WO2021117869A1 - 硫化物固体電解質 - Google Patents

硫化物固体電解質 Download PDF

Info

Publication number
WO2021117869A1
WO2021117869A1 PCT/JP2020/046284 JP2020046284W WO2021117869A1 WO 2021117869 A1 WO2021117869 A1 WO 2021117869A1 JP 2020046284 W JP2020046284 W JP 2020046284W WO 2021117869 A1 WO2021117869 A1 WO 2021117869A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
less
content
mol
Prior art date
Application number
PCT/JP2020/046284
Other languages
English (en)
French (fr)
Inventor
祐輝 中山
崇広 伊藤
高橋 司
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020227000652A priority Critical patent/KR102410782B1/ko
Priority to CN202080051840.4A priority patent/CN114128005B/zh
Priority to EP20897760.3A priority patent/EP4075450A4/en
Priority to JP2021517714A priority patent/JP6935041B1/ja
Priority to US17/770,128 priority patent/US11978850B2/en
Publication of WO2021117869A1 publication Critical patent/WO2021117869A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte, and an electrode mixture, a slurry, and a battery using the sulfide solid electrolyte.
  • the safety device can be simplified, the manufacturing cost and productivity are excellent, and the voltage can be increased by stacking in series in the cell. It also has features. Since the sulfide solid electrolyte used in the solid-state battery does not move other than lithium ions, it is expected to lead to improvement in safety and durability, such as no side reaction due to the movement of anions.
  • the sulfide solid electrolyte contains a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, and a halogen (X) element, and also contains a crystal phase having an Argyrodite type crystal structure.
  • Li lithium
  • P phosphorus
  • S sulfur
  • X halogen
  • the sulfide solid electrolyte has excellent lithium ion conductivity, but has high reactivity with water. Therefore, when manufacturing a lithium secondary battery using a sulfide solid electrolyte, the sulfide solid electrolyte may come into contact with the atmosphere and react with moisture in the atmosphere to generate toxic hydrogen sulfide gas, or lithium ion conduction. Sex may be reduced.
  • a part of Li is 1007.3 KJ larger than 520.2 KJ / mol.
  • hydrogen sulfide gas is more than the sulfide solid electrolyte before substitution while maintaining the lithium ion conductivity of the sulfide solid electrolyte before substitution.
  • the present invention includes the following inventions.
  • Lithium (Li) element, phosphorus (P) element, sulfur (S) element, at least one kind of halogen (X) element, and the first element larger than 520.2 KJ / mol and less than 1007.3 KJ / mol. It contains at least one metal (M) element having ionization energy and A sulfide solid electrolyte containing a crystal phase having peaks at 2 ⁇ 25.19 ° ⁇ 1.00 ° and 29.62 ° ⁇ 1.00 ° in an X-ray diffraction pattern measured using CuK ⁇ 1 ray. ..
  • the battery which comprises an electrolyte.
  • the "first ionization energy" in the present invention can be the same as the first ionization energy described in "Schreiber Atkins Inorganic Chemistry (1), 4th Edition, Part I, Basics 1. Atomic Structure". , The description here is omitted.
  • the present invention provides a sulfide solid electrolyte capable of suppressing the generation of hydrogen sulfide gas while maintaining lithium ion conductivity, and an electrode mixture, slurry and battery using the sulfide solid electrolyte. ..
  • FIG. 1 is a diagram showing an X-ray diffraction pattern of the sulfide solid electrolyte produced in Examples 1 to 3.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern of the sulfide solid electrolyte produced in Examples 4 to 7.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the sulfide solid electrolyte produced in Comparative Examples 1 and 2.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of the sulfide solid electrolyte produced in Examples 8 to 10 and Comparative Example 3.
  • the sulfide solid electrolyte of the present invention contains a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, at least one halogen (X) element, and 1007.3 KJ, which is larger than 520.2 KJ / mol. It contains at least one metal (M) element having a first ionization energy of less than / mol.
  • a metal (M) element having a first ionization energy of more than 520.2 KJ / mol and less than 1007.3 KJ / mol may be simply referred to as "metal (M) element" below.
  • At least one kind of halogen (X) element may be one kind of halogen (X) element, or two or more kinds of halogen (X) elements. At least one kind of halogen (X) element can be selected from fluorine (F) element, chlorine (Cl) element, bromine (Br) element and iodine (I) element. From the viewpoint of improving lithium ion conductivity, at least one halogen (X) element is preferably at least one of chlorine (Cl) element and bromine (Br) element, which improves lithium ion conductivity and at the same time. From the viewpoint of reducing the elasticity of the material, it is more preferable that the two elements are chlorine (Cl) element and bromine (Br) element.
  • At least one kind of metal (M) element may be one kind of metal (M) element, or may be two or more kinds of metal (M) elements.
  • the first ionization energy of the metal (M) element is greater than 520.2 KJ / mol and less than 1007.3 KJ / mol.
  • the first ionization energy is the minimum energy required to take an electron from the outermost shell of an atom. Since Li + has a small radius, it is easily stabilized by hydration, and since it is monovalent and has a small electrostatic attraction, it tends to reduce lattice energy. Therefore, Li + tends to enhance the reactivity of the sulfide solid electrolyte with water.
  • the metal (M) element having a first ionization energy of more than 520.2 KJ / mol and less than 1007.3 KJ / mol forms a cation having an ionic radius larger than Li + or has a valence of less than 1007.3 KJ / mol. Since it forms large cations, it tends to weaken the reactivity of the sulfide solid electrolyte with water.
  • the first ionization energy of the metal (M) element is not particularly limited as long as it is larger than 520.2 KJ / mol and less than 1007.3 KJ / mol, but while maintaining the lithium ion conductivity of the sulfide solid electrolyte before substitution.
  • the sulfide solid electrolyte before replacement is preferably 540 KJ / mol or more and 1000 KJ / mol or less, and more preferably 560 KJ / mol or more and 800 KJ / mol or less.
  • the valence of the cation formed by the metal (M) element is usually 1, 2 or 3, preferably 3.
  • the metal (M) element examples include silver (Ag) element, magnesium (Mg) element, calcium (Ca) element, yttrium (Y) element, etc. Among these, lithium ion conductivity is maintained. On the other hand, from the viewpoint of more effectively suppressing the generation of hydrogen sulfide gas, the silver (Ag) element and the yttrium (Y) element are preferable, and the yttrium (Y) element is even more preferable.
  • the first ionization energies of silver (Ag) element, magnesium (Mg) element, calcium (Ca) element and yttrium (Y) element are 731.0 KJ / mol, 737.3 KJ / mol and 589.6 KJ / mol, respectively. It is 615.6 KJ / mol.
  • Group 1 elements that is, hydrogen (H) element, lithium (Li) element, sodium (Na) element, potassium (K) element, rubidium (Rb) element, cesium (Cs) element and francium (Fr) element.
  • the first ionization energies of are 1312.2 KJ / mol, 513.3 KJ / mol, 495.7 KJ / mol, 418.7 KJ / mol, 403.0 KJ / mol, 375.7 KJ / mol and 400.4 KJ / mol, respectively.
  • the first ionization energy of the mercury (Hg) element is 1007.3 KJ / mol. Therefore, Group 1 elements and mercury (Hg) elements do not correspond to metal (M) elements.
  • the contents of lithium (Li) element, phosphorus (P) element, sulfur (S) element, halogen (X) element and metal (M) element in the sulfide solid electrolyte of the present invention maintain lithium ion conductivity. , It can be appropriately adjusted from the viewpoint of suppressing the generation of hydrogen sulfide gas.
  • the content of the phosphorus (P) element is preferably 7.4 mol% or more and 8.5 mol based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention. % Or less, more preferably 7.6 mol% or more and 8.3 mol% or less, and even more preferably 7.9 mol% or more and 8.2 mol% or less.
  • the ratio of the content of the lithium (Li) element to the content of the phosphorus (P) element is preferably 2.0 or more and 6.5 or less, more preferably 3 in terms of molar ratio. It is 0.0 or more and 6.2 or less, more preferably 4.0 or more and 5.8 or less, and even more preferably 4.6 or more and 5.5 or less.
  • the ratio of the content of the sulfur (S) element to the content of the phosphorus (P) element is preferably 4.0 or more and 5.5 or less, more preferably 4 in terms of molar ratio. It is 0.1 or more and 5.3 or less, more preferably 4.2 or more and 5.0 or less, and even more preferably 4.3 or more and 4.6 or less.
  • the ratio of the content of the halogen (X) element to the content of the phosphorus (P) element is preferably 0.50 or more and 2.2 or less, more preferably 0 in terms of molar ratio. It is .80 or more and 2.0 or less, more preferably 1.0 or more and 1.9 or less, and even more preferably 1.4 or more and 1.8 or less.
  • the "content of halogen (X) elements" means the total content of the two or more kinds of halogen elements. The same is true throughout the specification.
  • the ratio of the content of the metal (M) element to the content of the phosphorus (P) element is preferably a molar ratio. Is more than 0 and 2.0 or less, more preferably 0.02 or more and 0.85 or less, even more preferably 0.04 or more and 0.75 or less, and even more preferably 0.08 or more and 0.65 or less.
  • the "content of metal (M) elements" is the total content of the two or more kinds of metal (M) elements. means. The same is true throughout the specification.
  • the ratio of the total content of lithium (Li) element and metal (M) element to the content of phosphorus (P) element from the viewpoint of more effectively suppressing the generation of hydrogen sulfide gas while maintaining lithium ion conductivity.
  • the ratio of the content of the metal (M) element to the content of the lithium (Li) element is preferably a molar ratio. Is greater than 0 and 1.0 or less, more preferably 0.001 or more and 0.6 or less, even more preferably 0.005 or more and 0.3 or less, and even more preferably 0.01 or more and 0.2 or less.
  • the ratio of the content of chlorine (Cl) element to the total content of chlorine (Cl) element and bromine (Br) element is In terms of molar ratio, it is preferably 0.1 or more and 0.9 or less, more preferably 0.2 or more and 0.8 or less, and even more preferably 0.3 or more and 0.7 or less.
  • the sulfide solid electrolyte of the present invention may contain impurities.
  • the content of impurities is preferably less than 5 mol%, more preferably less than 5 mol%, based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention, from the viewpoint of preventing adverse effects on the performance of the sulfide solid electrolyte of the present invention. It is less than 3 mol%, and even more preferably less than 1 mol%.
  • the molar amount of each element contained in the sulfide solid electrolyte As for the molar amount of each element contained in the sulfide solid electrolyte, the amount of each element in the solution obtained by dissolving the sulfide solid electrolyte by alkali melting or the like is known as inductively coupled plasma emission spectroscopic analysis (ICP-AES) or the like. It can be measured by measuring using the method of.
  • ICP-AES inductively coupled plasma emission spectroscopic analysis
  • the crystal phase derived from the above peak may be hereinafter referred to as "the crystal phase of the present invention".
  • the sulfide solid electrolyte of the present invention may contain one kind of crystal phase corresponding to the crystal phase of the present invention, or may contain two or more kinds of crystal phases corresponding to the crystal phase of the present invention.
  • the crystal phase of the present invention preferably has an algyrodite type crystal structure.
  • the algyrodite type crystal structure is a crystal structure possessed by a group of compounds derived from a mineral represented by the chemical formula: Ag 8 GeS 6.
  • the algyrodite type crystal structure is preferably cubic. Since the crystal phase of the present invention has an algyrodite type crystal structure, hydrogen sulfide generation can be effectively suppressed while maintaining ionic conductivity. In other words, one of the features of the present invention is that the crystal phase of the present invention has newly discovered a particularly preferable metal element in a sulfide solid electrolyte having an algyrodite type crystal structure.
  • any metal element can be easily replaced because it undergoes a step of uniformly dispersing the metal element by vitrification.
  • substitution is promoted when it is a specific metal element.
  • the sulfide solid electrolyte of the present invention may be composed of the crystal phase of the present invention, or may be composed of the crystal phase of the present invention and one or more other phases.
  • the other phase may be a crystalline phase or an amorphous phase.
  • Other phases for example, Li 2 S-phase, LiCl phase, LiBr phase, Li 3 PS 4-phase, LiCl 1-a Br a ( 0 ⁇ a ⁇ 1) equality and the like.
  • the crystal phase of the present invention is preferably the main phase.
  • the “main phase” means the phase having the largest proportion based on the total amount of all the crystal phases constituting the sulfide solid electrolyte of the present invention.
  • the ratio of the crystal phase of the present invention contained in the sulfide solid electrolyte of the present invention is preferably 60% by mass or more, more preferably 70% by mass, based on all the crystal phases constituting the sulfide solid electrolyte of the present invention. As mentioned above, it is even more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the ratio of the crystal phases can be confirmed by, for example, an X-ray diffraction method (XRD).
  • the sulfide solid electrolyte of the present invention has the following formula (I): Li a M b PS c X d ... (I) [In the formula, X is at least one kind of halogen (X) element, M is at least one kind of metal (M) element, a is 3.0 or more and 6.5 or less, and b is from 0. It is largely 6.5 or less, c is 3.5 or more and 5.5 or less, and d is 0.50 or more and 3.0 or less. ] It has a composition represented by.
  • X is at least one halogen element selected from fluorine (F) element, chlorine (Cl) element, bromine (Br) and iodine (I) element.
  • the iodine (I) element tends to reduce the lithium ion conductivity, and the fluorine (F) element is difficult to introduce into the crystal structure. Therefore, X is preferably at least one halogen element selected from chlorine (Cl) element and bromine (Br) element.
  • a is preferably 3.0 or more and 6.5 or less, more preferably 3.5 or more and 6.3 or less, and even more preferably 4. It is 0 or more and 6.0 or less.
  • a 3.0 or more, it is possible to suppress a decrease in the amount of Li in the crystal structure, and as a result, a decrease in lithium ion conductivity can be suppressed.
  • a is 6.5 or less, the decrease in the pores of the Li site can be suppressed, and as a result, the decrease in the lithium ion conductivity can be suppressed.
  • b is preferably 0.010 or more and 3.0 or less, more preferably 0.050 or more and 1.5 or less, and even more preferably 0. It is 080 or more and 0.80 or less.
  • c is preferably 3.5 or more and 5.5 or less, more preferably 4.0 or more and 5.3 or less, and even more preferably 4. 2 or more and 5.0 or less.
  • d is preferably 0.70 or more and 2.8 or less, more preferably 0.90 or more and 2.4 or less, and even more preferably 1. It is 1 or more and 1.8 or less.
  • a part of P is silicon (Si) element, germanium (Ge) element, tin (Sn) element, lead (Pb) element, boron (B) element, aluminum (Al) element, gallium ( It may be substituted with one or more elements selected from Ga) element, arsenic (As) element, antimony (Sb) element and bismuth (Bi) element.
  • the sulfide solid electrolyte of the present invention contains the crystal phase of the present invention can be confirmed by the X-ray diffraction pattern measured using CuK ⁇ rays.
  • CuK ⁇ ray for example, CuK ⁇ 1 ray can be used.
  • the maximum value of the X-ray intensity (counts) of 25.19 ° ⁇ 1.0 ° is the peak intensity B, the ratio (B / A).
  • the X-ray intensity is a value measured by the apparatus and conditions used in the examples described later.
  • 2 ⁇ 15.34 ° ⁇ 1.00 °, 17.74 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 °, 47.22 ° ⁇ 1.00
  • It is more preferred to have a peak at one or more positions selected from ° and 51.70 ° ⁇ 1.00 °, 2 ⁇ 25.19 ° ⁇ 1.00 ° and 29.62 ° ⁇ 1.00.
  • the position of the peak is represented by a median value of ⁇ 1.00 °, the median value is preferably ⁇ 0.500 °, and the median value is more preferably ⁇ 0.300 °.
  • the form of the sulfide solid electrolyte of the present invention is, for example, powder.
  • the median diameter D 50 of the sulfide solid electrolyte of the present invention can be appropriately adjusted.
  • the median diameter D 50 of the sulfide solid electrolyte of the present invention is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less.
  • the median diameter D 50 is a particle size at which the cumulative volume is 50% in the volume-based particle size distribution of the powder measured by the laser diffraction / scattering type particle size distribution measurement method.
  • the method for producing the sulfide solid electrolyte of the present invention is not particularly limited.
  • the above-mentioned production method for obtaining the desired sulfide solid electrolyte is preferable, and a known production method can be used. Since the method for producing the sulfide solid electrolyte of the present invention will be described in Examples, the description here will be omitted.
  • the electrode mixture of the present invention contains the sulfide solid electrolyte of the present invention and an active material.
  • the electrode mixture of the present invention is a negative electrode mixture.
  • the active material is a negative electrode active material
  • the electrode mixture of the present invention is a negative electrode mixture.
  • the negative electrode active material examples include a carbon material, a metal material, and the like, and one of these can be used alone or in combination of two or more.
  • the carbon material and the metal material general materials can be mentioned as the negative electrode active material, and thus the description thereof is omitted here.
  • the negative electrode active material preferably has electron conductivity.
  • the blending ratio of the sulfide solid electrolyte and the negative electrode active material of the present invention includes electric capacity, electron conductivity (electron conduction path), ion conductivity (ion conduction path), etc. Can be adjusted as appropriate in consideration of.
  • the blending ratio of the sulfide solid electrolyte and the negative electrode active material of the present invention is preferably 95: 5 to 5:95, more preferably 90:10 to 10:90, and even more preferably 85:15 to 15 in terms of mass ratio. : 85.
  • the negative electrode mixture may further contain a conductive auxiliary agent.
  • the negative electrode mixture preferably contains a conductive auxiliary agent.
  • the conductive auxiliary agent is not particularly limited as long as it has lithium ion conductivity, but the electron conductivity is preferably 1 ⁇ 10 3 S / cm or more, and further 1 ⁇ 10 5 S / cm or more.
  • the conductive auxiliary agent a general material can be appropriately used, and thus the description thereof is omitted here.
  • the content of the conductive auxiliary agent can be appropriately adjusted in consideration of electric capacity, electron conductivity (electron conduction path), ion conductivity (ion conduction path) and the like, and is not particularly limited.
  • the negative electrode mixture may contain a binder for tightly binding the negative electrode active material and the solid electrolyte to each other. Since a general material can be appropriately used as the binder, the description here is omitted.
  • the negative electrode mixture can be produced, for example, by mixing a sulfide solid electrolyte, a negative electrode active material, and optionally a conductive auxiliary agent and / or a binder. Mixing can be performed using, for example, a mortar, a ball mill, a bead mill, a jet mill, a planetary ball mill, a vibrating ball mill, a sand mill, or a cutter mill. The mixing may be carried out in a dry manner or in a wet manner, but is preferably carried out in a wet manner.
  • the solvent used in the wet is preferably an organic solvent.
  • the electrode mixture of the present invention is a positive electrode mixture.
  • the electrode mixture of the present invention is a positive electrode mixture.
  • the positive electrode mixture can be obtained by blending the sulfide solid electrolyte of the present invention and the positive electrode active material.
  • the positive electrode active material is a substance capable of inserting and removing lithium ions, and can be appropriately selected from known positive electrode active materials.
  • Examples of the positive electrode active material include metal oxides and sulfides.
  • Examples of the metal oxide include transition metal oxides and the like.
  • the positive electrode mixture may further contain a conductive auxiliary agent.
  • the description of the conductive auxiliary agent is the same as that of the negative electrode mixture.
  • the description of the blending ratio of the sulfide solid electrolyte and the positive electrode active material of the present invention and the method for producing the positive electrode mixture is the same as that of the negative electrode mixture.
  • the slurry of the present invention contains the sulfide solid electrolyte of the present invention and a dispersion medium.
  • the content of the sulfide solid electrolyte of the present invention in the slurry of the present invention can be appropriately adjusted according to the use of the slurry of the present invention and the like.
  • the slurry of the present invention has various viscosities depending on the content of the sulfide solid electrolyte of the present invention, and takes various forms such as ink and paste depending on the viscosity.
  • the slurry of the present invention can be used in the production of the battery of the present invention.
  • the content of the sulfide solid electrolyte of the present invention in the slurry of the present invention is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, based on the total mass of the slurry of the present invention. Even more preferably, it is 30% by mass or more and 70% by mass or less.
  • the dispersion medium contained in the slurry of the present invention is not particularly limited as long as it is a liquid capable of dispersing the sulfide solid electrolyte of the present invention.
  • examples of the dispersion medium include water, an organic solvent and the like.
  • the dispersion medium may be one kind of solvent or a mixture of two or more kinds of solvents.
  • the battery of the present invention is a battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer located between the positive electrode layer and the negative electrode layer, and the solid electrolyte layer contains the sulfide solid electrolyte of the present invention.
  • the battery of the present invention is preferably a solid-state battery, preferably a lithium solid-state battery.
  • the lithium solid-state battery may be a primary battery or a secondary battery, but is preferably a lithium secondary battery.
  • the solid-state battery includes not only a solid-state battery containing no liquid substance or gel-like substance as an electrolyte, but also an embodiment containing, for example, 50% by mass or less, 30% by mass or less, 10% by mass or less of a liquid substance or gel-like substance as an electrolyte. To do.
  • Examples of the form of the solid-state battery include a laminated type, a cylindrical type, and a square type.
  • the positive electrode layer is a layer containing a positive electrode active material, preferably a layer containing the positive electrode mixture of the present invention.
  • the thickness of the positive electrode layer is preferably 0.01 mm or more and 10 mm or less.
  • a method for producing the positive electrode layer a method similar to a known method can be used.
  • the negative electrode layer is a layer containing a negative electrode active material, preferably a layer containing the negative electrode mixture of the present invention.
  • the thickness of the negative electrode layer is preferably 100 nm or more and 5 mm or less, more preferably 1 ⁇ m or more and 3 mm or less, and even more preferably 5 ⁇ m or more and 1 mm or less.
  • a method for producing the negative electrode layer a method similar to a known method can be used.
  • the electrolyte layer is a layer containing the sulfide solid electrolyte of the present invention.
  • the electrolyte layer may contain a solid electrolyte other than the sulfide solid electrolyte of the present invention.
  • the electrolyte layer may contain a binder.
  • As the binder the same binder as the binder for the negative electrode mixture of the present invention can be used.
  • the thickness of the electrolyte layer is preferably 0.001 mm or more and 1 mm or less.
  • a method for producing the electrolyte layer a method similar to a known method can be used.
  • the battery of the present invention preferably further includes a current collector.
  • the battery of the present invention can be manufactured by joining each member.
  • As the joining method a method similar to a known method can be used.
  • Example 1 (1) Production of sulfide solid electrolyte Li 2 S powder, P 2 S 5 powder, Li Cl powder, so as to have a composition of Li 4.8 Mg 0.6 PS 4.7 Cl 0.8 Br 0.8. LiBr powder and MgS powder were weighed so that the total amount was 5 g. Heptane was added to the mixture of these powders, pulverized and mixed in a wet pulverizing and mixing ball mill for 10 hours, and then vacuum dried in a vacuum dryer to obtain a raw material powder.
  • the obtained raw material powder of carbon steel container (40mm ⁇ 30mm ⁇ 20mm, non-airtight) After filling up to 80% by volume, hydrogen sulfide gas in a tubular electric furnace (H 2 S) 1.0L / min flow After heating at 300 ° C. (product temperature) for 4 hours, the mixture was further heated at 500 ° C. (product temperature) for 4 hours to obtain a baked product.
  • the ascending / descending temperature was set to 200 ° C./hour.
  • the obtained calcined product is roughly pulverized in a mortar, heptane is added, pulverized and mixed in a wet pulverizing and mixing ball mill for 3 hours, and then granulated with a stainless sieve having an opening of 1 ⁇ m to obtain a powdered sulfide solid electrolyte. It was.
  • the additive element used in Example 1 was Mg (Mg first ionization energy: 737.3 KJ / mol), and the ratio of the Mg content to the Li content was 0.125 in terms of molar ratio. is there.
  • composition of the obtained sulfide solid electrolyte was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 4.8 Mg 0.6 PS 4.7 Cl 0.8 Br 0.8 . It was confirmed.
  • the result of analyzing the obtained sulfide solid electrolyte by the X-ray diffraction method is shown in FIG.
  • the X-ray diffraction method uses an XRD apparatus "RINT-TTRIII" manufactured by Rigaku Co., Ltd., with a scanning axis of 2 ⁇ / ⁇ , a scanning range of 5 to 80 deg, a step width of 0.02 deg, and a scanning speed of 20 deg / It was carried out under the condition of min. Specifically, after dropping a few drops of liquid paraffin on the solid electrolyte powder in an argon atmosphere, an X-ray diffraction method was performed in the atmosphere.
  • the ionic conductivity (unit: S / cm) is measured by the AC impedance method at room temperature (25 ° C.) using Solartron 1255B, which is a device manufactured by Toyo Technica, under the condition of measurement frequency of 0.1 Hz to 1 MHz. Was measured.
  • Example 2 As a composition of Li 4.8 Ca 0.6 PS 4.7 Cl 0.8 Br 0.8, Li 2 S powder, P 2 S 5 powder, LiCl powder, LiBr powder, the CaS powder, a total amount A powdery sulfide solid electrolyte was produced in the same manner as in Example 1 except that the weight was weighed to 5 g, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 2 was Ca (first ionization energy of Ca: 589.6 KJ / mol), and the ratio of the Ca content to the Li content was 0.125 in terms of molar ratio. is there.
  • composition of the sulfide solid electrolyte obtained in Example 2 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 4.8 Ca 0.6 PS 4.7 Cl 0.8 Br 0. It was confirmed that it was 0.8.
  • Example 2 The result of analyzing the sulfide solid electrolyte obtained in Example 2 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • Example 3 Li 2 S powder, P 2 S 5 powder, Li Cl powder, Li Br powder, Ag 2 S powder so as to have a composition of Li 4.8 Ag 0.6 PS 4.4 Cl 0.8 Br 0.8.
  • a powdery sulfide solid electrolyte was produced in the same manner as in Example 1 except that the total amount was weighed to 5 g, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 3 was Ag (first ionization energy of Ag: 731.0 KJ / mol), and the ratio of the Ag content to the Li content was 0.125 in terms of molar ratio. is there.
  • composition of the sulfide solid electrolyte obtained in Example 3 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 4.8 Ag 0.6 PS 4.4 Cl 0.8 Br 0. It was confirmed that it was 0.8.
  • Example 3 The result of analyzing the sulfide solid electrolyte obtained in Example 3 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • Example 4 Li 5.3 Mg 0.1 PS 4.4 so as to have the composition of Cl 0.9 Br 0.8, Li 2 S powder, P 2 S 5 powder, LiCl powder, LiBr powder, a MgCl 2 powder, the total amount
  • a powdery sulfide solid electrolyte was produced, and the amount of hydrogen sulfide generated and the conductivity were measured, except that the weight was weighed to 5 g.
  • the additive element used in Example 4 is Mg (first ionization energy of Mg: 737.3 KJ / mol), and the ratio of the content of Mg to the content of Li is 0.019 in terms of molar ratio. Is.
  • composition of the sulfide solid electrolyte obtained in Example 4 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.3 Mg 0.1 PS 4.4 Cl 0.9 Br 0. It was confirmed that it was 0.8.
  • Example 4 The result of analyzing the sulfide solid electrolyte obtained in Example 4 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • Example 5 As a composition of Li 5.3 Ca 0.1 PS 4.4 Cl 0.9 Br 0.8, Li 2 S powder, P 2 S 5 powder, LiCl powder, LiBr powder, the CaCl 2 powder, the total amount
  • a powdery sulfide solid electrolyte was produced, and the amount of hydrogen sulfide generated and the conductivity were measured, except that the weight was weighed to 5 g.
  • the additive element used in Example 5 was Ca (first ionization energy of Ca: 589.6 KJ / mol), and the ratio of the Ca content to the Li content was 0.019 in terms of molar ratio. Is.
  • composition of the sulfide solid electrolyte obtained in Example 5 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.3 Ca 0.1 PS 4.4 Cl 0.9 Br 0. It was confirmed that it was 0.8.
  • Example 5 The result of analyzing the sulfide solid electrolyte obtained in Example 5 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • Example 6 Li 2 S powder, P 2 S 5 powder, LiCl powder, LiBr powder, Ag Cl powder in total so as to have a composition of Li 5.3 Ag 0.1 PS 4.4 Cl 0.8 Br 0.8.
  • a powdery sulfide solid electrolyte was produced in the same manner as in Example 1 except that the weight was weighed to 5 g, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 6 was Ag (first ionization energy of Ag: 731.0 KJ / mol), and the ratio of the Ag content to the Li content was 0.019 in terms of molar ratio. Is.
  • composition of the sulfide solid electrolyte obtained in Example 6 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.3 Ag 0.1 PS 4.4 Cl 0.8 Br 0. It was confirmed that it was 0.8.
  • Example 6 The sulfide solid electrolyte obtained in Example 6 was analyzed by X-ray diffraction (XRD), and the results are shown in FIG.
  • XRD X-ray diffraction
  • Example 7 Li 2 S powder, P 2 S 5 powder, Li Cl powder, Li Br powder, Y 2 S 3 powder so as to have a composition of Li 5.3 Y 0.1 PS 4.5 Cl 0.8 Br 0.8.
  • a powdery sulfide solid electrolyte was produced in the same manner as in Example 1 except that the total amount was weighed to 5 g, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 7 was Y (first ionization energy of Y: 615.6 KJ / mol), and the ratio of the Y content to the Li content was 0.019 in terms of molar ratio. Is.
  • Example 7 The composition of the sulfide solid electrolyte obtained in Example 7 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.3 Y 0.1 PS 4.5 Cl 0.8 Br 0. It was confirmed that it was 0.8.
  • Example 7 The result of analyzing the sulfide solid electrolyte obtained in Example 7 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • Example 8 Weigh Li 2 S powder, P 2 S 5 powder, Li Cl powder, and Mg Cl 2 powder so that the total amount is 5 g so that the composition is Li 5.7 Mg 0.1 PS 4.8 Cl 1.3.
  • Example 1 except that, 0.5 L / min of argon (Ar) gas was circulated in place of hydrogen sulfide gas in a tubular electric furnace, and the conductivity was measured as follows. In the same manner as above, a powdered sulfide solid electrolyte was produced, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 8 is Mg (first ionization energy of Mg: 737.3 KJ / mol), and the ratio of the content of Mg to the content of Li is 0.017 in terms of molar ratio. Is.
  • the conductivity was measured as follows.
  • the sulfide solid electrolyte powder obtained in Example 8 is subjected to uniaxial pressure molding by applying a load of about 6 t / cm 2 in a glove box replaced with sufficiently dried argon gas (dew point -60 ° C or lower).
  • a sample for measuring lithium ion conductivity was prepared, which consisted of pellets having a diameter of 10 mm and a thickness of about 1 mm to 8 mm.
  • the lithium ion conductivity was measured by the AC impedance method using Solartron 1255B manufactured by Toyo Technica Co., Ltd. under the conditions of a temperature of 25 ° C., a frequency of 100 Hz to 1 MHz, and an amplitude of 100 mV.
  • Example 8 The composition of the sulfide solid electrolyte obtained in Example 8 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.7 Mg 0.1 PS 4.8 Cl 1.3 . It was confirmed.
  • Example 8 The result of analyzing the sulfide solid electrolyte obtained in Example 8 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • 2 ⁇ 25 as in the case of the sulfide solid electrolyte obtained in Examples 1 to 7. .19 ° ⁇ 1.00 °, 29.62 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 ° and 47.22 ° ⁇ 1.00 ° positions Had a peak in.
  • Example 9 Weigh Li 2 S powder, P 2 S 5 powder, Li Cl powder, and Mg Cl 2 powder so that the total amount is 5 g so that the composition is Li 5.2 Mg 0.6 PS 4.8 Cl 1.8. Except for the points where the argon (Ar) gas was circulated at 0.5 L / min instead of the hydrogen sulfide gas in the tubular electric furnace, and the conductivity was measured in the same manner as in Example 8. A powdery sulfide solid electrolyte was produced in the same manner as in Example 1, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 9 was Mg (Mg first ionization energy: 737.3 KJ / mol), and the ratio of the Mg content to the Li content was 0.115 in terms of molar ratio. Is.
  • Example 9 The composition of the sulfide solid electrolyte obtained in Example 9 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.2 Mg 0.6 PS 4.8 Cl 1.8 . It was confirmed.
  • Example 9 The result of analyzing the sulfide solid electrolyte obtained in Example 9 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • XRD X-ray diffraction
  • 2 ⁇ 25.19 ° ⁇ 1.00. It had peaks at positions of °, 29.62 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 ° and 47.22 ° ⁇ 1.00 °. ..
  • peaks existing at the positions of 2 ⁇ 15.34 ° ⁇ 1.00 ° and 17.74 ° ⁇ 1.00 ° could be observed.
  • Example 10 Weigh Li 2 S powder, P 2 S 5 powder, Li Cl powder, and Mg Cl 2 powder so that the total amount is 5 g so that the composition is Li 5.6 Mg 0.1 PS 4.8 Cl 1.2. Except for the points where the argon (Ar) gas was circulated at 0.5 L / min instead of the hydrogen sulfide gas in the tubular electric furnace, and the conductivity was measured in the same manner as in Example 8. A powdery sulfide solid electrolyte was produced in the same manner as in Example 1, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Example 10 was Mg (Mg first ionization energy: 737.3 KJ / mol), and the ratio of the Mg content to the Li content was 0.018 in terms of molar ratio. Is.
  • Example 10 The composition of the sulfide solid electrolyte obtained in Example 10 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.6 Mg 0.1 PS 4.8 Cl 1.2 . It was confirmed.
  • Example 10 The result of analyzing the sulfide solid electrolyte obtained in Example 10 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • XRD X-ray diffraction
  • 2 ⁇ 25.19 ° ⁇ 1.00. It had peaks at positions of °, 29.62 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 ° and 47.22 ° ⁇ 1.00 °. ..
  • peaks existing at the positions of 2 ⁇ 15.34 ° ⁇ 1.00 ° and 17.74 ° ⁇ 1.00 ° could be observed.
  • Comparative Example 1 Li 2 S powder, P 2 S 5 powder, Li Cl powder, Li Br powder, Na 2 S powder and NaCl so as to have a composition of Li 4.8 Na 0.6 PS 4.4 Cl 0.8 Br 0.8.
  • a powdery sulfide solid electrolyte was produced in the same manner as in Example 1 except that the total amount of the powder was weighed to 5 g, and the amount of hydrogen sulfide generated and the conductivity were measured.
  • the additive element used in Comparative Example 1 was Na (first ionization energy of Na: 495.7 KJ / mol), and the ratio of the Na content to the Li content was 0.019 in terms of molar ratio. Is.
  • the composition of the sulfide solid electrolyte obtained in Comparative Example 1 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 4.8 Na 0.6 PS 4.4 Cl 0.8 Br 0. It was confirmed that it was 0.8.
  • the composition of the sulfide solid electrolyte obtained in Comparative Example 2 was measured by ICP emission spectrometry, and the composition of the obtained sulfide solid electrolyte was Li 5.4 PS 4.4 Cl 0.8 Br 0.8 . It was confirmed.
  • composition of the sulfide solid electrolyte obtained in Comparative Example 3 was measured by ICP emission spectrometry, and it was confirmed that the composition of the obtained sulfide solid electrolyte was Li 5.8 PS 4.8 Cl 1.2. ..
  • the result of analyzing the sulfide solid electrolyte obtained in Comparative Example 3 by the X-ray diffraction method (XRD) is shown in FIG.
  • the XRD measurement conditions were the same as in Example 1.
  • XRD X-ray diffraction
  • 2 ⁇ 25.19 ° ⁇ 1.00. It had peaks at positions of °, 29.62 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 ° and 47.22 ° ⁇ 1.00 °. ..
  • peaks existing at the positions of 2 ⁇ 15.34 ° ⁇ 1.00 ° and 17.74 ° ⁇ 1.00 ° could be observed.
  • the lithium ion conductivity of the sulfide solid electrolyte before replacement is maintained, and the sulfide solid electrolyte before replacement is used.
  • a metal element Al, Mg, Ca, Y

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Glass Compositions (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生を抑制することができる硫化物固体電解質、並びに、該硫化物固体電解質を用いた電極合材、スラリー及び電池を提供することを目的とし、かかる目的を達成するために、リチウム(Li)元素と、リン(P)元素と、硫黄(S)元素と、少なくとも一種のハロゲン(X)元素と、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する少なくとも一種の金属(M)元素とを含むとともに、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する結晶相を含む、硫化物固体電解質を提供する。

Description

硫化物固体電解質
 本発明は、硫化物固体電解質、並びに、該硫化物固体電解質を用いた電極合材、スラリー及び電池に関する。
 固体電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、製造コスト及び生産性に優れているとともに、セル内で直列に積層して高電圧化を図れるという特徴も有する。固体電池に用いられる硫化物固体電解質では、リチウムイオン以外は移動しないため、アニオンの移動による副反応が生じない等、安全性及び耐久性の向上につながることが期待される。
 硫化物固体電解質として、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含むとともに、アルジロダイト(Argyrodite)型結晶構造を有する結晶相を含む硫化物固体電解質が知られている(例えば、特許文献1~特許文献6)。
特開2016-024874号公報 国際公開第2016/104702号パンフレット 国際公開第2018/003333号パンフレット 国際公開第2018/030436号パンフレット 特開2018-029058号公報 特開2018-045997号公報
 硫化物固体電解質は、リチウムイオン伝導性が優れているが、水分との反応性が高い。このため、硫化物固体電解質を用いてリチウム二次電池を製造する際、硫化物固体電解質が大気に触れて大気中の水分と反応し、有毒な硫化水素ガスを発生する場合や、リチウムイオン伝導性が低下する場合がある。
 そこで、本発明は、リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生を抑制することができる硫化物固体電解質を提供することを目的とする。また、本発明は、該硫化物固体電解質を用いた電極合材、スラリー及び電池を提供することを目的とする。
 本発明者らは、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含むとともに、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する結晶相を含む硫化物固体電解質において、Liの一部を、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する金属(M)元素で置換することにより、置換前の硫化物固体電解質のリチウムイオン伝導性を維持しつつ、置換前の硫化物固体電解質よりも硫化水素ガスの発生を抑制することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の発明を包含する。
[1]リチウム(Li)元素と、リン(P)元素と、硫黄(S)元素と、少なくとも一種のハロゲン(X)元素と、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する少なくとも一種の金属(M)元素とを含むとともに、
 CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する結晶相を含む、硫化物固体電解質。
[2]上記[1]に記載の硫化物固体電解質と活物質とを含む電極合材。
[3]上記[1]に記載の硫化物固体電解質と分散媒とを含むスラリー。
[4]正極層と、負極層と、前記正極層及び前記負極層の間に位置する固体電解質層とを備える電池であって、前記固体電解質層が、上記[1]に記載の硫化物固体電解質を含む、前記電池。
 なお、本発明における「第一イオン化エネルギー」は、「シュライバー・アトキンス 無機化学(上) 第4版 第I部 基礎 1.原子構造」に記載された第一イオン化エネルギーと同様とすることができるため、ここでの説明は省略する。また、本発明で規定する「第一イオン化エネルギー」の単位は「KJ/mol」であり、「シュライバー・アトキンス 無機化学(上) 第4版 付録2」に記載された第一イオン化エネルギーの単位「eV」と相違するが、1eV=96.485KJ/molとして換算することができる。
 本発明により、リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生を抑制することができる硫化物固体電解質、並びに、該硫化物固体電解質を用いた電極合材、スラリー及び電池が提供される。
図1は、実施例1~3で製造された硫化物固体電解質のX線回折パターンを示す図である。 図2は、実施例4~7で製造された硫化物固体電解質のX線回折パターンを示す図である。 図3は、比較例1及び2で製造された硫化物固体電解質のX線回折パターンを示す図である。 図4は、実施例8~10及び比較例3で製造された硫化物固体電解質のX線回折パターンを示す図である。
≪硫化物固体電解質≫
 本発明の硫化物固体電解質は、リチウム(Li)元素と、リン(P)元素と、硫黄(S)元素と、少なくとも一種のハロゲン(X)元素と、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する少なくとも一種の金属(M)元素とを含む。なお、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する金属(M)元素を、以下、単に「金属(M)元素」と呼ぶ場合がある。
 少なくとも一種のハロゲン(X)元素は、一種のハロゲン(X)元素であってもよいし、二種以上のハロゲン(X)元素であってもよい。少なくとも一種のハロゲン(X)元素は、フッ素(F)元素、塩素(Cl)元素、臭素(Br)元素及びヨウ素(I)元素から選択することができる。リチウムイオン伝導性を向上させる観点から、少なくとも一種のハロゲン(X)元素は、塩素(Cl)元素及び臭素(Br)元素のうちの少なくとも一種であることが好ましく、リチウムイオン伝導性を向上させるとともに、材料の低弾性化を図る観点から、塩素(Cl)元素及び臭素(Br)元素の二種であることがさらに好ましい。
 少なくとも一種の金属(M)元素は、一種の金属(M)元素であってもよいし、二種以上の金属(M)元素であってもよい。金属(M)元素の第一イオン化エネルギーは、520.2KJ/molより大きく1007.3KJ/mol未満である。第一イオン化エネルギーは、原子の最外殻から電子を1個奪うときに必要な最低限のエネルギーである。Liは、半径が小さいため、水和により安定化しやすいとともに、1価であり、静電引力が小さいため、格子エネルギーを減少させる傾向がある。したがって、Liは、硫化物固体電解質と水分との反応性を強める傾向がある。これに対して、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する金属(M)元素は、Liよりイオン半径が大きいカチオンを形成するか、あるいは、価数が大きなカチオンを形成するため、硫化物固体電解質と水分との反応性を弱める傾向がある。したがって、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含むとともに、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する結晶相を含む硫化物固体電解質において、Liの一部を、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する金属(M)元素で置換することにより、置換前の硫化物固体電解質のリチウムイオン伝導性を維持しつつ、置換前の硫化物固体電解質よりも硫化水素ガスの発生を抑制することができる。金属(M)元素の第一イオン化エネルギーは、520.2KJ/molより大きく1007.3KJ/mol未満である限り特に限定されないが、置換前の硫化物固体電解質のリチウムイオン伝導性を維持しつつ、置換前の硫化物固体電解質よりも硫化水素ガスの発生をより効果的に抑制する観点から、好ましくは540KJ/mol以上1000KJ/mol以下、さらに好ましくは560KJ/mol以上800KJ/mol以下である。
 金属(M)元素が形成するカチオンの価数は、通常1、2又は3、好ましくは3である。金属(M)元素が形成するカチオンの価数が大きい程、格子エネルギーが増大し、硫化物固体電解質の耐水性が向上する。したがって、硫化物固体電解質が水分と反応しにくくなり、硫化水素ガスの発生をより効果的に抑制することができる。
 金属(M)元素としては、例えば、銀(Ag)元素、マグネシウム(Mg)元素、カルシウム(Ca)元素、イットリウム(Y)元素等が挙げられるが、これらのうち、リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生をより効果的に抑制する観点から、銀(Ag)元素及びイットリウム(Y)元素が好ましく、イットリウム(Y)元素がさらに好ましい。銀(Ag)元素、マグネシウム(Mg)元素、カルシウム(Ca)元素及びイットリウム(Y)元素の第一イオン化エネルギーは、それぞれ、731.0KJ/mol、737.3KJ/mol、589.6KJ/mol及び615.6KJ/molである。
 なお、第一族元素、すなわち、水素(H)元素、リチウム(Li)元素、ナトリウム(Na)元素、カリウム(K)元素、ルビジウム(Rb)元素、セシウム(Cs)元素及びフランシウム(Fr)元素の第一イオン化エネルギーは、それぞれ、1312.2KJ/mol、513.3KJ/mol、495.7KJ/mol、418.7KJ/mol、403.0KJ/mol、375.7KJ/mol及び400.4KJ/molであり、水銀(Hg)元素の第一イオン化エネルギーは、1007.3KJ/molである。したがって、第一族元素及び水銀(Hg)元素は、金属(M)元素に該当しない。
 本発明の硫化物固体電解質におけるリチウム(Li)元素、リン(P)元素、硫黄(S)元素、ハロゲン(X)元素及び金属(M)元素の含有量は、リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生を抑制する観点から適宜調整することができる。
 リチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量は、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは7.4モル%以上8.5モル%以下、さらに好ましくは7.6モル%以上8.3モル%以下、さらに一層好ましくは7.9モル%以上8.2モル%以下である。
 リチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対するリチウム(Li)元素の含有量の比は、モル比で、好ましくは2.0以上6.5以下、さらに好ましくは3.0以上6.2以下、さらに一層好ましくは4.0以上5.8以下、さらに一層好ましくは4.6以上5.5以下である。
 リチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対する硫黄(S)元素の含有量の比は、モル比で、好ましくは4.0以上5.5以下、さらに好ましくは4.1以上5.3以下、さらに一層好ましくは4.2以上5.0以下、さらに一層好ましくは4.3以上4.6以下である。
 リチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対するハロゲン(X)元素の含有量の比は、モル比で、好ましくは0.50以上2.2以下、さらに好ましくは0.80以上2.0以下、さらに一層好ましくは1.0以上1.9以下、さらに一層好ましくは1.4以上1.8以下である。なお、本発明の硫化物固体電解質が二種以上のハロゲン(X)元素を含む場合、「ハロゲン(X)元素の含有量」は、当該二種以上のハロゲン元素の合計含有量を意味する。本明細書を通じて同様である。
 リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生をより効果的に抑制する観点から、リン(P)元素の含有量に対する金属(M)元素の含有量の比は、モル比で、好ましくは0超2.0以下、さらに好ましくは0.02以上0.85以下、さらに一層好ましくは0.04以上0.75以下、さらに一層好ましくは0.08以上0.65以下である。なお、本発明の硫化物固体電解質が二種以上の金属(M)元素を含む場合、「金属(M)元素の含有量」は、当該二種以上の金属(M)元素の合計含有量を意味する。本明細書を通じて同様である。
 リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生をより効果的に抑制する観点から、リン(P)元素の含有量に対するリチウム(Li)元素及び金属(M)元素の合計含有量の比は、モル比で、好ましくは2.2以上6.7以下、さらに好ましくは4.4以上6.2以下、さらに一層好ましくは4.8以上5.8以下、さらに一層好ましくは5.2以上5.6以下である。
 リチウムイオン伝導性を維持しつつ、硫化水素ガスの発生をより効果的に抑制する観点から、リチウム(Li)元素の含有量に対する金属(M)元素の含有量の比は、モル比で、好ましくは0より大きく1.0以下、さらに好ましくは0.001以上0.6以下、さらに一層好ましくは0.005以上0.3以下、さらに一層好ましくは0.01以上0.2以下である。
 本発明の硫化物固体電解質が塩素(Cl)元素及び臭素(Br)元素を含む場合、塩素(Cl)元素及び臭素(Br)元素の合計含有量に対する塩素(Cl)元素の含有量の比は、モル比で、好ましくは0.1以上0.9以下、さらに好ましくは0.2以上0.8以下、さらに一層好ましくは0.3以上0.7以下である。
 本発明の硫化物固体電解質は、不純物を含んでいてもよい。不純物の含有量は、本発明の硫化物固体電解質の性能に対する悪影響を防止する観点から、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは5mol%未満、さらに好ましくは3mol%未満、さらに一層好ましくは1mol%未満である。
 硫化物固体電解質に含まれる各元素のモル量は、硫化物固体電解質をアルカリ溶融等で溶解して得られる溶液中の各元素量を誘導結合プラズマ発光分光分析法(ICP-AES)等の公知の方法を用いて測定することにより、測定することができる。
 本発明の硫化物固体電解質は、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する。上記ピークに由来する結晶相を、以下、「本発明の結晶相」という場合がある。本発明の硫化物固体電解質は、本発明の結晶相に該当する一種の結晶相を含んでいてもよいし、本発明の結晶相に該当する二種以上の結晶相を含んでいてもよい。本発明の結晶相は、アルジロダイト型結晶構造を有することが好ましい。アルジロダイト型結晶構造は、化学式:AgGeSで表される鉱物に由来する化合物群が有する結晶構造である。アルジロダイト型結晶構造は、好ましくは立方晶系である。本発明の結晶相がアルジロダイト型結晶構造を有することにより、イオン伝導度を維持しつつ、硫化水素発生を効果的に抑制できる。換言すると、本発明は、本発明の結晶相がアルジロダイト型結晶構造を有する硫化物固体電解質において、特に好ましい金属元素を新たに発見したことを特徴の一つとする。例えば、ガラスセラミックスからなる硫化物固体電解質においては、ガラス化によって金属元素を均一分散させる工程を経るため、いかなる金属元素においても置換が容易であると考えられるが、固相反応によって作製されるアルジロダイト型結晶構造においては特定の金属元素である場合に置換が促進される。
 本発明の硫化物固体電解質は、本発明の結晶相で構成されていてもよいし、本発明の結晶相と、一種又は二種以上のその他の相とで構成されていてもよい。その他の相は、結晶相であってもよいし、非晶質相であってもよい。その他の相としては、例えば、LiS相、LiCl相、LiBr相、LiPS相、LiCl1-aBr(0<a<1)相等が挙げられる。本発明の硫化物固体電解質が、本発明の結晶相と、一種又は二種以上のその他の相とで構成されている場合、本発明の結晶相が主相であることが好ましい。「主相」とは、本発明の硫化物固体電解質を構成する全ての結晶相の総量を基準として、最も割合の大きい相を意味する。本発明の硫化物固体電解質に含まれる本発明の結晶相の割合は、本発明の硫化物固体電解質を構成する全ての結晶相を基準として、好ましくは60質量%以上、さらに好ましくは70質量%以上、さらに一層好ましくは80質量%以上、さらに一層好ましくは90質量%以上である。なお、結晶相の割合は、例えば、X線回折法(XRD)により確認することができる。
 一実施形態において、本発明の硫化物固体電解質は、下記式(I):
 LiPS・・・(I)
[式中、Xは、少なくとも一種のハロゲン(X)元素であり、Mは、少なくとも一種の金属(M)元素であり、aは3.0以上6.5以下であり、bは、0より大きく6.5以下であり、cは3.5以上5.5以下であり、dは0.50以上3.0以下である。]
で表される組成を有する。
 Xは、フッ素(F)元素、塩素(Cl)元素、臭素(Br)及びヨウ素(I)元素から選択される少なくとも一種のハロゲン元素である。ヨウ素(I)元素はリチウムイオン伝導性が低下させる傾向があり、フッ素(F)元素は結晶構造に導入しにくい。したがって、Xは、塩素(Cl)元素及び臭素(Br)元素から選択される少なくとも一種のハロゲン元素であることが好ましい。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、aは、好ましくは3.0以上6.5以下、さらに好ましくは3.5以上6.3以下、さらに一層好ましくは4.0以上6.0以下である。aが3.0以上であることにより、結晶構造内のLi量が少なくなることを抑制し、結果としてリチウムイオン伝導性の低下を抑制することができる。一方、aが6.5以下であることにより、Liサイトの空孔の減少を抑制し、結果としてリチウムイオン伝導率の低下を抑制することができる。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、bは、好ましくは0.010以上3.0以下、さらに好ましくは0.050以上1.5以下、さらに一層好ましくは0.080以上0.80以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、cは、好ましくは3.5以上5.5以下、さらに好ましくは4.0以上5.3以下、さらに一層好ましくは4.2以上5.0以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、dは、好ましくは0.70以上2.8以下、さらに好ましくは0.90以上2.4以下、さらに一層好ましくは1.1以上1.8以下である。
 式(I)において、Pの一部が、ケイ素(Si)元素、ゲルマニウム(Ge)元素、スズ(Sn)元素、鉛(Pb)元素、ホウ素(B)元素、アルミニウム(Al)元素、ガリウム(Ga)元素、ヒ素(As)元素、アンチモン(Sb)元素及びビスマス(Bi)元素から選択される一種又は二種以上の元素で置換されていてもよい。
 本発明の硫化物固体電解質が本発明の結晶相を含むことは、CuKα線を用いて測定されるX線回折パターンによって確認することができる。CuKα線としては、例えば、CuKα1線を用いることができる。
 本発明の硫化物固体電解質は、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有することが好ましい。これらのピークは、本発明の結晶相に由来するピークである。
 本明細書において、「ピーク」とは、主にピークの頂点を意味する。X線回折パターンにおいて、各範囲にピークが存在するか否かは、次のようにして判定することができる。例えば、2θ=25.19°±1.00°の位置に存在するピークに関しては、X線回折パターンにおいて、2θ=(25.19°-1.0°)±0.5°、すなわち、2θ=24.19°±0.5°と、2θ=(25.19°+1.0°)±0.5°、すなわち、2θ=26.19°±0.5°とのX線強度(counts)の平均値をバックグラウンド(BG)の強度Aとし、25.19°±1.0°のX線強度(counts)の最大値をピーク強度Bとしたときに、その比(B/A)が、1.01以上、好ましくは1.05以上、さらに好ましくは1.10以上であれば、2θ=25.19°±1.00°の位置にピークが存在すると判定することができる。他のピークが所定の位置に存在するか否かを判定する場合も同様である。なお、上記X線強度は、後述する実施例で用いた装置及び条件にて測定した値である。
 本発明の硫化物固体電解質は、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°から選択される1又は2以上の位置にピークを有することがさらに好ましく、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の全ての位置にピークを有することがさらに一層好ましく、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の全ての位置にピークを有することがさらに一層好ましく、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°の全ての位置にピークを有することがさらに一層好ましい。これらのピークは、本発明の結晶相に由来するピークである。
 なお、ピークの位置は、中央値±1.00°で表されているが、中央値±0.500°であることが好ましく、中央値±0.300°であることがさらに好ましい。
 本発明の硫化物固体電解質の形態は、例えば、粉末状である。本発明の硫化物固体電解質のメジアン径D50は、適宜調整することができる。本発明の硫化物固体電解質のメジアン径D50は、好ましくは0.1μm以上100μm以下、さらに好ましくは0.2μm以上10μm以下である。なお、メジアン径D50は、レーザー回折散乱式粒度分布測定法によって測定される当該粉末の体積基準の粒度分布において、累積体積が50%となる粒径である。
≪硫化物固体電解質の製造方法≫
 本発明の硫化物固体電解質の製造方法は特に限定されない。上述した所望の硫化物固体電解質を得られる製造方法が好ましく、公知の製造方法を用いることができる。なお、本発明の硫化物固体電解質の製造方法については実施例に記載するため、ここでの記載は省略する。
≪電極合材≫
 本発明の電極合材は、本発明の硫化物固体電解質と活物質とを含む。
 一実施形態において、本発明の電極合材は、負極合材である。活物質が負極活物質である場合、本発明の電極合材は、負極合材となる。
 負極活物質としては、例えば、炭素材料、金属材料等が挙げられ、これらのうち一種を単独で又は二種以上を組み合わせて用いることができる。炭素材料や金属材料は、負極活物質として一般的な材料が挙げられるため、ここでの記載は省略する。負極活物質は、電子伝導性を有することが好ましい。
 本発明の硫化物固体電解質及び負極活物質の配合割合(本発明の硫化物固体電解質:負極活物質)は、電気容量、電子伝導性(電子伝導パス)、イオン伝導性(イオン伝導パス)等を考慮して適宜調整することができる。本発明の硫化物固体電解質及び負極活物質の配合割合は、質量比で、好ましくは95:5~5:95、さらに好ましくは90:10~10:90、さらに一層好ましくは85:15~15:85である。
 負極合材は、導電助剤をさらに含んでもよい。負極活物質の電子伝導性が低い場合、負極合材は、導電助剤を含むことが好ましい。導電助剤は、リチウムイオン伝導性を有する限り特に限定されないが、電子伝導度は、好ましくは1×10S/cm以上、さらに1×10S/cm以上である。導電助剤としては、一般的な材料を適宜用いることができるため、ここでの記載は省略する。また、導電助剤の含有量は、電気容量、電子伝導性(電子伝導パス)、イオン伝導性(イオン伝導パス)等を考慮して適宜調整することができ、特に限定されない。
 負極合材は、負極活物質及び固体電解質を互いに密に結着させるための結着剤を含んでもよい。結着剤としては、一般的な材料を適宜用いることができるため、ここでの記載は省略する。
 負極合材は、例えば、硫化物固体電解質と、負極活物質と、場合により導電助剤及び/又は結着剤とを混合することで製造することができる。混合は、例えば、乳鉢、ボールミル、ビーズミル、ジェットミル、遊星ボールミル、振動ボールミル、サンドミル、カッターミルを用いて行うことができる。混合は、乾式で行ってもよいし、湿式で行ってもよいが、湿式で行うことが好ましい。湿式で用いる溶媒は、有機溶媒であることが好ましい。
 別の実施形態において、本発明の電極合材は、正極合材である。活物質として正極活物質が用いられる場合、本発明の電極合材は、正極合材となる。正極合材は、本発明の硫化物固体電解質及び正極活物質を配合することにより得ることができる。
 正極活物質は、リチウムイオンの挿入脱離が可能な物質であり、公知の正極活物質の中から適宜選択することができる。正極活物質としては、例えば、金属酸化物、硫化物等が挙げられる。金属酸化物としては、例えば、遷移金属酸化物等が挙げられる。
 正極合材は、さらに導電助剤を含んでもよい。導電助剤に関する説明は、負極合材と同様である。
 本発明の硫化物固体電解質及び正極活物質の配合割合、並びに正極合材の製造方法に関する説明は、負極合材と同様である。
≪スラリー≫
 本発明のスラリーは、本発明の硫化物固体電解質と分散媒とを含む。
 本発明のスラリーにおける本発明の硫化物固体電解質の含有量は、本発明のスラリーの用途等に応じて適宜調整することができる。本発明のスラリーは、本発明の硫化物固体電解質の含有量に応じて種々の粘度を有し、粘度に応じて、インク、ペースト等の種々の形態をとる。本発明のスラリーは、本発明の電池の製造に使用することができる。本発明のスラリーにおける本発明の硫化物固体電解質の含有量は、本発明のスラリーの総質量を基準として、好ましくは10質量%以上90質量%以下、さらに好ましくは20質量%以上80質量%以下、さらに一層好ましくは30質量%以上70質量%以下である。
 本発明のスラリーに含まれる分散媒は、本発明の硫化物固体電解質を分散させることができる液体である限り特に限定されない。分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、一種の溶媒であってもよいし、二種以上の溶媒の混合物であってもよい。
≪電池≫
 本発明の電池は、正極層と、負極層と、正極層及び負極層の間に位置する固体電解質層とを備える電池であり、固体電解質層は、本発明の硫化物固体電解質を含む。
 本発明の電池は、好ましくは固体電池であり、好ましくはリチウム固体電池である。リチウム固体電池は、一次電池であってもよいし、二次電池であってもよいが、リチウム二次電池であることが好ましい。固体電池は、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、例えば50質量%以下、30質量%以下、10質量%以下の液状物質又はゲル状物質を電解質として含む態様も包含する。固体電池の形態としては、例えば、ラミネート型、円筒型及び角型等が挙げられる。
 正極層は、正極活物質を含む層であり、好ましくは本発明の正極合材を含む層である。正極層の厚さは、好ましくは0.01mm以上10mm以下である。正極層の製造方法としては、公知な方法と同様の方法を用いることができる。
 負極層は、負極活物質を含む層であり、好ましくは本発明の負極合材を含む層である。負極層の厚さは、好ましくは100nm以上5mm以下、さらに好ましくは1μm以上3mm以下、さらに一層好ましくは5μm以上1mm以下である。負極層の製造方法としては、公知な方法と同様の方法を用いることができる。
 電解質層は、本発明の硫化物固体電解質を含む層である。電解質層は、本発明の硫化物固体電解質以外の固体電解質を含んでもよい。電解質層は、バインダーを含んでもよい。バインダーとしては、本発明の負極合材の結着剤と同様のものを使用することができる。電解質層の厚さは、好ましくは0.001mm以上1mm以下である。電解質層の製造方法としては、公知な方法と同様の方法を用いることができる。
 本発明の電池は、好ましくは集電体をさらに備える。
 本発明の電池は、各部材を接合することにより製造することができる。接合方法としては、公知な方法と同様の方法を用いることができる。
〔実施例1〕
(1)硫化物固体電解質の製造
 Li4.8Mg0.6PS4.7Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、MgS粉末を、全量で5gとなるように秤量した。これらの粉末の混合物にヘプタンを加え、湿式粉砕混合ボールミルで10時間粉砕混合を行った後、真空乾燥器にて真空乾燥して原料粉末を得た。得られた原料粉末をカーボン製の容器(40mm×30mm×20mm、非気密性)に80体積%まで充填した後、管状電気炉にて硫化水素ガス(HS)を1.0L/分流通させながら300℃(品温)で4時間加熱した後、さらに500℃(品温)で4時間加熱し、焼成物を得た。昇降温速度は200℃/時間とした。得られた焼成物を乳鉢で粗粉砕し、ヘプタンを加え、湿式粉砕混合ボールミルで3時間粉砕混合を行った後、目開き1μmのステンレス篩で整粒し、粉末状の硫化物固体電解質を得た。なお、実施例1で使用した添加元素はMg(Mgの第一イオン化エネルギー:737.3KJ/mol)であり、Liの含有量に対するMgの含有量の比は、モル比で、0.125である。
 上記秤量、混合、電気炉へのセット、電気炉からの取り出し、解砕及び整粒作業は全て、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で実施した。
 得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi4.8Mg0.6PS4.7Cl0.8Br0.8であることを確認した。
 得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図1に示す。
 なお、X線回折法は、株式会社リガク製のXRD装置「RINT-TTRIII」を用いて、走査軸:2θ/θ、走査範囲:5~80deg、ステップ幅:0.02deg、走査速度:20deg/min、の条件下で行った。具体的には、アルゴン雰囲気中で固体電解質粉末上に流動パラフィンを数滴滴下した後、大気中でX線回折法を行った。
(2)硫化水素(HS)の発生量の測定
 アルゴン雰囲気下で、上記(1)で得られた実施例1の硫化物固体電解質粉末を50mg秤量し、密閉容器(容積1750cm、露点-30℃、温度25℃の乾燥空気)内に静置した。密閉容器内の空気をエアーポンプによって循環しつつ、硫化水素センサー(理研計器株式会社製GX-2009)を用いて硫化水素の発生量を測定した。固体電解質粉末を乾燥空気に曝露してから1時間経過後までに発生した硫化水素の体積を測定した。表1において硫化水素の発生量は、固体電解質粉末の単位質量当たりの値で表示してある。
(3)導電率の測定
 上記(1)で得られた実施例1の硫化物固体電解質粉末を、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で200MPaの圧力にて一軸加圧成形して直径10mm、厚み2~5mmのペレットを作製し、ペレットの上面及び下面の両方に電極としてカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率(単位:S/cm)は、室温(25℃)にて、東陽テクニカ社製の装置である、ソーラトロン1255Bを用いて、測定周波数0.1Hz~1MHzの条件下、交流インピーダンス法にて測定した。
 実施例1の結果を表1に示す。
〔実施例2〕
 Li4.8Ca0.6PS4.7Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、CaS粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例2で使用した添加元素はCa(Caの第一イオン化エネルギー:589.6KJ/mol)であり、Liの含有量に対するCaの含有量の比は、モル比で、0.125である。
 実施例2で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi4.8Ca0.6PS4.7Cl0.8Br0.8であることを確認した。
 実施例2で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図1に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例2の結果を表1に示す。
〔実施例3〕
 Li4.8Ag0.6PS4.4Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、AgS粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例3で使用した添加元素はAg(Agの第一イオン化エネルギー:731.0KJ/mol)であり、Liの含有量に対するAgの含有量の比は、モル比で、0.125である。
 実施例3で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi4.8Ag0.6PS4.4Cl0.8Br0.8であることを確認した。
 実施例3で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図1に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例3の結果を表1に示す。
〔実施例4〕
 Li5.3Mg0.1PS4.4Cl0.9Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、MgCl粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例4で用いられた添加元素はMg(Mgの第一イオン化エネルギー:737.3KJ/mol)であり、Liの含有量に対するMgの含有量の比は、モル比で、0.019である。
 実施例4で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.3Mg0.1PS4.4Cl0.9Br0.8であることを確認した。
 実施例4で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図2に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例4の結果を表1に示す。
〔実施例5〕
 Li5.3Ca0.1PS4.4Cl0.9Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、CaCl粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例5で用いられた添加元素はCa(Caの第一イオン化エネルギー:589.6KJ/mol)であり、Liの含有量に対するCaの含有量の比は、モル比で、0.019である。
 実施例5で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.3Ca0.1PS4.4Cl0.9Br0.8であることを確認した。
 実施例5で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図2に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例5の結果を表1に示す。
〔実施例6〕
 Li5.3Ag0.1PS4.4Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、AgCl粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例6で用いられた添加元素はAg(Agの第一イオン化エネルギー:731.0KJ/mol)であり、Liの含有量に対するAgの含有量の比は、モル比で、0.019である。
 実施例6で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.3Ag0.1PS4.4Cl0.8Br0.8であることを確認した。
 実施例6で得られた硫化物固体電解質をX線回折法(XRD)で分析したと結果を図2に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例6の結果を表1に示す。
〔実施例7〕
 Li5.30.1PS4.5Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、Y粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例7で用いられた添加元素はY(Yの第一イオン化エネルギー:615.6KJ/mol)であり、Liの含有量に対するYの含有量の比は、モル比で、0.019である。
 実施例7で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.30.1PS4.5Cl0.8Br0.8であることを確認した。
 実施例7で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図2に示す。なお、XRD測定条件は実施例1と同様とした。
 実施例7の結果を表1に示す。
〔実施例8〕
 Li5.7Mg0.1PS4.8Cl1.3の組成となるように、LiS粉末、P粉末、LiCl粉末、MgCl粉末を、全量で5gとなるように秤量した点、管状電気炉にて硫化水素ガスに代えてアルゴン(Ar)ガスを0.5L/分流通させた点、及び、導電率の測定を以下のように行った点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例8で用いられた添加元素はMg(Mgの第一イオン化エネルギー:737.3KJ/mol)であり、Liの含有量に対するMgの含有量の比は、モル比で、0.017である。
 導電率の測定は、次のように行った。実施例8で得られた硫化物固体電解質粉末を、十分に乾燥されたアルゴンガス(露点-60℃以下)で置換されたグローブボックス内で、約6t/cmの加重を加え一軸加圧成形し、直径10mm、厚み約1mm~8mmのペレットからなるリチウムイオン伝導率測定用サンプルを作製した。リチウムイオン伝導率の測定は、東陽テクニカ株式会社製のソーラトロン1255Bを用いて、温度25℃、周波数100Hz~1MHz、振幅100mVの条件下、交流インピーダンス法にて測定した。
 実施例8で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.7Mg0.1PS4.8Cl1.3であることを確認した。
 実施例8で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図4に示す。なお、XRD測定条件は実施例1と同様とした。図4に示すように、実施例8で得られた硫化物固体電解質をX線回折法(XRD)で分析したところ、実施例1~7で得られた硫化物固体電解質と同様、2θ=25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の位置にピークを有していた。また、バックグラウンド強度が小さい影響で、2θ=15.34°±1.00°及び17.74°±1.00°の位置に存在するピークも観測することができた。
 実施例8の結果を表2に示す。
〔実施例9〕
 Li5.2Mg0.6PS4.8Cl1.8の組成となるように、LiS粉末、P粉末、LiCl粉末、MgCl粉末を、全量で5gとなるように秤量した点、管状電気炉にて硫化水素ガスに代えてアルゴン(Ar)ガスを0.5L/分流通させた点、及び、導電率の測定を実施例8と同様に行った点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例9で用いられた添加元素はMg(Mgの第一イオン化エネルギー:737.3KJ/mol)であり、Liの含有量に対するMgの含有量の比は、モル比で、0.115である。
 実施例9で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.2Mg0.6PS4.8Cl1.8であることを確認した。
 実施例9で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図4に示す。なお、XRD測定条件は実施例1と同様とした。実施例9で得られた硫化物固体電解質をX線回折法(XRD)で分析したところ、実施例1~7で得られた硫化物固体電解質と同様、2θ=25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の位置にピークを有していた。また、バックグラウンド強度が小さい影響で、2θ=15.34°±1.00°及び17.74°±1.00°の位置に存在するピークも観測することができた。
 実施例9の結果を表2に示す。
〔実施例10〕
 Li5.6Mg0.1PS4.8Cl1.2の組成となるように、LiS粉末、P粉末、LiCl粉末、MgCl粉末を、全量で5gとなるように秤量した点、管状電気炉にて硫化水素ガスに代えてアルゴン(Ar)ガスを0.5L/分流通させた点、及び、導電率の測定を実施例8と同様に行った点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、実施例10で用いられた添加元素はMg(Mgの第一イオン化エネルギー:737.3KJ/mol)であり、Liの含有量に対するMgの含有量の比は、モル比で、0.018である。
 実施例10で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.6Mg0.1PS4.8Cl1.2であることを確認した。
 実施例10で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図4に示す。なお、XRD測定条件は実施例1と同様とした。実施例10で得られた硫化物固体電解質をX線回折法(XRD)で分析したところ、実施例1~7で得られた硫化物固体電解質と同様、2θ=25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の位置にピークを有していた。また、バックグラウンド強度が小さい影響で、2θ=15.34°±1.00°及び17.74°±1.00°の位置に存在するピークも観測することができた。
 実施例10の結果を表2に示す。
〔比較例1〕
 Li4.8Na0.6PS4.4Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末、LiBr粉末、NaS粉末及びNaCl粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、比較例1で用いられた添加元素はNa(Naの第一イオン化エネルギー:495.7KJ/mol)であり、Liの含有量に対するNaの含有量の比は、モル比で、0.019である。
 比較例1で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi4.8Na0.6PS4.4Cl0.8Br0.8であることを確認した。
 比較例1で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図3に示す。なお、XRD測定条件は実施例1と同様とした。
 比較例1の結果を表1に示す。
〔比較例2〕
 Li5.4PS4.4Cl0.8Br0.8の組成となるように、LiS粉末、P粉末、LiCl粉末及びLiBr粉末を、全量で5gとなるように秤量した点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、比較例2において添加元素は用いなかった。
 比較例2で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.4PS4.4Cl0.8Br0.8であることを確認した。
 比較例2で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図3に示す。なお、XRD測定条件は実施例1と同様とした。
 比較例2の結果を表1に示す。
〔比較例3〕
 Li5.8PS4.8Cl1.2の組成となるように、LiS粉末、P粉末及びLiCl粉末を、全量で5gとなるように秤量した点、管状電気炉にて硫化水素ガスに代えてアルゴン(Ar)ガスを0.5L/分流通させた点、及び、導電率の測定を実施例8と同様に行った点を除き、実施例1と同様にして、粉末状の硫化物固体電解質を製造し、硫化水素発生量及び導電率を測定した。なお、比較例3において添加元素は用いなかった。
 比較例3で得られた硫化物固体電解質の組成をICP発光分析法で測定し、得られた硫化物固体電解質の組成がLi5.8PS4.8Cl1.2であることを確認した。
 比較例3で得られた硫化物固体電解質をX線回折法(XRD)で分析した結果を図4に示す。なお、XRD測定条件は実施例1と同様とした。比較例3で得られた硫化物固体電解質をX線回折法(XRD)で分析したところ、比較例1及び2で得られた硫化物固体電解質と同様、2θ=25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°及び47.22°±1.00°の位置にピークを有していた。また、バックグラウンド強度が小さい影響で、2θ=15.34°±1.00°及び17.74°±1.00°の位置に存在するピークも観測することができた。
 比較例3の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、実施例1~10では、リン元素と、硫黄元素と、ハロゲン元素とを含むとともに、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する結晶相を含む、硫化物固体電解質において、Liの一部を、520.2KJ/mol超1007.3KJ/mol未満の第一イオン化エネルギーを有する金属元素(Ag、Mg、Ca、Y)で置換することにより、置換前の硫化物固体電解質のリチウムイオン伝導性を維持しつつ、置換前の硫化物固体電解質よりも硫化水素ガスの発生を抑制することができた。

Claims (11)

  1.  リチウム(Li)元素と、リン(P)元素と、硫黄(S)元素と、少なくとも一種のハロゲン(X)元素と、520.2KJ/molより大きく1007.3KJ/mol未満の第一イオン化エネルギーを有する少なくとも一種の金属(M)元素とを含むとともに、
     CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する、硫化物固体電解質。
  2.  前記少なくとも一種の金属(M)元素が、銀(Ag)元素、マグネシウム(Mg)元素、カルシウム(Ca)元素、イットリウム(Y)元素のうちの少なくとも一種である、請求項1に記載の硫化物固体電解質。
  3.  前記リン(P)元素の含有量に対する前記リチウム(Li)元素の含有量の比が、モル比で、2.0以上6.5以下であり、
     前記リン(P)元素の含有量に対する前記硫黄(S)元素の含有量の比が、モル比で、4.0以上5.5以下であり、
     前記リン(P)元素の含有量に対する前記少なくとも一種のハロゲン(X)元素の含有量の比が、モル比で、0.50以上2.2以下であり、
     前記リン(P)元素の含有量に対する前記金属(M)元素の含有量の比が、モル比で、0超2.0以下である、請求項1又は2に記載の硫化物固体電解質。
  4.  前記リン(P)元素の含有量に対する前記リチウム(Li)元素及び前記金属(M)元素の合計含有量の比が、モル比で、2.2以上6.7以下である、請求項1~3のいずれか一項に記載の硫化物固体電解質。
  5.  前記リチウム(Li)元素の含有量に対する前記金属(M)元素の含有量の比が、モル比で、0より大きく1.0以下である、請求項1~4のいずれか一項に記載の硫化物固体電解質。
  6.  前記少なくとも一種のハロゲン(X)元素が、塩素(Cl)元素及び臭素(Br)元素のうちの少なくとも一種である、請求項1~5のいずれか一項に記載の硫化物固体電解質。
  7.  下記式:
     LiPS
    [式中、Xは、前記少なくとも一種のハロゲン(X)元素であり、Mは、前記少なくとも一種の金属(M)元素であり、aは3.0以上6.5以下であり、bは、0より大きく2.0以下であり、cは3.5以上5.5以下であり、dは0.50以上3.0以下である。]
    で表される組成を有する、請求項1~6のいずれか一項に記載の硫化物固体電解質。
  8.  前記X線回折パターンにおいて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°から選択される位置にピークを有する、請求項1~7のいずれか一項に記載の硫化物固体電解質。
  9.  請求項1~8のいずれか一項に記載の硫化物固体電解質と活物質とを含む電極合材。
  10.  請求項1~8のいずれか一項に記載の硫化物固体電解質と分散媒とを含むスラリー。
  11.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する固体電解質層とを備える電池であって、
     前記固体電解質層が、請求項1~8のいずれか一項に記載の硫化物固体電解質を含む、前記電池。
PCT/JP2020/046284 2019-12-11 2020-12-11 硫化物固体電解質 WO2021117869A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227000652A KR102410782B1 (ko) 2019-12-11 2020-12-11 황화물 고체 전해질
CN202080051840.4A CN114128005B (zh) 2019-12-11 2020-12-11 硫化物固体电解质
EP20897760.3A EP4075450A4 (en) 2019-12-11 2020-12-11 SOLID SULFIDE ELECTROLYTE
JP2021517714A JP6935041B1 (ja) 2019-12-11 2020-12-11 硫化物固体電解質
US17/770,128 US11978850B2 (en) 2019-12-11 2020-12-11 Sulfide solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019223968 2019-12-11
JP2019-223968 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021117869A1 true WO2021117869A1 (ja) 2021-06-17

Family

ID=76330011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046284 WO2021117869A1 (ja) 2019-12-11 2020-12-11 硫化物固体電解質

Country Status (7)

Country Link
US (1) US11978850B2 (ja)
EP (1) EP4075450A4 (ja)
JP (1) JP6935041B1 (ja)
KR (1) KR102410782B1 (ja)
CN (1) CN114128005B (ja)
TW (1) TWI783321B (ja)
WO (1) WO2021117869A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090269A1 (ja) * 2021-11-17 2023-05-25 三井金属鉱業株式会社 電池
WO2023111083A1 (en) 2021-12-17 2023-06-22 Rhodia Operations Solid material comprising li, mg, p, s and halogen elements
WO2023110697A1 (en) 2021-12-17 2023-06-22 Rhodia Operations Solid material comprising li, mg, p, s and halogen elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632330A (zh) * 2022-01-29 2023-08-22 天目湖先进储能技术研究院有限公司 一种具有补锂和吸湿作用的硫化物固态电解质
CN114649562B (zh) * 2022-03-24 2023-08-08 上海屹锂新能源科技有限公司 一种iia族元素以及双卤素掺杂的硫化物固态电解质的制备及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
WO2018003333A1 (ja) 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
WO2018030436A1 (ja) 2016-08-10 2018-02-15 出光興産株式会社 硫化物固体電解質
JP2018029058A (ja) 2016-08-12 2018-02-22 出光興産株式会社 硫化物固体電解質
WO2018047565A1 (ja) * 2016-09-12 2018-03-15 出光興産株式会社 硫化物固体電解質
JP2018045997A (ja) 2016-09-08 2018-03-22 出光興産株式会社 硫化物固体電解質
WO2018164224A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 硫化物固体電解質粒子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290337B2 (ja) * 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
JP6234665B2 (ja) * 2011-11-07 2017-11-22 出光興産株式会社 固体電解質
US10446872B2 (en) * 2015-08-04 2019-10-15 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP6611949B2 (ja) 2015-12-22 2019-11-27 トヨタ・モーター・ヨーロッパ 固体電解質用材料
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP6881892B2 (ja) 2015-12-25 2021-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質、全固体電池及び固体電解質の製造方法
DE112018002679T5 (de) * 2017-05-24 2020-03-05 Idemitsu Kosan Co., Ltd. Sulfid-festelektrolyt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
WO2018003333A1 (ja) 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
WO2018030436A1 (ja) 2016-08-10 2018-02-15 出光興産株式会社 硫化物固体電解質
JP2018029058A (ja) 2016-08-12 2018-02-22 出光興産株式会社 硫化物固体電解質
JP2018045997A (ja) 2016-09-08 2018-03-22 出光興産株式会社 硫化物固体電解質
WO2018047565A1 (ja) * 2016-09-12 2018-03-15 出光興産株式会社 硫化物固体電解質
WO2018164224A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 硫化物固体電解質粒子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090269A1 (ja) * 2021-11-17 2023-05-25 三井金属鉱業株式会社 電池
WO2023111083A1 (en) 2021-12-17 2023-06-22 Rhodia Operations Solid material comprising li, mg, p, s and halogen elements
WO2023110697A1 (en) 2021-12-17 2023-06-22 Rhodia Operations Solid material comprising li, mg, p, s and halogen elements

Also Published As

Publication number Publication date
TW202132214A (zh) 2021-09-01
US11978850B2 (en) 2024-05-07
KR102410782B1 (ko) 2022-06-22
KR20220009493A (ko) 2022-01-24
US20220359910A1 (en) 2022-11-10
TWI783321B (zh) 2022-11-11
CN114128005B (zh) 2023-03-24
JP6935041B1 (ja) 2021-09-15
EP4075450A1 (en) 2022-10-19
CN114128005A (zh) 2022-03-01
JPWO2021117869A1 (ja) 2021-12-09
EP4075450A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2021117869A1 (ja) 硫化物固体電解質
JP6892815B2 (ja) リチウム二次電池用硫化物系固体電解質
JP7329062B2 (ja) 固体電解質、電極合剤及び電池
JP6952216B1 (ja) 硫化物固体電解質及びその製造方法
JP7002697B2 (ja) 硫化物固体電解質
WO2020050269A1 (ja) 硫化物系化合物粒子、固体電解質及びリチウム二次電池
JP6709886B1 (ja) 硫化物固体電解質
WO2021193192A1 (ja) 硫化物固体電解質、及びそれを用いた電極合剤、固体電解質層並びに電池
WO2023127736A1 (ja) 複合活物質
JP2020027715A (ja) 結晶性硫化物系固体電解質の製造方法
KR20230144564A (ko) 고체 전해질 및 그 제조 방법
JP7218433B2 (ja) 硫化物固体電解質及びその製造方法
TWI829873B (zh) 硫化物固體電解質及電池
TWI804712B (zh) 硫化物固體電解質、電極合劑、固體電解質層及全固體電池
WO2022210471A1 (ja) 固体電解質

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517714

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227000652

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897760

Country of ref document: EP

Effective date: 20220711