 2".
  • the conductive damping unit 6" includes two groups, and runs along the direction of the vibration unit 2". The vibration directions are respectively fixed to the opposite ends of the coil unit 3".
  • the conductive damping unit 6" is made of a material with high conductivity, such as copper.
  • each group of the conductive damping unit 6" includes two oppositely arranged conductive damping monomers 61" ,
  • the two conductive damping monomers 61" are respectively fixed on opposite sides of the guide housing 1" along the direction perpendicular to the vibration direction; the two auxiliary magnetic units of the same group of the auxiliary magnetic steel unit 4"
  • the steel 41" is respectively embedded in the two conductive damping units 61" of the same group of the conductive damping units 6".
  • the magnetic steel unit 21" is driven by the driving force to reciprocate, thereby driving the magnetic field formed by the magnetic steel unit 21" to move.
  • the conductive damping unit 6" is relative to the magnetic steel unit 21".
  • the magnetic field strength of the conductive damping unit 6" changes due to the movement of the magnetic field, that is, at different vibration moments, the magnetic field strengths of different parts of the conductive damping unit 6" are also different, and local eddy currents are generated, which hinders the The back electromotive force of the vibration unit 2" produces an electromagnetic damping effect.
  • the greater the magnetic field changes the higher the frequency of vibration of the vibration unit 2" and the larger the stroke, the better the electromagnetic damping effect.
  • the coil unit 3" interacts with the magnet unit 21" to provide the driving force for the reciprocating motion of the vibrating unit 2", and the auxiliary magnet unit 4" provides the vibrating reciprocating restoring force during the vibrating reciprocating motion of the vibrating unit 2", and is conductive
  • the damping unit 6" is located in the magnetic field of the magnetic steel unit 4" to generate a damping force that hinders the movement of the vibration unit 2". Using the principle of resonance, driven by the driving force, the maximum vibration displacement is generated near the resonance frequency of the auxiliary magnetic steel unit 4" and the conductive damping unit 6", thereby obtaining the maximum shock feeling.
  • the linear vibration motor 100" relies on voltage to adjust the vibration of the vibration unit 2" to obtain different vibration intensities, and is simple and convenient to operate. Under a certain high voltage, the vibration unit 2" can be made to collide with the housing plate 5" to obtain a collision effect and bring more user experience.
  • the conductive damping setting method is not limited to the methods mentioned in the above three embodiments, and the conductive damping setting described in the above three embodiments can also be combined.
  • the linear vibration motor of the present invention adds a conductive damping unit in addition to the auxiliary magnetic steel unit, and the conductive damping unit is fixed to the coil unit along the vibration direction of the vibration unit. The ends.
  • the vibrating unit vibrates, the magnetic steel moves with the vibration of the vibrating unit, and the magnetic field formed by the magnetic steel also moves. Therefore, the magnetic field strength of different parts of the conductive damping unit also changes.
  • the conductive damping unit generates a local eddy current, thereby generating a back electromotive force that hinders the vibration of the vibration unit, that is, generates a damping force that hinders the movement of the vibration unit.
  • the damping force changes with the vibration of the vibration unit, so the present invention will provide better vibration performance and better reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动电机(100),包括导向壳体(1)、振动单元(2)、线圈单元(3)、辅助磁钢单元(4)以及导电阻尼单元(6),导向壳体(1)包括本体(11)和贯穿本体(11)的导向通道(12);振动单元(2)收容于导向通道(12)内并形成滑动连接,振动单元(2)包括磁钢单元(21);线圈单元(3)套设于导向壳体(1)外侧,用以驱动振动单元(2)沿导向通道(12)的轴向振动;辅助磁钢单元(4)固定于导向壳体(1)并与振动单元(2)间隔设置;导电阻尼单元(6)包括两组,固定于导向壳体(1),且沿振动单元(2)的振动方向分别位于线圈单元(3)的相对两端;辅助磁钢单元(4)位于磁钢单元(21)的磁场内以产生用于恢复振动单元(2)的振动位移的振动回复力,导电阻尼单元(6)位于磁钢单元(21)的磁场内以产生阻碍振动单元(2)运动的阻尼力。与相关技术相比,该线性振动电机(100)振动性能好。

Description

线性振动电机 技术领域
本实用新型涉及一种电机,尤其涉及一种运用在移动电子产品领域的线性振动电机。
背景技术
随着电子技术的发展,便携式消费性电子产品越来越受人们的追捧,如手机、掌上游戏机、导航装置或掌上多媒体娱乐设备等,这些电子产品一般都会用到线性振动电机来做***反馈,比如手机的来电提示、信息提示、导航提示、游戏机的振动反馈等。如此广泛的应用,就要求振动电机的性能优,使用寿命长。
相关技术的线性振动电机包括具有收容空间的基座、振动单元、固定于所述基座并将所述振动单元悬置于所述收容空间的弹性组件或轴承,以及固定于所述基座以驱动所述振动单元振动的线圈单元,通过线圈单元产生的电场与振动单元产生的磁场相互作用,从而驱动所述振动单元做往复直线运动而产生振动。
技术问题
然而,相关技术的线性振动电机中,支撑振动单元使用金属弹性组件时,弹性组件振动位移小,无法提供更多的震感体验。
因此,有必要提供一种新的线性振动电机解决上述问题。
技术解决方案
本实用新型需要解决的技术问题是提供一种装配简单、振动性能好,且可靠性高的线性振动电机。
为解决上述技术问题,本实用新型提供了一种线性振动电机,其包括:
导向壳体,所述导向壳体包括本体和贯穿所述本体的导向通道;
振动单元,所述振动单元收容于所述导向通道内并形成滑动连接,所述振动单元包括磁钢单元;
线圈单元,所述线圈单元套设于所述导向壳体外侧,用以驱动所述振动单元沿所述导向通道的轴向振动;
辅助磁钢单元,所述辅助磁钢单元固定于所述导向壳体并与所述振动单元间隔设置,所述辅助磁钢单元位于所述磁钢单元的磁场内以产生用于恢复所述振动单元的振动位移的振动回复力,以及,
导电阻尼单元,所述导电阻尼单元包括两组,两组所述导电阻尼单元分别固定于所述导向壳体,且沿所述振动单元的振动方向分别位于所述线圈单元的相对两端,所述导电阻尼单元位于所述磁钢单元的磁场内以产生阻碍所述振动单元运动的阻尼力。
优选的,所述辅助磁钢单元包括两组,且沿所述振动单元的振动方向分别设于所述线圈单元的相对两端,每一组所述辅助磁钢单元包括两个辅助磁钢,且沿垂直于所述振动方向分别固定于所述导向壳体的相对两侧。
优选的,每一组所述导电阻尼单元包括呈相对设置的两个导电阻尼单体;两个所述导电阻尼单体沿垂直于所述振动方向分别固定于所述导向壳体的相对两侧。
优选的,同一组所述辅助磁钢单元的两个所述辅助磁钢分别嵌设于同一组所述导电阻尼单元的两个所述导电阻尼单体。
优选的,同一组所述导电阻尼单元的两个所述导电阻尼单体分别位于所述导向壳体的其中相对两侧,同一组所述辅助磁钢单元的两个所述辅助磁钢1分别固定于所述导向壳体的另外相对两侧。
优选的,两组所述导电阻尼单元沿所述振动单元的振动方向分别贴设固定于所述导向壳体的相对两侧且至少部分覆盖所述导向通道。
优选的,所述磁钢单元包括磁钢和贴设于所述磁钢的磁极处的软磁块。
优选的,所述磁钢包括两个,所述软磁块夹设固定于两个所述磁钢之间。
优选的,所述振动单元还包括质量块,所述质量块沿所述振动方向贴设于所述磁钢远离所述软磁块的一侧。
优选的,两个所述磁钢充磁方向均平行于所述振动方向,且充磁方向相反;每一组的所述辅助磁钢单元的两个所述辅助磁钢的充磁方向垂直于所述振动方向,且所述辅助磁钢靠近所述磁钢的一侧的磁极与该磁钢远离所述软磁块一端的磁极相反。
优选的,所述线性振动电机还包括固定于所述导向壳体的两个外壳板,两个所述外壳板沿所述导向通道的轴向分别位于所述导向壳体的相对两端,且所述外壳板至少部分覆盖所述导向通道。
有益效果
与相关技术相比,本实用新型的线性振动电机在增加所述辅助磁钢单元的基础上再增加导电阻尼单元,所述导电阻尼单元沿所述振动单元的振动方向分别固定于所述线圈单元的两端。当所述振动单元振动时,所述磁钢随着振动单元振动而移动,同时所述磁钢形成的磁场也随着移动,所述导电阻尼单元不同部位的磁场强度因此也发生变化,此时所述导电阻尼单元产生局部涡流,从而产生阻碍所述振动单元振动的反向电动势,即产生阻碍所述振动单元运动的阻尼力。所述阻尼力随着所述振动单元的振动发生变化,因此本实用新型会提供更好的振动性能,可靠性更好。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本实用新型发声器件实施例一的部分立体结构分解图;
图2为本实用新型发声器件实施例一的立体结构示意图;
图3为沿图1中A-A线的剖示图;
图4为本实用新型发声器件实施例二的部分立体结构分解图;
图5为本实用新型发声器件实施例二的立体结构示意图
图6为本实用新型发声器件实施例三的部分立体结构分解图;
图7为本实用新型发声器件实施例三的立体结构示意图
本发明的实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
实施例一
请同时参阅图1-3所示,本实用新型提供了一种线性振动电机100,其包括导向壳体1、振动单元2、线圈单元3、辅助磁钢单元4、外壳板5以及导电阻尼单元6。
所述导向壳体1包括本体11、贯穿所述本体11的导向通道12、由导向壳体1的外表面凹陷形成第一收容槽13和呈环状的第二收容槽14。
导向通道12用于收容振动单元2,为振动单元2提供振动空间。
本实施方式中,所述第一收容槽13包括两组,并沿所述振动单元2的振动方向间隔设置于所述第二收容槽14的相对两侧。
所述振动单元2收容于所述导向通道12内并形成滑动连接,从而形成滑动式振动方式。
所述振动单元2包括磁钢单元21和质量块22。
所述磁钢单元21用于与所述线圈单元3相互作用以提供驱动力。
本实施方式中,磁钢单元21包括磁钢211和贴设于所述磁钢211的磁极处的软磁块212。具体的,所述磁钢211包括两个;所述软磁块212夹设固定于两个所述磁钢211之间,用于导磁。当然,所述磁钢211和所述软磁块212的数量不限于上述举例。
质量块22用于配重,增加振动单元2的重量,以实现提高振动单元2的振动幅度,改善振动性能的目的。
本实施方式中,所述质量块22包括两个且沿所述振动方向贴设于所述磁钢211远离所述软磁块212的一侧。
所述线圈单元3套设于所述导向壳体1外侧,用以驱动所述振动单元2沿所述导向通道1的轴向振动。
本实施方式中,所述线圈单元3收容固定于所述第二收容槽14内。一方面可加强固定效果,另一方面可减小线性振动电机100整体体积。
所述辅助磁钢单元4固定于所述导向壳体1并与所述振动单元2间隔设置。所述辅助磁钢单元4位于所述磁钢单元21的磁场内以产生用于恢复所述振动单元2的振动位移的振动回复力,即,为振动单元2在水平振动方向的往复振动提供回复力。
本实施方式中,所述辅助磁钢单元4包括两组,且沿所述振动单元2的振动方向分别设于所述线圈单元3的相对两端。
具体的,每一组所述辅助磁钢单元4包括两个辅助磁钢41,且该两个辅助磁钢41沿垂直于所述振动方向分别设置于所述导向壳体1的相对两侧。当然,每组辅助磁钢单元4的结构和数量不限于上述举例。
本实施方式中,两组所述辅助磁钢单元4分别收容固定于两组所述第一收容槽13。一方面可加强固定效果,另一方面可减小线性振动电机100整体体积。
如图3中所示,本实施方式中,磁钢单元21的两个磁钢211充磁方向均平行于所述振动方向,且充磁方向相反;每一组辅助磁钢单元4中的两个所述辅助磁钢41的充磁方向垂直于所述振动方向,且所述辅助磁钢41靠近所述磁钢211的一侧的磁极与该磁钢211远离所述软磁块212一端的磁极相反。
线圈单元3与磁钢单元21相互作用用以为振动单元2提供往复运动的驱动力,辅助磁钢单元4在振动单元2的振动往复运动过程中提供振动往复的回复力。
外壳板5包括两个且分别固定于所述导向壳体1的本体11,两个所述外壳板5沿所述导向通道12的轴向分别位于所述导向壳体1的相对两端,即固定于本体11的相对两端,且所述外壳板5至少部分覆盖所述导向通道12。本实施方式中,两个外壳板5均完全覆盖导向通道12。
所述导电阻尼单元6位于所述磁钢单元21的磁场内以产生阻碍所述振动单元2运动的阻尼力,导电阻尼单元6包括两组,两组所述阻尼单元6分别固定于所述导向壳体1,且沿所述振动单元2的振动方向分别位于所述线圈单元3的相对两端。所述导电阻尼单元6由高导电率的材料制成,如铜。具体的,本实施例中,每一组所述导电阻尼单元6均包括两个呈相对设置的导电阻尼单体61,且每一组的两个所述导电阻尼单体61沿垂直于所述振动方向分别固定于所述导向壳体1的相对两侧;具体的,同一组所述导电阻尼单元6的两个所述导电阻尼单体61分别位于所述导向壳体1的其中相对两侧,同一组所述辅助磁钢单元4的两个所述辅助磁钢41分别固定于所述导向壳体1的另外相对两侧。
所述磁钢单元21在所述驱动力的驱动下往复运动,进而带动所述磁钢单元21形成的磁场移动,此时所述导电阻尼单元6相对于所述磁钢单元21处于静止状态,所述导电阻尼单元6的磁场强度因磁场的移动而变化,即不同振动时刻,所述导电阻尼单元6不同部位的磁场强度也不同,产生局部涡流,从而产生阻碍所述振动单元2振动的反向电动势,产生电磁阻尼效应。磁场变化越大,振动单元2振动的频率越高,行程越大,均能使电磁阻尼效果越好。
线圈单元3与磁钢单元21相互作用用以为振动单元2提供往复运动的驱动力,辅助磁钢单元4在振动单元2的振动往复运动过程中提供振动往复的回复力,所述导电阻尼单元6位于所述磁钢单元21的磁场内以产生阻碍所述振动单元2运动的阻尼力。利用共振原理,在所述驱动力驱动下,在辅助磁钢单元4和导电阻尼单元6共振频率附近产生最大振动位移,从而获得最大震感。所述线性振动电机100依靠电压调节所述振动单元2的振动从而获得不同的振动强度,操作简单方便。在一定高电压下,可使振动单元2与外壳板5碰撞以获得碰撞效果,带来更多的用户体验。
实施例二
请同时参阅图4-5所示,本实用新型提供了一种线性振动电机100’,其包括导向壳体1’、振动单元2’、线圈单元3’、辅助磁钢单元4’、以及导电阻尼单元5’。
所述导向壳体1’包括本体11’、贯穿所述本体11’的导向通道12’、由导向壳体1’的外表面凹陷形成第一收容槽13’和呈环状的第二收容槽14’。
导向通道12’用于收容振动单元2’,为振动单元2’提供振动空间。
本实施方式中,所述第一收容槽13’包括两组,并沿所述振动单元2’的振动方向间隔设置于所述第二收容槽14’的相对两侧。
所述振动单元2’收容于所述导向通道12’内并形成滑动连接,从而形成滑动式振动方式。
所述振动单元2’包括磁钢单元21’和质量块22’。
所述磁钢单元21’用于与所述线圈单元3’相互作用以提供驱动力。
本实施方式中,磁钢单元21’包括磁钢211’和贴设于所述磁钢211’的磁极处的软磁块212’。具体的,所述磁钢211’包括两个;所述软磁块212’夹设固定于两个所述磁钢211’之间,用于导磁。当然,所述磁钢211’和所述软磁块212’的数量不限于上述举例。
质量块22’用于配重,增加振动单元2’的重量,以实现提高振动单元2’的振动幅度,改善振动性能的目的。
本实施方式中,所述质量块22’包括两个且沿所述振动方向贴设于所述磁钢211’远离所述软磁块212’的一侧。
所述线圈单元3’套设于所述导向壳体1’外侧,用以驱动所述振动单元2’沿所述导向通道1’的轴向振动。
本实施方式中,所述线圈单元3’收容固定于所述第二收容槽14’内。一方面可加强固定效果,另一方面可减小线性振动电机100’整体体积。
所述辅助磁钢单元4’固定于所述导向壳体1’并与所述振动单元2’间隔设置。所述辅助磁钢单元4’位于所述磁钢单元21’的磁场内以产生用于恢复所述振动单元2’的振动位移的振动回复力,即,为振动单元2’在水平振动方向的往复振动提供回复力。
本实施方式中,所述辅助磁钢单元4’包括两组,且沿所述振动单元2’的振动方向分别设于所述线圈单元3’的相对两端。
具体的,每一组所述辅助磁钢单元4’包括两个辅助磁钢41’,且该两个辅助磁钢41’沿垂直于所述振动方向分别固定于所述导向壳体1’的相对两侧。当然,每组辅助磁钢单元4’的结构和数量不限于上述举例。
本实施方式中,两组所述辅助磁钢单元4’分别收容固定于两组所述第一收容槽13’。一方面可加强固定效果,另一方面可减小线性振动电机100’整体体积。
本实施方式中,磁钢单元21’及辅助磁钢单元4’的充磁方向与实施例一中的磁钢单元21及辅助磁钢单元4的充磁方向一样,请参照实施例一,磁钢单元21’的两个磁钢211’充磁方向均平行于所述振动方向,且充磁方向相反;每一组辅助磁钢单元4’中的两个所述辅助磁钢41’的充磁方向垂直于所述振动方向,且所述辅助磁钢41’靠近所述磁钢211’的一侧的磁极与该磁钢211’远离所述软磁块212’一端的磁极相反。
线圈单元3’与磁钢单元21’相互作用用以为振动单元2’提供往复运动的驱动力,辅助磁钢单元4’在振动单元2’的振动往复运动过程中提供振动往复的回复力。
所述导电阻尼单元5’位于所述磁钢单元21’的磁场内以产生阻碍所述振动单元2’运动的阻尼力,导电阻尼单元5’包括两组,分别固定于所述导向壳体1’,且沿所述振动单元2’的振动方向分别固定于所述线圈单元3’的相对两端。所述导电阻尼单元5’由高导电率的材料制成,如铜。具体的,本实施例中,两组所述导电阻尼单元6’沿所述振动单元2’的振动方向分别贴设固定于所述导向壳体1’的相对两侧且至少部分覆盖所述导向通道12’;本实施例中,所述导电阻尼单元6’完全覆盖所述导向通道12’。
所述磁钢单元21’在所述驱动力的驱动下往复运动,进而带动所述磁钢单元21’形成的磁场移动,此时所述导电阻尼单元5’相对于所述磁钢单元21’处于静止状态,所述导电阻尼单元5’的磁场强度因磁场的移动而变化,即不同振动时刻,所述导电阻尼单元5’不同部位的磁场强度也不同,产生局部涡流,从而产生阻碍所述振动单元2’振动的反向电动势,产生电磁阻尼效应。磁场变化越大,振动单元2’振动的频率越高,行程越大,均能使电磁阻尼效果越好。
线圈单元3’与磁钢单元21’相互作用用以为振动单元2’提供往复运动的驱动力,辅助磁钢单元4’在振动单元2’的振动往复运动过程中提供振动往复的回复力,导电阻尼单元5’位于所述磁钢单元21’的磁场内以产生阻碍所述振动单元2’运动的阻尼力。利用共振原理,在所述驱动力驱动下,在辅助磁钢单元4’和导电阻尼单元5’共振频率附近产生最大振动位移,从而获得最大震感。所述线性振动电机100’依靠电压调节所述振动单元2’的振动从而获得不同的振动强度,操作简单方便。在一定高电压下,可使振动单元2’与导电阻尼单元5’碰撞以获得碰撞效果,带来更多的用户体验。
实施例三
请同时参阅图6-7所示,本实用新型提供了一种线性振动电机100”,其包括导向壳体1”、振动单元2”、线圈单元3”、辅助磁钢单元4”、外壳板5”以及导电阻尼单元6”。
所述导向壳体1”包括本体11”、贯穿所述本体11”的导向通道12”、由导向壳体1”的外表面凹陷形成呈环状的收容槽13”。
导向通道12”用于收容振动单元2”,为振动单元2”提供振动空间。
所述振动单元2”收容于所述导向通道12”内并形成滑动连接,从而形成滑动式振动方式。
所述振动单元2”包括磁钢单元21”和质量块22”。
所述磁钢单元21”用于与所述线圈单元3”相互作用以提供驱动力。
本实施方式中,磁钢单元21”包括磁钢211”和贴设于所述磁钢211”的磁极处的软磁块212”。具体的,所述磁钢211”包括两个;所述软磁块212”夹设固定于两个所述磁钢211”之间,用于导磁。当然,所述磁钢211”和所述软磁块212”的数量不限于上述举例。
质量块22”用于配重,增加振动单元2”的重量,以实现提高振动单元2”的振动幅度,改善振动性能的目的。
本实施方式中,所述质量块22”包括两个且沿所述振动方向贴设于所述磁钢211”远离所述软磁块212”的一侧。
所述线圈单元3”套设于所述导向壳体1”外侧,用以驱动所述振动单元2”沿所述导向通道1”的轴向振动。
本实施方式中,所述线圈单元3”收容固定于所述收容槽13”内。一方面可加强固定效果,另一方面可减小线性振动电机100”整体体积。
所述辅助磁钢单元4”固定于所述导向壳体1”并与所述振动单元2”间隔设置。所述辅助磁钢单元4”位于所述磁钢单元21”的磁场内以产生用于恢复所述振动单元2”的振动位移的振动回复力,即,为振动单元2”在水平振动方向的往复振动提供回复力。
本实施方式中,所述辅助磁钢单元4”包括两组,且沿所述振动单元2”的振动方向分别设于所述线圈单元3”的相对两端。
具体的,每一组所述辅助磁钢单元4”包括两个辅助磁钢41”,且该两个辅助磁钢41”沿垂直于所述振动方向分别固定于所述导向壳体1”的相对两侧。当然,每组辅助磁钢单元4”的结构和数量不限于上述举例。
本实施方式中,磁钢单元21”及辅助磁钢单元4”的充磁方向与实施例一中的磁钢单元21及辅助磁钢单元4的充磁方向一样,请参照实施例一,磁钢单元21”的两个磁钢211”充磁方向均平行于所述振动方向,且充磁方向相反;每一组辅助磁钢单元4”中的两个所述辅助磁钢41”的充磁方向垂直于所述振动方向,且所述辅助磁钢41”靠近所述磁钢211”的一侧的磁极与该磁钢211”远离所述软磁块212”一端的磁极相反。
线圈单元3”与磁钢单元21”相互作用用以为振动单元2”提供往复运动的驱动力,辅助磁钢单元4”在振动单元2”的振动往复运动过程中提供振动往复的回复力。
外壳板5”包括两个且分别固定于所述导向壳体1”的本体11”,两个所述外壳板5”沿所述导向通道12”的轴向分别位于所述导向壳体1”的相对两端,即固定于本体11”的相对两端,且所述外壳板5”至少部分覆盖所述导向通道12”。本实施方式中,两个外壳板5”均完全覆盖导向通道12”。
所述导电阻尼单元6”位于所述磁钢单元21”的磁场内以产生阻碍所述振动单元2”运动的阻尼力。导电阻尼单元6”包括两组,且沿所述振动单元2”的振动方向分别固定于所述线圈单元3”的相对两端。所述导电阻尼单元6”由高导电率的材料制成,如铜。具体的,本实施例中,每一组所述导电阻尼单元6”均包括两个相对设置的导电阻尼单体61”,两个所述导电阻尼单体61”沿垂直于所述振动方向分别固定于所述导向壳体1”的相对两侧;同一组所述辅助磁钢单元4”的两个所述辅助磁钢41”分别嵌设于同一组所述导电阻尼单元6”的两个所述导电阻尼单体61”。
所述磁钢单元21”在所述驱动力的驱动下往复运动,进而带动所述磁钢单元21”形成的磁场移动,此时所述导电阻尼单元6”相对于所述磁钢单元21”处于静止状态,所述导电阻尼单元6”的磁场强度因磁场的移动而变化,即不同振动时刻,所述导电阻尼单元6”不同部位的磁场强度也不同,产生局部涡流,从而产生阻碍所述振动单元2”振动的反向电动势,产生电磁阻尼效应。磁场变化越大,振动单元2”振动的频率越高,行程越大,均能使电磁阻尼效果越好。
线圈单元3”与磁钢单元21”相互作用用以为振动单元2”提供往复运动的驱动力,辅助磁钢单元4”在振动单元2”的振动往复运动过程中提供振动往复的回复力,导电阻尼单元6”位于所述磁钢单元4”的磁场内以产生阻碍所述振动单元2”运动的阻尼力。利用共振原理,在所述驱动力驱动下,在辅助磁钢单元4”和导电阻尼单元6”共振频率附近产生最大振动位移,从而获得最大震感。所述线性振动电机100”依靠电压调节所述振动单元2”的振动从而获得不同的振动强度,操作简单方便。在一定高电压下,可使振动单元2”与外壳板5”碰撞以获得碰撞效果,带来更多的用户体验。
当然所述导电阻尼的设置方式不止上述三个实施例所提及的方式,也可以将上述三个实施例中所述导电阻尼设置进行组合。
与相关技术相比,本实用新型的线性振动电机在增加所述辅助磁钢单元的基础上再增加导电阻尼单元,所述导电阻尼单元沿所述振动单元的振动方向分别固定于所述线圈单元的两端。当所述振动单元振动时,所述磁钢随着振动单元振动而移动,同时所述磁钢形成的磁场也随着移动,所述导电阻尼单元不同部位的磁场强度因此也发生变化,此时所述导电阻尼单元产生局部涡流,从而产生阻碍所述振动单元振动的反向电动势,即产生阻碍所述振动单元运动的阻尼力。所述阻尼力随着所述振动单元的振动发生变化,因此本实用新型会提供更好的振动性能,可靠性更好。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (11)

  1. 一种线性振动电机,其特征在于,其包括:
    导向壳体,所述导向壳体包括本体和贯穿所述本体的导向通道;
    振动单元,所述振动单元收容于所述导向通道内并形成滑动连接,所述振动单元包括磁钢单元;
    线圈单元,所述线圈单元套设于所述导向壳体外侧,用以驱动所述振动单元沿所述导向通道的轴向振动;
    辅助磁钢单元,所述辅助磁钢单元固定于所述导向壳体并与所述振动单元间隔设置,所述辅助磁钢单元位于所述磁钢单元的磁场内以产生用于恢复所述振动单元的振动位移的振动回复力,以及,
    导电阻尼单元,所述导电阻尼单元包括两组,两组所述导电阻尼单元分别固定于所述导向壳体,且沿所述振动单元的振动方向分别位于所述线圈单元的相对两端,所述导电阻尼单元位于所述磁钢单元的磁场内以产生阻碍所述振动单元运动的阻尼力。
  2. 根据权利要求1所述的线性振动电机,其特征在于,所述辅助磁钢单元包括两组,且沿所述振动单元的振动方向分别设于所述线圈单元的相对两端,每一组所述辅助磁钢单元包括两个辅助磁钢,且沿垂直于所述振动方向分别固定于所述导向壳体的相对两侧。
  3. 根据权利要求2所述的线性振动电机,其特征在于,每一组所述导电阻尼单元包括呈相对设置的两个导电阻尼单体;两个所述导电阻尼单体沿垂直于所述振动方向分别固定于所述导向壳体的相对两侧。
  4. 根据权利要求3所述的线性振动电机,其特征在于,同一组所述辅助磁钢单元的两个所述辅助磁钢分别嵌设于同一组所述导电阻尼单元的两个所述导电阻尼单体。
  5. 根据权利要求3所述的线性振动电机,其特征在于,同一组所述导电阻尼单元的两个所述导电阻尼单体分别位于所述导向壳体的其中相对两侧,同一组所述辅助磁钢单元的两个所述辅助磁钢1分别固定于所述导向壳体的另外相对两侧。
  6. 根据权利要求1-2任意一项所述的线性振动电机,其特征在于,两组所述导电阻尼单元沿所述振动单元的振动方向分别贴设固定于所述导向壳体的相对两侧且至少部分覆盖所述导向通道。
  7. 根据权利要求2所述的线性振动电机,其特征在于,所述磁钢单元包括磁钢和贴设于所述磁钢的磁极处的软磁块。
  8. 根据权利要求7所述的线性振动电机,其特征在于,所述磁钢包括两个,所述软磁块夹设固定于两个所述磁钢之间。
  9. 根据权利要求8所述的线性振动电机,其特征在于,所述振动单元还包括质量块,所述质量块沿所述振动方向贴设于所述磁钢远离所述软磁块的一侧。
  10. 根据权利要求9所述的线性振动电机,其特征在于,两个所述磁钢充磁方向均平行于所述振动方向,且充磁方向相反;每一组的所述辅助磁钢单元的两个所述辅助磁钢的充磁方向垂直于所述振动方向,且所述辅助磁钢靠近所述磁钢的一侧的磁极与该磁钢远离所述软磁块一端的磁极相反。
  11. 根据权利要求3所述的线性振动电机,其特征在于,所述线性振动电机还包括固定于所述导向壳体的两个外壳板,两个所述外壳板沿所述导向通道的轴向分别位于所述导向壳体的相对两端,且所述外壳板至少部分覆盖所述导向通道。
PCT/CN2019/127604 2019-12-23 2019-12-23 线性振动电机 WO2021127910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127604 WO2021127910A1 (zh) 2019-12-23 2019-12-23 线性振动电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127604 WO2021127910A1 (zh) 2019-12-23 2019-12-23 线性振动电机

Publications (1)

Publication Number Publication Date
WO2021127910A1 true WO2021127910A1 (zh) 2021-07-01

Family

ID=76575728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127604 WO2021127910A1 (zh) 2019-12-23 2019-12-23 线性振动电机

Country Status (1)

Country Link
WO (1) WO2021127910A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178103A (ja) * 1999-12-08 2001-06-29 Shisei Chin 磁石装置
CN102035340A (zh) * 2009-09-29 2011-04-27 三星电机株式会社 振动电机
CN204145249U (zh) * 2014-11-06 2015-02-04 刘少海 一种磁保持电磁往复式振动压缩机驱动单元
CN205490073U (zh) * 2016-01-04 2016-08-17 瑞声光电科技(常州)有限公司 振动电机
CN110445343A (zh) * 2019-07-17 2019-11-12 瑞声科技(南京)有限公司 线性振动马达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178103A (ja) * 1999-12-08 2001-06-29 Shisei Chin 磁石装置
CN102035340A (zh) * 2009-09-29 2011-04-27 三星电机株式会社 振动电机
CN204145249U (zh) * 2014-11-06 2015-02-04 刘少海 一种磁保持电磁往复式振动压缩机驱动单元
CN205490073U (zh) * 2016-01-04 2016-08-17 瑞声光电科技(常州)有限公司 振动电机
CN110445343A (zh) * 2019-07-17 2019-11-12 瑞声科技(南京)有限公司 线性振动马达

Similar Documents

Publication Publication Date Title
US10778075B2 (en) Linear vibration motor
CN212305093U (zh) 线性振动电机
WO2017133152A1 (zh) 线性振动马达
US10707737B2 (en) Linear vibration motor
US10931185B2 (en) Linear vibration motor
US20200044535A1 (en) Vibration motor
WO2017088366A1 (zh) 线性振动马达
CN105703593B (zh) 线性振动马达
CN104660004A (zh) 扁平线性振动电机
WO2017088367A1 (zh) 线性振动马达
US11316419B2 (en) Linear vibration motor
WO2021035409A1 (zh) 振动电机
US11462986B2 (en) Linear vibration motor with magnets fixed to a base and coils fixed to a weight
US20200212775A1 (en) Linear Vibration Motor
WO2017133132A1 (zh) 线性振动马达
US10873250B2 (en) Linear vibration motor
WO2021114307A1 (zh) 线性振动电机
CN107565791B (zh) 两级振动线性马达
US10992215B2 (en) Vibration motor
CN211744311U (zh) 线性振动电机
WO2021127910A1 (zh) 线性振动电机
US11309781B2 (en) Linear vibration motor
WO2021127908A1 (zh) 线性振动电机
CN209358409U (zh) 一种线性马达
WO2021127913A1 (zh) 线性振动电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957300

Country of ref document: EP

Kind code of ref document: A1