WO2017088367A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2017088367A1
WO2017088367A1 PCT/CN2016/082566 CN2016082566W WO2017088367A1 WO 2017088367 A1 WO2017088367 A1 WO 2017088367A1 CN 2016082566 W CN2016082566 W CN 2016082566W WO 2017088367 A1 WO2017088367 A1 WO 2017088367A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnets
vibration motor
disposed
push
Prior art date
Application number
PCT/CN2016/082566
Other languages
English (en)
French (fr)
Inventor
刘春发
祖峰磊
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/778,639 priority Critical patent/US10784758B2/en
Publication of WO2017088367A1 publication Critical patent/WO2017088367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to the field of consumer electronics, and more particularly to a linear vibration motor for use in portable consumer electronics.
  • micro-vibration motors are generally used for system feedback, such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • system feedback such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • various internal components also need to adapt to this trend, and micro-vibration motors are no exception.
  • the conventional micro-vibration motor generally includes an outer casing that forms a vibration space, a vibrator that linearly reciprocates in a vibration space (including a weight and a permanent magnet), and a stator that cooperates with the vibrator.
  • the vibration principle of the micro vibration motor is: the permanent magnet of the vibrator generates a magnetic field, and the stator coil located in the magnetic field is stressed. Since the stator is relatively fixed, the vibrator moves in a certain direction under the driving force of the reaction force, and the stator coil is changed. In the direction of the current, the vibrator moves in the opposite direction, causing vibration.
  • the vibrator is generally composed of a permanent magnet, and its application implementation lacks a certain flexibility, and due to the processing mode of the permanent magnet and the specific magnetic characteristics, it is also inconvenient from the perspective of the vibrator to the micro
  • the driving magnetic field of the vibration motor is improved; at the same time, due to the limited internal space of the micro-vibration motor, the volume of the magnet that can be accommodated in a certain space range is also limited, and the magnetic field force between the vibrator and the coil of the conventional structure is also limited, so that the vibrator vibrates.
  • the room for improvement in vibration feel is not large, which is not conducive to the improvement of the vibration of electronic products.
  • an object of the present invention is to provide a linear vibration motor which utilizes any combination of a permanent magnet and an electromagnet to constitute a vibration block of a linear vibration motor, and fully expands the linear vibration motor.
  • the linear vibration motor provided by the present invention comprises a vibrator and a stator disposed in parallel with the vibrator.
  • the vibrator includes a weight and a vibration block embedded in the weight.
  • the vibration block includes at least two adjacent magnets. And two yokes disposed between the adjacent magnets, and the adjacent ends of the two magnets disposed adjacently have the same polarity; wherein the magnets in the vibrating block are permanent magnets and/or electromagnets Any combination; and the stator includes a stator coil corresponding to one side or upper and lower sides of the vibrator and a magnetic core disposed in the stator coil; and the axial direction of the stator coil and the magnet of the vibration block The magnetic direction is vertical.
  • the vibration block comprises three magnets arranged adjacent to each other; and three adjacent magnets are all electromagnets; or three adjacent magnets are permanent magnets and electromagnetic Iron, permanent magnet; or electromagnet, permanent magnet, electromagnet.
  • the stator when the stator includes a stator coil corresponding to the upper and lower sides of the vibration block and a magnetic core disposed in the stator coil, the coils corresponding to the upper and lower sides of the vibration block are parallel to each other and The axes are on the same straight line; the currents in the stator coils disposed on the upper and lower sides of the vibrating block are opposite in direction.
  • the distance d between the yoke and the magnetic core in the horizontal direction is within a numerical range of [0.1 mm, 0.3 mm].
  • a preferred solution is to fill a magnetic conductive liquid between the vibration block and the stator.
  • the weight is an integrated structure, and a receiving groove for accommodating the vibration block is disposed at a central portion of the weight; and a relief structure for avoiding the stator is disposed at a position corresponding to the stator of the weight.
  • the preferred solution further comprises: a housing, the weight is an integral structure, a groove is symmetrically disposed at both ends of the weight, and a push-pull magnet is received and fixed in the groove; and the push-pull magnet is mounted on the housing The corresponding position is fixedly provided with a push-pull coil surrounding the push-pull magnet.
  • a preferred solution is to further include a push-pull coil bobbin, and the push-pull coil is wound on the push-pull coil bobbin.
  • a spring piece is disposed at each end of the weight block; the elastic piece is limited between the vibrator and the outer casing.
  • the push-pull magnet is a permanent magnet that is magnetized in a horizontal direction; or
  • the push-pull magnet is a pair of adjacent permanent magnets and a magnetic core disposed between adjacent permanent magnets. The adjacent ends of the two adjacent permanent magnets have the same polarity.
  • the conventional motor design idea of using only the permanent magnet to form the vibration block is jumped out, and the vibration block of the linear vibration motor is constructed by any combination of the permanent magnet and the electromagnet, and the linear vibration motor is fully expanded.
  • the realization of the linear vibration motor in the production process flexibility is shortened.
  • FIG. 1 is a schematic view showing the overall exploded structure of a linear vibration motor according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view showing the combined structure of a linear vibration motor according to a first embodiment of the present invention
  • 3a and 3b are schematic diagrams showing the driving principle of a linear vibration motor according to Embodiment 1 of the present invention.
  • Figure 4 is a cross-sectional view showing the combined structure of a linear vibration motor according to a second embodiment of the present invention.
  • 5a and 5b are schematic diagrams showing the driving principle of a linear vibration motor according to a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing the combined structure of a linear vibration motor according to a third embodiment of the present invention.
  • FIG. 7a and 7b are schematic diagrams showing the driving principle of a linear vibration motor according to a third embodiment of the present invention.
  • FIGS. 8a to 8d are respectively schematic diagrams showing a combined structure of a vibration block and a stator according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a weight according to an embodiment of the present invention.
  • upper case 1 lower cover 11, push-pull coil 2, bobbin 3, push-pull magnet 4, magnetic block 42, weight plate 5, groove 51, receiving groove 52, permanent magnet 81, 82, 83 , 81', 82', 83', magnetic yokes 91, 92, 91', 92', stator coils 61, 62, 61', 62', magnetic cores 71, 72, 71', 72', spring 10 .
  • weights used in the description of the specific embodiments described below may also be referred to as “mass masses”, both of which refer to high quality, high density metal blocks that are fixed with vibration generating vibration blocks to enhance vibration balance.
  • the present invention is mainly applied to the improvement of the micro vibration motor, but does not exclude the application of the technique of the present invention to a large vibration motor.
  • the meanings of the "linear vibration motor” and the “micro vibration motor” are the same.
  • the linear vibration motor In order to solve the problem of poor motor design flexibility and vibration sensation caused by using permanent magnets to form a vibration block in the conventional micro-vibration motor structure, the linear vibration motor provided by the present invention uses any combination of permanent magnets and electromagnets to form linear vibration.
  • the vibration block of the motor fully expands the implementation of the linear vibration motor to improve the flexibility of the linear vibration motor production process, thereby enhancing the vibration of the micro vibration motor.
  • the linear vibration motor comprises a vibrator and a stator disposed in parallel with the vibrator, the vibrator includes a weight and a vibration block embedded in the weight, the vibration block includes at least two adjacent magnets and Two yokes disposed between adjacent magnets, and the adjacent ends of the two magnets disposed adjacently have the same polarity; wherein the magnets in the vibrating block are any of permanent magnets and/or electromagnets
  • the stator includes a stator coil corresponding to one side or upper and lower sides of the vibrator and a magnetic core disposed in the stator coil; the axial direction of the stator coil is perpendicular to the magnetization direction of the magnet of the vibration block.
  • the magnet in the vibration block is not limited to the permanent magnet, the implementation of the vibration block is fully expanded, and the flexibility of the production design is improved.
  • the combination may be either a permanent magnet or an electromagnet, or an alternating combination of a permanent magnet and an electromagnet: Permanent magnets, electromagnets, permanent magnets, or electromagnets, permanent magnets, electromagnets.
  • permanent magnets permanent magnets, electromagnets, electromagnets, permanent magnets, permanent magnets, electromagnets, electromagnets, permanent magnets, permanent magnets, electromagnets, electromagnets, permanent magnets, permanent magnets, electromagnets, electromagnets, and the like.
  • FIG. 1, FIG. 2, FIG. 3, and FIG. 3b are respectively a schematic diagram of an overall exploded structure, a sectional view of a combined structure, and a driving principle of a linear vibration motor according to Embodiment 1 of the present invention.
  • the combination of the vibrating blocks in the linear vibration motor of the first embodiment is a sequential combination of three electromagnets.
  • the linear vibration motor mainly includes a housing, a vibrator, and a stator, and the stator is fixed to the housing and disposed in parallel with the vibrator.
  • the outer casing comprises an upper casing 1 and a lower cover 11;
  • the vibrator comprises a weight 5 and a vibration block embedded in the weight 5,
  • the vibration block comprises three adjacent electromagnets 81, 82, 83 and Two yokes 91, 92 are disposed between the adjacent electromagnets, and the adjacent ends of the three electromagnets disposed adjacently have the same polarity.
  • the stator includes stator coils 61, 62 corresponding to the upper and lower sides of the vibration block, and magnetic cores 71, 72 respectively disposed in the stator coils 61, 62, the magnetization direction of the permanent magnets in the vibration block and the stator coil
  • the axial directions are perpendicular to each other, and the magnetic yokes in the vibration block and the magnetic conductive cores in the stator are misaligned.
  • the charging directions of the three electromagnets constituting the vibration block are reversely reversed, that is, the charging directions of the adjacent electromagnets are opposite.
  • the current direction indicated as “ ⁇ ” in the figure is the vertical view facing outward, marked as The current direction is the vertical plane facing, so that according to the right-hand rule, the three electromagnets constituting the vibrating block are arranged in the following manner: SN, NS, SN.
  • the magnetic lines of force generated by the vibrating block pass vertically upwards and downwards through the stator coils respectively.
  • the left hand is extended, so that the thumb is perpendicular to the other four fingers, and both are in the same plane as the palm. Inside; let the magnetic lines of force generated by the middle vibrating block enter from the palm and point the four fingers in the direction of the current.
  • the direction of the thumb is the energized wire (ie, the stator coil) in the magnetic field generated by the permanent magnet of the vibrating block. Subject to the direction of Ampere. According to the direction of the current in the stator coil in Fig.
  • the vibration block receives the rightward force F based on the relationship between the force and the reaction force.
  • the vibration block receives the leftward force F based on the relationship between the force and the reaction force.
  • the stator coil receives the magnetic force force to the right in the direction, but since the stator coil is fixed, the vibration block receives the leftward force of the opposite direction and the same magnitude, and is subjected to the direction.
  • the vibration block of the left driving force drives the weights together to make a translational movement to the left.
  • the above movements alternate, that is, the micro-vibration motor is driven to vibrate.
  • 5a, and 5b are respectively a cross-sectional view showing a combined structure and a driving principle of a linear vibration motor according to a second embodiment of the present invention.
  • the linear vibration motor of the second embodiment also includes a housing, a vibrator and a stator, and the stator is fixed to the housing and disposed in parallel with the vibrator.
  • the outer casing includes an upper casing 1 and a lower cover 11;
  • the vibrator includes a weight 5 and a vibration block embedded in the weight 5, and the vibration block includes three adjacent magnets 81', 82', 83.
  • 'and two yoke yokes 91', 92' disposed between adjacent electromagnets, and the adjacent ends of the three electromagnets disposed adjacently have the same polarity.
  • the stator includes stator coils 61', 62' corresponding to the upper and lower sides of the vibration block, and magnetic cores 71', 72' respectively disposed in the stator coils 61', 62', and charging of the permanent magnets in the vibration block
  • the magnetic direction is perpendicular to the axial direction of the stator coil.
  • the three magnets constituting the vibration block are permanent magnets, electromagnets, and permanent magnets, that is, the magnets 81' and 83' are permanent magnets, and the magnet 82' is an electromagnet.
  • the charging direction of the middle electromagnet constituting the vibrating block is such that it has the same polarity as the adjacent end of the adjacent two permanent magnets. That is, the arrangement of the three electromagnets constituting the vibrating block is shown as: S-N, N-S, S-N.
  • the vibration principle is the same as that of the first embodiment.
  • 6 and 7a and 7b respectively show a cross-sectional view and a driving principle diagram of a combined structure of a three linear vibration motor according to an embodiment of the present invention.
  • the three magnets constituting the vibration block are an electromagnet, a permanent magnet, and an electromagnet. It can be seen from the schematic diagram of the vibration principle shown in Figs. 7a and 7b that the charging directions of the two electromagnets constituting both ends of the vibrating block are the same, so that they are of the same polarity as the adjacent ends of the two adjacent permanent magnets. That is, the arrangement of the three electromagnets constituting the vibrating block is shown as: S-N, N-S, S-N. The vibration principle is the same as above.
  • the linear vibration motors of the above three embodiments are all sandwich structures, that is, the arrangement of the stator and the vibrator in the vertical direction is “stator-vibrator-stator”, as can also be seen from the figure.
  • the stator includes a stator coil corresponding to the upper and lower sides of the vibration block and a magnetic core disposed in the stator coil, and the coils disposed on the upper and lower sides of the vibration block are parallel to each other, the axes are on the same straight line, and the current direction is opposite.
  • the linear vibration motor to which the present invention is applied is not limited to the sandwich structure shown in the above embodiment, and may be designed as a structure of a single-sided stator, that is, the stator includes a setting.
  • the stator coil on one side of the vibrating block and the magnetic conducting core disposed in the stator coil, the magnetization direction of the permanent magnet in the vibrating block and the axial direction of the stator coil are perpendicular to each other. It is also possible to appropriately select the number and type of stators (electromagnets, permanent magnets, magnetic cores, etc.) and combinations thereof according to the amount of vibration force required for the application, and the type of permanent magnets that constitute the vibration block (electromagnet, permanent Magnets, magnetic cores, etc.) and combinations. As shown in more detail, the combined structure of the vibrating block and the stator as shown in Figs. 8a to 8d.
  • the push-pull magnets 4 are symmetrically disposed at both ends of the vibrator, and a push-pull around the push-pull magnet 4 is fixedly disposed at a position corresponding to the push-pull magnet 4 on the casing.
  • the coil 2 and the push-pull coil 2 are wound around the push-pull coil bobbin 3.
  • the push-pull coil 2 generates a push-pull force in the horizontal direction with the push-pull magnet 4 after energization, and provides a driving force for the reciprocating motion of the vibrator in a direction parallel to the plane of the stator.
  • the vibration principle of the conventional motor after the coil in the stator is energized, the permanent magnet in the vibration block and the coil in the stator generate an interaction push-pull force, and the direction of the magnetic field line generated by the stator is changed by changing the current direction of the coil in the stator. Thereby, the vibrator is driven to reciprocate in a direction parallel to the plane of the stator.
  • the driving force that the original driving portion can provide is extremely limited due to the limitation of the volume of the micro-vibration motor. Therefore, the push-pull magnet additionally provided at the two ends of the vibrator proposed by the present invention is proposed.
  • the driving structure combined with the push-pull coil fixed on the outer casing can provide an additional driving force for the micro-vibration motor, thereby effectively enhancing the vibration of the micro-vibration motor without increasing the volume of the micro-vibration motor.
  • Figure 9 illustrates the structure of a weight in accordance with an embodiment of the present invention.
  • the weight 5 is a unitary structure, and a receiving groove 52 for accommodating the vibration block is disposed in the middle of the weight 5, and a groove 51 for accommodating the push-pull magnet is disposed at both ends of the weight.
  • a relief structure for escaping the stator is further disposed at a corresponding position in the middle portion of the weight, and the receiving groove 52 accommodating the vibration block is located at a center position of the relief structure.
  • the permanent magnet and the yoke constituting the vibration block may be fixed together, and then the vibration block is integrally fixed in the receiving groove 52 by means of glue coating or laser welding, and the push-pull is performed.
  • the magnet 4 can also be fixed in the recess 51 in a similar manner.
  • the push-pull magnet 4 is in a horizontal direction.
  • the magnetized permanent magnet has an axial direction of the push-pull coil 2 parallel to the magnetization direction of the push-pull magnet 4.
  • the weight 5 can be made of a high-density metal material such as a tungsten steel block or a nickel steel block or a nickel-tungsten alloy to increase the vibration force and make the vibration of the electronic product stronger.
  • the increased push-pull magnet does not increase the length or thickness of the vibrator.
  • the push-pull coil provided around the push-pull magnet is fixed to the outer casing, which utilizes the vibration avoidance space in the conventional motor structure, and also does not increase the volume of the micro-vibration motor.
  • the magnetic conductive block is fixedly attached to the lead-out surface of the magnetic field lines of the push-pull magnet 4
  • the magnetic force lines derived from the push-pull magnets 4 are gathered to concentrate the magnetic force generated by the push-pull magnets to the push-pull coils, thereby improving the utilization of the magnetic field generated by the push-pull magnets 4.
  • the push-pull magnet 4 is composed of a single integral permanent magnet.
  • the push-pull magnet can also be designed as an electromagnet or a combined structure composed of a plurality of permanent magnets or magnets.
  • the push-pull magnet can be designed to include two adjacent sets of permanent The magnet and the magnetic core disposed between the adjacent permanent magnets have the same polarity of the adjacent ends of the two adjacent permanent magnets.
  • the vibration damping and the collision avoidance during the vibration of the vibrator are realized by the elastic pieces disposed at both ends of the vibrator.
  • the elastic piece 10 is fixed between the vibrator and the outer casing, and the vibrator presses the elastic piece at one end during the vibration process, and the compressed elastic piece can prevent the vibrator from colliding with the outer casing during the vibration process. At the same time, it can also provide elastic recovery force in the opposite direction for the vibration of the vibrator.
  • the conductive yoke in the vibration block and the corresponding magnetic core in the stator are misaligned, and the distance between the magnetic yoke in the vibration block and the magnetic core corresponding to the magnetic yoke in the stator is horizontally d.
  • the center line of each yoke is at a horizontal distance of 0.1 to 0.3 mm from the center line of the corresponding (ie, nearest) stator core.
  • the corresponding vibration block drives the counterweight to reciprocate to a distance of 0.2 mm from the left and right sides of the central axis when the vibrating block is in a stationary state, and correspondingly, the edge of the avoidance structure is away from the outer edge of the stator. Should be slightly larger than 0.2mm.
  • the linear vibration motor provided by the present invention further includes a flexible circuit board (PFCB), the stator may be fixed on the FPCB, and the stator coil leads communicate with an external circuit through a circuit on the FPCB, and the FPCB is fixed to the outer casing.
  • PFCB flexible circuit board

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种线性振动马达,包括振子和与振子平行设置的定子。振子包括配重块(5)和嵌设固定在配重块中的振动块,振动块包括至少两块相邻接设置的磁铁(81、82、83)和设置在相邻接设置的磁铁之间的导磁轭(91、92)。相邻接设置的两块磁铁的邻接端极性相同。磁铁为永磁铁和/或电磁铁的任意组合。定子包括相对应设置在振子一侧或者上、下两侧的定子线圈(61、62)和设置在定子线圈中的导磁芯(71、72),定子线圈的轴线方向与振动块的磁铁的充磁方向垂直。该线性振动马达的振动块利用永磁铁和电磁铁的任意组合来构成,扩展了线性振动马达的实现方式,提高了生产过程的灵活性。

Description

线性振动马达 技术领域
本发明涉及消费电子技术领域,更为具体地,涉及一种应用于便携式消费电子产品的线性振动马达。
背景技术
随着通信技术的发展,便携式电子产品,如手机、掌上游戏机或者掌上多媒体娱乐设备等进入人们的生活。在这些便携式电子产品中,一般会用微型振动马达来做***反馈,例如手机的来电提示、游戏机的振动反馈等。然而,随着电子产品的轻薄化发展趋势,其内部的各种元器件也需适应这种趋势,微型振动马达也不例外。
现有的微型振动马达,一般包括形成振动空间的外壳、在振动空间内做直线往复振动的振子(包括配重块和永磁铁)、以及和振子配合作用的定子。
微型振动马达的振动原理为:振子的永磁体产生磁场,位于该磁场中的定子线圈受力,由于定子相对固定,因此振子就会在反作用力的驱动下向某一方向运动,改变定子线圈的电流方向,振子就会向反方向运动,从而产生振动。
但是,在传统结构的微型振动马达中,振子一般由永磁铁构成,其应用实现方式缺乏一定的灵活性,并且由于永磁铁的加工方式和特定的磁性特征,也不便于从振子的角度对微型振动马达的驱动磁场做出改进;同时,由于微型振动马达的内部空间有限,一定空间范围内能够容纳的磁铁的体积也有限,而传统结构的振子和线圈之间的磁场力也有限,使得振子振动的振感改进空间不大,不利于电子产品的振感的提高。
发明内容
鉴于上述问题,本发明的目的是提供一种线性振动马达,利用永磁铁和电磁铁的任意组合来构成线性振动马达的振动块,充分扩展了线性振动马达 的实现方式,提高了线性振动马达生产过程中的灵活性。
本发明提供的线性振动马达,包括振子和与振子平行设置的定子,振子包括配重块和嵌设固定在所述配重块中的振动块,振动块包括至少两块相邻接设置的磁铁和设置在相邻接的磁铁之间的两块导磁轭,并且,相邻接设置的两块磁铁的邻接端极性相同;其中,振动块中的磁铁为永磁铁和/或电磁铁的任意组合;并且,定子包括相对应设置在振子一侧或者上、下两侧的定子线圈和设置在所述定子线圈中的导磁芯;并且,定子线圈的轴线方向与振动块的磁铁的充磁方向垂直。
其中,优选的方案是,振动块包括三块相邻接设置的磁铁;并且,三块相邻接设置的磁铁均为电磁铁;或者,三块相邻接设置的磁铁分别为永磁铁、电磁铁、永磁铁;或者,电磁铁、永磁铁、电磁铁。
其中,优选的方案是,当所述定子包括对应设置在振动块上、下两侧的定子线圈和设置在定子线圈中的导磁芯时,对应设置在振动块上下两侧的线圈相互平行且其轴线位于同一直线上;对应设置在振动块上下两侧的定子线圈内的电流方向相反。
其中,优选的方案是,导磁轭与所述导磁芯之间水平方向的距离d位于[0.1mm,0.3mm]的数值范围内。
其中,优选的方案是,在振动块和定子之间填充有导磁液。
其中,优选的方案是,配重块为一体式结构,在配重块的中部位置设置有容纳振动块的收容槽;在配重块的对应定子的位置设置有避让定子的避让结构。
其中,优选的方案是,还包括外壳,配重块为一体式结构,在配重块的两端对称设置有凹槽,在凹槽内收容固定有推挽磁铁;在外壳上与推挽磁铁相对应的位置固定设置有环绕推挽磁铁的推挽线圈。
其中,优选的方案是,还包括推挽线圈骨架,推挽线圈绕制在推挽线圈骨架上。
其中,优选的方案是,在配重块的两端分别设置有一弹片;弹片被限位在振子和外壳之间。
其中,优选的方案是,推挽磁铁为一块水平方向充磁的永磁铁;或者, 推挽磁铁为两块相邻接设置的永磁铁和设置在相邻接的永磁铁之间的导磁芯,两块相邻接设置的永磁铁的邻接端极性相同。
上述根据本发明的线性振动马达,跳出了现有的仅采用永磁铁构成振动块的马达设计思路,利用永磁铁和电磁铁的任意组合来构成线性振动马达的振动块,充分扩展了线性振动马达的实现方式,提高了线性振动马达生产过程中的灵活性。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明的实施例一的线性振动马达的整体***结构示意图;
图2为根据本发明的实施例一的线性振动马达的组合结构剖视图;
图3a、图3b为根据本发明的实施例一的线性振动马达的驱动原理示意图;
图4为根据本发明的实施例二的线性振动马达的组合结构剖视图;
图5a、图5b为根据本发明的实施例二的线性振动马达的驱动原理示意图;
图6为根据本发明的实施例三的线性振动马达的组合结构剖视图;
图7a、图7b为根据本发明的实施例三的线性振动马达的驱动原理示意图;
图8a~8d分别为根据本发明实施例的振动块和定子的组合结构示意图;
图9为根据本发明实施例的配重块的结构示意图。
图中:上壳1,下盖11,推挽线圈2,线圈骨架3,推挽磁铁4,导磁块42,配重块5,凹槽51,收容槽52,永磁铁81、82、83、81’、82’、83’,导磁轭91、92、91’、92’,定子线圈61、62、61’、62’,导磁芯71、72、71’、72’,弹片10。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
在下述具体实施方式的描述中所用到的“配重块”也可以称作“质量块”,均指与产生振动的振动块固定以加强振动平衡的高质量、高密度金属块。
另外,本发明主要用于微型振动马达的改进,但是也不排除将本发明中的技术应用于大型振动马达。但是为了表述的方面,在以下的实施例描述中,“线性振动马达”和“微型振动马达”表示的含义相同。
以下将结合附图对本发明的具体实施例进行详细描述。
为了解决现有的微型振动马达结构中采用永磁铁构成振动块而导致的马达设计灵活性差、振感受限问题,本发明提供的线性振动马达,利用永磁铁和电磁铁的任意组合来构成线性振动马达的振动块,充分扩展线性振动马达的实现方式,以提高线性振动马达生产过程中的灵活性,从而增强微型振动马达的振感。
本发明提供的线性振动马达包括振子和与振子平行设置的定子,振子包括配重块和嵌设固定在所述配重块中的振动块,振动块包括至少两块相邻接设置的磁铁和设置在相邻接的磁铁之间的两块导磁轭,并且,相邻接设置的两块磁铁的邻接端极性相同;其中,振动块中的磁铁为永磁铁和/或电磁铁的任意组合;定子包括相对应设置在振子一侧或者上、下两侧的定子线圈和设置在所述定子线圈中的导磁芯;定子线圈的轴线方向与振动块的磁铁的充磁方向垂直。
在本发明的振动块设计中,没有将振动块中的磁铁局限于永磁铁,充分拓展了振动块的实现方式,提高了生产设计的灵活性。
也就是说,在本发明中,从产生能够作用于定子线圈的磁场的角度出发,在振动块的构成方式上做出了改进,使得组成振动块的磁铁可以采用永磁铁和电磁铁的任意组合。比如,在三块磁铁构成振动块的情况下,其组合方式可以均采用永磁铁或者均采用电磁铁,也可以是永磁铁和电磁铁的交替组合: 永磁铁、电磁铁、永磁铁,或者,电磁铁、永磁铁、电磁铁。还可以组合为:永磁铁、永磁铁、电磁铁,电磁铁、永磁铁、永磁铁,电磁铁、电磁铁、永磁铁,永磁铁、电磁铁、电磁铁等。
下面将以三个具体实施方式更详细地说明本发明的技术方案。
具体地,图1、图2和图3a、图3b分别为根据本发明的实施例一的线性振动马达的整体***结构示意图、组合结构剖视图和驱动原理示意图。
如图1~图3共同所示,本实施例一的线性振动马达中振动块的组合方式为三个电磁铁的依次组合。具体地,线性振动马达主要包括外壳、振子和定子,定子固定在外壳上并且与振子平行设置。其中,外壳包括上壳1和下盖11;振子包括配重块5和嵌设固定在配重块5中的振动块,振动块包括三块相邻接设置的电磁铁81、82、83和两块设置在相邻接的电磁铁之间的导磁轭91、92,并且,相邻接设置的三块电磁铁的邻接端极性相同。定子包括对应设置在振动块上、下两侧的定子线圈61、62和分别设置在定子线圈61、62中的导磁芯71、72,振动块中的永磁铁的充磁方向与定子线圈的轴线方向相互垂直,振动块中的导磁轭和定子中的导磁芯错位排列。
根据图3a、图3b所示的振动原理示意图可以看出,组成振动块的三块电磁铁的充电方向交叉反向,即,相邻的电磁铁的充电方向相反。图中标示为“⊙”电流方向为垂直图面向外,标示为
Figure PCTCN2016082566-appb-000001
电流方向为垂直图面向里,这样,根据右手定则,图示构成振动块的三个电磁铁的排布方式为:S-N,N-S,S-N。振动块产生的磁力线分别垂直向上和向下通过定子线圈,根据判定通电导体在磁场中受力方向的左手定则,伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让中间的振动块产生的磁力线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线(即定子线圈)在振动块的永磁铁所产生的磁场中所受安培力的方向。根据图3b中定子线圈内的电流方向,定子线圈的受到向左的力,由于定子线圈固定不动,基于作用力与反作用力的关系,则振动块受到向右的力F。如此,在振动块受到向右的推动力时,就带动配重块一起做向右的平移运动。同理,当电流方向改变时,按照左手定则,定子线圈受到方向向右的磁场力,但是由于定子线圈固定不动,则振动块受到方向相反且大小相同的向左的作用力,受到向左推动力的振动块就带动配重块一起做向左的平移运动。上述运动交替进行,即驱 动微型振动马达振动。
图4、图5a、图5b分别示出了根据本发明的实施例二的线性振动马达的组合结构剖视图和驱动原理示意图。
如图4所示,本实施例二的线性振动马达同样包括外壳、振子和定子,定子固定在外壳上并且与振子平行设置。其中,外壳包括上壳1和下盖11;振子包括配重块5和嵌设固定在配重块5中的振动块,振动块包括三块相邻接设置的磁铁81’、82’、83’和两块设置在相邻接的电磁铁之间的导磁轭91’、92’,并且,相邻接设置的三块电磁铁的邻接端极性相同。定子包括对应设置在振动块上、下两侧的定子线圈61’、62’和分别设置在定子线圈61’、62’中的导磁芯71’、72’,振动块中的永磁铁的充磁方向与定子线圈的轴线方向相互垂直。
和上述实施例一不同的是,本实施例二中,组成振动块的三块磁铁分别为永磁铁、电磁铁、永磁铁,即磁铁81’、83’为永磁铁,磁铁82’为电磁铁。根据图5a、图5b所示的振动原理示意图可以看出,组成振动块的中间一块电磁铁的充电方向使得其与相邻接的两块永磁铁的邻接端极性相同。即,图示构成振动块的三个电磁铁的排布方式为:S-N,N-S,S-N。其振动原理和实施例一中的振动原理相同。
图6和图7a、图7b分别示出了根据本发明实施例三线性振动马达的组合结构剖视图和驱动原理示意图。
上述实施例一、实施例二不同的是,本实施例三中,组成振动块的三块磁铁分别为电磁铁、永磁铁、电磁铁。根据图7a、图7b所示的振动原理示意图可以看出,组成振动块的两端的两块电磁铁的充电方向相同,从而使得其与相邻接的两块永磁铁的邻接端极性相同。即,图示构成振动块的三个电磁铁的排布方式为:S-N,N-S,S-N。其振动原理同上。
需要说明的是,上述三个实施例的线性振动马达均为三明治结构,即定子和振子在竖直方向上的排布方式为“定子-振子-定子”,从图示中也可以看出,定子包括对应设置在振动块上、下两侧的定子线圈和设置在定子线圈中的导磁芯,对应设置在振动块上、下两侧的线圈相互平行、轴线位于同一直线上且电流方向相反。但是,本发明所应用的线性振动马达并不限于上述实施例中所示的三明治结构,也可以设计为单边定子的结构,即定子包括设置 于振动块一侧的定子线圈和设置在定子线圈中的导磁芯,振动块中的永磁铁的充磁方向与定子线圈的轴线方向相互垂直。还可以根据应用产品所需振动力的大小适当选择组成定子的数量、类型(电磁铁、永磁铁、导磁芯等)及组合方式,以及组成振动块的永磁铁的数量类型(电磁铁、永磁铁、导磁芯等)及组合方式。如更多的如图8a~8d示出的振动块和定子的组合结构。
除此之外,在本发明的一个优选实施方式中,还可以为线性振动马达在振动块的两端增设额外的推挽机构,利用固定在配重块上的推完磁铁和固定在外壳上的推挽线圈的相互作用力,为振子沿与定子所在平面平行的方向上的往复运动提供驱动力。
具体的,如图1~图3的实施例所示,推挽磁铁4对称设置在振子的两端,在外壳上与推挽磁铁4相对应的位置固定设置有环绕推挽磁铁4的推挽线圈2,推挽线圈2缠绕在推挽线圈骨架3上。推挽线圈2在通电后和推挽磁铁4产生水平方向上的推挽力,为振子沿与定子所在平面平行的方向上的往复运动提供驱动力。
根据传统马达的振动原理,定子中的线圈通电后,振动块中的永磁铁和定子中的线圈产生相互作用的推挽力,通过改变定子中线圈的电流方向改变定子所产生的磁场磁力线的走向,从而来驱动振子沿与定子所在平面平行的方向做往复运动。但是,在微型振动马达中,由于对微型振动马达体积的限定,其原有驱动部分所能够提供的驱动力是极为有限的,因此,本发明提出的这种额外增设在振子两端的推挽磁铁和固定在外壳上的推挽线圈相组合的驱动结构能够为微型振动马达提供额外的驱动力,从而在不增加微型振动马达体积的基础上,有效增强微型振动马达的振感。
图9示出了根据本发明的实施例的配重块的结构。
如图9所示,配重块5为一体结构,在配重块5的中部设置有收容嵌设振动块的收容槽52,在配重块的两端设置有容纳推挽磁铁的凹槽51,另外,在配重块的中部对应位置还设置有避让定子的避让结构,容纳振动块的收容槽52位于避让结构的中心位置。在配重块在具体的装配过程中,可以先将组成振动块的永磁铁和导磁轭固定在一起,然后以涂胶或者激光电焊等方式将振动块整体固定在收容槽52中,推挽磁铁4也可以以类似的方式固定在凹槽51中。另外,在图1、图2所示的实施例中,推挽磁铁4为一整块水平方向 充磁的永磁铁,推挽线圈2的轴线方向与推挽磁铁4的充磁方向平行。
配重块5可以采用钨钢块或镍钢块或者镍钨合金等高密度金属材料制成,以加大振动力,使电子产品的振动更强烈。
由图2、图4、图6以及图9可以看出,由于在配重块5的两端设置有容纳推挽磁铁的凹槽51,增加的推挽磁铁不会增加振子的长度或者厚度,而环绕推挽磁铁设置的推挽线圈固定在外壳上,利用了传统马达结构中的振动避让空间,同样没有增加微型振动马达的体积。
为了避免推挽磁铁4产生的磁力线过于分散而影响到其通过推挽线圈的磁密度,在本发明的一个优选实施例中,在推挽磁铁4的磁力线的导出面固定贴设有导磁块,以聚拢推挽磁铁4导出的磁力线,使所述推挽磁铁产生的磁力集中导出至推挽线圈,提高推挽磁铁4所产生的磁场的利用率。
在前述实施例中,推挽磁铁4由单独的一整块永磁铁构成。但是,在实际的应用设计中,也可以将推挽磁铁设计为电磁铁或者由多块永磁铁或者磁铁构成的组合结构,例如,可以将推挽磁铁设计为包括两块相邻接设置的永磁铁和设置在相邻接的永磁铁之间的导磁芯,两块相邻接设置的永磁铁的邻接端极性相同。
在本发明的实施例中,振子振动过程中的减振、防撞通过分设在振子两端的弹片实现。如图1~图3所示,弹片10被限位固定在振子和外壳之间,振子在振动的过程中会挤压一端的弹片,受挤压的弹片能够防止振子在振动过程中与外壳碰撞,同时也能够为振子的振动提供反方向上的弹性恢复力。
在上述实施例中,振动块中的导磁轭和定子中对应的导磁芯错位排列,振动块中的导磁轭和定子中与导磁轭对应的导磁芯之间水平方向的距离d位于[0.1mm,0.3mm]的数值范围内,也就是说,每个导磁轭的中心线距离相应的(也即最近的)定子的导磁芯的中心线的水平距离为0.1~0.3mm,那么,相应的振动块带动配重块往复运动所带来的相对于振动块静止状态时的中心轴左右偏移的距离为0.2mm,相应的,避让结构的边缘距离定子外边缘的宽度均应略大于0.2mm。
另外,本发明提供的线性振动马达还包括柔性线路板(PFCB),定子可以固定在FPCB上,定子线圈引线通过FPCB上的电路与外部电路连通,FPCB与外壳固定。
如上参照附图以示例的方式描述根据本发明的线性振动马达。但是,本领域技术人员应当理解,对于上述本发明所提出的线性振动马达,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (10)

  1. 一种线性振动马达,包括振子和与所述振子平行设置的定子,所述振子包括配重块和嵌设固定在所述配重块中的振动块,其特征在于,
    所述振动块包括至少两块相邻接设置的磁铁和设置在所述至少两块相邻接设置的磁铁之间的导磁轭,并且,相邻接设置的两块磁铁的邻接端极性相同;其中,
    所述磁铁为永磁铁和/或电磁铁的任意组合;并且,
    定子包括相对应设置在所述振子一侧或者上、下两侧的定子线圈和设置在所述定子线圈中的导磁芯;并且,
    所述定子线圈的轴线方向与所述振动块的磁铁的充磁方向垂直。
  2. 如权利要求1所述的线性振动马达,其特征在于,
    所述振动块包括三块相邻接设置的磁铁;并且,
    所述三块相邻接设置的磁铁均为电磁铁;或者,
    所述三块相邻接设置的磁铁分别为永磁铁、电磁铁、永磁铁;或者,电磁铁、永磁铁、电磁铁。
  3. 如权利要求1所述的线性振动马达,其特征在于,当所述定子包括对应设置在所述振动块上、下两侧的定子线圈和设置在所述定子线圈中的导磁芯时,所述对应设置在所述振动块上下两侧的线圈相互平行且其轴线位于同一直线上;
    所述对应设置在所述振动块上下两侧的定子线圈内的电流方向相反。
  4. 如权利要求3所述的线性振动马达,其特征在于,
    所述导磁轭与所述导磁芯之间水平方向的距离d位于[0.1mm,0.3mm]的数值范围内。
  5. 如权利要求1所述的线性振动马达,其特征在于,
    在所述振动块和所述定子之间填充有导磁液。
  6. 如权利要求1所述的线性振动马达,其特征在于,
    所述配重块为一体式结构,在所述配重块的中部位置设置有容纳所述振动块的收容槽;
    在所述配重块的对应所述定子的位置设置有避让所述定子的避让结构。
  7. 如权利要求1所述的线性振动马达,其特征在于,还包括外壳,
    所述配重块为一体式结构,在所述配重块的两端对称设置有凹槽,在所述凹槽内收容固定有推挽磁铁;
    在所述外壳上与所述推挽磁铁相对应的位置固定设置有环绕所述推挽磁铁的推挽线圈。
  8. 如权利要求7所述的线性振动马达,其特征在于,
    还包括推挽线圈骨架,所述推挽线圈绕制在所述推挽线圈骨架上。
  9. 如权利要求7所述的线性振动马达,其特征在于,
    在所述配重块的两端分别设置有一弹片;
    所述弹片被限位在所述振子和所述外壳之间。
  10. 如权利要求7所述的线性振动马达,其特征在于,
    所述推挽磁铁为一块水平方向充磁的永磁铁;或者,
    所述推挽磁铁包括两块相邻接设置的永磁铁和设置在所述两块相邻接设置的永磁铁之间的导磁芯,所述两块相邻接设置的永磁铁的邻接端极性相同。
PCT/CN2016/082566 2015-11-25 2016-05-19 线性振动马达 WO2017088367A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/778,639 US10784758B2 (en) 2015-11-25 2016-05-19 Linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510835619.9 2015-11-25
CN201510835619.9A CN105281528B (zh) 2015-11-25 2015-11-25 线性振动马达

Publications (1)

Publication Number Publication Date
WO2017088367A1 true WO2017088367A1 (zh) 2017-06-01

Family

ID=55150025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082566 WO2017088367A1 (zh) 2015-11-25 2016-05-19 线性振动马达

Country Status (3)

Country Link
US (1) US10784758B2 (zh)
CN (1) CN105281528B (zh)
WO (1) WO2017088367A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281528B (zh) 2015-11-25 2018-07-27 歌尔股份有限公司 线性振动马达
CN105529896B (zh) * 2016-02-05 2019-01-11 歌尔股份有限公司 线性振动马达
CN107147267B (zh) * 2017-05-18 2023-11-24 歌尔股份有限公司 线性振动马达
CN107222080A (zh) * 2017-06-29 2017-09-29 苏州市唯西芈电子科技有限公司 线性振动马达
CN208589901U (zh) * 2018-08-03 2019-03-08 瑞声科技(南京)有限公司 振动电机
CN113396532A (zh) * 2019-02-05 2021-09-14 株式会社村田制作所 振子支承构造、振动马达以及电子设备
CN110880850B (zh) * 2019-11-11 2021-01-01 华中科技大学 一种定子永磁型动铁芯式无弹簧直线振荡电机
CN113972808B (zh) * 2021-10-27 2023-05-09 歌尔股份有限公司 一种线性振动马达

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201789399U (zh) * 2010-09-01 2011-04-06 歌尔声学股份有限公司 扁平线性振动器
CN202068311U (zh) * 2011-05-18 2011-12-07 歌尔声学股份有限公司 扁平线性振动器
US20120104875A1 (en) * 2010-10-27 2012-05-03 Lg Innotek Co., Ltd. Linear Vibrator
EP2608373A1 (en) * 2011-12-22 2013-06-26 Young Jin Hitech Co., Ltd. Linear vibration device
CN203416119U (zh) * 2013-07-31 2014-01-29 瑞声科技(沭阳)有限公司 贴片振动马达
CN103855856A (zh) * 2014-02-18 2014-06-11 惠州市华阳多媒体电子有限公司 一种振动马达
CN105207442A (zh) * 2015-09-23 2015-12-30 歌尔声学股份有限公司 线性振动马达
CN105281528A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达
CN205092752U (zh) * 2015-09-23 2016-03-16 歌尔声学股份有限公司 线性振动马达

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483959B2 (ja) * 1994-10-14 2004-01-06 Tdk株式会社 磁石可動型リニアアクチュエータ及びポンプ
US9553497B2 (en) * 2009-07-22 2017-01-24 Mplus Co., Ltd. Horizontal linear vibrator
KR101255914B1 (ko) * 2010-12-31 2013-04-23 삼성전기주식회사 선형 진동모터
CN102684445B (zh) * 2011-03-07 2016-08-10 德昌电机(深圳)有限公司 电动剪切工具及其驱动器
KR101354773B1 (ko) * 2011-08-04 2014-01-23 삼성전기주식회사 선형진동모터
CN104682656B (zh) * 2013-11-26 2018-04-27 上海微电子装备(集团)股份有限公司 平板音圈电机
CN204334278U (zh) * 2014-12-23 2015-05-13 瑞声光电科技(常州)有限公司 振动电机
CN104660106B (zh) * 2015-02-02 2017-04-12 瑞声精密电子沭阳有限公司 扁平线性振动电机
CN104660004A (zh) * 2015-02-02 2015-05-27 瑞声光电科技(常州)有限公司 扁平线性振动电机
CN104617736B (zh) * 2015-02-02 2017-08-04 瑞声光电科技(常州)有限公司 扁平线性振动电机
CN105048757B (zh) * 2015-08-18 2018-02-06 歌尔股份有限公司 一种振动马达和电子设备
CN205847046U (zh) * 2015-11-25 2016-12-28 歌尔股份有限公司 线性振动马达

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201789399U (zh) * 2010-09-01 2011-04-06 歌尔声学股份有限公司 扁平线性振动器
US20120104875A1 (en) * 2010-10-27 2012-05-03 Lg Innotek Co., Ltd. Linear Vibrator
CN202068311U (zh) * 2011-05-18 2011-12-07 歌尔声学股份有限公司 扁平线性振动器
EP2608373A1 (en) * 2011-12-22 2013-06-26 Young Jin Hitech Co., Ltd. Linear vibration device
CN203416119U (zh) * 2013-07-31 2014-01-29 瑞声科技(沭阳)有限公司 贴片振动马达
CN103855856A (zh) * 2014-02-18 2014-06-11 惠州市华阳多媒体电子有限公司 一种振动马达
CN105207442A (zh) * 2015-09-23 2015-12-30 歌尔声学股份有限公司 线性振动马达
CN205092752U (zh) * 2015-09-23 2016-03-16 歌尔声学股份有限公司 线性振动马达
CN105281528A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达

Also Published As

Publication number Publication date
US20180351443A1 (en) 2018-12-06
US10784758B2 (en) 2020-09-22
CN105281528B (zh) 2018-07-27
CN105281528A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2017088367A1 (zh) 线性振动马达
WO2017088366A1 (zh) 线性振动马达
US10707737B2 (en) Linear vibration motor
US10658914B2 (en) Magnetically balancing guided linear vibration motor
JP7188851B2 (ja) 振動アクチュエータ、及びこれを備える携帯型電子機器
KR20120043909A (ko) 수평 진동 모터
WO2017088421A1 (zh) 线性振动马达
CN105281529B (zh) 线性振动马达
CN105703593B (zh) 线性振动马达
CN107147267B (zh) 线性振动马达
US10944313B2 (en) Self-adaptive control miniature motor
US10666121B2 (en) Linear vibration motor
US11133735B2 (en) Linear vibration motor
CN204967588U (zh) 线性振动马达
WO2022267307A1 (zh) 一种线性振动马达
CN107565791B (zh) 两级振动线性马达
WO2017049778A1 (zh) 线性振动马达
CN107070158B (zh) 线性振动马达
KR20120018405A (ko) 수평 선형 진동기
CN204947875U (zh) 线性振动马达
CN204967592U (zh) 线性振动马达
CN106911242B (zh) 线性振动马达
JP2017064581A (ja) リニア振動モータ
JP2022056733A (ja) 振動アクチュエーター及び電子機器
CN205509818U (zh) 线性振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867596

Country of ref document: EP

Kind code of ref document: A1