WO2021121174A1 - 一种组合物、电容器用聚合物及电容器 - Google Patents

一种组合物、电容器用聚合物及电容器 Download PDF

Info

Publication number
WO2021121174A1
WO2021121174A1 PCT/CN2020/136011 CN2020136011W WO2021121174A1 WO 2021121174 A1 WO2021121174 A1 WO 2021121174A1 CN 2020136011 W CN2020136011 W CN 2020136011W WO 2021121174 A1 WO2021121174 A1 WO 2021121174A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
capacitor
ethylenedioxythiophene
polymer
composition
Prior art date
Application number
PCT/CN2020/136011
Other languages
English (en)
French (fr)
Inventor
赵大成
燕民翔
张尚军
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to KR1020227016295A priority Critical patent/KR102591669B1/ko
Priority to JP2022528069A priority patent/JP7392143B2/ja
Publication of WO2021121174A1 publication Critical patent/WO2021121174A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene

Definitions

  • the invention belongs to the technical field of solid capacitor materials, and specifically relates to a composition, a polymer for capacitors and a capacitor.
  • Solid electrolytic capacitors use conductive polymer with high conductivity and good thermal stability as the electrolyte. Compared with conventional liquid electrolytic capacitors, it has the characteristics of good reliability, long service life, high frequency and low impedance, and large ripple current resistance. Overcome the shortcomings of liquid electrolytic capacitor electrolyte leakage. With the rapid development of the domestic electronic information industry, from the development trend in recent years, solid electrolytic capacitors will gradually replace liquid low-voltage electrolytic capacitors, and will become one of the pillar products of the electronic information industry in the 21st century.
  • the withstand voltage of aluminum electrolytic capacitors is directly proportional to the thickness of the aluminum oxide film layer. If the aluminum oxide film layer is thinned, it means that the aluminum foil withstand voltage decreases. When the thickness of the aluminum oxide film layer is reduced to a certain level After the level, the withstand voltage of the positive electrode foil will not meet the performance requirements, and the positive and negative electrodes will be connected during the use of the capacitor, which is the so-called electrical breakdown; if the corrosion has not reached the above severe conditions, the leakage current will be too large .
  • solid aluminum electrolytic capacitors generally use poly-3,4-ethylenedioxythiophene (PEDOT) polymer materials prepared with 3,4-ethylenedioxythiophene as a monomer. Because the above-mentioned polymer materials have good electrical conductivity and excellent environmental stability, they are widely used as solid electrolytic capacitor cathodes. However, since the strong acidic substances used in the polymerization reaction often remain in the resulting polymer materials, when the capacitor is used, it will corrode the oxide film layer of the aluminum foil and cause it to become thinner, which will cause the problem of a decrease in the capacitor's withstand voltage and an increase in leakage current. Therefore, the withstand voltage and leakage current performance of solid aluminum electrolytic capacitors prepared solely using 3,4-ethylenedioxythiophene monomer can no longer meet the increasing demands of people.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • the present invention provides a composition, a polymer for a capacitor, and a capacitor.
  • the present invention provides a composition including a polymerized monomer, a phosphate compound and a capping agent;
  • the polymerized monomers include 3,4-ethylenedioxythiophene polymerized monomers
  • the capping agent includes a compound represented by structural formula 1;
  • R 4 is selected from H or a hydrocarbon group having 1 to 6 carbon atoms.
  • composition includes the following weight components:
  • the capping agent includes 3,4-ethylenedioxythiophene-2-methyl carboxylate, 3,4-ethylenedioxythiophene-2-ethyl carboxylate, 3,4-ethylenedioxythiophene-2 -One or more of propyl formate, 3,4-ethylenedioxythiophene-2-isopropyl formate, and 3,4-ethylenedioxythiophene-2-butyl formate.
  • the phosphate compound includes a compound represented by structural formula 2;
  • R 1 , R 2, and R 3 are each independently selected from a hydrocarbon group having 1 to 6 carbon atoms, an ether group, a carbonyl group, or an aromatic group in which H or a hydrogen atom is substituted or unsubstituted, and R 1 , R 2 and R 3 is not H at the same time.
  • R 1 , R 2 and R 3 are connected to each other to form a ring.
  • the phosphate compound includes trimethyl phosphate, dimethyl phosphate, ethyl methyl phosphate, triethyl phosphate, diethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate
  • esters tripropyl phosphate, tripropynyl phosphate, dipropyl phosphate, tributyl phosphate, dibutyl phosphate, monobutyl phosphate, and tripentyl phosphate.
  • the polymerized monomer includes a compound represented by structural formula 3;
  • the present invention provides a polymer for capacitors obtained by polymerizing the above-mentioned composition.
  • the present invention provides an aluminum electrolytic capacitor including a capacitor element and a cathode material attached to the capacitor element, and the cathode material includes the above-mentioned capacitor polymer.
  • the capacitor is a solid aluminum electrolytic capacitor or a solid tantalum electrolytic capacitor.
  • the composition provided by the present invention uses a phosphate compound, a polymerizing monomer and a capping agent as polymerization raw materials.
  • Phosphate compounds have a certain degree of lubricity and are easy to contact metal foil directly. To a certain extent, they can be used as metal foil slow-release agents to prevent corrosion, repair and protect the oxide film on the metal foil, and significantly reduce capacitors. The occurrence of damage to the oxide film on the metal foil; at the same time, the use of the compound shown in structural formula 1 as the end-capping agent can reduce the degree of polymerization in the polymerization reaction of polymerized monomers, slow down the polymerization rate of monomers, thereby reducing the acidity of the system, and further prevent The occurrence of corrosion.
  • An embodiment of the present invention provides a composition including a polymerized monomer, a phosphate compound, and a capping agent;
  • the polymerized monomers include 3,4-ethylenedioxythiophene polymerized monomers
  • the capping agent includes a compound represented by structural formula 1;
  • R 4 is selected from H or a hydrocarbon group having 1 to 6 carbon atoms.
  • Phosphate compounds have a certain degree of lubricity and are easy to directly contact with metal foil. To a certain extent, they can be used as metal foil slow-release agents to prevent corrosion. It can repair and protect the oxide film on the metal foil. Reduce the occurrence of damage to the oxide film on the capacitor metal foil; at the same time, the use of the compound shown in Structural Formula 1 as the end-capping agent can reduce the degree of polymerization in the polymerization reaction of the polymerized monomer, slow down the polymerization speed of the monomer, and thereby reduce the acidity of the system. Further prevent the occurrence of corrosion.
  • the composition includes the following weight components:
  • the composition includes the following weight components:
  • the addition amount of the phosphate compound is too low, the protective effect on the aluminum foil oxide film is not obvious; if the addition amount of the phosphate compound is too high, the conductivity of the polymer after polymerization will be deteriorated , And the adhesion effect of polymer and metal foil is reduced.
  • the addition amount of the end-capping agent is too low, the degree of polymerization of the polymerization reaction is not significantly reduced; if the addition amount of the end-capping agent is too high, the polymerization of the polymer after polymerization is likely to be too low, thereby It affects the structural strength of the polymer and is not conducive to the improvement of the safety performance of the capacitor.
  • the capping agent includes methyl 3,4-ethylenedioxythiophene-2-carboxylate, ethyl 3,4-ethylenedioxythiophene-2-carboxylate, 3,4-ethylenedioxythiophene One or more of propyl-2-carboxylate, isopropyl 3,4-ethylenedioxythiophene-2-carboxylate, and butyl 3,4-ethylenedioxythiophene-2-carboxylate.
  • the phosphate compound includes a compound represented by structural formula 2;
  • R 1 , R 2, and R 3 are each independently selected from H or substituted or unsubstituted hydrocarbon groups with 1 to 6 carbon atoms, ether groups, carbonyl groups or aromatic groups, and the substituents are halogen, hydroxyl or A carboxyl group, and R 1 , R 2 and R 3 are not H at the same time.
  • two of R 1 , R 2 and R 3 are connected to each other to form a ring.
  • the phosphate compound includes trimethyl phosphate, dimethyl phosphate, methyl ethyl phosphate, triethyl phosphate, diethyl phosphate, dimethyl ethyl phosphate, methyl One or more of diethyl phosphate, tripropyl phosphate, tripropynyl phosphate, dipropyl phosphate, tributyl phosphate, dibutyl phosphate, monobutyl phosphate, and tripentyl phosphate.
  • 3,4-ethylenedioxythiophene polymerized monomers refer to 3,4-ethylenedioxythiophene and its derivatives that can undergo polymerization at positions 2 and 5 on the thiophene ring. Things.
  • the polymerized monomer includes a compound represented by structural formula 3;
  • Another embodiment of the present invention provides a polymer for capacitors, which is obtained by polymerizing the above-mentioned composition.
  • the polymer for capacitors obtained by polymerization of the above composition has reduced corrosiveness of the metal foil, can effectively reduce the leakage current of the capacitor, and improve the stability of the performance of the solid capacitor.
  • Another embodiment of the present invention provides an aluminum electrolytic capacitor, which includes a capacitor element and a cathode material attached to the capacitor element, and the cathode material includes the capacitor polymer described above.
  • the capacitor is a solid aluminum electrolytic capacitor or a solid tantalum electrolytic capacitor.
  • This embodiment is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including the following steps:
  • an aqueous polymer dispersion is prepared by free radical polymerization.
  • the specific implementation process is: take 1753g of water and 90.32g of sodium polystyrene sulfonate, mix them uniformly in a disperser at high speed, under the protection of a nitrogen atmosphere, control the temperature in the reactor to 22°C, and add 17.54g of iron sulfate aqueous solution (1.3 % Concentration) and 7.25 g of the above-mentioned polymerization raw materials, continue to react for 24 hours, and discharge to obtain a polymer dispersion PEDOT/PSS intermediate.
  • the polymer dispersion PEDOT:PSS intermediate is mixed with anion and cation exchange resin to remove impurity ions. Take 500 g of the polymer dispersion PEDOT:PSS intermediate from which impurity ions have been removed, add 53.2 g of polyethylene glycol 1000, mix and stir for 8 hours and then homogenize with a homogenizer to obtain a polymer dispersion.
  • the dried capacitor element is impregnated with polymer dispersion at room temperature and a vacuum of -0.09MPa for 20 minutes.
  • the element is taken out and the polymer dispersion on its surface is wiped off.
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This example is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This embodiment is used to illustrate a composition, a polymer for capacitors, and a method for preparing capacitors disclosed in the present invention, including the following steps:
  • the composition was prepared into a 25% monomer solution, the capacitor element was used to impregnate the monomer solution for 2 minutes, the capacitor element was taken out and dried in an oven at 60°C for 30 minutes, and then cooled to room temperature.
  • the capacitor element treated by the above steps is impregnated with a 60% concentration of ferric p-toluenesulfonate ethanol oxidant solution under the conditions of normal temperature and a vacuum of -0.085MPa, and the impregnation time is 5 minutes.
  • This comparative example is used to compare and illustrate a polymer for capacitors and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This embodiment is used to compare and illustrate a polymer for capacitors and a method for preparing capacitors disclosed in the present invention, including the following operation steps:
  • the capacitor element treated by the above steps is impregnated with a 60% concentration of ferric p-toluenesulfonate ethanol oxidant solution under the conditions of normal temperature and a vacuum of -0.085MPa, and the impregnation time is 5 minutes.
  • This comparative example is used to compare and illustrate a polymer for capacitors and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • This comparative example is used to compare and illustrate a polymer for capacitors and a method for preparing capacitors disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • Example 8 663.4 2.27 7.42 7.3 Comparative example 1 662.2 2.30 7.21 15.2 Comparative example 2 664.2 2.26 7.61 25.7 Comparative example 3 663.1 2.31 7.41 12.5 Comparative example 4 663.5 2.33 7.35 14.2
  • the solid electrolytic capacitor prepared by the polymer for capacitors provided by the present invention has a lower leakage current value, the largest is only 7.3 ⁇ A, while the monomer preparation of Comparative Examples 1 to 4
  • the leakage current value of the obtained solid electrolytic capacitor is obviously larger, the smallest is 12.5 ⁇ A; it shows that the addition of phosphate ester substances and blocking agent effectively alleviates the corrosion of the solid electrolyte to the aluminum foil, reduces the leakage current of the capacitor, and improves The voltage withstand capability of the capacitor is ensured, thereby ensuring the stability of the performance of the solid electrolytic capacitor, which can greatly increase the service life of the solid electrolytic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

为克服现有电解电容器存在金属箔氧化膜腐蚀引起的耐压下降及漏电流增大的问题,本发明提供了一种组合物,包括聚合单体、磷酸酯类化合物和封端剂;所述聚合单体包括3,4-乙烯二氧噻吩类聚合单体;所述封端剂包括结构式1所示的化合物;其中,R4选自H或碳原子数为1~6的烃基。同时,本发明还公开了由上述组合物聚合得到的电容器用聚合物以及包括上述电容器用聚合物的电容器。本发明提供的组合物聚合得到的聚合物对金属箔上的氧化膜能够起到修复和保护的作用,显著减少电容器金属箔上氧化膜破坏的发生。

Description

一种组合物、电容器用聚合物及电容器 技术领域
本发明属于固态电容器材料技术领域,具体涉及一种组合物、电容器用聚合物及电容器。
背景技术
固态电解电容器采用电导率高、热稳定性好的导电高分子作为电解质,与常规液态电解电容器相比,具有可靠性好、使用寿命长、高频低阻抗、耐特大纹波电流等特性,并克服了液态电解电容器电解液容易漏液的弊端。随着国内电子信息产业的飞速发展,从近几年的发展趋势来看,固态电解电容器将逐步替代液态低压电解电容器,并将成为21世纪电子信息产业的支柱产品之一。
随着人们对固态电解电容器性能要求的提高,进一步提高导电高分子电容器的耐电压,降低漏电流,从而提升电容器性能及使用寿命成为研究者共同追求的目标。铝电解电容器的耐电压与三氧化二铝氧化膜层的厚度呈正比关系,如果三氧化二铝氧化膜层减薄,也即意味着铝箔耐电压下降,当铝箔氧化膜层厚度减薄到一定程度后,正极箔耐电压将达不到性能要求,电容器使用过程中出现正负极导通,即所谓的电击穿;如果腐蚀还没有达到上述之恶劣条件时,将会出现漏电流偏大。管控漏电流大小也成为各大固态铝电解电容器生产厂家的控制重点。同时,近年来市场对于缩体电容器的需要,以及铝固态电解电容器成本下降的需求,电容器厂家使用的正箔耐电压有进一步下降的趋势。因此,对于减缓阳极箔的腐蚀,降低电容器漏电流等方面性能有了更高的要求。
目前,固态铝电解电容器普遍使用以3,4-乙烯二氧噻吩为单体制备的聚3,4-乙烯二氧噻吩(PEDOT)聚合物材料。由于上述聚合物材料具有良好的导电性和优异的环境稳定性,因而广泛用作固态电解电容器阴极。但由于聚合反应使用的强酸性物质往往会残留于生成的聚合物材料中,在电容器使用时,会腐蚀铝箔氧化膜层致使其减薄,从而引起电容器耐压下降及漏电流增大的问题,因此,单纯使用3,4-乙烯二氧噻吩单体制备的固态铝电解电容器其耐压值及漏电流性能已无法满足人们日益增长的需求。
发明内容
针对现有电解电容器存在金属箔氧化膜腐蚀引起的耐压下降及漏电流增大的问题,本发明提供了一种组合物、电容器用聚合物及电容器。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种组合物,包括聚合单体、磷酸酯类化合物和封端剂;
所述聚合单体包括3,4-乙烯二氧噻吩类聚合单体;
所述封端剂包括结构式1所示的化合物;
Figure PCTCN2020136011-appb-000001
其中,R 4选自H或碳原子数为1~6的烃基。
可选的,所述组合物包括以下重量组分:
聚合单体96~99.9998份,封端剂0.0001~1份,磷酸酯类化合物0.0001~3份。
可选的,所述封端剂包括3,4-乙烯二氧噻吩-2-甲酸甲酯、3,4-乙烯二氧噻吩-2-甲酸乙酯、3,4-乙烯二氧噻吩-2-甲酸丙酯、3,4-乙烯二氧噻吩-2-甲酸异丙酯、3,4-乙烯二氧噻吩-2-甲酸丁酯中的一种或多种。
可选的,所述磷酸酯类化合物包括结构式2所示的化合物;
Figure PCTCN2020136011-appb-000002
其中,R 1、R 2和R 3各自独立地选自H或氢原子被取代或未取代的碳原子数为1~6的烃基、醚基、羰基或芳香基,且R 1、R 2和R 3不同时为H。
可选的,R 1、R 2和R 3中两个相互连接成环。
可选的,所述磷酸酯类化合物包括磷酸三甲酯、磷酸二甲酯、磷酸甲乙酯、磷酸三乙酯、磷酸二乙酯、二甲基乙基磷酸酯、甲基二乙基磷酸酯、磷酸三丙酯、磷酸三丙炔酯、磷酸二丙酯、磷酸三丁酯、磷酸二丁酯、磷酸单丁酯和磷酸三戊酯中的一种或多种。
可选的,所述聚合单体包括如结构式3所示的化合物;
Figure PCTCN2020136011-appb-000003
另一方面,本发明提供了一种电容器用聚合物,由上述的组合物聚合得到。
另一方面,本发明提供了一种铝电解电容器,包括电容器素子和附着于所述电容器素子上的阴极材料,所述阴极材料包括如上所述的电容器用聚合物。
可选的,所述电容器为固态铝电解电容器或固态钽电解电容器。
根据本发明提供的组合物,其使用磷酸酯类化合物、聚合单体和封端剂作为聚合原料。磷酸酯类化合物具有一定润滑性,易于金属箔直接接触,在一定程度上可作为金属箔缓释剂,防止腐蚀的发生,对金属箔上的氧化膜起到修复和保护的作用,显著减少电容器金属箔上氧化膜破坏的发生;同时,采用结构式1所示的化合物作为封端剂,能够在聚合单体的聚合反应中降低聚合度,减缓单体聚合速度,从而降低体系的酸度,进一步防止腐蚀的发生。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一实施例提供了一种组合物,包括聚合单体、磷酸酯类化合物和封端剂;
所述聚合单体包括3,4-乙烯二氧噻吩类聚合单体;
所述封端剂包括结构式1所示的化合物;
Figure PCTCN2020136011-appb-000004
其中,R 4选自H或碳原子数为1~6的烃基。
磷酸酯类化合物具有一定润滑性,易与金属箔直接接触,在一定程度上可作为金属箔缓释剂,防止腐蚀的发生,对金属箔上的氧化膜起到修复和保护的作用,可以显著减少电容器金属箔上氧化膜破坏的发生;同时,采用结构式1所示的化合物作为封端剂,能够在聚合单体的聚合反应中降低聚合度,减缓单体聚合速度,从而降低体系的酸度,进一步防止腐蚀的发生。
在一些实施例中,所述组合物包括以下重量组分:
聚合单体96~99.9998份,封端剂0.0001~1份,磷酸酯类化合物0.0001~3份。
在更优选的实施例中,所述组合物包括以下重量组分:
聚合单体98~99.9899份,封端剂0.0001~0.5份,磷酸酯类化合物0.01~1.5份。
若所述磷酸酯类化合物的添加量过低,则对铝箔氧化膜的保护作用不明显;若所述磷酸酯类化合物的添加量过高,则会导致聚合后的聚合物的导电性变差,以及聚合物与金属箔的附着效果降低。
若所述封端剂的添加量过低,则对聚合反应的聚合度降低不明显;若所述封端剂的添加量过高,则易导致聚合后的聚合物的聚合度过低,从而影响聚合物的结构强度,不利于电容器安全性能的提高。
在一些实施例中,所述封端剂包括3,4-乙烯二氧噻吩-2-甲酸甲酯、3,4-乙烯二氧噻吩-2-甲酸乙酯、3,4-乙烯二氧噻吩-2-甲酸丙酯、3,4-乙烯二氧噻吩-2-甲酸异丙酯、3,4-乙烯二氧噻吩-2-甲酸丁酯中的一种或多种。
在一些实施例中,所述磷酸酯类化合物包括结构式2所示的化合物;
Figure PCTCN2020136011-appb-000005
Figure PCTCN2020136011-appb-000006
其中,R 1、R 2和R 3各自独立地选自H或氢原子被取代或未取代的碳原子数为1~6的烃基、醚基、羰基或芳香基,取代基为卤素、羟基或羧基,且R 1、R 2和R 3不同时为H。
在一些实施例中,R 1、R 2和R 3中两个相互连接成环。
在更优选的实施例中,所述磷酸酯类化合物包括磷酸三甲酯、磷酸二甲酯、磷酸甲乙酯、磷酸三乙酯、磷酸二乙酯、二甲基乙基磷酸酯、甲基二乙基磷酸酯、磷酸三丙酯、磷酸三丙炔酯、磷酸二丙酯、磷酸三丁酯、磷酸二丁酯、磷酸单丁酯和磷酸三戊酯中的一种或多种。
需要说明的是,在本发明的描述中,3,4-乙烯二氧噻吩类聚合单体是指噻吩环上2位和5位能够发生聚合反应的3,4-乙烯二氧噻吩及其衍生物。
在一些实施例中,所述聚合单体包括如结构式3所示的化合物;
Figure PCTCN2020136011-appb-000007
本发明的另一实施例提供了一种电容器用聚合物,由上述的组合物聚合得到。
相比于现有电容器用的聚合物,通过上述组合物聚合得到的电容器用聚合物具有降低的金属箔的腐蚀性,能够有效降低电容器的漏电流,提高固电容器性能的稳定性。
本发明的另一实施例提供了一种铝电解电容器,包括电容器素子和附着于所述电容器素子上的阴极材料,所述阴极材料包括如上所述的电容器用聚合物。
在一些实施例中,所述电容器为固态铝电解电容器或固态钽电解电容器。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括以下操作步骤:
以0.07%重量份的磷酸三丁酯、0.01%重量份的3,4-乙烯二氧噻吩-2-甲酸甲 酯、99.92%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
以上述组合物作为聚合原料,通过自由基聚合方式制备聚合物水分散体。具体的实施工艺为:取1753g水和90.32g聚苯乙烯磺酸钠,在分散机内高速混合均匀,在氮气氛围保护下,控制反应器内温度为22℃,加入17.54g硫酸铁水溶液(1.3%浓度)和7.25g上述聚合原料,继续反应24h,出料得到聚合物分散体PEDOT/PSS中间体。将该聚合物分散体PEDOT:PSS中间体与阴阳离子交换树脂进行混合去除杂质离子。取去除杂质离子的聚合物分散体PEDOT:PSS中间体500g,加入53.2g聚乙二醇1000,混合搅拌8h后使用均质机均质处理,即得到聚合物分散液。
将烘干后的电容器素子在常温下、真空度为-0.09MPa的条件下含浸聚合物分散液20min,取出素子,擦掉其表面的聚合物分散液,125℃烘烤1h,含浸、烘烤工序循环3次。含浸完毕后,电容器素子封口组立装配成固态电解电容器。
实施例2
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.2%重量份的甲基二乙基磷酸酯、0.1%重量份的3,4-乙烯二氧噻吩-2-甲酸乙酯、99.7%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例3
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以1.0%重量份的二甲基乙基磷酸酯、0.3%重量份的3,4-乙烯二氧噻吩-2-甲酸丙酯、98.7%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例4
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.62%重量份的磷酸三丙酯、0.0002%重量份的3,4-乙烯二氧噻吩-2-甲酸丁酯、99.3798%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例5
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.006%重量份的磷酸三丙炔酯、0.006%重量份的3,4-乙烯二氧噻吩-2-甲酸甲酯,99.988%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例6
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.05%重量份的磷酸三乙酯、0.024%重量份的3,4-乙烯二氧噻吩-2-甲酸异丙酯、99.926%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例7
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.37%重量份的磷酸单丁酯、0.052%重量份的3,4-乙烯二氧噻吩-2-甲酸甲酯、99.578%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
实施例8
本实施例用于说明本发明公开的一种组合物、电容器用聚合物及电容器的制备方法,包括以下操作步骤:
以0.06%重量份的磷酸三丁酯、0.04%重量份的3,4-乙烯二氧噻吩-2-甲酸甲酯、99.9%重量份的3,4-乙烯二氧噻吩,将上述三种物质混匀,制备含有聚合单体、磷酸酯类化合物和封端剂的组合物。
采用乙醇为溶剂将上述组合物配制成25%的单体溶液,使用电容器素子含 浸上述单体溶液2min,取出电容器素子于60℃烘箱内干燥30min,后冷却至常温。
上述步骤处理之后的电容器素子在常温、真空度为-0.085MPa的条件下含浸60%浓度的对甲基苯磺酸铁乙醇氧化剂溶液,含浸时间为5min。
含浸完毕后,将电容器素子移出,放入恒温恒湿箱进行聚合反应,在温度40℃,湿度40%条件下,反应1h;调节温度至60℃,湿度至25%,反应2h;调节温度至70℃,湿度至20%,反应1h;调节温度至150℃,湿度至0%,反应1h;调节温度至110℃,湿度至0%,反应3h。聚合反应完毕,电容器封口组立装配成固态电解电容器。
对比例1
本对比例用于对比说明本发明公开的一种电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
采用纯单体3,4-乙烯二氧噻吩替换实施例1中的聚合原料。
对比例2
本实施例用于对比说明本发明公开的一种电容器用聚合物及电容器的制备方法,包括以下操作步骤:
采用乙醇为溶剂将3,4-乙烯二氧噻吩配制成25%的单体溶液,使用电容器素子含浸单体溶液2min,取出电容器素子于60℃烘箱内干燥30min,后冷却至常温。
上述步骤处理之后的电容器素子在常温、真空度为-0.085MPa的条件下含浸60%浓度的对甲基苯磺酸铁乙醇氧化剂溶液,含浸时间为5min。
含浸完毕后,将电容器素子移出,放入恒温恒湿箱进行聚合反应,在温度40℃,湿度40%条件下,反应1h;调节温度至60℃,湿度至25%,反应2h;调节温度至70℃,湿度至20%,反应1h;调节温度至150℃,湿度至0%,反应1h;调节温度至110℃,湿度至0%,反应3h。聚合反应完毕,电容器封口组立装配成固态电解电容器。
对比例3
本对比例用于对比说明本发明公开的一种电容器用聚合物及电容器的制备 方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.07%重量份的磷酸三丁酯、99.93%重量份的3,4-乙烯二氧噻吩,将上述两种物质混匀,制备含有聚合单体和磷酸酯类化合物的组合物。
对比例4
本对比例用于对比说明本发明公开的一种电容器用聚合物及电容器的制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
以0.01%重量份的3,4-乙烯二氧噻吩-2-甲酸甲酯、99.99%重量份的3,4-乙烯二氧噻吩,将上述两种物质混匀,制备含有聚合单体和封端剂的组合物。
性能测试
对上述实施例1~7和对比例1~4制备得到的固态电解电容器进行如下性能测试:
使用自动电子零件分析仪和漏电流测试仪对固态电解电容器的静电容量、损耗值、等效串联电阻和漏电流进行测试,其中容量、损耗值是在120Hz频率下测试,等效串联电阻是在100KHz频率下测试,漏电流为在额定电压下充电1min后使用漏电流测试仪测试,测试方式为常规的自动电子零件分析仪、漏电流测试仪的测试方法,在此不累述。
测试结果如表1所示。
表1固态铝电解电容器各项性能测试结果(16V680μF芯包)
  Cap(μF) DF(%) ESR(mΩ) I LC(μA)
实施例1 667.4 2.28 7.34 5.8
实施例2 663.5 2.33 7.24 5.2
实施例3 657.5 2.36 7.38 3.1
实施例4 660.7 2.34 7.37 3.6
实施例5 663.6 2.32 7.19 6.7
实施例6 661.4 2.35 7.23 6.3
实施例7 664.4 2.28 7.28 4.7
实施例8 663.4 2.27 7.42 7.3
对比例1 662.2 2.30 7.21 15.2
对比例2 664.2 2.26 7.61 25.7
对比例3 663.1 2.31 7.41 12.5
对比例4 663.5 2.33 7.35 14.2
从表1的测试结果可以看出,通过本发明提供的电容器用聚合物制备得到的固态电解电容器具有较低的漏电流值,最大的仅为7.3μA,而对比例1~4的单体制备得到的固态电解电容器其漏电流值则明显偏大,最小的都为12.5μA;说明磷酸酯类物质和封端剂的添加有效缓解了固态电解质对铝箔的腐蚀,降低了电容器的漏电流,提升了电容器的耐电压能力,从而确保了固态电解电容器性能的稳定性,可极大提升固态电解电容器的使用寿命。
对比实施例1、对比例3和对比例4的测试结果可知,磷酸酯类化合物和封端剂均起到了缓解固态电解质对铝箔腐蚀的作用,降低了电容器的漏电流。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种组合物,其特征在于,包括聚合单体、磷酸酯类化合物和封端剂;
    所述聚合单体包括3,4-乙烯二氧噻吩类聚合单体;
    所述封端剂包括结构式1所示的化合物;
    Figure PCTCN2020136011-appb-100001
    其中,R 4选自H或碳原子数为1~6的烃基。
  2. 根据权利要求1所述的组合物,其特征在于,所述组合物包括以下重量组分:
    聚合单体96~99.9998份,封端剂0.0001~1份,磷酸酯类化合物0.0001~3份。
  3. 根据权利要求1所述的组合物,其特征在于,所述封端剂包括3,4-乙烯二氧噻吩-2-甲酸甲酯、3,4-乙烯二氧噻吩-2-甲酸乙酯、3,4-乙烯二氧噻吩-2-甲酸丙酯、3,4-乙烯二氧噻吩-2-甲酸异丙酯、3,4-乙烯二氧噻吩-2-甲酸丁酯中的一种或多种。
  4. 根据权利要求1所述的组合物,其特征在于,所述磷酸酯类化合物包括结构式2所示的化合物;
    Figure PCTCN2020136011-appb-100002
    其中,R 1、R 2和R 3各自独立地选自H或氢原子被取代或未取代的碳原子数 为1~6的烃基、醚基、羰基或芳香基,且R 1、R 2和R 3不同时为H。
  5. 根据权利要求4所述的组合物,其特征在于,R 1、R 2和R 3中两个相互连接成环。
  6. 根据权利要求4所述的组合物,其特征在于,所述磷酸酯类化合物包括磷酸三甲酯、磷酸二甲酯、磷酸甲乙酯、磷酸三乙酯、磷酸二乙酯、二甲基乙基磷酸酯、甲基二乙基磷酸酯、磷酸三丙酯、磷酸三丙炔酯、磷酸二丙酯、磷酸三丁酯、磷酸二丁酯、磷酸单丁酯和磷酸三戊酯中的一种或多种。
  7. 根据权利要求1所述的组合物,其特征在于,所述聚合单体包括如结构式3所示的化合物;
    Figure PCTCN2020136011-appb-100003
  8. 一种电容器用聚合物,其特征在于,由权利要求1~7任意一项所述的组合物聚合得到。
  9. 一种电容器,其特征在于,包括电容器素子和附着于所述电容器素子上的阴极材料,所述阴极材料包括如权利要求8所述的电容器用聚合物。
  10. 根据权利要求9所述的电容器,其特征在于,所述电容器为固态铝电解电容器或固态钽电解电容器。
PCT/CN2020/136011 2019-12-17 2020-12-14 一种组合物、电容器用聚合物及电容器 WO2021121174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227016295A KR102591669B1 (ko) 2019-12-17 2020-12-14 조성물, 커패시터용 중합체 및 커패시터
JP2022528069A JP7392143B2 (ja) 2019-12-17 2020-12-14 組成物、コンデンサ用ポリマー及びコンデンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911303518.1A CN112979927B (zh) 2019-12-17 2019-12-17 一种组合物、电容器用聚合物及电容器
CN201911303518.1 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021121174A1 true WO2021121174A1 (zh) 2021-06-24

Family

ID=76342423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136011 WO2021121174A1 (zh) 2019-12-17 2020-12-14 一种组合物、电容器用聚合物及电容器

Country Status (4)

Country Link
JP (1) JP7392143B2 (zh)
KR (1) KR102591669B1 (zh)
CN (1) CN112979927B (zh)
WO (1) WO2021121174A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363078A (zh) * 2021-07-28 2021-09-07 深圳市金富康电子有限公司 一种固液混合态卷绕型铝电解电容器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350252A (zh) * 2008-09-17 2009-01-21 中国振华(集团)新云电子元器件有限责任公司 一种常温稳定存放的导电高分子电解质聚合液配方及其应用
CN102779653A (zh) * 2012-07-18 2012-11-14 中国振华(集团)新云电子元器件有限责任公司 一种高导电率聚合物电解质电容器的两步制作方法
CN106062033A (zh) * 2014-02-27 2016-10-26 帝化株式会社 导电性高分子制造用氧化剂兼掺杂剂、其溶液、使用它们的任意一者制造而成的导电性高分子及使用该导电性高分子作为电解质的电解电容器
JP2017101104A (ja) * 2015-11-30 2017-06-08 Necトーキン株式会社 導電性高分子、導電性高分子溶液、導電性高分子材料ならびに電解コンデンサおよびその製造方法
US20180133493A1 (en) * 2016-11-14 2018-05-17 Avx Corporation Medical Device Containing a Solid Electrolytic Capacitor
US20190019626A1 (en) * 2017-07-12 2019-01-17 Apaq Technology Co., Ltd. Polymer composite material for solid capacitor, capacitor package structure using the same and manufacturing method thereof
CN109741858A (zh) * 2018-12-04 2019-05-10 广州中国科学院先进技术研究所 绿色印刷的全聚合物柔性透明电极及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037903A (ja) * 2003-06-30 2005-02-10 Fuji Denki Gazo Device Kk 電子写真用感光体およびそれを用いた電子写真装置
CN1816535A (zh) * 2003-06-30 2006-08-09 富士电机影像器材有限公司 醌基化合质,电子照相的光感受器及使用该光感受器的电子照相设备
US7361728B1 (en) * 2004-09-30 2008-04-22 Tda Research, Inc. Electrically conducting materials from branched end-capping intermediates
CN101486839B (zh) * 2008-01-18 2011-08-17 郑州泰达电子材料科技有限公司 导电性高分子组合物、固体电解质以及使用该固体电解质的固体电解电容器
JP2010095469A (ja) * 2008-10-16 2010-04-30 Tama Kagaku Kogyo Kk 3,4−ジアルコキシ(またはアルキレンジオキシ)チオフェンの製造方法
WO2012112676A2 (en) * 2011-02-15 2012-08-23 Kemet Electronics Corporation Materials and methods for improving corner and edge coverage of solid electrolytic capacitors
CN103295785B (zh) * 2012-02-22 2016-05-18 尼吉康株式会社 固体电解电容器
JP6250340B2 (ja) * 2013-09-18 2017-12-20 テイカ株式会社 正孔輸送材料、エレクトロルミネッセンス素子および薄膜太陽電池
TWI506031B (zh) * 2014-11-05 2015-11-01 Ind Tech Res Inst 鐵鹽氧化劑組合物、固態電容器、及其製造方法
JP6977246B2 (ja) * 2015-12-04 2021-12-08 東ソー株式会社 帯電防止薄膜、及び帯電防止用水溶液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350252A (zh) * 2008-09-17 2009-01-21 中国振华(集团)新云电子元器件有限责任公司 一种常温稳定存放的导电高分子电解质聚合液配方及其应用
CN102779653A (zh) * 2012-07-18 2012-11-14 中国振华(集团)新云电子元器件有限责任公司 一种高导电率聚合物电解质电容器的两步制作方法
CN106062033A (zh) * 2014-02-27 2016-10-26 帝化株式会社 导电性高分子制造用氧化剂兼掺杂剂、其溶液、使用它们的任意一者制造而成的导电性高分子及使用该导电性高分子作为电解质的电解电容器
JP2017101104A (ja) * 2015-11-30 2017-06-08 Necトーキン株式会社 導電性高分子、導電性高分子溶液、導電性高分子材料ならびに電解コンデンサおよびその製造方法
US20180133493A1 (en) * 2016-11-14 2018-05-17 Avx Corporation Medical Device Containing a Solid Electrolytic Capacitor
US20190019626A1 (en) * 2017-07-12 2019-01-17 Apaq Technology Co., Ltd. Polymer composite material for solid capacitor, capacitor package structure using the same and manufacturing method thereof
CN109741858A (zh) * 2018-12-04 2019-05-10 广州中国科学院先进技术研究所 绿色印刷的全聚合物柔性透明电极及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363078A (zh) * 2021-07-28 2021-09-07 深圳市金富康电子有限公司 一种固液混合态卷绕型铝电解电容器及其制备方法

Also Published As

Publication number Publication date
JP7392143B2 (ja) 2023-12-05
KR102591669B1 (ko) 2023-10-20
JP2023502945A (ja) 2023-01-26
KR20220086613A (ko) 2022-06-23
CN112979927A (zh) 2021-06-18
CN112979927B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US9460860B2 (en) Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
CN101504887B (zh) 一种固体铝电解电容器的制造方法
EP3419033A1 (en) A solid polymer capacitor having improve electrical parameters at low temperature
US9390863B2 (en) Composite electrode and electrolytic capacitor
US20140334066A1 (en) Solid electrolyte capacitor and a method for manufacturing the same
CN105405661A (zh) 一种固态电解电容的制作方法
CN110692115A (zh) 混合型铝电解电容器及其制造方法
CN108538591A (zh) 一种耐高温的导电高分子聚合物电解电容器及其制备方法
WO2020073189A1 (zh) 混合型铝电解电容器及其制造方法
WO2021121174A1 (zh) 一种组合物、电容器用聚合物及电容器
TW201405606A (zh) 電解電容器用電解質混合物、用以合成導電高分子之組成物及使用此混合物之導電高分子固態電解電容器
US20080224090A1 (en) Method of manufacturing solid electrolytic capacitor
WO2020224630A1 (zh) 一种导电聚合物、电容器及其制备方法
CN110010353B (zh) 一种聚合物分散体及固态电解电容器
CN112582175B (zh) 一种固态铝电解电容器及其制备方法
CN115312330B (zh) 一种超级电容器电解液及使用该电解液的超级电容器
WO2022218130A1 (zh) 一种铝电解电容器用分散体及铝电解电容器
CN113539693B (zh) 一种降低高压铝电解电容器损耗的方法
WO2022247632A1 (zh) 一种固态电解质电解电容器
CN116364436A (zh) 一种固液混合型铝电解电容器的制造方法
CN102321341B (zh) 导电高分子材料及包括其的电容器
CN114743797B (zh) 一种机械性能好的固态铝电解电容器及其制备方法
CN113628885B (zh) 一种固液混合型电解电容器用电解液及电解电容器
US10262808B2 (en) Conductive composite and capacitor utilizing the same
CN110853927A (zh) 一种低漏电流固态铝电容器的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528069

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227016295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901348

Country of ref document: EP

Kind code of ref document: A1