WO2022166350A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022166350A1
WO2022166350A1 PCT/CN2021/134683 CN2021134683W WO2022166350A1 WO 2022166350 A1 WO2022166350 A1 WO 2022166350A1 CN 2021134683 W CN2021134683 W CN 2021134683W WO 2022166350 A1 WO2022166350 A1 WO 2022166350A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
protective cover
optical fiber
optical transceiver
circuit board
Prior art date
Application number
PCT/CN2021/134683
Other languages
English (en)
French (fr)
Inventor
姬景奇
徐发部
崔伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022166350A1 publication Critical patent/WO2022166350A1/zh
Priority to US18/344,684 priority Critical patent/US20230341640A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment. Among them, the use of silicon photonic chips to realize the photoelectric conversion function has become a mainstream solution adopted by high-speed optical modules.
  • An optical module provided by the present disclosure includes: a circuit board; a first optical transceiver component electrically connected to the circuit board, including a first optical fiber ribbon and a second optical fiber ribbon; a second optical transceiver component, connected to the circuit board Electrical connection; a first protective cover, the cover is set on the first optical transceiver assembly, and includes a main body, and a first support arm and a second support arm are respectively provided at the two side edges of the front end of the main body, and the first support arm is Both the arm and the second support arm are provided with a clamping part and an optical fiber limiting structure, and the optical fiber limiting structure is used to constrain the first optical fiber ribbon and the second optical fiber ribbon;
  • the two optical transceiver assemblies are provided with a positioning portion, and the clamping portion is engaged with the positioning portion to realize the connection between the first protective cover and the second protective cover.
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of an assembly relationship of components on a circuit board according to some embodiments.
  • FIG. 6 is a schematic diagram of an assembly relationship between a circuit board and an optical transceiver assembly according to some embodiments
  • FIG. 7 is a schematic structural diagram of an optical transceiver assembly according to some embodiments.
  • FIG. 8 is a schematic structural diagram of assembling the first protective cover and the second protective cover on the circuit board according to some embodiments.
  • FIG. 9 is a schematic diagram of an assembly structure between the first protective cover and the second protective cover according to some embodiments.
  • FIG. 10 is a schematic diagram of the relative relationship between the first protective cover and the second protective cover according to some embodiments.
  • FIG. 11 is one of the schematic structural diagrams of the first protective cover according to some embodiments.
  • FIG. 12 is a second schematic structural diagram of a first protective cover according to some embodiments.
  • FIG. 13 is one of the schematic structural diagrams of the second protective cover according to some embodiments.
  • FIG. 14 is a second structural schematic diagram of a second protective cover according to some embodiments.
  • FIG. 15 is a third schematic structural diagram of a second protective cover according to some embodiments.
  • FIG. 16 is a schematic diagram of an assembled state between an optical fiber ribbon and a first protective cover according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101.
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 101 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded view of an optical module according to some embodiments.
  • the optical module 200 according to some embodiments includes an upper casing 201 , a lower casing 202 , an unlocking handle 203 , a circuit board 300 , a substrate, a first optical transceiver assembly 400 , and a second optical transceiver
  • the component 500 , the first protective cover 600 and the second protective cover 700 , the optical fiber interface 301 , the first optical transceiver component 400 and the second optical transceiver component can be arranged on the same side of the circuit board 300 , or can be arranged on two sides of the circuit board 300 . side; the first protective cover 600 and the second protective cover 700 are respectively covered on the circuit board 300 to protect the respective wire bonding areas of the first optical transceiver assembly 400 and the second optical transceiver assembly 500 .
  • protection scope of the embodiments of the present disclosure is not limited to the above-mentioned two optical transceiver assemblies and two protective covers.
  • the combination of the cover or the combination of multiple groups of the first protection cover and the second protection cover belong to the protection scope of the embodiments of the present disclosure.
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two sides of the cover plate are perpendicular to the cover plate.
  • the two upper side plates are combined with the two side plates by the two side walls to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end in FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end in FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200, and the opening 205 is located at the side of the optical module 200.
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the optical transceiver device inside the optical module 200 .
  • the combination of the upper case 201 and the lower case 202 is used to facilitate the installation of the circuit board 300, optical transceivers and other devices into the case, and the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips, and the electronic components and chips are connected together according to the circuit design through the circuit traces to realize functions such as power supply, electrical signal transmission, and grounding.
  • the electronic components may include, for example, capacitors, resistors, triodes, and metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • the chip may include, for example, a Microcontroller Unit (MCU), a limiting amplifier (limiting amplifier), a clock and data recovery chip (Clock and Data Recovery, CDR), a power management chip, and a digital signal processing (Digital Signal Processing, DSP) chip .
  • MCU Microcontroller Unit
  • limiting amplifier limiting amplifier
  • CDR clock and data recovery chip
  • DSP digital signal processing
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. .
  • the circuit board 300 further includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of pins which are independent of each other.
  • the circuit board 300 is inserted into the cage 106 , and is electrically connected to the electrical connector in the cage 106 by gold fingers.
  • the golden fingers can be arranged only on one side surface of the circuit board 300 (eg, the upper surface shown in FIG. 4 ), or can be arranged on the upper and lower surfaces of the circuit board 300 , so as to meet the needs of a large number of pins.
  • the golden finger is configured to establish an electrical connection with the upper computer to realize power supply, grounding, I2C signal transmission, data signal transmission, and the like.
  • flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • FIG. 5 is a schematic diagram of an assembly relationship of components on a circuit board according to some embodiments
  • FIG. 6 is a schematic diagram of an assembly relationship between a circuit board and an optical transceiver assembly according to some embodiments
  • FIG. 7 is an optical transceiver assembly according to some embodiments.
  • the structure diagram of the circuit board 300 is described below with reference to FIG. 5 , FIG. 6 , and FIG. 7 .
  • FIG. 5 is a schematic diagram of the assembly relationship of components on the circuit board according to some embodiments.
  • a first optical transceiver component 400 and a second optical transceiver component 500 are provided on the circuit board 3 .
  • An optical transceiver assembly includes a first silicon photonic chip 401 , a first laser assembly 402 , a first optical fiber connector 403 and a second optical fiber connector 404 .
  • the second optical transceiver assembly 500 includes a second silicon photonic chip 501, a second laser assembly 502, a third optical fiber joint 503 and a fourth optical fiber joint 504.
  • One end of the optical fiber ribbon 800a is connected to the optical fiber interface 301, the other end is connected to the second optical fiber connector 404, one end of the optical fiber ribbon 800b is connected to the optical fiber interface 301, the other end is connected to the first optical fiber connector 403, and one end of the optical fiber ribbon 800c is connected to the optical fiber interface 301 is connected, the other end is connected to the fourth optical fiber connector 504 , one end of the optical fiber ribbon 800d is connected to the optical fiber interface 301 , and the other end is connected to the third optical fiber connector 503 .
  • the first silicon photonics chip 401, the first laser assembly 402, the first optical fiber connector 403 are located in the first opening 302 opened on the circuit board 300, the second optical fiber connector 404, the second silicon photonics chip 501, the second laser assembly 502,
  • the third optical fiber connector 503 and the fourth optical fiber connector 504 are located in the second opening 303 opened on the circuit board 300 , which is beneficial to transfer the heat generated when each structure works to the lower casing 202 , and the lower casing 202 dissipates the heat It is released to the outside world to ensure the normal operation of each structure.
  • FIG. 6 is a schematic diagram of an assembly relationship between a circuit board and an optical transceiver assembly according to some embodiments.
  • the circuit board 300 has a first opening 302 and a second opening 303 penetrating the upper and lower surfaces.
  • the power density of the optical module continues to increase, so that a large amount of heat is generated inside the optical module during operation.
  • the optical transceiver assembly 400 and the second optical transceiver assembly 500 are respectively disposed in the first opening 302 and the second opening 303, and the structures in the first optical transceiver assembly 400 and the second optical transceiver assembly 500 are directly fixed to the lower casing
  • the barriers between the structures in the first optical transceiver assembly 400 and the second optical transceiver assembly 500 and the lower casing are reduced, which facilitates the generation of the structures in the first optical transceiver assembly 400 and the second optical transceiver assembly 500.
  • the heat is dissipated in time to ensure the working performance of the optical module;
  • the first optical transceiver assembly 400 includes a first silicon photonics chip 401 , a first laser assembly 402 , a first optical fiber connector 403 and a second optical fiber connector 404 .
  • the second optical transceiver assembly 500 includes a second silicon photonic chip 501, a second laser assembly 502, a third optical fiber connector 503 and a fourth optical fiber connector 504. The working principle of the first optical transceiver assembly 400 will be described below with reference to each structure of the first optical transceiver assembly 400 .
  • the bottom surface of the first laser component 402 is disposed on the substrate, the first laser component 402 emits light through the side surface, and the light emitted by the first laser component 402 enters the first silicon photonics chip 401 .
  • Silicon photonic chips use silicon as the main substrate, and silicon is not an ideal light-emitting material, so the light source cannot be integrated in the silicon photonic chip, and an external laser component is required to provide the light source.
  • the light provided by the first laser component 402 to the silicon photonics chip is light with a single wavelength and stable power, and does not carry data, and the light is modulated by the silicon photonics chip to realize loading of data into the light.
  • the bottom surface of the first silicon photonics chip 401 is disposed on the substrate, and the side surface of the first silicon photonics chip 401 receives the light from the first laser component 402 ; the modulation of the emitted light and the demodulation of the received light are completed by the first silicon photonics chip 401 , the surface of the first silicon photonics chip 401 is provided with a pad that is electrically connected to the circuit board; in some embodiments of the present disclosure, the circuit board provides the first silicon photonics chip 401 with a data signal from the host computer, and the A silicon photonics chip 401 modulates the data signal into light, and the optical signal from the outside is demodulated into an electrical signal by the first silicon photonics chip 401, and then output to the host computer through the circuit board.
  • the silicon photonics chip has a Mach-Zehnder modulator inside to achieve power modulation.
  • Mach-Zehnder modulator modulation adopts the principle of light interference of the same wavelength.
  • a Mach-Zehnder modulator is provided with two interference arms.
  • a beam of light is input to a single interference arm, and a total of two beams of the same wavelength need to be supplied to a Mach-Zehnder modulator. After being modulated by the Mach-Zehnder modulator, the light on the interference arm will merge into a beam of light.
  • a beam of light of a single wavelength can be provided to the silicon photonics chip, and a beam of light of a single wavelength can be divided into two beams of the same wavelength by the optical splitting waveguide inside the silicon photonics chip, and input to the two interference arms of the Mach-Zehnder modulator respectively. It is also possible to provide two beams of light of the same wavelength to the silicon photonic chip, and the two beams of light of the same wavelength are directly input to the two interference arms of the Mach-Zehnder modulator; On the premise of using a single same optical power chip, the solution of providing two beams of light to the silicon photonic chip can provide higher optical power than the solution of providing one beam of light.
  • the bottom surface of the first silicon photonics chip 401 and the bottom surface of the first laser component 402 are respectively disposed on the substrate.
  • the positional relationship between them is very sensitive, and materials with different expansion coefficients will cause different degrees of deformation, which is not conducive to the realization of the preset optical path; in the embodiment of the present disclosure, the first silicon photonics chip 401 and the first laser component 402 are arranged on the same substrate On the bottom, the deformation of the substrate of the same material will affect the position of the silicon photonics chip and the laser assembly equally, so as to avoid a large change in the relative position of the silicon photonics chip and the laser assembly; the expansion coefficient of the substrate material is the same as that of the silicon It is preferred that the materials of the optical chip and/or the laser component have similar expansion coefficients.
  • the main material of the silicon optical chip is silicon
  • the laser component can be made of Kovar metal
  • the substrate is generally made of silicon or
  • a plurality of optical fibers are combined into an optical fiber ribbon.
  • the optical fiber ribbon is connected to an optical fiber connector and an optical fiber interface 301.
  • the optical fiber connector is connected to the silicon photonic chip, and the optical fiber interface is used to connect with an external optical fiber.
  • the first optical fiber connector 403 is connected to the first optical fiber ribbon 800b
  • the second optical fiber connector 404 is connected to the second optical fiber ribbon 800a
  • the first optical fiber ribbon 800b and the second optical fiber ribbon 800a are respectively connected to the optical fiber
  • the interface 301 is connected
  • the first optical fiber connector 403 is used to transmit the emitted light from the silicon photonics chip to the optical fiber interface 301
  • the second optical fiber connector 404 is used to transmit the received light from the optical fiber interface 301 to the first silicon photonics chip. 401.
  • the silicon optical chip is optically coupled with the first optical fiber connector 403 and the second optical fiber connector 404 respectively; one end of the first optical fiber connector 403 is optically coupled with the silicon optical chip, and the other end is connected with the first optical fiber ribbon 800b; one end of the second optical fiber connector 404 It is optically coupled with the silicon photonics chip, and the other end is connected to the second optical fiber ribbon 800a; the first optical fiber connector 403, the second optical fiber connector 404 and the first laser assembly 402 are arranged on the first silicon photonics chip 401 at the same height level.
  • the first optical fiber ribbon 800b and the second optical fiber ribbon 800a are located on the same side surface of the circuit board; the axis direction A of the laser box and the side of the coupling of the silicon photonics chip are at a non-perpendicular angle, and the silicon photonics chip is inclined relative to the laser box.
  • the side where the laser box is coupled with the silicon photonic chip is an inclined plane; the sides where the two optical fiber connectors are coupled with the silicon photonic chip are both inclined planes, and the side where the silicon photonic chip is coupled with the laser box and the optical fiber connector is a plane, and the plane and the laser box are The sides are parallel.
  • the side of the first silicon photonic chip 401 has a first light hole, a second light hole and a third light hole, and the light hole has several light channels, wherein the first light hole and the first optical fiber connector 403 are optically coupled;
  • the second optical hole is optically coupled with the first laser component 402.
  • the second optical hole has more than two light incident channels receiving light of the same wavelength; the third optical hole is connected to the second optical fiber.
  • Connector 404 performs optical coupling.
  • the structures of the second silicon photonics chip 501 , the second laser assembly 502 , the third optical fiber connector 503 and the fourth optical fiber connector 504 in the second optical transceiver assembly 500 and the connection relationship between the structures are the same as those of the first optical transceiver assembly 400 , and will not be repeated here.
  • first optical transceiver assembly 400 and second optical transceiver assembly 500 can realize the form of an 800G optical module, and the present disclosure is not limited to these two optical transceiver assemblies.
  • the number of optical transceiver components when the number of optical transceiver components is greater than or equal to two, the number of optical fiber ribbons is large, and the space of the circuit board 300 is limited.
  • the wire bonding realizes the electrical connection between the silicon photonics chip and the circuit board.
  • the bonding wire needs to be protected, so in the limited circuit board space, it is a problem to be considered to realize the bundling of the optical fiber and the protection of the wire bonding.
  • FIG. 8 is a schematic diagram of the structure of assembling the first protective cover and the second protective cover on the circuit board according to some embodiments
  • FIG. 9 is the assembly between the first protective cover and the second protective cover according to some embodiments.
  • Schematic diagram of the structure FIG. 10 is a schematic diagram of the relative relationship between the first protective cover and the second protective cover according to some embodiments; the following describes the assembly relationship between the two protective covers and the circuit board with reference to FIGS. 8 , 9 and 10 .
  • the position of the main body of the first protective cover 600 is consistent with the position of the first optical transceiver assembly 400
  • the position of the second protective cover 700 is consistent with the position of the second optical transceiver assembly 500
  • the first protective cover 600 is placed on the wire bonding area of the first optical transceiver assembly 400
  • the second protective cover 700 is placed on the wire bonding area of the second optical transceiver assembly 500.
  • the first protective cover The 600 and the second protective cover 700 are two independent structures, that is, the two are split structures. The split structure reduces the difficulty of packaging and saves more space on the circuit board.
  • FIG. 9 is a schematic structural diagram of the assembled state of two protective covers according to some embodiments.
  • the first protective cover 600 and the second protective cover 700 can be well matched and combined together, and the combined form of the two can meet the needs of more The requirements for the protection and bonding of high transmission rate optical modules.
  • FIG. 10 is a schematic diagram of the relative relationship between the first protective cover and the second protective cover according to some embodiments. It can be seen from FIG. 10 that the second protective cover 700 is snapped into the first protective cover 600, and other The form matches the two together. These two protective covers are suitable for optical modules of various structures. When the optical module is a 400G optical module, the second protective cover 700 can be placed on the wire-bonding area of the optical transceiver assembly. When the optical module is an 800G optical module When the first protective cover 600 and the second protective cover 700 are combined, the cover can be placed on the wire-bonding area of the optical transceiver assembly. When the optical module has a higher transmission rate, the first protective cover, Any combination of the second protective cover is sufficient. Therefore, the protection scope of the embodiments of the present disclosure is not limited to the combination of a first protective cover and a second protective cover. Any combination of the first protective cover and the second protective cover It belongs to the protection scope of the embodiments of the present disclosure.
  • first protective cover and the second protective cover are respectively introduced below.
  • FIG. 11 is one of the schematic structural diagrams of the first protective cover according to some embodiments
  • FIG. 12 is the second schematic structural diagram of the first protective cover according to some embodiments.
  • the second protective cover 700 There are gaps, and these gaps all run through the upper and lower surfaces of the second protective cover shell. In order to be easily distinguished from the first protective cover, these gaps are described as the fifth gap, the sixth gap, and the seventh gap in the embodiment of the present disclosure. and the eighth notch.
  • a fifth notch 701 , a sixth notch 702 , a seventh notch 703 and an eighth notch 704 are defined on the housing of the second protective cover 700 .
  • the fifth notch 701 , the sixth notch 702 , the seventh notch 703 and the eighth notch 704 may be The second silicon photonics chip 501, the second laser assembly 502, the third optical fiber connector 503 and the fourth optical fiber connector 504 are exposed respectively to avoid the heat generated when the second silicon photonics chip 501 and the second laser assembly 502 work.
  • the heat dissipation structure on the upper casing 201 passes through the fifth notch 701 , the sixth notch 702 , the second silicon photonics chip 501 , and the second laser component
  • the thermal conductive adhesive on 502 is in contact to realize heat dissipation of the second silicon photonic chip 501 and the second laser component 502 .
  • the second protective cover and the first protective cover are set as separate structures.
  • the A first positioning portion 705 and a second positioning portion 706 are respectively provided on both sides of the housing of the second protective cover.
  • the first positioning portion 705 and the second positioning portion 706 may be in the form of a protruding structure or other forms.
  • the first positioning portion 705 and the second positioning portion 706 are used for positioning and assembling the second protective cover to the first protective cover.
  • FIG. 13 is one of the schematic structural diagrams of the second protective cover according to some embodiments
  • FIG. 14 is the second schematic structural diagram of the second protective cover according to some embodiments
  • FIG. 15 is the structure of the second protective cover according to some embodiments
  • the third schematic diagram in the embodiment of the present disclosure, the side facing the circuit board is defined as the back of the first protective cover, and the side opposite to the back is defined as the front of the first protective cover. It can be seen from FIG. 13 and FIG. 14 that in the embodiment of the present disclosure,
  • the provided first protective cover protects the main body 600a and two support arms 600b arranged at the edges of both sides of the front end of the main body.
  • the first protective cover protects the main body 600a with gaps, and these gaps pass through the upper and lower surfaces of the first protective cover shell.
  • these gaps are respectively described as a first gap, a second gap, a third gap and a fourth gap in the embodiments of the present disclosure.
  • a first notch 601 , a second notch 602 , a third notch 603 and a fourth notch 604 are defined on the shell of the first protective cover 600 .
  • the first notch 601 , the second notch 602 , the third notch 603 and the fourth notch 604 can be The first silicon photonics chip 401, the first laser assembly 402, the first optical fiber connector 403 and the second optical fiber connector 404 are exposed respectively to avoid the heat generated when the first silicon photonics chip 401 and the first laser assembly 402 are working.
  • the heat dissipation structure on the upper casing 201 passes through the first notch 601 , the second notch 602 , the first silicon photonics chip 401 , and the first laser component
  • the thermal conductive adhesive on the 402 contacts realizes the heat dissipation of the first silicon photonic chip 401 and the first laser component 402 .
  • first protective cover 600 and the second protective cover 700 are separate structures, and the second protective cover 700 is clamped between the two arms 600b of the first protective cover 600 during assembly .
  • the first protective cover in the embodiment of the present disclosure further includes two support arms 600b, and the inner surfaces of the two support arms 600b are respectively provided with a second support arm 600b.
  • a snap portion 605 and a second snap portion 606, the first snap portion 605 and the second snap portion 606 are snap-connected with the first positioning portion 705 and the second positioning portion 706, respectively, in some implementations of the present disclosure
  • the first positioning portion 705 and the second positioning portion 706 are snapped to the first snap portion 605 and the second snap portion 606 to snap the second protective cover to the first protective cover
  • the shape of the connecting portion 605 and the second clamping portion 606 can be a concave structure
  • the form of the first positioning portion 705 and the second positioning portion 706 can be a convex structure
  • the corresponding concave structure and the convex structure are snapped together to achieve two Matching of the protective cover.
  • the protection scope of the embodiment of the present disclosure is not limited to this form to realize the assembly of the two protective covers, and other ways to realize the assembly of the two protective covers are also the protection scope of the embodiment of the present disclosure.
  • optical fiber limiting structures 607a and 607b are respectively provided on the two arms 600b;
  • the optical fiber limiting structures 607a and 607b have the functions of bundling and constraining the optical fibers, so that the two optical transceiver components can be routed reasonably in the limited circuit board space, and the optical fiber ribbon layout is optimized.
  • FIG. 16 is a schematic diagram of the assembly state between the optical fiber ribbon and the first protective cover according to some embodiments.
  • the two optical fiber ribbons of the first optical transceiver assembly in the present disclosure pass through the fiber limiting structures 607a and 607b along the left and right sides of the second optical transceiver assembly, respectively.
  • positioning posts 608 are symmetrically arranged on the back of the two support arms 600b, wherein two positioning posts 608 are set on one support arm 600b, and the other Two positioning posts 608 are symmetrically arranged at the corresponding positions of one support arm 600b, and the number of the positioning posts 608 can be set to multiple.
  • the first protective cover is fixed on the circuit board; the structure of the positioning hole 304 on the circuit board 300 can be referred to FIG. 6 , which shows the structure of the positioning hole 304 .
  • a positioning surface 609 is also provided on the back of the first protective cover in , the position and structure of the positioning surface 609 can be referred to FIG. 15 .
  • the circuit board with the optical components When installing, the circuit board with the optical components is already in place, first buckle down the first protective cover, insert the positioning post 608 into the positioning hole 304, press down to make the positioning surface 609 contact the circuit board, and then dispense glue on the positioning post 608 Curing, place the two optical fiber ribbons of the first optical transceiver assembly into the optical fiber limiting structure of the first protective cover respectively, and then install the second protective cover, so that the first positioning part 705 and the second positioning part 70 fall into the first positioning part 705 and the second positioning part 70
  • the first clipping part 605 and the second clipping part 606 on the protective cover are then glued and fixed; finally, the upper casing 201 is installed, and the heat dissipation structure on the upper casing 201 passes through the first gap 601 and the second gap 602
  • the heat dissipation of the first silicon photonics chip 401 and the first laser assembly 402 is realized by contacting the thermally conductive adhesive on the first silicon photonics chip 401 and
  • the embodiment of the present disclosure provides a first protection cover and a second protection cover with independent structures on a limited circuit board space, and the combination of the first protection cover and the second protection cover can protect the wire bonding area of the optoelectronic device in the optical transceiver assembly, And the present disclosure provides an assembly method between the first protective cover and the second protective cover; at the same time, the structures of the first protective cover and the second protective cover in the present disclosure can well realize the integration of the silicon photonic chip and the laser assembly.
  • an optical fiber limit structure is arranged on the support arm of the first protective cover, so that the optical fiber ribbon passes through the first protective cover along the optical fiber limit structure, and the first protective cover is in the protection wire.
  • the optical fiber ribbon can be well restrained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括电路板(300)、第一光收发组件(400)、第二光收发组件(500)、第一保护罩(600)和第二保护罩(700)。第一保护罩(600)用于保护第一光收发组件(400)的打线区域,第二保护罩(700)用于保护第二光收发组件(500)的打线区域,第一保护罩(600)具有保护主体(600a)和保护主体(600a)前端设置的支臂(600b),支臂(600b)上设有光纤限位结构(607a、607b),第一光收发组件(400)的光纤带(800a、800b)可以穿过光纤限位结构(607a、607b)从而实现对光纤带(800a、800b)的约束;支臂(600b)上具有卡接部(605、606),第二保护罩(700)具有定位部(705、706),卡接部(605、606)与定位部(705、706)卡合连接实现第一保护罩(600)与第二保护罩(700)的连接;第一保护罩(600)和第二保护罩(700)二者的组合形式可以满足更高传输速率光模块的需求,且第一保护罩(600)和第二保护罩(700)为分体式结构,容易封装且节省电路板空间。

Description

一种光模块
本公开要求在2021年02月08日提交中国专利局、申请号为202110169770.9、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。其中,采用硅光芯片实现光电转换功能已经成为高速光模块采用的一种主流方案。
发明内容
本公开提供的一种光模块,包括:电路板;第一光收发组件,与所述电路板电连接,包括第一光纤带和第二光纤带;第二光收发组件,与所述电路板电连接;第一保护罩,罩设在所述第一光收发组件上,包括主体,所述主体前端的两侧边缘处分别设有第一支臂和第二支臂,所述第一支臂和第二支臂上均具有卡接部和光纤限位结构,所述光纤限位结构用于约束所述第一光纤带和第二光纤带;第二保护罩,罩设在所述第二光收发组件上,具有定位部,所述卡接部与所述定位部卡合连接以实现所述第一保护罩与所述第二保护罩的连接。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附 图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据一些实施例的一种光通信***的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的电路板上各组件的装配关系示意图;
图6为根据一些实施例的电路板与光收发组件之间的装配关系示意图;
图7为根据一些实施例的光收发组件的结构示意图;
图8为根据一些实施例中将第一保护罩和第二保护罩装配至电路板上的结构示意图;
图9为根据一些实施例的第一保护罩和第二保护罩两者之间的装配结构示意图;
图10为根据一些实施例的第一保护罩和第二保护罩的相对关系示意图;
图11为根据一些实施例的第一保护罩的结构示意图之一;
图12为根据一些实施例的第一保护罩的结构示意图之二;
图13为根据一些实施例的第二保护罩的结构示意图之一;
图14为根据一些实施例的第二保护罩的结构示意图之二;
图15为根据一些实施例的第二保护罩的结构示意图之三;
图16为根据一些实施例的光纤带与第一保护罩之间的装配状态示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此 间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接 主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信***的连接关系图。如图1所示,光通信***主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信***中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至 光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200***笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从 而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的电信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3、图4所示,根据一些实施例的光模块200包括上壳体201、下壳体202、解锁手柄203、电路板300、衬底、第一光收发组件400、第二光收发组件500、第一保护罩600和第二保护罩700、光纤接口301,第一光收发组件400和第二光收发组件可设置在电路板300的同侧,也可设置在电路板300的两侧;第一保护罩600和第二保护罩700分别罩设在电路板300上,用于保护第一光收发组件400和第二光收发组件500各自的打线区域。
需要说明的是,本公开实施例保护范围不限于上述两个光收发组件和两个保护罩,选择适用于光收发组件的第一保护罩或第二保护罩或第一保护罩和第二保护罩的组合或第一保护罩和第二保护罩的多组组合都属于本公开实施例的保护范围。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或 者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,***上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发器件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发器件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200***上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管 (Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以***上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300***笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
图5为根据一些实施例的电路板上各组件的装配关系示意图,图6为根据一些实施例的电路板与光收发组件之间的装配关系示意图,图7为根据一些实施例的光收发组件的结构示意图;下面结合图5、图6、图7集中对电路板300相关的结构进行说明。
图5为根据一些实施例的电路板上各组件的装配关系示意图,如图5所示,本公开实施例中电路板3上设置有第一光收发组件400、第二光收发组件500,第一光收发组件包括第一硅光芯片401、第一激光组件402、第一光纤接头403和第二光纤接头404。第二光收发组件500包括第二硅光芯片501、第二激光组 件502、第三光纤接头503和第四光纤接头504。光纤带800a的一端与光纤接口301连接,另一端与第二光纤接头404连接,光纤带800b的一端与光纤接口301连接,另一端与第一光纤接头403连接,光纤带800c的一端与光纤接口301连接,另一端与第四光纤接头504连接,光纤带800d的一端与光纤接口301连接,另一端与第三光纤接头503连接。第一硅光芯片401、第一激光组件402、第一光纤接头403位于电路板300上开设的第一开口302内,第二光纤接头404、第二硅光芯片501、第二激光组件502、第三光纤接头503和第四光纤接头504位于电路板300上开设的第二开口303内,这样有利于将各结构工作时产生的热量传递至下壳体202上,由下壳体202将热量释放至外界,从而保证各结构的正常工作。
图6为根据一些实施例的电路板与光收发组件之间的装配关系示意图,如图6所示,电路板300具有贯穿上下表面的第一开口302和第二开口303。随着光模块集成度越来越高,光模块的功率密度不断增大,使光模块在工作过程中内部产生大量的热量,本公开通过设置第一开口302和第二开口303,将第一光收发组件400、第二光收发组件500分别设置在第一开口302和第二开口303内,将第一光收发组件400、第二光收发组件500中的各结构均直接固定于下壳体上,减少了第一光收发组件400、第二光收发组件500中的各结构与下壳体之间的阻隔物,方便第一光收发组件400、第二光收发组件500中的各结构产生的热量及时散出,保证光模块的工作性能;第一开口302和第二开口303的形态可以为凹槽,贯穿电路板300。
如图7所示,第一光收发组件400包括第一硅光芯片401、第一激光组件402、第一光纤接头403和第二光纤接头404。同样地,第二光收发组件500包 括第二硅光芯片501、第二激光组件502、第三光纤接头503和第四光纤接头504。下面以第一光收发组件400的各结构说明其工作原理。
第一激光组件402的底面设置在衬底上,第一激光组件402通过侧面出光,其发出的光进入第一硅光芯片401中。硅光芯片采用硅为主要的基材,而硅不是理想的发光材料,所以硅光芯片内无法集成光源,需要外部的激光组件提供光源。第一激光组件402向硅光芯片提供的光为波长单一、功率稳定的光,不携带数据,由硅光芯片对该光进行调制,以实现将数据加载到光中。
第一硅光芯片401的底面设置在衬底上,第一硅光芯片401的侧面接收来自第一激光组件402的光;发射光的调制以及接收光的解调由第一硅光芯片401完成,第一硅光芯片401的表面设置与电路板打线电连接的焊盘;在本公开的某一些实施例中,电路板向第一硅光芯片401提供来自上位机的数据信号,由第一硅光芯片401将数据信号调制到光中,来自外部的光信号经第一硅光芯片401解调成电信号后,通过电路板输出至上位机中。硅光芯片内部具有马赫曾德调制器,以实现功率调制。马赫曾德调制器调制采用了同波长光干涉原理,一个马赫曾德调制器设置有两个干涉臂,单个干涉臂上输入一束光,一共需要向一个马赫曾德调制器提供两束同波长的光,经马赫曾德调制器调制后,干涉臂上的光会融合为一束光。可以向硅光芯片提供一束单一波长的光,由硅光芯片内部的分光波导,将一束单一波长的光分为两束同波长的光,分别输入马赫曾德调制器的两个干涉臂上;也可以向硅光芯片提供两束同波长的光,这两束同波长的光直接分别输入马赫曾德调制器的两个干涉臂上;由于马赫曾德调制器最终将各干涉臂上的光进行融合,在采用单个相同光功率芯片的前提下,向硅光芯片提供两束光的方案,比提供一束光的方案,可以提供更高的光功率。
第一硅光芯片401的底面及第一激光组件402的底面分别设置在衬底上,第一硅光芯片401与第一激光组件402之间具有光连接,光路对硅光芯片及激光组件之间的位置关系非常敏感,不同膨胀系数的材料会导致不同程度的形变,不利于预设光路的实现;本公开实施例中,将第一硅光芯片401与第一激光组件402设置在同一衬底上,同一材料的衬底发生形变,将等同的影响硅光芯片及激光组件的位置,避免对硅光芯片与激光组件的相对位置产生较大的改变;该衬底材料的膨胀系数与硅光芯片和/或激光组件材质的膨胀系数相近为优选,硅光芯片的主材料是硅,激光组件可以采用可伐金属,衬底一般选用硅或玻璃等。
多根光纤合并成光纤带,光纤带连接光纤接头以及光纤接口301,光纤接头与硅光芯片连接,光纤接口用于与外部光纤连接。在本公开的某一些实施例中,第一光纤接头403与第一光纤带800b连接,第二光纤接头404与第二光纤带800a连接,第一光纤带800b和第二光纤带800a分别于光纤接口301连接,第一光纤接头403用于将硅光芯片传来的发射光传输至光纤接口301中,第二光纤接头404用于将光纤接口301传来的接收光传输至第一硅光芯片401中。
硅光芯片分别与第一光纤接头403、第二光纤接头404进行光耦合;第一光纤接头403一端与硅光芯片进行光耦合,另一端与第一光纤带800b连接;第二光纤接头404一端与硅光芯片进行光耦合,另一端与第二光纤带800a连接;第一光纤接头403、第二光纤接头404与第一激光组件402以相同的高度位阶设置在第一硅光芯片401的侧边,第一光纤带800b、第二光纤带800a位于电路板的同侧表面;激光盒的轴线方向A与硅光芯片的耦合的侧面呈非垂直角度,硅光芯片相对与激光盒倾斜设置,激光盒与硅光芯片耦合的侧面为斜面;两个光纤 接头与硅光芯片耦合的侧面均为斜面,硅光芯片与激光盒及光纤接头耦合的侧面为平面,且该平面与激光盒的侧面平行。
第一硅光芯片401的侧面上具有第一光孔、第二光孔及第三光孔,光孔中具有若干个光通道,其中,第一光孔与第一光纤接头403进行光耦合;第二光孔与第一激光组件402进行光耦合,在本公开的某一些实施例中,第二光孔中具有接收相同波长光的两个以上入光通道;第三光孔与第二光纤接头404进行光耦合。
第二光收发组件500中的第二硅光芯片501、第二激光组件502、第三光纤接头503和第四光纤接头504的结构及各结构之间连接关系均与第一光收发组件400相同,在此不再赘述。
上述的第一光收发组件400和第二光收发组件500可以实现800G光模块形态,本公开中不仅限于该两个光收发组件。
可以看出,本公开实施例中当光收发组件大于等于2个时,光纤带数量就多,电路板300的空间有限,在有限空间内要做到更好地约束光纤;同时,通过大量密集的打线实现硅光芯片与电路板电连接,如前述,打线需要被保护起来,那么在有限的电路板空间上,同时实现光纤的集束和打线的保护是需要考虑的问题。
图8为根据一些实施例中将第一保护罩和第二保护罩装配至电路板上的结构示意图,图9为根据一些实施例的第一保护罩和第二保护罩两者之间的装配结构示意图,图10为根据一些实施例的第一保护罩和第二保护罩的相对关系示意图;下面结合图8、图9和图10对两个保护罩与电路板之间的装配关系进行说明。
如图8所述,第一保护罩600的主体的位置与第一光收发组件400的位置一致,第二保护罩700的位置与第二光收发组件500的位置一致,在本公开的某一些实施例中,将第一保护罩600罩设在第一光收发组件400的打线区域上,将第二保护罩700罩设在第二光收发组件500的打线区域上,第一保护罩600和第二保护罩700为两个独立的结构,也就是二者为分体式结构,分体式结构在封装时难度降低,且更节省电路板空间。
图9为根据一些实施例的两个保护罩装配后的状态结构示意图,第一保护罩600和第二保护罩700二者可以很好地匹配和组合到一起,二者的组合形式可以满足更高传输速率光模块的保护打线的需求。
图10为根据一些实施例的第一保护罩和第二保护罩的相对关系示意图,从图10中可以看出,将第二保护罩700卡接到第一保护罩600内,也可以以其他形式将二者匹配到一起。这两个保护罩适用于各种结构的光模块,当光模块为400G光模块时,将第二保护罩700罩设在光收发组件的打线区域上即可,当光模块为800G光模块时,将第一保护罩600和第二保护罩700二者组合的形式罩设在光收发组件的打线区域上即可,当光模块为更大传输速率时,合理选择第一保护罩、第二保护罩的任意组合形态即可,因此本公开实施例的保护范围不限于一个第一保护罩和一个第二保护罩的组合,任一第一保护罩和第二保护罩的组合形态都属于本公开实施例保护范围内。
下面分别介绍根据一些实施例的第一保护罩和第二保护罩的结构。
图11为根据一些实施例的第一保护罩的结构示意图之一;图12为根据一些实施例的第一保护罩的结构示意图之二,如图11和图12所示,第二保护罩700开设有缺口,这些缺口都是贯穿第二保护罩壳体上下表面的,为了便于与第 一保护罩区分,本公开实施例中将这些缺口分别描述为第五缺口、第六缺口、第七缺口和第八缺口。第二保护罩700的壳体上开设第五缺口701、第六缺口702、第七缺口703和第八缺口704,第五缺口701、第六缺口702、第七缺口703和第八缺口704可以分别将第二硅光芯片501、第二激光组件502、第三光纤接头503和第四光纤接头504裸露出来,避免将第二硅光芯片501、第二激光组件502工作时产生的热量积聚在第二保护罩700的壳体内,在本公开的某一些实施例中,上壳体201上的散热结构穿过第五缺口701、第六缺口702与第二硅光芯片501、第二激光组件502上的导热胶接触实现第二硅光芯片501、第二激光组件502的散热。
本公开实施例中为了最大限度地节省电路板空间,将第二保护罩和第一保护罩设为分体结构,为了将第二保护罩装配到第一保护罩上,本公开实施例中的第二保护罩的壳体的两侧分别设有第一定位部705和第二定位部706,第一定位部705和第二定位部706的形式可以为凸起结构,也可以为其他形式。第一定位部705和第二定位部706用于将第二保护罩定位装配到第一保护罩上。
图13为根据一些实施例的第二保护罩的结构示意图之一,图14为根据一些实施例的第二保护罩的结构示意图之二,图15为根据一些实施例的第二保护罩的结构示意图之三,本公开实施例中朝向电路板的一面定义为第一保护罩背面,与背面相对的一面定义为第一保护罩正面,从图13和图14可以看出,本公开实施例中提供的第一保护罩保护主体600a和设置在主体前端两侧边缘处的两个支臂600b,第一保护罩保护主体600a上开设有缺口,这些缺口都是贯穿第一保护罩壳体上下表面的,为了便于与第二保护罩区分,本公开实施例中将这些缺口分别描述为第一缺口、第二缺口、第三缺口和第四缺口。第一保护罩600 的壳体上开设第一缺口601、第二缺口602、第三缺口603和第四缺口604,第一缺口601、第二缺口602、第三缺口603和第四缺口604可以分别将第一硅光芯片401、第一激光组件402、第一光纤接头403和第二光纤接头404裸露出来,避免将第一硅光芯片401、第一激光组件402工作时产生的热量积聚在第一保护罩600的壳体内,在本公开的某一些实施例中,上壳体201上的散热结构穿过第一缺口601、第二缺口602与第一硅光芯片401、第一激光组件402上的导热胶接触实现第一硅光芯片401、第一激光组件402的散热。
在本公开实施例中,第一保护罩600和第二保护罩700是分体结构,在装配时第二保护罩700是被夹持在第一保护罩600的两个支臂600b之间的。
为了将第二保护罩装配到第一保护罩上,同时为了约束光纤带,本公开实施例中的第一保护罩还包括两个支臂600b,两个支臂600b的内侧表面分别开设有第一卡接部605和第二卡接部606,第一卡接部605和第二卡接部606分别与第一定位部705和第二定位部706卡合连接,在本公开的某一些实施例中,将第一定位部705和第二定位部706卡接到第一卡接部605和第二卡接部606从而实现将第二保护罩卡接到第一保护罩上,第一卡接部605和第二卡接部606的形态可以为凹陷结构,第一定位部705和第二定位部706的形式可以为凸起结构,对应的凹陷结构和凸起结构相卡接实现两个保护罩的匹配。本公开实施例的保护范围不限于这种形式来实现两个保护罩的装配,其他能够实现两个保护罩装配到一起的方式也是本公开实施例的保护范围。
如图13所示,本公开实施例中两个支臂600b上还分别开设有光纤限位结构607a和607b;第一光收发组件的两个光纤带分别穿过光纤限位结构607a和607b,光纤限位结构607a和607b对光纤带有集束和约束的作用,使得两个光 收发组件可以在有限电路板空间上合理走纤,光纤带布局得到优化。第一光收发组件的两个光纤带在光纤限位结构607a和607b的状态示意图可参考图16,图16为根据一些实施例的光纤带与第一保护罩之间的装配状态示意图,从图16中可以看出,本公开中第一光收发组件的两个光纤带分别沿着第二光收发组件的左右两侧从光纤限位结构607a和607b中穿过。
本公开实施例中为了将第一保护罩固定在电路板上,在两个支臂600b的背面设置了对称设置了4个定位柱608,其中一个支臂600b上设置两个定位柱608,另一个支臂600b相应位置处对称设有两个定位柱608,定位柱608的数量可以设为多个,对应地,在电路板300上设有定位孔304,定位孔304与定位柱608卡接以将述第一保护罩固定在电路板上;其中电路板300上的定位孔304的结构可以参考图6,图6中示出了定位孔304的结构。
在第一保护罩600通过定位孔304与定位柱608的卡接定位到电路板之后,为了在封装过程中更好地界定第一保护罩和电路板之间的最终装配状态,本公开实施例中的第一保护罩的背面还设置有定位面609,定位面609的位置和结构可参考图15。安装时,带有光组件的电路板已就位,先将第一保护罩扣下,使定位柱608***定位孔304,向下按压使定位面609接触电路板,然后将定位柱608点胶固化,将第一光收发组件的两个光纤带分别放置到第一保护罩的光纤限位结构中,然后安装第二保护罩,使第一定位部705和第二定位部70落入第一保护罩上的第一卡接部605和第二卡接部606中,然后点胶固定;最后安装上壳体201,上壳体201上的散热结构穿过第一缺口601、第二缺口602与第一硅光芯片401、第一激光组件402上的导热胶接触实现第一硅光芯片401、第一激光组件402的散热;上壳体201上的散热结构穿过第五缺口701、第六缺口702 与第二硅光芯片501、第二激光组件502上的导热胶接触实现第二硅光芯片501、第二激光组件502的散热。
综述,本公开实施例在有限电路板空间上提供独立结构的第一保护罩和第二保护罩,第一保护罩和第二保护罩的组合可以保护光收发组件中光电器件的打线区域,且本公开提供了第一保护罩和第二保护罩二者之间的装配方式;同时本公开中的第一保护罩和第二保护罩的结构可以很好地实现硅光芯片和激光组件的散热,保证其正常工作;且同时在第一保护罩的支臂上设置有光纤限位结构,使光纤带沿着光纤限位结构穿过第一保护罩,第一保护罩在保护打线的同时可以很好地约束光纤带。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板;
    第一光收发组件,与所述电路板电连接,包括第一光纤带和第二光纤带;
    第二光收发组件,与所述电路板电连接;
    第一保护罩,罩设在所述第一光收发组件上,包括主体,所述主体前端的两侧边缘处分别设有第一支臂和第二支臂,所述第一支臂和第二支臂上均具有卡接部和光纤限位结构,所述光纤限位结构用于约束所述第一光纤带和第二光纤带;第二保护罩,罩设在所述第二光收发组件上,具有定位部,所述卡接部与所述定位部卡合连接以实现所述第一保护罩与所述第二保护罩的连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述第一支臂上具有第一光纤限位结构,所述第二支臂上具有第二光纤限位结构,所述第一光纤带沿所述第二光收发组件的左侧沿所述第一光纤限位结构穿过,所述第二光纤带沿所述第二光收发组件的右侧沿所述第二光纤限位结构穿过。
  3. 根据权利要求2所述的光模块,其特征在于,所述第二光收发组件被夹持于所述第一支臂和所述第二支臂之间。
  4. 根据权利要求1所述的光模块,其特征在于,所述第一保护罩用于保护所述第一光收发组件的打线区域,所述第二保护罩用于保护所述第二光收发组件的打线区域。
  5. 根据权利要求1所述的光模块,其特征在于,所述第一光收发组件和所述第二光收发组件均包括激光组件、硅光芯片、第一光纤接头和第二光纤接头;
    所述第一保护罩的主体上具有第一缺口、第二缺口、第三缺口和第四缺口,用 于分别使所述第一光收发组件的激光组件、硅光芯片、第一光纤接头和第二光纤接头裸露;
    所述第二保护罩的主体上具有第五缺口、第六缺口、第七缺口和第八缺口,用于分别使所述第二光收发组件的激光组件、硅光芯片、第一光纤接头和第二光纤接头裸露。
  6. 根据权利要求5所述的光模块,其特征在于,所述光模块还包括上壳体,所述上壳体的内壁具有散热结构;
    所述第一缺口和所述第二缺口使所述第一光收发组件的激光组件和硅光芯片与所述散热结构相接触;
    所述第五缺口和所述第六缺口使所述第二光收发组件的激光组件和硅光芯片与所述散热结构相接触。
  7. 根据权利要求1所述的光模块,其特征在于,所述电路板具有贯穿上下表面的第一开口和第二开口,所述第一光收发组件设置于所述第一开口内,所述第二光收发组件设置于所述第二开口内。
  8. 根据权利要求1所述的光模块,其特征在于,所述电路板具有定位孔,所述支臂具有定位柱,所述定位孔与所述定位柱卡接以将所述第一保护罩固定在所述电路板上。
  9. 根据权利要求1所述的光模块,其特征在于,所述卡接部为凹陷部,所述定位部为凸起部,所述凸起部与所述凹陷部卡合连接。
  10. 根据权利要求1所述的光模块,其特征在于,所述第一光纤限位结构和所述第二光纤限位结构分别为第一光纤限位槽和第二光纤限位槽。
PCT/CN2021/134683 2021-02-08 2021-12-01 一种光模块 WO2022166350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/344,684 US20230341640A1 (en) 2021-02-08 2023-06-29 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169770.9A CN114911011B (zh) 2021-02-08 2021-02-08 一种光模块
CN202110169770.9 2021-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,684 Continuation US20230341640A1 (en) 2021-02-08 2023-06-29 Optical module

Publications (1)

Publication Number Publication Date
WO2022166350A1 true WO2022166350A1 (zh) 2022-08-11

Family

ID=82741849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134683 WO2022166350A1 (zh) 2021-02-08 2021-12-01 一种光模块

Country Status (3)

Country Link
US (1) US20230341640A1 (zh)
CN (1) CN114911011B (zh)
WO (1) WO2022166350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066092A1 (zh) * 2022-09-29 2024-04-04 青岛海信宽带多媒体技术有限公司 光模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293607A (zh) * 2012-03-02 2013-09-11 新科实业有限公司 可插拔光收发器
CN109061811A (zh) * 2018-08-10 2018-12-21 武汉联特科技有限公司 双发双收光模块
CN210090745U (zh) * 2019-06-20 2020-02-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN111352192A (zh) * 2018-12-20 2020-06-30 青岛海信宽带多媒体技术有限公司 一种光模块
US20200249401A1 (en) * 2016-04-05 2020-08-06 Radius Universal Llc Connector assemblies for hybrid fiber/wire connections
CN112051646A (zh) * 2019-06-06 2020-12-08 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140205248A1 (en) * 2011-09-15 2014-07-24 Nec Corporation Optical transmitter/receiver apparatus and method of manufacturing same
JP5761150B2 (ja) * 2011-12-28 2015-08-12 住友電気工業株式会社 光モジュール
CN108548102A (zh) * 2018-04-23 2018-09-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN110888206A (zh) * 2019-12-05 2020-03-17 成都微泰光芯技术有限公司 一种硅光芯片与激光器的封装结构及封装方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293607A (zh) * 2012-03-02 2013-09-11 新科实业有限公司 可插拔光收发器
US20200249401A1 (en) * 2016-04-05 2020-08-06 Radius Universal Llc Connector assemblies for hybrid fiber/wire connections
CN109061811A (zh) * 2018-08-10 2018-12-21 武汉联特科技有限公司 双发双收光模块
CN111352192A (zh) * 2018-12-20 2020-06-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN112051646A (zh) * 2019-06-06 2020-12-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN210090745U (zh) * 2019-06-20 2020-02-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN111338039A (zh) * 2020-04-21 2020-06-26 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066092A1 (zh) * 2022-09-29 2024-04-04 青岛海信宽带多媒体技术有限公司 光模块

Also Published As

Publication number Publication date
CN114911011B (zh) 2023-07-14
CN114911011A (zh) 2022-08-16
US20230341640A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
CN111338039B (zh) 一种光模块
CN214795314U (zh) 一种光模块
CN214795313U (zh) 一种光模块
CN114035287B (zh) 一种光模块
CN112965190A (zh) 一种光模块
CN114035288B (zh) 一种光模块
CN114035286B (zh) 一种光模块
CN111948762A (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN112230349A (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2021232716A1 (zh) 一种光模块
WO2021114714A1 (zh) 一种光模块
CN114660740B (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
CN217484546U (zh) 一种光模块
CN114779412B (zh) 一种光模块
CN217484547U (zh) 一种光模块
CN218037454U (zh) 一种光模块
CN217639669U (zh) 一种光接收组件及光模块
US12025842B2 (en) Optical module
WO2023035711A1 (zh) 光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN216248442U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924345

Country of ref document: EP

Kind code of ref document: A1