WO2021123349A1 - Procédé de fabrication de ciments sursulfatés - Google Patents

Procédé de fabrication de ciments sursulfatés Download PDF

Info

Publication number
WO2021123349A1
WO2021123349A1 PCT/EP2020/087276 EP2020087276W WO2021123349A1 WO 2021123349 A1 WO2021123349 A1 WO 2021123349A1 EP 2020087276 W EP2020087276 W EP 2020087276W WO 2021123349 A1 WO2021123349 A1 WO 2021123349A1
Authority
WO
WIPO (PCT)
Prior art keywords
components
cement
flash
calcio
sulfato
Prior art date
Application number
PCT/EP2020/087276
Other languages
English (en)
Inventor
Edouard Dumoulin
Original Assignee
Greenmade
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greenmade filed Critical Greenmade
Priority to US17/757,487 priority Critical patent/US20230019095A1/en
Priority to CA3161526A priority patent/CA3161526A1/fr
Priority to EP20833875.6A priority patent/EP4077234A1/fr
Priority to MX2022007325A priority patent/MX2022007325A/es
Publication of WO2021123349A1 publication Critical patent/WO2021123349A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/12Natural pozzuolanas; Natural pozzuolana cements; Artificial pozzuolanas or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/24Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
    • C04B18/28Mineralising; Compositions therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2015Sulfate resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of the cement industry, and more particularly to supersulfated cements, that is to say cements with a high sulfate content.
  • the invention relates in particular to a process for the manufacture of a supersulfated cement, the supersulfated cements obtained by said process, and their use for the preparation of materials of concrete, mortar or grout type and the admixture of cements with a view to improving of their performance.
  • Cement is a hydraulic binder that hardens under the action of water, used in the preparation of concrete and most mortars. It is a hydraulic powdery material, that is, a very fine and very reactive powder. When this powder is mixed with water, it forms a paste that hardens due to hydration reactions. After hardening, this mixture retains its strength and stability even under water.
  • the process for manufacturing a Portland type cement comprises the following steps: i. firing at high temperature (about 1450 ° C) in a rotary kiln, of a metered mixture of limestone (about 80% by weight) and clay (about 20% by weight), which gives what is called cement clinker; and ii. the co-grinding of the cement clinker obtained with gypsum to obtain a very fine and very reactive powder.
  • a supersulphated cement is a cement consisting mainly (standard NF EN 15743) of blast furnace slag (S) and calcium sulphates (Cs).
  • S blast furnace slag
  • Cs calcium sulphates
  • the mass proportion of the slag (S) is at least 75%
  • the mass proportion of calcium sulphates (Cs) is between 5% and
  • the clinker (K) is present in a mass proportion varying from 0% to 5%.
  • Other secondary constituents (A) may be present, in a mass proportion varying from 0% to 5%, and finally additives can be added in a mass proportion of less than 1%.
  • WO2015104466A1 a process for preparing such a cement, based on clinker or lime, calcium sulfate in the form of soluble anhydrite, and components pozzolanic and hydraulic. This process comprises the following steps: i. heat treatment of a powder mixture comprising cement or cement clinker or lime, and calcium sulfate, at a temperature between
  • the invention relates to a process for manufacturing supersulfated cement, in which pozzolanic and hydraulic aluminosilicate components are mixed with a calcio-sulfato-alkaline activation complex ((Cs) + (K) + (A) )), in which said calcio-sulfato-alkaline activation complex is produced by carrying out the following successive steps:
  • thermodynamic activation step by hot quenching of said calcio-sulfato-alkaline activation complex; then ⁇ a third step of cold quenching by rapid mixing of the activated calcio-sulfato-alkaline activation complex with the pozzolanic aluminosilicate components. and hydraulic.
  • the so-called calcio-sulfato-alkaline activation complex thus produced makes it possible to increase the formation of the stable primary ettringite, and to increase the kinetics of formation of CSH hydrates (hydrated calcium silicate) during its hydration in the presence of pozzolanic aluminosilicate components. and hydraulics
  • the flash thermodynamic treatment applied concomitantly to the premixed activation components (Cs) + (K) + (A) improves their solubility and their hydraulic and chemical reactivity upon hydration in the presence of the aluminosilicate components.
  • the third step 3 all the components are mixed (pozzolanic and hydraulic aluminosilicates has a calcio-sulfato-alkali activating complex), the crystalline structure of the composite product is fixed and stabilized, and the metastability of the product is reduced to open air.
  • the particle size of the pulverulent composition is between 5 microns and 100 microns and a specific surface area greater than 12 m 2 / g.
  • the hydraulic reactivity of the activation complex is very efficient and makes it possible to eliminate, if necessary, the clinker or the Portland cement in the manufacture of the supersulfated cement resulting from the process according to the invention. Moreover, the mechanical performance of the supersulfated cement thus obtained is better compared to the state of the art by 15% to 25%, in particular from the first hours of setting.
  • the energy consumption has been reduced by 50% compared to a supersulfated cement of the prior art, by the reduction of the calcination temperatures, by the partial recycling of the hot calcination air, and by the heating of the fresh air in a heat exchanger recovering the thermal effluents from the extracted air.
  • the process may also include one or more of the following characteristics, taken alone or in combination: calcium sulfate is a composition comprising by mass from 5% to 10% soluble anhydrite II, 70% to 80% alpha anhydrite III, and 15% to 30% of alpha hemihydrate produced in superheated rennet vapor;
  • the alkaline components are chosen alone or in combination from the following components: synthetic or natural pozzolanic and hydraulic components, an amorphous calcium aluminate, hydraulic lime, aerial lime, quicklime, basic components;
  • the pozzolanic and hydraulic aluminosilicate component comprises at least 75% by mass of natural pozzolanic components (in particular of volcanic origin) or synthetic (in particular of blast furnace origin); the pozzolanic and hydraulic aluminosilicate components comprise a granulated blast furnace slag (but not exclusively);
  • the second step of activating said calcio-sulfato-alkaline activation complex comprises a transformation and activation of calcium sulfate by a flash thermodynamic process
  • the flash thermodynamic process is suitable for homogenizing, micronizing, thermally shocking said calcium sulfate, and transforming it into phases with high hydraulic reactivities, such as composite phases II anhydrites, III beta anhydrite, and alpha hemihydrate (processed phase under superheated steam under controlled atmospheric pressure) associated concentrically within the same particles.
  • ⁇ micronization is an autogenous kinetic micronization obtained by mechanosynthesis of particles within the flash thermodynamic process; the components of the calcio-sulfato-alkaline activation complex have a temperature of between 150 ° C and 300 ° C at the outlet of the flash thermodynamic process;
  • the flash thermodynamic process comprises a thermal shock step carried out inside a hot fluid of superheated vapor;
  • ⁇ the transformation of calcium sulphate is a transformation in complex phases carried out by a flash thermodynamic reactor device comprising a toroidal duct with variable sections and an electronic control unit;
  • the electronic management unit is able to control the parameters of the thermal activation step
  • a step of almost instantaneous dehydration of the components of the calcio-sulphate-alkaline activation complex is carried out by direct contact and by entrainment by a gaseous fluid loaded with superheated vapor in the toroidal duct placed in depression at the outlet and subjected to the inlet at a pressure between 50 mbar and 200 mbar, at a temperature set between 250 ° C and 450 ° C, generating a flow of the gaseous fluid entering at a speed between 15 m / s and 25 m / s;
  • this step makes it possible to increase by 50% the reactivities and the mechanical performances at the young age and in the long term of the cement (compressive strengths which can rise to 25 MPa at 48 hours and 70 MPa at 28 days) compared to the conventional processes of calcination not exceeding 12 MPa at 48 hours and 49 MPa at 28 days; it concomitantly allows an autogenous micronization of very high Blaine fineness greater than 12 m 2 /
  • the hot fluid charged with superheated vapor is partially recycled and mixed with the fresh air in an electro-regulated mixing chamber; thus, the energy consumption is reduced by recycling the hot air, allowing a significant improvement in the heat balance, of the heat transfer of the hot fluid laden with superheated vapor in contact with the particles of the activation complex.
  • Their dehydration is accelerated and an intensification of their hydraulic reactivity is thus obtained;
  • the fresh air is heated by the hot fluid extracted in an air / air heat exchanger;
  • the fluid charged with vapor is heated by an automated burner (gas, coal, fuel oil) and mixed in a combustion chamber before being injected into the thermodynamic flash reactor via a battery of injectors;
  • the recycling hot air at the outlet of the flash thermodynamic process considerably reduces the consumption of the burner, which regulates the injection temperature of the hot fluid, by up to 40%;
  • the speed of the hot gaseous fluid is between 30 m / s and 40 m / s, the temperature is between 180 ° C and 300 ° C;
  • the third cold quenching step is carried out so as to cool the calcio-sulfato-alkaline activation complex to a temperature between 30 ° C and 50 ° C in less than one minute;
  • the third cold quenching step is carried out by rapid mixing of the activated calcio-sulfato-alkali activation complex at the outlet of the flash thermodynamic process with powdered aluminosilicate components at 30 ° C +/- 15 ° C in a continuous mixer;
  • the third cold quenching step is carried out by rapidly mixing the calcio-sulphate-alkaline activation complex at the flash outlet with the pozzolanic aluminosilicate components, for example ground steel slag, at room temperature (but not exclusively).
  • the invention also relates to a supersulfated cement obtained by the process according to the invention.
  • the invention also relates to uses of a cement according to the invention for its implementation:
  • to improve the performance of cements, concretes, technical mortars, slag cements, aluminous cements, sulfo-aluminous cements and geotechnical or road binders, plasters, hydraulic or aerial lime; or for the manufacture of sand concrete based on aggregates of round eolian sands, or sand of dunes, eolian sands or ordinary sand; or ⁇ for the manufacture of lightweight aggregates, thermal and acoustic insulation based on plant waste or wood or crushed straw or other low density waste, by mineralization of these components by means of a coating by rapid-setting grout based on said cement; or for the manufacture of thermally activated concrete; or
  • for the manufacture of plaster components of very high shore hardness implemented by molding, casting, injection, spraying, lamination; or ⁇ for the encapsulation of hazardous industrial waste by coating these components in a stable and non-leachable mineral matrix; or for the production of prefabricated composite elements based on wood and concrete, elements such as panels, sandwich panels, insulating panels, acoustic panels, slabs, pre-slabs, walls.
  • Figure 1 is a schematic view of an installation for implementing the process for manufacturing supersulphated cement of the invention.
  • FIG. 2 is a graph which makes it possible to compare the increase in resistance as a function of the number of days of hydration of the supersulphated cements in the state of the art in red on the one hand, with CSS object of the present invention on the other hand.
  • FIG. 3 makes it possible to compare the C02 emissions of different types of cement according to the manufacturing process, in particular the CSS which is the subject of the present invention, the emission level of which is represented by the CSS bar on the abscissa.
  • the invention relates to a process for the manufacture of supersulphated cement in which are mixed pozzolanic and hydraulic aluminosilicate components and a calcio-sulphate-alkali (Cs) + (K) + (A) activation complex.
  • the supersulfated cement thus obtained comprises a mixture of 30%, preferably between 5 and 20%, by mass at most of the calcio-sulfato-alkali activation complex, and at least 75% by mass of pozzolanic and hydraulic aluminosilicate components (S ).
  • the pozzolanic and hydraulic aluminosilicate components (in particular of blast furnace origin) or natural (in particular of volcanic origin) have a high pozzolanicity index (according to a Chapel test). and a high hydraulic activity in the presence of the activation complex Calcio Sulfato Alcalin
  • the pozzolanic and hydraulic aluminosilicate components comprise a granulated blast furnace slag, but not exclusively.
  • the calcio-sulphate-alkaline activation complex is prepared by carrying out the following successive steps: a first step of mixing 70% by mass of calcium sulphate and
  • thermodynamic activation by hot quenching (toroid flash process) of said calcio-sulfato-alkali activation complex
  • ⁇ a third cold quenching step by rapidly mixing the activated calcio-sulfato-alkali activating complex with the pozzolanic aluminosilicate components.
  • the calcio-sulfato-alkaline activation complex comprises activators acting as alkaline catalysts which trigger a “hydroxylic” attack, which increases the reactions of dissolution, precipitation and crystallization of the glassy components Si02 of pozzolanic and hydraulic aluminosilicates and calcium components CaO and, not entering into the structure of hydrates.
  • These reactions in an alkaline medium intensify the solubility of the siliceous and calcareous components.
  • the formation of hydrates is only possible in a high basic environment which prevents the formation of an alumina gel blocking the further hydration in CSH (hydrated calcium silicate) of the aluminosilicate components.
  • the SLO2 and AI3O2 tetrahedra which make up the glassy phases of the pozzolanic material are separated and release SiO (OH) 3 and Al (OH) ions by intensifying the density of the HSCs. 2.
  • the activation complex also comprises reagents, mainly sulphate, aluminous and calcium components which are factors of increase of the multiple chemical reactions of dissolution, precipitation, substitution, crystallization of the calcic and aluminous elements, which lead to the formation of hydrates and in particular stable primary ettringite.
  • the thermodynamically activated calcium sulfate in the flash thermodynamic process according to the invention (step 2) is 50% more soluble and more reactive than the calcium sulfate dihydrate or hemihydrate or anhydrite.
  • the calcio-sulfato-alkaline activation complex is composed according to the present invention of: 70% of calcium sulfate, natural or synthetic, comprising by mass of
  • alkaline components sodium carbonate, sodium silicate, sodium hydroxide, sodium sulphate, lime, portland cement or sulphoaluminous cement, aluminous cement, .
  • the calcio-sulfato-alkaline activation complex is composed of calcium sulfate (Cs), secondary activating constituents (A), additives (regulating agents for setting, rheology and alkaline pH), and optionally of clinker (K) or cement, but preferably without clinker (K) or cement.
  • the alkaline components are chosen alone or in combination from the following components: synthetic or natural pozzolanic components (such as conventional cements or aluminous cements or sulfo-aluminous cements), an amorphous calcium aluminate, hydraulic lime, aerial lime , quicklime, basic components (such as sodium carbonate or calcium silicate or potassium hydroxide, or lithium carbonate).
  • the components are dosed beforehand and mixed with the calcium sulfate component (Cs) before their flash thermodynamic treatment (second step).
  • the components of the activation complex are perfectly mixed and homogenized before their flash thermodynamic treatment (second step).
  • This improved chemical composition allows to increase the formation of the stable primary ettringite, and to increase the kinetics of formation of CSH hydrates.
  • composition of the mixture of pozzolanic and hydraulic aluminosilicate components (S) and of the calciosulfato-alkali activation complex is described in detail below.
  • the pozzolanic and hydraulic aluminosilicate components are a ground blast furnace slag (LHF) dosed at a minimum of 75% by mass.
  • the pozzolanic and hydraulic aluminosilicate components are aluminosilicate components with high pozzolanicity and hydraulicity of natural or synthetic origins, in particular chosen alone or in combination, from the following products: converter steelworks slags, silico slags -manganese, calcined clays, natural pozzolans, volcanic tuffs, metakaolins but not exclusively.
  • the improvement in the chemical and hydraulic reactivities induced by the alkaline calciosulphatic chemical activation complex ((Cs) + (K) + (A)) makes it possible to resort to a greater choice, compared to cements known from the prior art, synthetic or natural alumino-silicate pozzolanic components as a substitute for ground slag, and to integrate them into the composition of new supersulphated cements in accordance with the standards in force.
  • These components with high latent hydraulicity also exhibit high pozzolanicity indices or Chapel activity index [NF P 18-513].
  • These substitute components are two-thirds by mass of the sum of calcium oxide (CaO), magnesium oxide (MgO) and silicon dioxide (SiC> 2).
  • the rest contains aluminum oxide (AI2O3) and small amounts of other ingredients.
  • the mass ratio (CaO + Mg0) / (Si0 2 ) exceeds 1.
  • the choice of substitution of the aluminosilicate components does not affect the performance of the supersulfated cements as required by standard 15743.
  • the pozzolanic and hydraulic aluminosilicate components are chosen alone or in combination from the following components: natural pozzolans, volcanic tuffs, blast furnace slags (S) mixed with steel converter slag (LAC) , calcined clays, calcined red mud, silico-aluminous ashes, ashes from paper mills, fly ash, metakaolins, calcined shales, calcined red mud, sediments and all mixtures of said components.
  • this component is a ground cement or clinker or preferably a CEM.I cement.
  • Portland clinker is made by sintering a precise mixture containing elements, usually in the form of oxides, CaO, SiO2, Al2O3, Fe203 and small amounts of other materials.
  • Portland clinker is a hydraulic material which must contain at least two thirds by mass of calcium silicates (3Ca0.Si02 and 2Ca0.Si02), the remainder consisting of clinker phases containing aluminum, iron and others. components.
  • the (Ca0) / (SiO2) ratio is not less than 2.0.
  • the content of magnesium oxide (MgO) does not exceed 5.0% in mass. It is important to reduce or preferably eliminate the cement or ground clinker in order to reduce the environmental impact of the supersulfated cement.
  • the calcio-sulfato-alkaline activation complex (Cs + K + A) does not contain a component K.
  • this component is a secondary component comprising calcium hydroxide, resulting from industrial processes, specially chosen mineral components, of natural origin and or derived from specified industrial processes.
  • the source of calcium hydroxide is slaked lime, aerial lime, hydraulic lime, or quicklime, or is selected from commercial lime.
  • This component can also be chosen from: components with high pozzolanic reactivity such as flashed metakaolin, non-crystallized amorphous calcium aluminate (ACA), strong base components such as sodium carbonate, or sodium silicate or potassium hydroxide, either of non-crystallized lithium carbonate, or an aluminous cement, or a sulpho-aluminous cement or a mixture of said components.
  • components with high pozzolanic reactivity such as flashed metakaolin, non-crystallized amorphous calcium aluminate (ACA), strong base components such as sodium carbonate, or sodium silicate or potassium hydroxide, either of non-crystallized lithium carbonate, or an aluminous cement, or a sulpho-aluminous cement or a mixture of said components.
  • ACA non-crystallized amorphous calcium aluminate
  • strong base components such as sodium carbonate, or sodium silicate or potassium hydroxide, either of non-crystallized lithium carbonate
  • the additives of the calcio-sulfato-alkaline activation complex can be chosen from the following additives:
  • Cs + K + A Additions to the calcio-sulfato-alkaline activation complex (Cs + K + A)
  • Cs + K + A These additions can be mineral fillers with particle sizes of less than 100 microns, preferably less than 50 microns of the type: aluminosilicates, siliceous, silica. limestones, calcium carbonates, natural or synthetic pozzolans, smoke silicas, fly ash, zeolites, diatoms, magnesium, etc.
  • the additions are factors in the reduction of the water to binder W / L ratio. They significantly improve (from 5% to 15%) the mechanical performance of concretes produced with supersulphated cements.
  • the second stage of activation of the calcio-sulfato-alkaline activation complex involves transformation and activation of calcium sulfate by a flash thermodynamic process.
  • the activation complex is thermodynamically activated by a flash thermodynamic process at a temperature between 250 ° C and 450 ° C to form a pulverulent composite comprising less than 15% of soluble anhydrite II phases CaSC> 4.0H 2 0 and at least 85% Soluble Alpha Anhydrite III CaSC> 4 zero H20.
  • the activation complex is calcined in contact with a hot fluid of superheated steam resulting on the one hand from the dehydration of the gypsum and on the other hand from the partial recycling of this hot fluid.
  • ALPHA SIGMA phases thus obtained are specific to the process according to the invention and are perfectly identifiable by means such as SEM microscopes, DRX diffractometers and by ATD / TG thermal analyzes.
  • the flash thermodynamic process of the process according to the invention is suitable for homogenizing, micronizing, thermally shocking said calcium sulfate, and transforming it into phases with high hydraulic reactivities such as composite anhydrite II, anhydrite III beta, and hemihydrate phases. beta.
  • Micronization is a kinetic autogenous micronization obtained by mechanosynthesis of particles, inside an asymmetric toroidal duct with variable section.
  • the flash thermodynamic process of the process according to the invention comprises a thermal shock step carried out inside a hot fluid of superheated vapor.
  • the transformation of calcium sulphate is a transformation in complex phases carried out by a thermodynamic flash reactor device comprising a toroidal duct and an electronic control unit.
  • the electronic management unit is able to control all the parameters of the thermal activation process, namely: an inlet temperature and an outlet temperature of the flash thermodynamic reactor device, a cold quenching temperature, a dosage of the different components of said supersulfated cement, atmospheric pressures upstream and downstream of the flash thermodynamic reactor, hot fluid speeds upstream and downstream of the flash thermodynamic reactor, air flow rates at the outlet of the flash thermodynamic reactor.
  • a step of almost instantaneous dehydration of the components of the calcio-sulphate-alkaline activation complex is carried out by direct contact and by entrainment by a gaseous fluid loaded with superheated vapor in the pipe. toroidal placed in depression at the outlet and subjected at the inlet to a pressure between 50 mbar and 200 mbar, at a temperature set between 250 ° C and 450 ° C, generating a flow of the gaseous fluid entering at a speed of between 15 m / s and 25 m / s.
  • the hot fluid charged with superheated steam is partially recycled and mixed with the fresh air in a mixing chamber, in particular electro-regulated.
  • the fresh air is heated by the hot fluid extracted in an air / air heat exchanger.
  • the vapor-laden fluid is heated by an automated burner (gas, coal, fuel) and mixed in a combustion chamber before being injected into the thermodynamic flash reactor via a battery of injectors.
  • the speed of the hot gaseous fluid is between 30 m / s and 40 m / s, the temperature is between 180 ° C and 300 ° C.
  • the calcio-sulfato-alkaline activation complex (Cs + K + A) is treated after mixing by an improved flash thermodynamic process.
  • This process has the following characteristics:
  • ⁇ It includes a step of almost instantaneous dehydration of the pulverulent or granular components by direct contact and entrainment by a hot gaseous fluid loaded with superheated vapor in a flash having a toroidal duct placed in depression downstream and subjected to a pressure at the inlet included between 50 mbar and 200 mbar upstream;
  • the hot gaseous fluid at the flash inlet is at a temperature set between 250 ° C and 450 ° C
  • the speed of the hot gaseous fluid at the flash inlet is between 15 m / s and 25 m / s;
  • the speed of the hot gaseous fluid leaving the flash is between 30 m / s and 40 m / s; the pulverulent or granular components undergo autogenous micronization within the toroidal duct of the flash;
  • the temperature of the air leaving the flash is between 180 ° C and 300 ° C; the components of the calcio-sulfato-alkaline activation complex have a temperature of between 100 ° C and 200 ° C at the outlet of the flash thermodynamic process;
  • the pulverulent composition at the flash outlet has a particle size of between 5 microns and 100 microns and a Blaine specific surface area greater than 12 m 2 / gram;
  • the pulverulent composition comprises a rapid cooling step either by contact with cold pulverulent components or by contact in a thin-film heat exchanger;
  • FIG. 1 represents a schematic view of an installation making it possible to implement the process for manufacturing supersulfated cement that is the subject of the invention.
  • the upstream mixer making it possible to combine the components of the activation complex is not shown.
  • the references in Figure 1 are as follows:
  • Hot air recycling circuit loaded with superheated steam 15 Automated fuel or gas or coal burner and combustion chamber
  • Extract air 100 device for manufacturing CSS according to the invention
  • the calcium sulphate is injected in the form of hemihydrate or dihydrate, pulverulent or granular, into a flow of hot turbulent air saturated with water vapor, and having a temperature between 200 ° C and 500 ° C. and a speed ranging from 5 m / s to 40 m / s.
  • the hot air flow is made up on the part of: a hot air flow charged with superheated steam from the recycling of the hot fluid at the flash outlet and on the other hand, a hot air flow previously heated on contact air at the flash outlet in an energy recovery exchanger, said reheated air at the outlet of the exchanger is heated to a temperature of 200 ° C to 500 ° C in a combustion chamber equipped with an automated burner.
  • the mixture of hot air streams is injected into the flash calciner via a battery of injectors.
  • This step is immediately followed by a step consisting in separating from the hot fluid at the flash outlet in a filter or a cyclone, the particles of the sulphate complex thus produced.
  • the aluminosilicate components with high pozzolanicity undergo grinding by a vertical mill or by a ball mill, have a Blaine specific surface area of 3800 cm 2 / g to 6000 cm 2 / g and a fineness of grinding less than 100 microns.
  • the cement thus produced has a surface specific Blaine ranging from 3800 cm 2 / g to 6000 cm 2 / g, and a fineness of grind less than 100 microns.
  • the third cold quench step is performed to cool the calcio-sulfato-alkali activation complex to a temperature between 30 ° C and 50 ° C in less than one minute.
  • This cold quenching step is carried out by rapidly mixing the activated calcio-sulfato-alkali activating complex at the outlet of the flash thermodynamic process with powdered aluminosilicate components at 30 ° C +/- 15 ° C in a continuous paddle mixer.
  • This cold quenching step is carried out by rapidly mixing the calcio-sulfato-alkali activation complex at the outlet of the flash thermodynamic process with the pozzolanic aluminosilicate components, for example ground steel slag, at room temperature. Cold quenching can also be done using an indirect tube cooler.
  • the invention also relates to a supersulfated cement obtained by the process according to the invention. .
  • the stability and durability of this supersulfated cement have been studied.
  • XRD X-ray diffraction
  • SEM electron microscopic examination
  • the reaction progress is optimal depending on the total consumption of calcium sulfate and that of calcium.
  • reaction of aluminosilicate when properly activated, lasts until all of the potential reagents, in particular gypsum and portlandite, are consumed.
  • the cement according to the invention exhibits slowed air rehydration kinetics, which gives the cement a storage stability in air four times longer than that of conventional cements.
  • the energy consumption for manufacturing cement is reduced by 35% to 45% compared to the manufacture of a supersulfated cement according to the process described in document WO2015104466A1.
  • This is possible thanks to the acceleration of the flash thermodynamic exchanges of activation of the components (Cs) + (K) + (A), thanks on the one hand to the recovery of the thermal effluents resulting from the process, and on the other hand, by recycling the hot fluid loaded with superheated steam resulting from the dehydration of calcium sulphate.
  • an energy balance (mechanical energy and thermal energy) is observed during the manufacture of the cement which is the subject of the present invention, less than 110 MJ / tonne of cement, ie 10 times less than that of conventional cements.
  • Figure 3 makes it possible to compare the emissions (EmC02) of CC> 2 per tonne of cement, for different types of cement, having different manufacturing processes, in particular the supersulfated cement (CSS) object of the present invention, the emission level of which is represented by the CSS bar on the abscissa.
  • the environmental balance (CO2 energy + CC> 2 material) of the cement object of the present invention does not exceed 60 kg of CO2, ie 12 times less than conventional cements.
  • Figure 2 shows the performance tests of over-sulphated cements carried out on mortars according to Standard NF EN 196-1. This figure makes it possible to compare the increase in resistance (R) as a function of the number of days (E) of hydration, for supersulfated cements of the state of the art (curve 1) on the one hand, and for cements according to the invention, resulting from the method according to the invention on the other hand (curve 2).
  • Fluidizers, plasticizers or superplasticizers capable of allowing a significant reduction in water, with a constant workability window, and whose action, by reducing the porosity, very appreciably increases the mechanical performance of the final cementitious composition.
  • fluidifying, plasticizing or superplasticizing agents water reducing agents
  • the adjuvants which may enter into the final formulation of the cementitious composition according to the invention can be chosen from the adjuvants described in standard NF EN 934-2. It should also be specified that the increased mechanical strengths conferred from a young age (4 hours after hydration) by the hydraulic cements which are the subject of the invention are not obtained to the detriment of the workability window (or practical duration of use) of the formulated cementitious compositions, which workability is satisfactory and is ensured over at least 30 minutes, advantageously over a period of between 45 min and 90 min, at a temperature of between 5 ° C and 30 ° C.
  • workability window according to the present invention, we mean the time during which the sag of the formulated cementitious composition, evaluated according to standard EN 12350-2, remains greater than or equal to 10 mm.
  • the invention also relates to uses of the supersulphated cement obtained by the process according to the invention.
  • the cement according to the invention is used in a process for the production of cast or molded cellular concrete cured at atmospheric pressure.
  • the method comprises a step of mixing the cement according to the invention, the mixing water, at least one surfactant, at least one fluidizing agent, and optionally at least one foaming agent.
  • a low-density concrete is produced between 300 kg / m 3 and 1000 kg / m 3 offering a mechanical resistance which can reach 9 MPa, and a very low thermal conductivity of between 0.025 W / mK and 0.7 W / mK, preferably a thermal conductivity of less than 0.5 W / mK.
  • the cement of the present invention is used to prepare materials of low density of the light concrete type, cellular concretes hardened at atmospheric pressure (called cellular concretes outside autoclaves or foamed concretes), of fire-resistant materials.
  • a cellular concrete (hardened at atmospheric pressure) is prepared from the hydraulic cement according to the present invention, by a process comprising the following steps: a) mixing a cement in accordance with present invention with at least one surfactant and at least one thinning agent; b) add the mixing water; c) kneading the mixture obtained in step (b) to produce an inorganic foam in which air bubbles are trapped; d) pouring the mineral foam thus obtained, in particular in a mold, and allow it to harden.
  • this process for manufacturing cellular concretes hardened at atmospheric pressure further comprises prior to mixing step (c), a step (b ') consisting in adding to the mixture obtained in step (b) one or more foaming agents or a foam produced separately from one or more foaming agents and water, which foam can be prepared by any means for generating foam, known to those skilled in the art, for example by a generator of foam. foam with compressed air or by mechanical mixer.
  • the foaming agent (s) are dosed at a rate of 1 liter to 1.5 liters per 2000 liters of water to make a foam with an apparent density of 20 kg / m 3 to 30 kg / m 3 .
  • the dosage of foam to be incorporated into the mixture obtained in step (b) is variable from 400 l / m 3 to 800 l / m 3 depending on the density of the desired concrete.
  • the foaming agents suitable for the implementation of this process are well known to those skilled in the art. We cite in particular those proposed by the company PROVOTON® under the name Provoton® and the company DR LUCAS & PARTNER® GmBH under the name Lithofoam®.
  • the water / hydraulic cement weight ratio is between 0.2 and 0.4, preferably between 0.25 and 0.35.
  • the amount of surfactant (s) used in step (b) is preferably between 0.01% and 0.5% w / w hydraulic cement, preferably 0.05% and 0.1% w / p hydraulic cement
  • the cement according to the invention is used in a process for producing an elaborate normal or rapid hardening road hydraulic binder (LHR).
  • LHR road hydraulic binder
  • the hydraulic road binder comprises 50% minimum of supersulfated cement object of the present invention, and 40% minimum of a converter steelworks slag (LAC).
  • LAC converter steelworks slag
  • the cement according to the invention is used in a process for the production of a calcio-sulphate-alkali activator to improve the performance of ordinary cements, concretes, technical mortars, slag cements, aluminous cements, sulphate cements. aluminous and geotechnical or road binders, plasters, hydraulic or aerial lime, but not exclusively. f) Production of wind-powered sand concrete
  • the cement according to the invention is used in a process for producing sand concrete based on aggregates of round eolian sands, or dune sands, eolian sands or ordinary sand.
  • the binders resulting from the process according to the invention have a hydraulic activation behavior in contact with the siliceous component aggregates of wind sands.
  • the Mineral matrices thus formed are composed of round grains of sand whose surface is attacked by calciosulphatic and alkaline activators.
  • the CSH gel perfectly coats the siliceous components, which is a factor of high resistance equivalent to that obtained with compositions of concrete, sand and quarry gravel.
  • the spherical appearance of wind power aggregates is a factor in fluid rheology and in reducing mixing water.
  • a sand concrete is produced by mixing a cement according to the invention at 350 kg / m 3 with a wind-powered sand 0/2 mm 1950 Kg / m 3 .
  • the aeolian sand is replaced by ground pozzolana sand with:
  • the cement according to the invention is used in a process for manufacturing lightweight aggregates, thermal and acoustic insulators based on plant waste or wood or crushed straw or other low density waste, by mineralization of these components by means of a coating by rapid-setting grout based on said cement.
  • a coating of plant aggregates is carried out with a cement slurry according to the invention.
  • These vegetable aggregates based on flax shives, hemp hemp or crushed wood are of major interest for the composition of lightweight concrete with a density varying from 350 kg / m 3 to 600 kg / m 3 .
  • the cut plant components have a length between 10 mm and 20 mm, preferably 15 mm.
  • the method comprises the following steps:
  • ⁇ phase B injection of the grout into a high-speed mixer with double-shaft shoes supplied in the upper part with plant aggregates; Mixing time 2 to 4 minutes; At the outlet of the mixer, the plant aggregates are perfectly impregnated and mineralized; the adhesion of the mineralization on the plant aggregate is complete and its thickness is from 150 microns to 300 microns These aggregates at the outlet of the mixer are then discharged onto a fluidized bed conveyor in stainless steel mesh through which a hot fluid between 45 ° C passes. at 65 ° C for 3 to 6 minutes; the grout setting time is adjusted between 5 to 8 minutes depending on the desired production rate. h) Waste recovery compositions
  • polyurethane waste or plastic waste or plant waste or wood waste is used.
  • compositions At least one of the following compositions is made:
  • Such concretes can comprise calibrated aggregates, hydraulic fillers of limestone or siliceous type and alkaline agents of sodium carbonate or calcium silicates type. j) Production of plaster components of very high shore hardness
  • the cement resulting from the process according to the invention can be used for the manufacture of plaster components of very high shore hardness implemented by molding, casting, injection, spraying, lamination. k) Encapsulation of hazardous industrial waste
  • the cement resulting from the process according to the invention can be used for the encapsulation of hazardous industrial waste (chemical, pharmaceutical or radioactive), by coating these components in a stable and non-leachable mineral matrix.
  • the cement resulting from the process according to the invention can be used for the production of prefabricated composite elements based on wood and concrete, elements such as panels, sandwich panels, insulating panels, acoustic panels, slabs, pre-slabs, walls, but not exclusively.
  • the activation process according to the present invention induces multiple transformations on the components of the activation complex and thus considerably increases their reactivity:
  • compositions thus obtained lead to: o up to 8% of “alpha sigma” hemihydrate phases arranged at the periphery of the particles, o up to 92% of Anhydrite III phases arranged in the center of the particles o very few Anhydrite II phases.
  • the sources of raw materials making it possible to obtain said calcium sulfate phases are indifferently natural or synthetic gypsum dihydrates as well as hemihydrate plasters.
  • the solubility of the hemihydrate is, at 20 ° C, 9 gl -1 , that of gypsum is 2 gl -1 , while that of the composite calcium sulfate object of the present invention is greater than 15 gl 1 .
  • This very high solubility index is the main factor allowing intense activation of the aluminosilicate components which induce the early formation of primary ettringite and that of CSH (hydrated calcium silicates).
  • One of the characteristics of the present calcium sulphate composite is its high stability in air due to its microencapsulation by stable hydrated phases which ultimately increase the kinetics of hydration and chemical reactivities in an aqueous medium.
  • the intrinsic performances of this calcium sulphate composite are characterized by very high mechanical performances: RC at 12 hours greater than 30 MPa and RC at 7 days greater than 40 MPa.
  • the flash thermodynamic treatment used by the method according to the invention causes the following parameters which are programmed and controlled by the computerized management to interact: the hot quenching and cold quenching temperatures; the circulation speeds and volumetric flow rates of the hot fluid; atmospheric pressures upstream and downstream of the flash; - component feed rates; the initial humidity of the components.
  • These physicochemical modifications induce high performance during their hydration in the presence of aluminosilicate components (pozzolanic components)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

L'invention concerne un procédé de fabrication de ciment sursulfaté, dans lequel on mélange des composants aluminosilicates pouzzolaniques et hydrauliques et un complexe d'activation calcio-sulfato-alcalin, caractérisé en ce que ledit complexe d'activation calcio-sulfato-alcalin est élaboré en réalisant les étapes successives suivantes : ⁻ une première étape de mélange de 70% en masse de sulfate de calcium et 30% en masse de composants alcalins; puis ⁻ une deuxième étape d'activation thermodynamique par trempe chaude dudit complexe d'activation calcio-sulfato-alcalin; puis ⁻ une troisième étape de trempe froide par mélange rapide du complexe d'activation calcio-sulfato-alcalin activé avec les composants aluminosilicates pouzzolaniques.

Description

Description
Titre de l’invention : Procédé de fabrication de ciments sursulfatés L’invention concerne le domaine technique de l’industrie cimentaire, et plus particulièrement les ciments sursulfatés, c’est-à-dire les ciments à haute teneur en sulfates. L’invention concerne notamment un procédé de fabrication d’un ciment sursulfaté, les ciments sursulfatés obtenus par ledit procédé, et leur utilisation pour la préparation de matériaux de type béton, mortier ou coulis et l’adjuvantation des ciments en vue de l’amélioration de leurs performances.
Un ciment est un liant hydraulique qui durcit sous l'action de l'eau, utilisé dans la préparation du béton et de la plupart des mortiers. Il s’agit d’un matériau pulvérulent hydraulique, c’est-à-dire une poudre très fine et très réactive. Lorsque cette poudre est mélangée avec de l’eau, elle forme une pâte qui durcit suite à des réactions d’hydratation. Après durcissement, ce mélange conserve sa résistance et sa stabilité même sous l’eau.
Les ciments sont actuellement classés en fonction de leur teneur en clinker et d'autres composants (chaux, fumées de silice, pouzzolane, laitier de hauts fourneaux, etc.).
De façon classique, le procédé de fabrication d’un ciment du type Portland comprend les étapes suivantes : i. la cuisson à haute température (environ 1450°C) dans un four rotatif, d’un mélange dosé de calcaire (environ 80% en poids) et d’argile (environ 20% en poids), qui donne ce que l’on appelle le clinker de ciment ; et ii. le co-broyage du clinker de ciment obtenu avec du gypse afin d’obtenir une poudre très fine et très réactive.
Toutefois, l’étape (i) de cuisson conduisant au clinker de ciment, ingrédient clé du ciment, est très consommatrice d’énergie et fortement émettrice de CO2. En effet, au cours de cette étape de cuisson, le calcaire (CaCC>3) subit une décarbonatation en gaz carbonique (CO2) et en chaux libre (CaO) conformément à la réaction suivante : CaC03(s) ®· CaO (s) + C0 (g)
De manière générale, on considère que la production d’une tonne de clinker de ciment s’accompagne de la production d’environ 0,85 tonnes de CO2 provenant de la «décarbonatation» proprement dite pour 0,55 tonne, et de la dépense en énergie pour la cuisson et le broyage pour 0,3 tonne de CO2. On constate une augmentation constante de CO2 dans l’atmosphère qui a pour conséquence un réchauffement de la planète par effet de serre. On comprend donc aisément que ce soit un souci permanent des cimentiers d’essayer de réduire les émissions de CO2.
Pour pallier ce problème environnemental, il est connu d’utiliser des composants aluminosilicates tels que le laitier issu de hauts fourneaux et les cendres volantes, mais non exclusivement, pour réduire la proportion du clinker de ciment dans la fabrication du ciment. Cette technique offre l’avantage de permettre à la fois une réduction des émissions de CO2 par tonne de ciment produite et une diminution de la consommation de matières premières naturelles non renouvelables, comme le calcaire et ou l’argile. Toutefois, cette technique présente l’inconvénient majeur de conduire à l’obtention de ciments présentant des performances mécaniques médiocres aux jeunes âges, c’est à dire avant 7 jours, et un fort retrait de dessiccation imposant une cure préventive.
On connaît également l’utilisation de ciment sursulfaté Un ciment sursulfaté est un ciment constitué principalement (norme NF EN 15743) de laitier (S) de hauts fourneaux et des sulfates de calcium (Cs). La proportion massique du laitier (S) est au minimum de 75%, et la proportion massique des sulfates de calcium (Cs) est comprise entre 5% et
20%. Le clinker (K) est présent selon une proportion massique variant de 0% à 5%. D’autres constituants secondaire (A) peuvent être présents, dans une proportion massique variant de 0% à 5%, et enfin des additifs peuvent être ajoutés dans une proportion massique inférieure à 1%. On connaît dans l'état la technique, notamment d'après le document WO2015104466A1 , un procédé de préparation d’un tel ciment, à base de clinker ou de chaux, de sulfate de calcium sous la forme d’anhydrite soluble, et de composants pouzzolanique et hydrauliques. Ce procédé comprend les étapes suivantes : i. traitement thermique d’un mélange pulvérulent comprenant du ciment ou du clinker de ciment ou de la chaux, et du sulfate de calcium, à une température comprise entre
200°C et 800°C, pour former un produit composite pulvérulent comprenant du ciment ou du clinker de ciment ou de la chaux, associe au sulfate de calcium se trouvant sous forme d’anhydrite soluble ; et ii. refroidissement des particules dudit produit composite par mise en contact avec un composant pouzzolanique pulvérulent, de manière à ramener la température desdites particules a une température inférieure à 45 °C en un temps inférieur à deux minutes, et à obtenir ledit ciment hydraulique sous forme de poudre pulvérulente.
Un problème technique que cherche à résoudre l’invention est d’améliorer ce type de procédé :
- vis-à-vis des exigences mécaniques en termes de résistances à court terme à savoir obtenir des résistances accrues dès les premières heures de prise ; - vis-à-vis des exigences physiques en termes de temps de début de prise, de stabilité, et de chaleur d’hydratation ; vis-à-vis des exigences environnementales réduction de l’impact environnemental du procédé en baissant les besoins énergétiques de production et l’optimisation des composants du ciment (exigences en matière de perte au feu, de résidus insolubles, de teneur en sulfate, et de teneur en chlorures notamment).
A cet effet, l’invention a pour objet un procédé de fabrication de ciment sursulfaté, dans lequel on mélange des composants aluminosilicates pouzzolaniques et hydraulique avec un complexe d’activation calcio-sulfato-alcalin ((Cs) + (K) + (A)), dans lequel ledit complexe d’activation calcio-sulfato-alcalin est élaboré en réalisant les étapes successives suivantes :
~ une première étape de mélange de 70% en masse de sulfate de calcium et 30% en masse de composants alcalins ; puis
~ une deuxième étape d’activation thermodynamique par trempe chaude dudit complexe d’activation calcio-sulfato-alcalin ; puis ~ une troisième étape de trempe froide par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé avec les composants aluminosilicates pouzzolaniques. et hydrauliques .
Le dit complexe d’activation calcio-sulfato-alcalin ainsi élaboré permet d’accroitre la formation de l’ettringite primaire stable, et d’accroitre la cinétique de formation des hydrates CSH (silicate de calcium hydraté) lors de son hydratation en présence des composants aluminosilicates pouzzolaniques. et hydrauliques Le traitement thermodynamique flash appliqué concomitamment aux composants d’activation pré-mélangés (Cs)+(K)+(A) améliore leur solubilité et leur réactivité hydraulique et chimique lors de leur hydratation en présence des composants aluminosilicates.
Grâce à la troisième étape 3, on mélange tous les composants (aluminosilicates pouzzolaniques et hydrauliques a un complexe d’activation calcio-sulfato-alcalin), on fige et on stabilise la structure cristalline du produit composite, et on réduit la métastabilité du produit à l’air libre. La granulométrie de la composition pulvérulente est comprise entre 5 microns et 100 microns et une surface spécifique supérieure à 12 m2/g.
La réactivité hydraulique du complexe d’activation est très performante et permet de supprimer le cas échéant le clinker ou le ciment Portland dans la fabrication du ciment sursulfaté issu du procédé selon l’invention. Par ailleurs, les performances mécaniques du ciment sursulfaté ainsi obtenu sont meilleures par rapport à l’état de la technique de 15% à 25%, en particulier dès les premières heures de prise.
On constate également un allongement du délai de prise initiale. La fluidité des mortiers et bétons est améliorée en raison des morphologies cristallines de forme arrondies.
Enfin, la consommation énergétique a été réduite de 50% par rapport à un ciment sursulfaté de l’art antérieur, par la réduction des températures de calcination., par le recyclage partiel de l’air chaud de calcination, et par le réchauffement de l’air neuf dans un échangeur thermique récupérant les effluents thermiques sur l’air extrait.
Suivant d’autres caractéristiques optionnelles du procédé de fabrication de ciment sursulfaté prises seules ou en combinaison.
Le procédé peut en outre comporter l'une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison : le sulfate de calcium est une composition comportant en masse de 5% à 10% d’anhydrite II soluble, 70% à 80% de alpha anhydrite III, et 15% à 30% de alpha hémihydrate élaboré en vapeur surchauffée présurée ;
~ les composants alcalins sont choisis seuls ou en combinaison parmi les composants suivants : composants pouzzolaniques et hydrauliques synthétiques ou naturels, un aluminate de calcium amorphe, des chaux hydrauliques, des chaux aériennes, des chaux vives, des composants basiques ;
~ le composant aluminosilicate pouzzolanique et hydraulique comprend 75% en masse au minimum de composants pouzzolaniques naturels (notamment d’origine volcanique) ou synthétiques (notamment d’origine des hauts fourneaux) ; les composants aluminosilicates pouzzolaniques et hydrauliques comportent un laitier granulé de hauts fourneaux (mais non exclusivement) ;
~ on mélange au minimum 75% en masse de composants aluminosilicates pouzzolaniques et hydrauliques et 30% en masse maximum du complexe d’activation calcio-sulfato-alcalin ; la deuxième étape d’activation dudit complexe d’activation calcio-sulfato-alcalin comprend une transformation et activation du sulfate de calcium par un procédé thermodynamique flash ;
~ le procédé thermodynamique flash est apte à homogénéiser, à microniser, à choquer thermiquement ledit sulfate de calcium, et à le transformer en phases à hautes réactivités hydrauliques, telles que des phases composites anhydrites II, anhydrite III beta, et hémihydrate alpha ( phase élaborée sous vapeur surchauffée sous pression atmosphérique contrôlée) associées concentriquement au sein des mêmes particules.
~ la micronisation est une micronisation autogène cinétique obtenue par mécanosynthèse de particules au sein du procédé thermodynamique flash ; les composants du complexe d’activation calcio-sulfato-alcalin ont une température comprise entre 150°C et 300°C à la sortie du procédé thermodynamique flash ;
~ le procédé thermodynamique flash comporte une étape de choc thermique réalisé à l’intérieur d’un fluide chaud de vapeur surchauffée ;
~ la transformation du sulfate de calcium est une transformation en phases complexes réalisée par un dispositif de réacteur thermodynamique flash comprenant un conduit toroïdal à sections variables et une unité de gestion électronique ;
~ l’unité de gestion électronique est apte à contrôler les paramètres de l’étape d’activation thermique ;
~ on réalise une étape de déshydratation quasi instantanée des composants du complexe d’activation calcio-sulfato-alcalin par contact direct et par entrainement par un fluide gazeux chargé en vapeur surchauffée dans le conduit toroïdal placé en dépression en sortie et soumis à l’entrée à une pression comprise entre 50 mbar et 200 mbar, à une température réglée entre 250°C et 450°C, générant un flux du fluide gazeux entrant à une vitesse comprise entre 15 m/s et 25 m/s ; cette étape permet d’accroitre de 50% les réactivités et les performances mécaniques au jeune âge et à terme du ciment (résistances en compression pouvant s’élever à 25 MPa à 48 heures et 70 MPa à 28 jours) par rapport aux procédés conventionnels de calcination ne dépassant pas 12 MPa à 48 heures et 49 MPa à 28 jours ; elle permet concomitamment une micronisation autogène de très haute finesse de Blaine supérieure à 12 m2/g ;
~ le fluide chaud chargé en vapeur surchauffé est partiellement recyclé et mélangé avec l’air neuf dans un caisson de mélange électro-régulé ; ainsi, on réduit la consommation énergétique, en recyclant l’air chaud, permettant une amélioration significative du bilan thermique, du transfert thermique du fluide chaud chargé en vapeur surchauffée au contact des particules du complexe d’activation. On accélère leur déshydratation et on obtient ainsi une intensification de leur réactivité hydraulique ;
~ l’air neuf est réchauffé par le fluide chaud extrait dans un échangeur thermique air / air ; le fluide chargé en vapeur est chauffé par un brûleur automatisé (gaz, charbon, fuel) et mélangé dans une chambre de combustion avant d’être injecté dans le réacteur thermodynamique flash par l’intermédiaire d’une batterie d’injecteurs ; le recyclage de l’air chaud en sortie du procédé thermodynamique flash réduit considérablement jusqu'à 40% les consommations du bruleur qui régule la température d’injection du fluide chaud ;
~ à la sortie du réacteur thermodynamique flash, la vitesse du fluide gazeux chaud est comprise entre 30 m/s et 40 m/s, la température est comprise entre 180°C et 300°C ; ~ la troisième étape de trempe froide est réalisée de façon à refroidir le complexe d’activation calcio-sulfato-alcalin à une température comprise entre 30°C et 50°C en moins d’une minute ;
~ la troisième étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé en sortie du procédé thermodynamique flash avec des composants aluminosilicates pulvérulents à 30°C +/- 15°C dans un mélangeur en continu ;
~ la troisième étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin en sortie de flash avec les composants aluminosilicates pouzzolaniques, par exemple laitiers sidérurgiques moulus, à température ambiante (mais non exclusivement).
L’invention concerne également un ciment sursulfaté obtenu par le procédé selon l’invention.
L’invention concerne également des utilisations d'un ciment selon l’invention pour sa mise en oeuvre :
~ dans la production de béton à faible chaleur d’hydratation, à prise mer, résistants aux sulfates, résistants aux acides et la production des mortiers techniques ; ou ~ dans la production de béton cellulaire coulé ou moulé durci à pression atmosphérique, comprenant ledit ciment, de l'eau de gâchage, au moins un agent tensioactif, au moins un agent fluidifiant, et le cas échéant au moins un agent moussant ; ou
~ dans la composition d’un liant hydraulique routier (LHR) à durcissement normal ou rapide élaboré ; ou
~ dans la production d’un activateur calcio-sulfato-alcalin pour améliorer les performances de ciments des bétons et des mortiers ; ou
~ pour améliorer les performances des ciments, des bétons, des mortiers techniques, des ciments aux laitiers, des ciments alumineux, des ciments sulfo-alumineux et des liants géotechniques ou routiers, des plâtres, des chaux hydrauliques ou aériennes ; ou pour la fabrication de béton de sable à base de granulats de sables ronds éoliens, ou de sable de dune, de sables éoliens ou de sable ordinaire ; ou ~ pour la fabrication de granulats allégés, isolants thermiques et acoustiques à base de déchets végétaux ou bois ou pailles broyées ou autres déchets de basse densité, par minéralisation de ces composants au moyen d’un enrobage par coulis à prise rapide à base dudit ciment ; ou pour la fabrication de bétons thermiquement activés ; ou
~ pour la fabrication de composants plâtre de très haute dureté shore mis en oeuvre par moulage, coulage, injection, projection, stratification ; ou ~ pour l'encapsulation des déchets industriels dangereux par enrobage de ces composants dans une matrice minérale stable et non lixiviable ; ou pour la production d'éléments composites préfabriqués à base de bois et de béton, d'éléments de types panneaux, panneaux sandwich, panneaux isolants, panneaux acoustiques dalles, prédalles, murs.
Brève description des figures L'invention sera mieux comprise à la lecture de la description qui va suivre donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
[Fig. 1] La figure 1 est une vue schématique d’une installation permettant de mettre en oeuvre le procédé de fabrication de ciment sursulfaté objet de l’invention.
[Fig. 2] La figure 2 est un graphique qui permet de comparer la montée en résistance en fonction du nombre de jours d’hydratation des ciments sursulfatés en l’état de l’état de l’art en rouge d’une part, avec des CSS objet de la présente invention d’autre part.
[Fig. 3] La figure 3 permet de comparer les émissions de C02 de différents types de ciment en fonction du procédé de fabrication, notamment les CSS objet de la présente invention dont le niveau d’émission est représenté par la barre CSS en abscisse.
Description détaillée
L’invention concerne un procédé de fabrication de ciment sursulfaté dans lequel on mélange des composants aluminosilicates pouzzolaniques et hydrauliques et un complexe d’activation calcio-sulfato-alcalin (Cs)+(K)+(A). Le ciment sursulfaté ainsi obtenu comprend un mélange de 30%, de préférence entre 5 et 20%, en masse au maximum du complexe d’activation calcio-sulfato-alcalin, et 75% en masse au minimum de composants aluminosilicates pouzzolaniques et hydrauliques (S).
Les composants aluminosilicates pouzzolaniques et hydrauliques (notamment d’origine des hauts fourneaux) ou naturels (notamment d’origine volcanique) présentent un haut indice de pouzzolanicité (selon un test Chapelle). et une haute activité hydraulique en présence du complexe d’activation Calcio Sulfato Alcalin Selon un exemple, les composants aluminosilicates pouzzolaniques et hydrauliques comportent un laitier granulé de hauts fourneaux mais non exclusivement.
Selon l’invention, le complexe d’activation calcio-sulfato-alcalin est élaboré en réalisant les étapes successives suivantes : une première étape de mélange de 70% en masse de sulfate de calcium et
30% en masse de composants alcalins ; puis ~ une deuxième étape d’activation thermodynamique par trempe chaude (procédé flash toroïde) dudit complexe d’activation calcio-sulfato-alcalin ; puis ~ une troisième étape de trempe froide par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé avec les composants aluminosilicates pouzzolaniques.
Les mécanismes d’activation et d’hydratation des composants (S) aluminosilicates pouzzolanique et hydrauliques sont les suivants :
1. Le complexe d’activation calcio-sulfato-alcalin comporte des activateurs au rôle de catalyseurs alcalins qui déclenchent une attaque « hydroxylique », facteur d’accroissement des réactions de dissolution, précipitation et cristallisation des composants vitreux Si02 des Aluminosilicates pouzzolaniques et hydrauliques et des composants calciques CaO et, n’entrant pas dans la structure des hydrates. Ces réactions en milieu alcalin intensifient la solubilité des composants siliceux et calcaires. La formation des hydrates n’est possible qu’en milieu basique élevé ce qui évite la formation d’un gel d’alumine bloquant la poursuite de l’hydratation en CSH (silicate de calcium hydraté) des composants aluminosilicates. La dissolution n’est possible que lorsque le pH du milieu dépasse une valeur de l’ordre de 12.5 pH fixé par l’équilibre de dissolution-précipitation de l’hydroxyde de calcium (pH = 12,5 - 12,6). Cette précipitation fait à son tour chuter la concentration des éléments dans la solution, ce qui permet la solubilisation d'une nouvelle quantité de produit jusqu'à une nouvelle précipitation de composés hydratés. Les tétraèdres SLO2 et AI3O2 qui composent les phases vitreuses du matériau pouzzolanique sont séparés et libèrent des ions SiO(OH)3 et AI(OH) en intensifiant la densité des CSH. 2. Le complexe d’activation comporte également des réactifs, principalement des composants sulfatiques, alumineux et calciques qui sont facteurs d’accroissement des réactions chimiques multiples de dissolution, précipitation, substitution, cristallisation des éléments calciques et alumineux, ce qui entraînent la formation des hydrates et en particuliers l’ettringite primaire stable. A titre indicatif, le sulfate de calcium thermodynamiquement activé dans le procédé thermodynamique flash selon l’invention (étape 2) est 50% plus soluble et plus réactif que le sulfate de calcium dihydrate ou hémihydrate ou anhydrite. Première étape : mélange des composants du complexe d’activation
Le complexe d’activation calcio-sulfato-alcalin est composé suivant la présente invention de : 70% de sulfate de calcium, naturel ou synthétique, comportant en masse de
5% à 10% d’anhydrite II soluble, 70% à 80% de béta anhydrite III, et 15% à 30% d’alpha hémihydrate
~ 30 % de composants alcalins (carbonate de sodium, silicate de sodium, hydroxyde de sodium, sulfate de sodium, chaux, ciment portland ou ciment sulfo alumineux, du ciment alumineux, ...).
En particulier, le complexe d’activation calcio-sulfato-alcalin est composé de sulfate de calcium (Cs), de constituants secondaires d’activation (A), d’additifs (agents régulateurs de prise, de rhéologie et de PH alcalin), et éventuellement de clinker (K) ou de ciment, mais préférentiellement sans clinker (K) ou ciment. Les composants alcalins sont choisis seuls ou en combinaison parmi les composants suivants : composants pouzzolaniques synthétiques ou naturels (tels que des ciments conventionnels ou des ciments alumineux ou des ciments sulfo-alumineux), un aluminate de calcium amorphe, des chaux hydrauliques, des chaux aériennes, des chaux vives, des composants basiques (tel que du carbonate de sodium ou du silicate de calcium ou de l’hydroxyde de potassium, ou du carbonate de lithium).
Dans le complexe d’activation calcio-sulfato-alcalin les composants sont préalablement dosés et mélangés au composant sulfate de calcium (Cs) avant leur traitement thermodynamique flash (seconde étape).
De façon générale, les composants du complexe d’activation sont parfaitement mélangés et homogénéisés avant leur traitement thermodynamique flash (seconde étape).
Cette composition chimique améliorée permet d’accroitre la formation de l’ettringite primaire stable, et d’accroitre la cinétique de formation des hydrates CSH.
On décrit ci-après de façon détaillée la composition du mélange de composants aluminosilicates pouzzolaniques et hydrauliques (S) et du complexe d’activation calcio- sulfato-alcalin. a) Composants aluminosilicates pouzzolaniques et hydraulique
De façon avantageuse, les composants aluminosilicates pouzzolaniques et hydrauliques sont un laitier de haut fourneaux (LHF) moulu dosé au minimum à 75% en masse. Selon un autre exemple, les composants aluminosilicates pouzzolaniques et hydrauliques sont des composants aluminosilicates à haute pouzzolanicité et hydraulicité d’origines naturelles, ou synthétiques notamment choisis seuls ou en combinaison, parmi les produits suivants : des laitiers d’aciéries de convertisseur, des laitiers silico-manganèses, des argiles calcinées, des pouzzolanes naturelles, des tufs volcaniques, des métakaolins mais non exclusivement.
L’amélioration des réactivités chimiques et hydrauliques induites par le complexe d’activation chimique calcio-sulfatiques alcalin ((Cs)+(K)+(A)) selon la présente invention, permet de recourir à un plus grand choix, par rapport aux ciments connus de l’art antérieur, de composants pouzzolaniques aluminosilicates synthétiques ou naturels en substitution au laitiers moulus, et de les intégrer dans la composition de nouveaux ciments sursulfatés conformes aux normes en vigueur. Ces composants à forte hydraulicité latente présentent également des indices de pouzzolanicité élevés ou indice d'activité Chapelle [NF P 18- 513]. Ces composants de substitution comportent deux tiers en masse de la somme d’oxyde de calcium (CaO), d’oxyde de magnésium (MgO) et de dioxyde de silicium (SiC>2). Le reste contient de l’oxyde d’aluminium (AI2O3) ainsi que de petites quantités d’autres composants.
De préférence, le rapport en masse (CaO + Mg0)/(Si02) dépasse 1 . Le choix de substitution des composants aluminosilicates n’affecte pas les performances des ciments sursulfatés telles que requises à la norme 15743.
Ainsi, les composants aluminosilicates pouzzolaniques et hydrauliques (S) sont choisis seuls ou en combinaison parmi les composant suivants : les pouzzolanes naturelles, les tufs volcaniques, les laitiers de haut fourneaux (S) mélangés à des laitiers d’aciérie de convertisseurs (LAC), les argiles calcinées, les boues rouges calcinées, les cendres silico-alumineuses, les cendres de papèteries, les cendres volantes, les métakaolins, les schistes calcinés, les boues rouges calcinées, les sédiments et tous mélanges des dits composants. b) Composants K du complexe d’activation calcio-sulfato-alcalin (Cs+K+A) Selon un exemple, ce composant est un ciment ou clinker moulu ou préférentiellement un ciment CEM.I. 52.5. Le clinker Portland est obtenu par frittage d’un mélange précis contenant des éléments, généralement sous forme d’oxydes, CaO, Si02, AI203, Fe203 et de petites quantités d’autres matériaux. Le clinker Portland est un matériau hydraulique qui doit contenir au moins deux tiers en masse de silicates de calcium (3Ca0.Si02 et 2Ca0.Si02), le reste étant constitué de phases de clinker contenant de l'aluminium, du fer et d'autres composants. Le rapport (Ca0)/(Si02) n’est pas inférieur à 2,0. La teneur en oxyde de magnésium (MgO) ne dépasse pas 5,0 % en masse. Il est important de réduire ou de préférence supprimer le ciment ou le clinker moulu afin de réduire l’impact environnemental du ciment sursulfaté.
Cette suppression est rendue possible par l’accroissement des réactivités hydrauliques et chimiques du complexe d’activation. Ainsi, de préférence, le complexe d’activation calcio-sulfato-alcalin (Cs+K+A) ne comporte pas de composant K. c) Composants A du complexe d’activation calcio-sulfato-alcalin (Cs+K+A)
De façon avantageuse, ce composant est un constituant secondaire comportant de l’hydroxyde de calcium, issu de procédés industriels, composants minéraux spécialement choisis, d’origine naturelle et ou dérivés de procédés industriels spécifiés.
La source d'hydroxyde de calcium est de la chaux éteinte, de la chaux aérienne, de la chaux hydraulique, ou de la chaux vive, ou est choisie parmi les chaux commerciales.
Ce composant peut également être choisis parmi : des composants à haute réactivité pouzzolanique tel que le métakaolin flashé, de l’aluminate de calcium amorphe non cristallisé (ACA), des composants à base forte tel que le carbonate de sodium, ou le silicate de sodium ou l’hydroxyde de potassium, soit de carbonate de lithium non cristallisé, soit un ciment alumineux, soit un ciment sulfo- alumineux soit un mélange des dits composants. d) Additifs du complexe d’activation calcio-sulfato-alcalin (Cs+K+A)
Les additifs du complexe d’activation calcio-sulfato-alcalin peuvent être choisis parmi les additifs suivants :
~ superplastifiants de type Etacryl M de chez Coatex® ou ONS 2000 de chez Tillmann®, pour l’ajustement des rhéologies fluides tout en réduisant l’eau de gâchage. Ces fluidifiants permettent d’accroitre de 10% à 25% les performances mécaniques des ciments sursulfatés grâce à la réduction des porosités des matrices cimentaires ainsi obtenues.
~ additifs retardateurs de prise jusqu'à deux heures, de type SIKA retardant P Agents alcalins, facteurs d’accroissement du Ph des solutions interstitielles des pâtes de type soudes, carbonates de sodium ou silicates de sodium.
Les additifs ne dépassent pas globalement 1% en masse du poids de ciment. e) Ajouts au complexe d’activation calcio-sulfato-alcalin (Cs+K+A) Ces ajouts peuvent être des fillers charges minérales de granulométries inférieures à 100 microns, de préférence inférieures à 50 microns de type : aluminosilicates, siliceux, silico-calcaires, carbonates de calcium, pouzzolanes naturelles ou synthétiques, fumées de silices, cendres volantes, zéolites, diatomées, magnésium, etc. Les ajouts sont facteurs de réduction du rapport eau sur liant E/L. Ils améliorent très sensiblement (de 5% jusqu’à 15%) les performances mécaniques des bétons élaborés avec les ciments sursulfatés.
Seconde étape : activation thermodynamique par trempe chaude du complexe d’activation
La deuxième étape d’activation du complexe d’activation calcio-sulfato-alcalin comprend une transformation et une activation du sulfate de calcium par un procédé thermodynamique flash.
Le complexe d’activation est thermodynamiquement activé par un procédé thermodynamique flash à une température comprise entre 250°C et 450°C pour former un composite pulvérulent comportant moins de 15 %de phases Anhydrite II soluble CaSC>4, 0H20 et au moins 85% d’Anhydrite III Alpha soluble CaSC>4 zéro H20. Le complexe d’activation est calciné au contact d’un fluide chaud de vapeur surchauffée issue d’une part de la déshydratation du gypse et d’autre part du recyclage partiel de ce fluide chaud. L’ajout de vapeur surchauffée issue du recyclage du fluide chaud caractérise la nature des phases sulfatiques originales « Alpha Sigma », ainsi produites et dont les performances sont apparentées aux performances des phases des plâtres Alpha étuvés et pressurisés en présence de vapeur surchauffée.
Ces phases ALPHA SIGMA ainsi obtenues sont spécifiques procédé selon l’invention et sont parfaitement identifiables par les moyens tels que des microscopes MEB, des diffractomètres DRX et par des analyses thermiques ATD / TG.
Le procédé thermodynamique flash du procédé selon l’invention est apte à homogénéiser, à microniser, à choquer thermiquement ledit sulfate de calcium, et à le transformer en phases à haute réactivités hydrauliques telles que des phases composites anhydrites II, anhydrite III beta, et hémihydrate béta. La micronisation est une micronisation autogène cinétique obtenue par mécanosynthèse de particules, à l’intérieur d’un conduit toroïdal asymétrique à section variable. Le procédé thermodynamique flash du procédé selon l’invention comporte une étape de choc thermique réalisé à l’intérieur d’un fluide chaud de vapeur surchauffée.
Au sein de ce procédé, la transformation du sulfate de calcium est une transformation en phases complexes réalisée par un dispositif de réacteur thermodynamique flash comprenant un conduit toroïdal et une unité de gestion électronique. L’unité de gestion électronique est apte à contrôler tous les paramètres du procédé d’activation thermique à savoir :une température d’entrée et une température de sortie du dispositif de réacteur thermodynamique flash, une température de trempe froide, un dosage des différents composants dudit ciment sursulfaté, des pressions atmosphériques amont et aval du réacteur thermodynamique flash, des vitesses du fluide chaud en amont et en aval du réacteur thermodynamique flash, des débits d’air en sortie du réacteur thermodynamique flash.
De façon préférentielle, on réalise une étape de déshydratation quasi instantanée des composants du complexe d’activation calcio-sulfato-alcalin (composants introduits sous forme pulvérulente ou granuleuse) par contact direct et par entrainement par un fluide gazeux chargé en vapeur surchauffée dans le conduit toroïdal placé en dépression en sortie et soumis à l’entrée à une pression comprise entre 50 mbar et 200 mbar, à une température réglée entre 250°C et 450°C, générant un flux du fluide gazeux entrant à une vitesse comprise entre 15 m/s et 25 m/s.
Le fluide chaud chargé en vapeur surchauffé est partiellement recyclé et mélangé avec l’air neuf dans un caisson de mélange, notamment électro-régulé.
L’air neuf est réchauffé par le fluide chaud extrait dans un échangeur thermique air / air.
Le fluide chargé en vapeur est chauffé par un brûleur automatisé (gaz, charbon, fuel) et mélangé dans une chambre de combustion avant d’être injecté dans le réacteur thermodynamique flash par l’intermédiaire d’une batterie d’injecteurs.
Enfin, à la sortie du réacteur thermodynamique flash, la vitesse du fluide gazeux chaud est comprise entre 30 m/s et 40 m/s, la température est comprise entre 180°C et 300°C.
On décrit à présent un exemple de réalisation du procédé thermodynamique flash. Selon l’invention, le complexe d’activation calcio-sulfato-alcalin (Cs+K+A) est traité après mélange par un procédé thermodynamique flash amélioré. Ce procédé comporte les caractéristiques suivantes :
~ il comporte une étape de déshydratation quasi instantanée des composants pulvérulents ou granuleux par contact direct et entrainement par un fluide gazeux chaud chargé en vapeur surchauffée dans un flash présentant un conduit toroïdal placé en dépression en aval et soumis à une pression à l’entrée comprise entre 50 mbar et 200 mbar en amont ;
~ le fluide gazeux chaud à l’entrée du flash est à une température réglée entre 250 °C et 450°C
~ la vitesse du fluide gazeux chaud à l’entrée du flash est comprise entre 15 m/s et 25 m/s ;
~ la vitesse du fluide gazeux chaud en sortie du flash est comprise entre 30 m/s et 40 m/s ; les composants pulvérulents ou granuleux subissent une micronisation autogène au sein du conduit toroïdal du flash ;
~ la température de l’air en sortie du flash est comprise entre 180°C et 300°C ; les composants du complexe d’activation calcio-sulfato-alcalin ont une température comprise entre 100°C et 200°C à la sortie du procédé thermodynamique flash ;
~ la composition pulvérulente en sortie de flash présente une granulométrie comprise entre 5 microns et 100 microns et une surface spécifique Blaine supérieure à 12 m2 / gramme ;
~ la composition pulvérulente comporte une étape de refroidissement rapide soit par contact avec des composant pulvérulents froids soit par contact dans un échangeur à couches minces ;
~ l’air chaud chargé en vapeur surchauffée en sortie de flash est partiellement recyclé et mélangé avec l’air neuf dans un caisson de mélange ;
~ l’air neuf est réchauffé par l’air chaud extrait dans un échangeur thermique air / air ;
~ le fluide chaud chargé en vapeur surchauffée est chauffé par un brûleur automatisé
(gaz, charbon, fuel) et mélangé dans une chambre de combustion ; et ~ l’air ainsi chauffé est injecté dans le flash par l’intermédiaire d’une batterie d’injecteurs.
A titre d’exemple, la figure 1 représente une vue schématique d’une installation permettant de mettre en oeuvre le procédé de fabrication de ciment sursulfaté objet de l’invention. Sur cette figure, le mélangeur amont, permettant d’associer les composants du complexe d’activation n’est pas représenté. Les références de la figures 1 sont les suivantes :
1 : Alimentation par une vis sans fin du complexe d’activation chimique calcio- sulfatique alcaline préalablement dosé et mélangé
2 : T rémie réservoir feeder pour stock tampon du complexe d’activation
3 : Vis doseuse pour alimentation en complexe d’activation du flash thermodynamique
4 : Flash thermodynamique toroïdal à micronisation autogène des composants activateurs
5 : GTC gestion technique centralisée du procédé flash
6 : Tube d’injection dans le flash du complexe d’activation chimique calcio-sulfatique alcalin
7 : Injecteurs d’air chaud chargés de vapeur saturée
8 : Sélecteurs gravimétriques de sortie des particules de l’activateur
9 : Air chaud extrait mélangé au produit pulvérulent
10 : Séparation de l’air chaud du produit fini pulvérulent 11 : Extracteur a vis en sortie des filtres
12 : Ventilateur surpression amont du flash
13 : Ventilateur de pression aval du flash
14 : Circuit de recyclage de l’air chaud chargé en vapeur surchauffée 15 : Bruleur automatisé fuel ou gaz ou charbon et chambre de combustion
16 : Chambre de dosage du recyclage par vanne bypass autorégulée de l’air chaud chargé en vapeur surchauffée
17 : Chambre de mélange de l’air chargé en vapeur surchauffée et air neuf réchauffé
18 : Échangeur air/air récupérateur d’énergie sur air chaud recyclé et air neuf 19 : Compresseur air sec et réservoir tampon pour alimentation des filtres automatisés
20 : Composants aluminosilicates broyés laitiers moulus ou pouzzolanes naturelles moulues
21 : Fillers d’additions pour ciment
22 : Vis convoyeuse et dosage des composants pouzzolaniques laitiers ou pouzzolanes
23 : Mélangeur refroidisseur grande vitesse du complexe d’activation calcio-sulfatique alcalin avec les composants pouzzolaniques avec les composants pouzzolaniques
24 : Air neuf entrant
25 : Air extrait 100 : dispositif pour fabriquer le CSS selon l’invention
Selon un exemple de réalisation, On injecte le sulfate de calcium sous forme hémihydrate ou dihydrate, pulvérulent ou granuleuse, dans un flux d'air chaud turbulent saturé en vapeur d'eau, et ayant une température comprise entre 200°C et 500°C et une vitesse allant de 5 m/s à 40 m/s. Le flux d'air chaud est composé pour part : d’un flux d’air chaud chargé en vapeur surchauffée issu du recyclage du fluide chaud en sortie de flash et pour autre part, d’un flux d’air chaud préalablement réchauffé au contact de l’air en sortie de flash dans un échangeur récupérateur d’énergie, ledit air réchauffé en sortie de l’échangeur est chauffé à une température de 200°C à 500°C dans une chambre de combustion équipée d’un bruleur automatisé. Le mélange des flux d’airs chauds est injecté dans le calcinateur flash par l’intermédiaire d’une batterie d’injecteurs. Cette étape est immédiatement suivie d'une étape consistant à séparer du fluide chaud en sortie de flash dans un filtre ou un cyclone, les particules du complexe sulfatique ainsi élaborées. Selon cet exemple, les composants aluminosilicates à forte pouzzolanicité subissent un broyage par un broyeur vertical ou par un broyeur à boulets, présentent une surface spécifique Blaine comprise de 3800 cm2/g à 6000 cm2/g et une finesse de mouture inférieure à 100 microns. Le ciment ainsi élaboré, présente une surface spécifique Blaine comprise de 3800 cm2/g à 6000 cm2/g, et une finesse de mouture inférieure à 100 microns.
Troisième étape : trempe froide La troisième étape de trempe froide est réalisée de façon à refroidir le complexe d’activation calcio-sulfato-alcalin à une température comprise entre 30°C et 50°C en moins d’une minute.
Cette étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé en sortie du procédé thermodynamique flash avec des composants aluminosilicates pulvérulents à 30°C +/- 15°C dans un mélangeur en continu à pâlies.
Cette étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin en sortie du procédé thermodynamique flash avec les composants aluminosilicates pouzzolaniques, par exemple laitiers sidérurgiques moulus, à température ambiante. La trempe froide peut également réalisé au moyen d’un refroidisseur indirect à tubes .
L’invention concerne également un ciment sursulfaté obtenu par le procédé selon l’invention. . La stabilité et la durabilité de ce ciment sursulfaté ont été étudiées. L’évaluation de l’avancement réactionnel à 28 jours et à 90 jours par la diffraction rayons X (DRX) et l’examen au microscope électronique (MEB), a permis de vérifier l’évolution de l’hydratation des solutions interstitielles et le contrôle de l’évolution de la formation de CSH (silicate de calcium hydraté). L’avancement réactionnel est optimal en fonction de la consommation totale du sulfate de calcium et de celui du calcium.
La réaction du silico-alumineux, lorsqu’il est correctement activé, perdure jusqu’à consommer l’ensemble des réactifs potentiels en particulier le gypse et la portlandite.
La consommation des sulfates de calcium et du calcium prévient des réactions alcali- granulats (RAG) et des réactions sulfatique interne (RSI) (formation d’ettringite différée). De manière surprenante le ciment selon l’invention présente une cinétique de réhydratation à l’air ralentie, ce qui confère au ciment une stabilité de conservation à l’air quatre fois plus longue que celle des ciments conventionnels.
Par ailleurs, on constate un accroissement sensible des réactivités hydrauliques et pouzzolaniques du ciment selon l’invention. Les performances mécaniques de ce ciment sont ainsi améliorées de 15% à 20% par aux ciments conventionnels, en particulier au jeune âge, et on constate également un allongement du délai de prise initiale ainsi que des fluidités améliorées. Ces performances améliorées permettent de supprimer le composant (K), clinker ou ciment. Cette absence de ce composant dans le mélange permet d’améliorer le bilan carbone de la fabrication du ciment sursulfaté, tout en lui conservant les performances minimales requises. Ces performances améliorées permettent également l'utilisation de nouveaux composants aluminosilicates, par rapport à ceux proposés de façon restrictives dans norme, de type cendres volantes, laitiers d’aciéries de convertisseurs, laitiers volcaniques, métakaolins flashés, cendres de papèteries et leurs mélanges. Ces composants co-produits industriels pouzzolaniques sont ainsi valorisés en tant que matières premières.
Enfin, la consommation énergétique de fabrication du ciment est réduite de 35% à 45% par rapport à la fabrication d’un ciment sursulfaté selon le procédé décrit dans le document WO2015104466A1 . Ceci est possible grâce à l’accélération des échanges thermodynamiques flash d’activation des composants (Cs)+(K)+(A), grâce d’une part à la récupération des effluents thermiques issus du procédé, et d’autre part, grâce au recyclage du fluide chaud chargé en vapeur surchauffée issu de la déshydratation du sulfate de calcium.
Ainsi, on constate un bilan énergétique (énergie mécanique et énergie thermique) lors de la fabrication du ciment objet de la présente invention, inférieur à 110 MJ/tonne de ciment, soit 10 fois inférieur à celui des ciments conventionnels.
La figure 3 permet de comparer les émissions (EmC02) de CC>2par tonne de ciment, pour différents types de ciment, ayant des procédés de fabrication différents, notamment le ciment sursulfatés (CSS) objet de la présente invention dont le niveau d’émission est représenté par la barre CSS en abscisse. Le bilan environnemental (CO2 énergie+CC>2 matière) du ciment objet de la présente invention ne dépasse pas 60 Kg de CO2, soit 12 fois moins que les ciments conventionnels.
La figure 2 présente les tests de performances des ciments sursulfatés réalisés sur mortiers suivant la Norme NF EN 196-1. Cette figure permet de comparer la montée en résistance (R) en fonction du nombre de jours (E) d’hydratation, pour des ciments sursulfatés de l’état de l’art (courbe 1) d’une part, et pour des ciments selon l’invention, issu du procédé selon l’invention d’autre part (courbe 2).
Les résultats montrent que les conditions de maturation des mortiers jouent un rôle déterminant sur les performances mécaniques. Les cures en immersion permettent d’atteindre des niveaux de résistances plus élevés que dans des condition sèches avec un taux d’humidité de 90%. Les essais ont été réalisés sur la base du mortier normalisé (rapport massique liant/sable = 1/3) avec deux taux de gâchage (E/L = 0,4 et 0,5) caractéristiques des anciennes et nouvelles normes liées aux CSS. Quatre types de conservation sont utilisées : salle humide, immersion à 20°C, immersion à 40°C et ambiante à 20°C. Les mesures de retrait et de variations pondérales ont été suivies durant 90 jours. Les performances mécaniques sont évaluées à 2, 7, 28, et 90 jours. Les Concernant les ciments sursulfatés 32.5/42.5/52/5, on remarque que les résistances de ces ciments évoluent notablement au-delà de 28 jours. Cet effet est très marqué pour le taux de gâchage de 0,40. L’évolution des résistances en compression se prolonge au- delà de 90 jours.
Les agents fluidifiants, plastifiants ou superplastifiants, aptes à permettre une réduction d'eau significative, à fenêtre d'ouvrabilité constance, et dont l'action, en réduisant la porosité, augmente très sensiblement les performances mécaniques de la composition cimentaire finale. A titre d'exemple de tels agents fluidifiants, plastifiants ou superplastifiants, réducteur d'eau on peut citer les polycarboxylates et les poly(métha)crylates® commercialisé par la société COATEX® ou le RHEOBUiLD® commercialisé par la société BASF® ou le FLUID commercialisé par la société TILLMAN.
Préférentiellement, les adjuvants pouvant entrer dans la formulation finale de la composition cimentaire selon l'invention peuvent être choisis parmi les adjuvants décrits dans la norme NF EN 934-2. Il convient par ailleurs de préciser que les résistances mécaniques accrues conférées dès le jeune âge (4 heures après hydratation) par les ciments hydrauliques objet de l'invention, ne sont pas obtenus au détriment de la fenêtre d'ouvrabilité (ou durée pratique d'utilisation) des compositions cimentaires formulées, laquelle ouvrabilité est satisfaisante et est assurée sur au moins 30 minutes, avantageusement sur une durée comprise entre 45 min et 90 min, à une température comprise entre 5°C et 30°C. Par l'expression « fenêtre d'ouvrabilité » : on entend selon la présente invention, la durée pendant laquelle l'affaissement de la composition cimentaire formulée, évalué selon la norme EN 12350-2, reste supérieur ou égale à 10mm.
L’invention concerne également des utilisations du ciment sursulfaté obtenu par le procédé selon l’invention. a) Production des bétons à faible chaleur d’hydratation, à b) Prise mer, résistants aux sulfates, résistants aux acides et la production des mortiers techniques. c) Production de béton cellulaire On utilise le ciment selon l’invention dans un procédé de production de béton cellulaire coulé ou moulé durci à pression atmosphérique. Pour obtenir un tel béton, le procédé comporte une étape de mélange du ciment selon l’invention, de l'eau de gâchage, au moins un agent tensioactif, au moins un agent fluidifiant, et le cas échéant au moins un agent moussant.
Selon un exemple de réalisation, on réalise un béton basse densité entre 300 kg/m3 et 1000 kg/m3 offrant une résistance mécanique pouvant atteindre 9 MPa, et une conductivité thermique très basse comprise entre 0,025 W/mK et 0,7 W/mK, de préférence une conductivité thermique inférieure à 0,5 W/mK. Selon un autre exemple de réalisation, on utilise le ciment de la présente invention pour préparer des matériaux de faible densité de type bétons légers, bétons cellulaires durcis à pression atmosphérique (dits bétons cellulaires hors autoclaves ou bétons mousses), de matériaux coupe-feu.
Selon un mode de réalisation préféré de l'invention, on prépare un béton cellulaire (durci à pression atmosphérique) à partir du ciment hydraulique selon la présente l'invention, par un procédé comprenant les étapes suivantes : a) mélanger un ciment conforme à la présente invention avec au moins un agent tensioactif et au moins un agent fluidifiant ; b) ajouter l'eau de gâchage ; c) malaxer le mélange obtenu à l'étape (b) pour produire une mousse minérale dans laquelle des bulles d'air sont emprisonnées ; d) couler la mousse minérale ainsi obtenue, notamment dans un moule, et permettre son durcissement.
Préférentiellement, ce procédé de fabrication de bétons cellulaires durcis à pression atmosphérique, comprend en outre préalablement à l'étape (c) de malaxage, une étape (b') consistant à ajouter au mélange obtenu à l'étape (b) un ou plusieurs agents moussants ou une mousse élaborée séparément à partir d'un ou de plusieurs agents moussants et de l'eau, laquelle mousse peut être préparée par tout moyen de génération de mousses, connu de l'homme du métier, par exemple par un générateur de mousse à air comprimé ou par batteur mécanique. Le ou les agents moussants sont dosés à raison de 1 litre à 1 ,5 litres pour 2000 litres d'eau pour confectionner une mousse de densité apparente de 20 kg/m3 à 30 kg/m3. Le dosage en mousse à incorporer dans le mélange obtenu à l'étape (b) est variable 30 de 400 l/m3 à 800 l/m3 en fonction de la densité du béton recherché. Les agents moussants convenant pour la mise en oeuvre de ce procédé sont bien connus de l'homme de métier. On cite notamment ceux proposés par la société PROVOTON® sous la dénomination Provoton® et la société DR LUCAS&PARTNER® GmBH sous la dénomination Lithofoam®.
En pratique, le rapport pondéral eau/ciment hydraulique est compris entre 0,2 et 0,4, de préférence entre 0,25 et 0,35. La quantité d'agent(s) tensioactif(s) mis en oeuvre à l'étape (b) est de préférence comprise entre 0,01 % et 0.5% p/p ciment hydraulique, préférentiellement de 0,05% et 0.1% p/p ciment hydraulique
L'ajout d’au moins un agent tensioactif favorise la formation de mousse et la stabilisation des fines bulles créées dans la mousse minérale lors du malaxage. Les agents tensioactifs convenant pour la mise en oeuvre de ce procédé sont bien connus de l'homme de métier. On cite notamment ceux proposés par la société SIKA® dans la gamme référencée par la dénomination AER® poudre, ou par la société CLARIANT® sous la dénomination OSTAPUR® OSB. d) Production d’un liant hydraulique routier (LH R)
On utilise le ciment selon l’invention dans un procédé de production d’un liant hydraulique routier (LHR) à durcissement normal ou rapide élaboré.
Selon un exemple de réalisation, le liant hydraulique routier comporte 50 % minimum de ciment sursulfaté objet de la présente invention, et 40% minimum d’un laitier d’aciérie de convertisseur (LAC). La résistance à la compression Rc à 56 jours sur mortier (NF EN 196-1) a été mesurée, et l’on obtient : 12,5 MPa < Rc < 32,5 MPa. e) Production d’un activateur calcio-sulfato-alcalin
On utilise le ciment selon l’invention dans un procédé de production d’un activateur calcio-sulfato-alcalin pour améliorer les performances des ciments ordinaires, des bétons, des mortiers techniques, des ciments aux laitiers, des ciments alumineux, des ciments sulfo-alumineux et des liants géotechniques ou routiers, des plâtres, des chaux hydrauliques ou aériennes mais non exclusivement. f) Production de béton de sable éolien
On utilise le ciment selon l’invention dans un procédé de production de béton de sable à base de granulats de sables ronds éoliens, ou de sable de dune, de sables éoliens ou de sable ordinaire. Un tel ciment pour être utilisé pour la réalisation de bétons armés de structures et bétons de masse pour la réalisation de construction passives à haute inertie thermique.
Les liants issus du procédé selon l’invention ont un comportement d’activation hydrauliques au contact des granulats composant siliceux des sables éoliens. Les matrices minérales ainsi formées sont composées de grains de sable ronds dont la surface est attaquée par activateurs calcio-sulfatiques et alcalins.
Il en résulte une très haute adhérence de l’interface ciment /granulat.
Le gel de CSH enrobe parfaitement les composants siliceux, ce qui est facteur de hautes résistance équivalentes à celle obtenue avec des compositions de bétons, sables et graviers de carrière. L’aspect sphérique des granulats éolien est un facteur de rhéologie fluide et de réduction de l’eau de gâchage.
Selon un exemple de réalisation, on réalise un béton de sable en mélangeant un ciment selon l’invention à 350 Kg/m3 avec un sable éolien 0/2 mm 1950 Kg/m3.
Selon un autre mode de réalisation, on remplace le sable éolien par du sable de pouzzolane broyée avec :
~ Dosage en eau 182 Litres ;
Fluidifiant à 0.4% ONS 2000 de chez Tillmann® ;
~ Retardant P 0.02 % Sika.
La résistance à la compression a été étudiée. Les résultats suivants ont été obtenus : ~ à 24 heures : 12 MPa ;
~ à 7 jours : 29MPa ; à 28 jours : 59MPa.
La résistance à la flexion a été étudiée. Les résultats suivants ont été obtenus :
~ à 24 heures : 4.2 MPa ;
~ à 7 jours : 9.7 MPa ; à 28 jours : 13MPa. g) Production de granulats minéralisés
On utilise le ciment selon l’invention dans un procédé de fabrication de granulats allégés, isolants thermiques et acoustiques à base de déchets végétaux ou bois ou pailles broyées ou autres déchets de basse densité, par minéralisation de ces composants au moyen d’un enrobage par coulis à prise rapide à base dudit ciment.
Selon un exemple de réalisation, on réalise un enrobage de granulats végétaux par un coulis de ciment selon l’invention. Ces granulats végétaux à base d’anas de lin, de chènevotte de chanvre ou de bois concassé ont un intérêt majeur pour la composition de bétons allégés de densité variant de 350kg/m3à 600kg/m3. Les composant végétaux coupés présentent une longueur entre 10 mm et 20 mm, de préférence 15 mm.
Outre leur faible densité ces bétons élaborés avec ces granulats sont particulièrement performants dans le cadre de la fabrication de matériaux absorbants acoustiques, matériaux isolants, bétons drainants, rénovation de bâtiments, chapes isolantes, murs isolants, parpaings, murs antibruit, mortiers acoustiques absorbants etc. Selon un exemple de réalisation, le procédé comporte les étapes suivantes :
~ phase A préparation d’un coulis de ciment CSS dans un mélangeur à double arbre en continu grande vitesse en continu en présence d’un adjuvant fluidifiant, d’un activateur hydraulique tel que décrit dans la présente invention, composé d’un complexe sulfatique AII/AII dosé à 10% d’un composant alcalin carbonate de sodium et d’eau dosée E/L = 0.50 ;Durée du malaxage 1 à 2 minutes ;
~ phase B : injection du coulis dans un mélangeur à grande vitesse à sabots à double arbre alimenté en partie supérieure en granulats végétaux ; Durée du mélange 2 à 4 minutes ; En sortie de mélangeur les granulats végétaux sont parfaitement imprégnés et minéralisés ; l’adhérence de la minéralisation sur le granulat végétal est complète et son épaisseur est de 150 microns à 300 microns Ces granulats en sortie de mélangeur sont alors déversés sur un convoyeur à lit fluidisé en 25 maille inoxydable traversé par un fluide chaud entre 45 °C à 65 °C pendant 3 à 6 minutes ; le temps de prise du coulis est ajusté entre 5 à 8 minutes en fonction du débit de production souhaité. h) Compositions de valorisation de déchets
Selon un mode de réalisation on utilise des déchets polyuréthane ou des déchets plastiques ou des déchets végétaux ou des déchets bois.
On réalise au moins l’une des compositions suivantes :
1° béton allégé et isolant thermique, composé de ciment selon l’invention additionné de granulats recyclés.
2° mortier technique composé de ciments selon l’invention additionnés de granulats précités ou plastiques.
3° granulats pour bétons allégés composés de ciment selon l’invention basse densité et isolant, par un procédé de minéralisation des granulats précités pour la production via un mélangeur en continu, de granulats à destination des centrales à bétons, des centrales de préfabrication, des travaux routiers, des particuliers et de la GSB.
4° matériaux isolants composés de ciment selon l’invention et des granulats précités, par coulage, moulage , pressage ,vibro-compactage des bétons.
5° bétons drainants prêts à l'emploi composés de ciment selon l’invention et des granulats précités pour applications paysagères, stabilisation des talus, drainages de sols, et application décoratives extérieures. i) Production de béton thermiquement activés Le ciment issu du procédé selon l’invention peut être utiliser pour la fabrication de bétons thermiquement activés, formulés pour la préfabrication industrielle intensive dont les résistances en compression sont de 15 à 25 MPa en 8 heures.
De tels bétons peuvent comporter des granulats calibrés, des fillers hydrauliques de type calcaires ou siliceux et des agents alcalins de type carbonate de sodium ou silicates de calcium. j) Production de de composants plâtre de très haute dureté shore
Le ciment issu du procédé selon l’invention peut être utiliser pour la fabrication de composants plâtre de très haute dureté shore mis en oeuvre par moulage, coulage, injection, projection, stratification. k) Encapsulation des déchets industriels dangereux
Le ciment issu du procédé selon l’invention peut être utiliser pour l’encapsulation des déchets industriels dangereux (chimique, pharmaceutiques ou radioactifs), par enrobage de ces composants dans une matrice minérale stable et non lixiviable.
L) Production d’éléments composites préfabriqués
Le ciment issu du procédé selon l’invention peut être utiliser pour la production d’éléments composites préfabriqués à base de bois et de béton, d’éléments de types panneaux, panneaux sandwich, panneaux isolants, panneaux acoustiques dalles, prédalles, murs, mais non exclusivement.
Le procédé d’activation selon la présente invention, induit de multiples transformations sur les composants du complexe d’activation et accroît ainsi considérablement leur réactivité :
Déshydratation instantanée des composants.
Formation dans un flash toroïdal à sections variables, de phases composites de sulfate de calcium comportant au sein des même particules : des phases anhydrite II, Anhydrite III et Hemihydrate alpha sigma disposée concentriquement ;
Les compositions ainsi obtenues conduisent à : o jusqu’à 8 % de phases Hémihydrates « alpha sigma » disposées en périphérie des particules , o jusqu’à 92% de phases Anhydrite III disposées au centre des particules o très peu de phases Anhydrite II. Les sources de matières premières permettant d’obtenir lesdites phases sulfate de calcium sont indifféremment les gypses dihydrates naturels ou synthétique ainsi que les plâtres hemihydrates.
L’intérêt principal de ces phases sulfate de calcium composites est leur hyper solubilité par rapport aux phases existante de sulfate de calcium en l’état de l’art.
A titre indicatif la solubilité de l’hémihydrate est, à 20°C, de 9 g.l-1, celle du gypse est de 2 g.l-1 , tandis que celle du sulfate de calcium composite objet de la présente invention est supérieure à 15 g.l 1.
Cet indice de solubilité très élevé est le facteur principal permettant une activation intense des composants aluminosilicates qui induisent la formation précoce de l’ettringite primaire et celle des CSH (silicates de calcium hydratés).
Une des caractéristiques du présent composite sulfate de calcium est sa grande stabilité à l’air en raison de sa micro-encapsulation par des phases hydratées stables qui accroissent au final les cinétiques d’hydratation et les réactivités chimiques en milieu aqueux.
Ces phases sulfatiques composites originales sont caractéristiques de la présente invention et leurs performances spécifiques caractérisent l’activité inventive.
Les performances intrinsèques de ce composite sulfate de calcium sont caractérisées par de très hautes performances mécaniques : RC à 12h supérieures à 30 MPa et RC à 7 jours supérieures à 40 MPa.
- Micronisation autogène des particules par action « mécano-synthétique » s’opérant dans les frictions cinétiques à grand vitesse à l’intérieur des conduits angulaires du flash. - Accroissement de surfaces spécifiques des particules jusqu’à 4500 Blaines.
- Modification des paramètres de mailles et modification cristallines micro structurelles des phases sulfate de calcium.
On note également que le traitement thermodynamique flash utilisé par le procédé selon l’invention, fait interagir les paramètres suivants qui sont programmés et contrôlés par la gestion informatisée : les températures de trempe chaude et de trempe froide ; les vitesses de circulation et les débits volumétriques du fluide chaud ; les pressions atmosphériques amont et aval du flash ; - les débits d’alimentation de composants ; l’humidité initiale des composants. Ces modifications physico chimiques induisent de hautes performances lors de leur hydratation en présence des composants aluminosilicates (composants pouzzolanique)
- accroissement des cinétiques d’hydratation au jeune âge et à terme (facteur de résistances) ;
- accroissement des inter-réactivité physico-chimique des composants Alumino Sulfato Calcique ;
- accroissement des dissolutions / précipitations des composants siliceux ;
- consommation intégrale des composants sulfates de calcium ; - consommation intégrale de la Portlandite ;
- suppression des risques d’ettringite secondaires facteur de pathologies ;
- formation majoritaire des ettringites primaires stables dès les premières heures d’hydratation ;
- formation des CSH résistantes à partir de 48 heure se renforçant au-delà des 90 jours ,
- suppression des gonflements et des retraits lors de l’hydratation et la prise ;
- suppression de la chaleur d’hydratation facteur de microfissuration dans les bétons de masse ;
- accroissement de l’adhérence entre la matrice cimentaire et les granulats ; - accroissement des stabilités à l’air des CSS (durée de stockage accrues de
300%) ;
- accroissement sensible de l’adhérence interface entre la matrice cimentaire et les aciers d’armatures ;
- choix élargi de granulats compatibles (sables mer , éoliens , sédiments, composants végétaux , bois , plastiques etc. ...) ;
- stabilité dimensionnelle des bétons aux températures chaudes et basses ;
- porosités réduites en raison de la « colonisation » des interstices par les CSH ;
- résistance aux acides , aux alcalins , aux sucres , aux sulfates ;
- résistance aux bactéries en milieux hydrauliques ; - résistances au feu accrues par rapport aux OPC (Portland) ;
- rhéologies adaptables à tous types de mises en oeuvre ;
- temps ouverts de mise en oeuvre ajustable suivant la demande de 20 minutes à 1 heure ;
- encapsulations durables des métaux lourds ; - substitution et remplacement des plâtres hémihydrates alpha dans le cas de formulations de mortiers techniques ; - l’usage de superplastifiants réducteurs d’eau permet un rapport eau sur liant de 0.40 ;
- la réduction du rapport eau sur liant à 0.35 permet un accroissement complémentaire de 15% des résistances ; - cinétiques de carbonatation réduites de 50% par rapport aux ciments OPC ;
- porosités minimales de 9% ;
- durabilités accrues grâce aux faibles porosités et à la stabilité des hydrates ainsi composés.

Claims

Revendications
[Revendication 1] Procédé de fabrication de ciment sursulfaté, dans lequel on mélange des composants aluminosilicates pouzzolaniques et hydrauliques et un complexe d’activation calcio-sulfato-alcalin, caractérisé en ce que ledit complexe d’activation calcio-sulfato- alcalin est élaboré en réalisant les étapes successives suivantes :
~ une première étape de mélange de 70% en masse de sulfate de calcium et 30% en masse de composants alcalins ; puis ~ une deuxième étape d’activation thermodynamique par trempe chaude dudit complexe d’activation calcio-sulfato-alcalin ; puis ~ une troisième étape de trempe froide par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé avec les composants aluminosilicates pouzzolaniques.
[Revendication 2] Procédé selon la revendication 1 , dans lequel le sulfate de calcium est une composition comportant en masse de 5% à 10%d’anhydrite Il soluble, 70% à 80% de alpha anhydrite III, et 15% à 30% de alpha hémihydrate.
[Revendication 3] Procédé selon l’une des revendications précédentes, dans lequel les composants alcalins sont choisis seuls ou en combinaison parmi les composants suivants : composants pouzzolaniques et hydrauliques synthétiques ou naturels, un aluminate de calcium amorphe, des chaux hydrauliques, des chaux aériennes, des chaux vives, des composants basiques.
[Revendication 4] Procédé selon l’une des revendications précédentes, dans lequel le composant aluminosilicate pouzzolanique et hydraulique comprend 75% en masse au minimum de composants pouzzolaniques et hydrauliques naturels ou synthétiques.
[Revendication 5] Procédé selon la revendication précédente, dans lequel les composants aluminosilicates pouzzolaniques et hydrauliques comportent un laitier granulé de hauts fourneaux.
[Revendication 6] Procédé selon l’une des revendications précédentes, dans lequel on mélange au minimum 75% en masse de composants aluminosilicates pouzzolaniques et hydrauliques et 20% en masse maximum du complexe d’activation calcio-sulfato-alcalin.
[Revendication 7] Procédé selon l’une des revendications précédentes, dans lequel la deuxième étape d’activation dudit complexe d’activation calcio- sulfato-alcalin comprend une transformation et activation du sulfate de calcium par un procédé thermodynamique flash.
[Revendication 8] Procédé selon la revendication précédente, dans lequel le procédé thermodynamique flash est apte à homogénéiser, à microniser, à choquer thermiquement ledit sulfate de calcium, et à le transformer en phases à hautes réactivité hydrauliques, telles que des phases composites anhydrites II, anhydrite III alpha, et hémihydrate alpha.
[Revendication 9] Procédé selon la revendication précédente, dans lequel la micronisation est une micronisation autogène cinétique obtenue par mécanosynthèse de particules.
[Revendication 10] Procédé selon la revendication précédente, dans lequel les composants du complexe d’activation calcio-sulfato-alcalin ont une température comprise entre 150°C et 300°C à la sortie du procédé thermodynamique flash.
[Revendication 11] Procédé selon l’une des revendications 7 à 10, dans lequel le procédé thermodynamique flash comporte une étape de choc thermique réalisé à l’intérieur d’un fluide chaud de vapeur surchauffée.
[Revendication 12] Procédé selon la revendication précédente, dans lequel la transformation du sulfate de calcium est une transformation en phases complexes réalisée par un dispositif de réacteur thermodynamique flash comprenant un conduit toroïdal et une unité de gestion électronique.
[Revendication 13] Procédé selon la revendication précédente, dans lequel l’unité de gestion électronique est apte à contrôler les paramètres de l’étape d’activation thermique.
[Revendication 14] Procédé selon l’une des revendications 12 et 13, dans lequel on réalise une étape de déshydratation quasi instantanée des composants du complexe d’activation calcio-sulfato-alcalin par contact direct et par entrainement par un fluide gazeux chargé en vapeur surchauffée dans le conduit toroïdal placé en dépression en sortie et soumis à l’entrée à une pression comprise entre 50 mbar et 200 mbar, à une température réglée entre 250°C et 450°C, générant un flux du fluide gazeux entrant à une vitesse comprise entre 15 m/s et 25 m/s.
[Revendication 15] Procédé selon la revendication précédente, dans lequel le fluide chaud chargé en vapeur surchauffé est partiellement recyclé et mélangé avec un air neuf dans un caisson de mélange électro- régulé. Traitement sous vapeur surchauffée présurisée caractéristique des phases sulfate de calcium alpha
[Revendication 16] Procédé selon la revendication précédente, dans lequel l’air neuf est réchauffé par le fluide chaud extrait dans un échangeur thermique air / air.
[Revendication 17] Procédé selon la revendication précédente, dans lequel le fluide chargé en vapeur est chauffé par un brûleur automatisé et mélangé dans une chambre de combustion avant d’être injecté dans le réacteur thermodynamique flash par l’intermédiaire d’une batterie d’injecteurs.
[Revendication 18] Procédé selon la revendication précédente, dans lequel à la sortie du réacteur thermodynamique flash, la vitesse du fluide gazeux chaud est comprise entre 30 m/s et 50 m/s, la température est comprise entre 180°C et 300°C.
[Revendication 19] Procédé selon l’une des revendications précédentes, dans lequel la troisième étape de trempe froide est réalisée de façon à refroidir le complexe d’activation calcio-sulfato-alcalin à une température comprise entre 30°C et 50°C en moins d’une minute.
[Revendication 20] Procédé selon la revendication précédente, dans lequel la deuxième étape d’activation dudit complexe d’activation calcio- sulfato-alcalin comprend une transformation et activation du sulfate de calcium par un procédé thermodynamique flash, et la troisième étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin activé en sortie du procédé thermodynamique flash avec les composants aluminosilicates composants aluminosilicates pouzzolaniques pulvérulents à 30°C +/- 15°C dans un mélangeur en continu.
[Revendication 21] Procédé selon la revendication 19, dans lequel la deuxième étape d’activation dudit complexe d’activation calcio-sulfato-alcalin comprend une transformation et activation du sulfate de calcium par un procédé thermodynamique flash, et la troisième étape de trempe froide est réalisée par mélange rapide du complexe d’activation calcio-sulfato-alcalin en sortie du procédé thermodynamique flash avec les composants aluminosilicates pouzzolaniques, par exemple laitiers sidérurgiques moulus, à température ambiante.
[Revendication 22] Ciment sursulfaté obtenu par le procédé selon l’une des revendications précédentes.
[Revendication 23] Utilisation d'un ciment selon la revendication 22, pour sa mise en oeuvre :
•dans la production de béton à faible chaleur d’hydratation, à prise mer, résistants aux sulfates, résistants aux acides et la production des mortiers techniques ; ou •dans la production de béton cellulaire coulé ou moulé durci à pression atmosphérique, comprenant ledit ciment, de l'eau de gâchage, au moins un agent tensioactif, au moins un agent fluidifiant, et le cas échéant au moins un agent moussant ; ou •dans la composition d’un liant hydraulique routier (LHR) à durcissement normal ou rapide élaboré ; ou •dans la production d’un activateur calcio-sulfato-alcalin pour améliorer les performances de ciments des bétons et des mortiers ; ou
•pour améliorer les performances des ciments, des bétons, des mortiers techniques, des ciments aux laitiers, des ciments alumineux, des ciments sulfo-alumineux et des liants géotechniques ou routiers, des plâtres ,des chaux hydrauliques ou aériennes ; ou
•pour la fabrication de béton de sable à base de granulats de sables ronds éoliens, ou de sable de dune, de sables éoliens ou de sable ordinaire ; ou
•pour la fabrication de granulats allégés, isolants thermiques et acoustiques à base de déchets végétaux ou bois ou pailles broyées ou autres déchets de basse densité, par minéralisation de ces composants au moyen d’un enrobage par coulis à prise rapide à base dudit ciment ; ou •pour la fabrication de bétons thermiquement activés ; ou •pour la fabrication de composants plâtre de très haute dureté shore mis en oeuvre par moulage, coulage, injection, projection, stratification ; ou •pour l’encapsulation des déchets industriels dangereux par enrobage de ces composants dans une matrice minérale stable et non lixiviable ; ou
•pour la production d’éléments composites préfabriqués à base de bois et de béton, d’éléments de types panneaux, panneaux sandwich, panneaux isolants, panneaux acoustiques dalles, prédalles, murs.
PCT/EP2020/087276 2019-12-20 2020-12-18 Procédé de fabrication de ciments sursulfatés WO2021123349A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/757,487 US20230019095A1 (en) 2019-12-20 2020-12-18 Method for producing supersulphated cement
CA3161526A CA3161526A1 (fr) 2019-12-20 2020-12-18 Procede de fabrication de ciments sursulfates
EP20833875.6A EP4077234A1 (fr) 2019-12-20 2020-12-18 Procédé de fabrication de ciments sursulfatés
MX2022007325A MX2022007325A (es) 2019-12-20 2020-12-18 Metodo para producir cemento supersulfatado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915293A FR3105219B1 (fr) 2019-12-20 2019-12-20 Procédé de fabrication de ciments sursulfatés
FRFR1915293 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021123349A1 true WO2021123349A1 (fr) 2021-06-24

Family

ID=71661907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/087276 WO2021123349A1 (fr) 2019-12-20 2020-12-18 Procédé de fabrication de ciments sursulfatés

Country Status (6)

Country Link
US (1) US20230019095A1 (fr)
EP (1) EP4077234A1 (fr)
CA (1) CA3161526A1 (fr)
FR (1) FR3105219B1 (fr)
MX (1) MX2022007325A (fr)
WO (1) WO2021123349A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574033A (zh) * 2019-04-16 2021-10-29 陶氏环球技术有限责任公司 存储稳定的水泥浆
WO2023041669A1 (fr) * 2021-09-17 2023-03-23 Saint-Gobain Weber France Mousse minérale

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104466A1 (fr) 2014-01-10 2015-07-16 Greenmade Development Limited Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104466A1 (fr) 2014-01-10 2015-07-16 Greenmade Development Limited Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d'un composant pouzzolanique; leur procédé de fabrication et leurs utilisations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574033A (zh) * 2019-04-16 2021-10-29 陶氏环球技术有限责任公司 存储稳定的水泥浆
CN113574033B (zh) * 2019-04-16 2023-10-20 陶氏环球技术有限责任公司 存储稳定的水泥浆
WO2023041669A1 (fr) * 2021-09-17 2023-03-23 Saint-Gobain Weber France Mousse minérale
FR3127215A1 (fr) * 2021-09-17 2023-03-24 Saint-Gobain Weber France Mousse minérale

Also Published As

Publication number Publication date
FR3105219B1 (fr) 2021-12-31
US20230019095A1 (en) 2023-01-19
FR3105219A1 (fr) 2021-06-25
MX2022007325A (es) 2022-07-19
EP4077234A1 (fr) 2022-10-26
CA3161526A1 (fr) 2021-06-24

Similar Documents

Publication Publication Date Title
AU683101B2 (en) Use of alumina clay with cement fly ash mixtures
AU2007219709B2 (en) Matrix for masonry elements and method of manufacture thereof
EP2514727B1 (fr) Composition de béton de calcaire activé par un alcali et utilisation de la composition dans le coulage de béton
WO2015104466A1 (fr) Ciments hydrauliques à base de ciment ou de clinker de ciment ou de la chaux, de sulfate de calcium, et d&#39;un composant pouzzolanique; leur procédé de fabrication et leurs utilisations
RU2673092C2 (ru) Гидравлическая композиция с низким содержанием клинкера
WO2021123349A1 (fr) Procédé de fabrication de ciments sursulfatés
CA2537283A1 (fr) Ciment de construction, et procede d&#39;obtention d&#39;un ciment de construction
Grellier et al. Alternative hydraulic binder development based on brick fines: Influence of particle size and substitution rate
JP2007015893A (ja) ペーパースラッジ焼却灰造粒水熱固化体を用いた軽量モルタル又はコンクリート
Malathy et al. Lime based concrete and mortar enhanced with pozzolanic materials–State of art
JPWO2007097435A1 (ja) コンクリート硬化体及びコンクリート組成物
JP2005162564A (ja) モルタル・コンクリート用膨張材及びこれを用いたコンクリート
WO2013140234A1 (fr) Procede de preparation de liants hydrauliques comprenant un melange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium
JP2007131477A (ja) フライアッシュセメント組成物及びそれを用いたコンクリート成形品
JP4630539B2 (ja) モルタル・コンクリート用膨張材及びコンクリート
Bouleghebar et al. The effect of brick and glass powder on the mechanical properties and porosity of self-compacting mortar
JP4028966B2 (ja) セメント系組成物の製造方法
Memis et al. Some durability properties of alkali activated materials (AAM) produced with ceramic powder and micro calcite
US11912631B2 (en) Method for the kinetic regulation of cementitious binders
JP2024032184A (ja) 活性化方法、二酸化炭素吸収方法、セメント組成物製造方法、モルタル組成物製造方法、コンクリート製造方法、及びプレキャストコンクリート製造方法
JP2022128705A (ja) 非晶質パーライトを用いた耐水性ジオポリマー硬化体及びその製造方法
JP2023051449A (ja) 炭酸化硬化体およびその製造方法
JP2023092536A (ja) 焼成物、水硬性組成物、セメント組成物、および焼成物の製造方法
JP2021160992A (ja) セメント組成物、及びセメント組成物の製造方法
JP2023135425A (ja) 水硬性硬化体の製造方法および炭酸化養生用セメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3161526

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833875

Country of ref document: EP

Effective date: 20220720