WO2021117732A1 - Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip - Google Patents

Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip Download PDF

Info

Publication number
WO2021117732A1
WO2021117732A1 PCT/JP2020/045711 JP2020045711W WO2021117732A1 WO 2021117732 A1 WO2021117732 A1 WO 2021117732A1 JP 2020045711 W JP2020045711 W JP 2020045711W WO 2021117732 A1 WO2021117732 A1 WO 2021117732A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
foreign matter
roll surface
projection material
unit
Prior art date
Application number
PCT/JP2020/045711
Other languages
French (fr)
Japanese (ja)
Inventor
栗栖 泰
暁 樋口
大地 大瀧
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080083238.9A priority Critical patent/CN114786872A/en
Priority to BR112022010602A priority patent/BR112022010602A2/en
Priority to US17/777,296 priority patent/US20220402097A1/en
Priority to JP2021563978A priority patent/JP7502662B2/en
Priority to MX2022006954A priority patent/MX2022006954A/en
Publication of WO2021117732A1 publication Critical patent/WO2021117732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/08Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
    • B24C3/10Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces for treating external surfaces
    • B24C3/12Apparatus using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present disclosure relates to a foreign matter removing device on the roll surface, a foreign matter removing method on the roll surface, and a method for manufacturing a steel strip.
  • a roll for transporting the steel strip is provided in a heating furnace such as a continuous annealing furnace in the steel sheet manufacturing process.
  • the surface of such a roll is required to be subjected to various treatments.
  • foreign matter adhering to the roll is removed by a foreign matter scraping means for bringing a part of the thin-walled member into surface contact with the roll for the transport roll in the heat treatment furnace, and the surface of the roll is cleaned.
  • the technology is described.
  • Japanese Patent Application Laid-Open No. 2002-120153 describes a technique for plastically deforming a surface layer by performing shot peening on a welded portion of a shroud which is a constituent member in a reactor pressure vessel. Specifically, by striking particles such as steel balls against the surface layer of the welded portion, the tensile residual stress remaining in the surface layer is converted into compressive residual stress.
  • Japanese Patent No. 3932947 relates to a foreign matter scraping means in a roll surface care device that is exposed to a high temperature environment in a heat treatment furnace for a long time by means of a foreign matter scraping means permanently installed in the heating furnace in operation. Foreign matter adhering to the roll is removed. Since the foreign matter is removed during the threading, there is a problem that the removed foreign matter adheres to the steel sheet and causes a defect.
  • Japanese Patent No. 3932947 the processing related to periodic repair and maintenance performed on the transport roll while the heating furnace is stopped is not considered. For example, the removal of foreign matter that restores the surface roughness of the transport roll is not considered. Even if the technique of Japanese Patent No. 3932947 is applied to periodic repairs, the foreign matter adhering to the roll surface is removed by the foreign matter scraping means, and the roll surface is rather flattened.
  • JP-A-2002-120153 if the technique of JP-A-2002-120153 is applied to the removal of foreign matter from the transport roll, the surface shape is deformed by striking the particles against the surface of the transport roll, and compressive residual stress is generated on the surface. It is possible to make it.
  • Japanese Patent Application Laid-Open No. 2002-120153 does not consider effective removal of foreign matter from the surface of the transport roll. Therefore, even if the particles are struck on the surface of the transport roll by using the technique of JP-A-2002-120153, it is difficult to effectively remove the foreign matter on the roll surface.
  • the present disclosure has been made in view of the above problems, and the purpose of the present disclosure is new and excellent in that it is possible to easily realize the removal of foreign matter on the surface of the transport roll provided in the heating furnace. It is an object of the present invention to provide a foreign matter removing device on a roll surface, a foreign matter removing method on a roll surface, and a method for manufacturing a steel strip.
  • an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that recovers the projection material.
  • a foreign matter removing device on the surface of the roll comprising: a blasting unit comprising the above, and a pressing portion for pressing the blasting unit toward the surface of the roll.
  • a step of collecting the projection material in the blasting unit and a method of removing foreign matter on the roll surface including the step of collecting the projection material are provided.
  • the step of removing the foreign matter on the surface of the roll provided in the heating furnace and the above-mentioned roll are provided by the method for removing foreign matter on the surface of the roll.
  • a method for manufacturing a steel strip including a step of passing a steel strip through a heating furnace to perform heat treatment is provided.
  • a foreign matter removing device on the roll surface As described above, according to the present disclosure, a foreign matter removing device on the roll surface, a foreign matter removing method on the roll surface, which can easily realize the foreign matter removal on the surface of the transport roll provided in the heating furnace. And a method of manufacturing a steel strip is provided.
  • FIG. 1 is a schematic view showing a configuration example of a part of an operation line provided with a heating furnace according to an embodiment of the present disclosure. It is a schematic diagram which shows the structural example of a part of the operation line provided with the heating furnace which concerns on this embodiment. It is a schematic diagram which shows the structural example of the foreign matter removing apparatus on the roll surface which concerns on this embodiment. It is a top view which shows the structural example of the foreign matter removing apparatus of the roll surface which concerns on this embodiment. It is a schematic diagram for demonstrating the structural example of the blast processing part which concerns on this embodiment. It is a schematic diagram explaining the projection angle of the projection material at the time of removing foreign matter by the blast processing part which concerns on this embodiment.
  • FIG. 1 is a schematic view showing a configuration example of a part of an operation line provided with the heating furnace 10A according to the present embodiment.
  • FIG. 2 is a schematic view showing a configuration example of a part of the operation line provided with the heating furnace 10B according to the present embodiment.
  • the heating furnace 10A is provided in, for example, a continuous hot-dip plating line (CGL; Continuus Galvanizing Line) in which the steel strip 1 is continuously immersed in the plating bath 13A and the surface of the steel strip is plated. It is a continuous annealing furnace. In the heating furnace 10A, the steel strip 1 after cold rolling is annealed.
  • the heating furnace 10A is not particularly limited, and is, for example, a continuous heating furnace capable of continuously heat-treating the steel strip 1.
  • the plating treatment equipment 13 is provided on the downstream side in the transport direction from the heating furnace 10A, and the steel strip 1 is subjected to alloying hot dip galvanizing treatment.
  • the transport direction is the direction in which the steel strip 1 goes from the right side to the left side in FIG.
  • the plating processing equipment 13 continuously attaches the molten metal M to the surface of the steel strip 1 by immersing the steel strip 1 in a plating bath 13A filled with the molten metal M, and then attaches the molten metal M to a predetermined value. It is a facility that alloys the plating film as well as the amount of grain.
  • a roll 11 for transporting the steel strip 1 is provided in the heating furnace 10A.
  • the roll 11 is a so-called hearth roll, which is rotated by a rotational force from a roll drive source (not shown) to convey the steel strip 1 in the heating furnace 10A.
  • the heating furnace 10B is a continuous annealing facility (CAPL; Continuus Annealing and Processing Line (CAPL; CAPL is a registered trademark)) provided as a part of the rolling process. Is.
  • the steel strip 1 after cold rolling is annealed.
  • the heating furnace 10B is not particularly limited, and is, for example, a vertical heating furnace capable of continuously performing heat treatment such as overaging treatment on the steel strip 1.
  • a roll 11 for transporting the steel strip 1 is provided in the heating furnace 10B. Further, the roll 11 rotates the transport direction of the steel strip 1 in the vertical direction in the heating furnace 10B, which is a vertical heating furnace.
  • the roll 11 is a so-called hearth roll, and is rotated by a rotational force from a roll drive source (not shown).
  • the heating furnaces 10A and 10B may be simply referred to as the heating furnace 10.
  • the roll 11 used in the heating furnace 10 as described above has a predetermined roughness (that is, surface roughness) for transporting the steel strip 1.
  • a predetermined roughness that is, surface roughness
  • the frictional force between the roll 11 and the steel strip 1 is secured, and meandering of the steel strip 1 during plate passing is suppressed.
  • the roughness of the roll surface may become smaller than the predetermined value due to wear due to the use of the roll 11 for a long period of time, oxide formation on the roll surface, or the like.
  • meandering of the steel strip 1 is likely to occur during plate passing, which may affect the operational stability.
  • the steel strip 1 when the steel strip 1 is made of high-strength steel, oxides due to the components in the steel may be formed on the roll surface. Specifically, Mn oxide derived from manganese (Mn), which is a component in steel, is formed on the roll surface in the form of a film. Therefore, the roughness of the roll surface becomes smaller than the predetermined value, and the steel strip 1 may meander due to a decrease in the frictional force between the steel strip 1 and the roll 11.
  • TS Tensile Strength
  • FIG. 3 is a schematic view showing a configuration example of the foreign matter removing device 100 on the roll surface according to the present embodiment.
  • the foreign matter removing device 100 on the roll surface is a device that performs a process for recovering the roughness of the roll surface 11A.
  • a part of the structure of the foreign matter removing device 100 on the roll surface (that is, a portion included in the region surrounded by the alternate long and short dash line shown in FIG. 3) is provided in the heating furnace 10, and the foreign matter is removed from the roll surface 11A.
  • Perform removal For example, the foreign matter removing device 100 on the surface of the roll is installed in the heating furnace 10 whose operation is stopped due to reasons such as during periodic repairs, and is removed from the heating furnace 10 during normal operation. That is, the foreign matter removing device 100 on the surface of the roll is temporarily installed in the heating furnace 10 and can be removed after the foreign matter removing work is completed.
  • the foreign matter removing device 100 on the surface of the rolls sequentially removes foreign matter from each roll 11. That is, after the foreign matter removing device 100 on the roll surface removes foreign matter from one roll 11 in the heating furnace 10, the foreign matter removing device 100 on the roll surface is once removed, moved, and then the other roll. It is reattached to the location corresponding to 11. After that, the foreign matter removing device 100 on the roll surface removes foreign matter from the other rolls 11.
  • a plurality of foreign matter removing devices 100 on the roll surface may be installed in the heating furnace 10.
  • the foreign matter removing device 100 on the roll surface has a blast processing unit 110 and a pressing unit 120.
  • the blasting unit 110 roughens the roll surface 11A by performing a blasting treatment on the roll surface 11A and removing foreign substances on the roll surface 11A.
  • the blast processing unit 110 includes an injection unit 111 that injects a projection material corresponding to the projection material P, which will be described later in FIG. 5, onto the roll surface 11A, and a recovery unit 113 that collects the projection material.
  • the injection unit 111 injects the projection material together with the gas corresponding to the gas G described later in FIG.
  • the recovery unit 113 recovers by sucking the projection material together with the gas.
  • a polygonal powder of a metal oxide can be mentioned, and in particular, an aluminum oxide powder (that is, alumina particles) can be mentioned.
  • the aluminum oxide is chemically stable, and even if it remains in the heating furnace, its influence on the operation of the heating furnace is suppressed. Further, since alumina powder, which is generally used as an abrasive, is relatively inexpensive, the cost required for the work of removing foreign matter can be reduced.
  • the projection material of other polygonal metal oxides a powder of zirconium oxide (that is, zirconia) can be mentioned.
  • other examples of the projection material include silicon carbide (SiC) powder.
  • the Vickers hardness is about 2000 to 3000.
  • the particle size of the projection material it is about # 30 to # 220.
  • Compressed air is an example of the gas injected together with the projection material.
  • the pressure at the time of injection is, for example, about 0.2 MPa to 0.7 MPa.
  • the range of the injection pressure of the compressed air is preferably 0.2 MPa or more and 0.5 MPa or less.
  • the injection pressure is less than 0.2 MPa
  • the pressure is small, so that the injected projection material P does not easily bite into the oxide film C, and as a result, the oxide film C cannot be sufficiently removed.
  • the injection pressure exceeds 0.5 MPa
  • the injected projection material P may bite into the roll surface 11A and remain on the roll surface 11A. Therefore, the projecting material P that bites into the steel sheet may cause a flaw in the steel sheet.
  • the Mn oxide is sufficiently removed even if the injection pressure value is a relatively low value within the range of 0.2 MPa or more and 0.5 MPa or less. I found that I could do it.
  • the projection material and gas injected from the injection unit 111 are supplied from outside the furnace via the hose 130 in FIG. Specifically, the projection material is supplied from outside the furnace via the projection material supply hose 131. Further, the gas is supplied from outside the furnace via the gas supply hose 132. Although the details will be described later, the end portions of the projection material supply hose 131 and the gas supply hose 132 on the outside of the furnace are connected to the projection material supply source and the gas supply source, respectively. Further, the projection material and the gas recovered by the recovery unit 113 are discharged to the outside of the furnace via the discharge hose 133.
  • the pressing unit 120 presses the blasting unit 110 toward the surface 11A of the roll. Although the details will be described later, by pressing the blast processing unit 110 toward the roll surface 11A, a closed space is formed between the inner surface of the blast processing unit 110 and the roll surface 11A. As a result, the projecting material injected from the injection unit 111 is prevented from being scattered in the furnace.
  • An example of the pressing portion 120 is an air cylinder 121.
  • the foreign matter removing device 100 on the roll surface may further have a link arm 101 that arranges the blast processing unit 110 and the pressing unit 120 at predetermined positions with respect to the roll surface 11A.
  • the link arm 101 is an arm-shaped member connected by one or more joint structures.
  • the link arm 101 allows the blasting unit 110 and the pressing unit 120 to be arranged at predetermined positions with respect to the roll surface 11A even when the diameters of the plurality of rolls 11 provided in the heating furnace 10 are different from each other.
  • a blast processing portion 110 and a pressing portion 120 are attached to one end portion 101A of the link arm 101 via a bracket.
  • the other end 101B of the link arm 101 is attached to the main body 103 of the foreign matter removing device 100 on the roll surface, which will be described later.
  • the foreign matter removing device 100 on the roll surface further includes a detection unit 140 that detects the distance between the blast processing unit 110 and the surface 11A of the roll.
  • the detection unit 140 is positioned at a predetermined position with respect to the roll surface 11A via a bracket attached to one end 101A of the link arm.
  • the detection unit 140 measures the distance to the roll surface 11A.
  • An example of the detection unit 140 is a laser sensor.
  • the foreign matter removing device 100 on the surface of the roll may further include a roll rotation mechanism 150 for rotating the roll 11.
  • the roll rotation mechanism 150 rotates the roll 11 in a state where the rotational force for transporting the steel strip 1 is not supplied to the roll 11.
  • the roll rotation mechanism 150 rotates the roll 11 by rotating the rotating portion 151 in a state where the outer peripheral surface 151A is in contact with the surface 11A of the roll.
  • the rotating portion 151 is a small roll as an example, and the rotating portion 151 is driven by a drive source 153 such as a motor to rotate.
  • a drive source 153 such as a motor to rotate.
  • the roll rotation mechanism 150 rotates the roll 11 by rotating the rotating portion 151 in a state where the outer peripheral surface 151A is in contact with the roll surface 11A. That is, when the roll 11 is rotated, the roll rotation mechanism 150 requires a simple structure, so that the foreign matter removing device 100 on the roll surface can be miniaturized.
  • the foreign matter removing device 100 on the surface of the roll may further have a main body 103.
  • Various configurations such as the blast processing unit 110, the pressing unit 120, and the roll rotation mechanism 150 described above are attached to the main body unit 103.
  • the foreign matter removing device 100 on the surface of the roll is installed in the heating furnace 10 via the main body 103. Since various configurations of the foreign matter removing device 100 on the roll surface can be integrally attached to or removed from the heating furnace 10 by the main body 103, workability is improved.
  • the main body 103 is a structure having a longitudinal direction along the axial direction of the roll 11 parallel to the X direction in FIG.
  • the structure as the main body 103 is attached to beam-shaped members provided in the heating furnace 10 along the transport direction of the steel strip 1 at both ends in the longitudinal direction.
  • the illustration of the beam-shaped member is omitted.
  • the main body 103 is attached to the beam-shaped member of the heating furnace 10 via a fixing jig (not shown).
  • the foreign matter removing device 100 on the surface of the roll may have an air supply / exhaust system 160 outside the furnace so that the projection material recovered by the recovery unit 113 can be reused.
  • the foreign matter removing device 100 on the surface of the roll may have a recovery tank 161, a dust collector 163, and a blower 165.
  • the pressure inside the discharge hose 133, the recovery tank 161 and the dust collector 163 is negative with respect to the outside air. Therefore, the projection material recovered from the recovery unit 113 moves in the discharge hose 133 to the recovery tank 161.
  • the projecting material transferred to the recovery tank 161 via the discharge hose 133 is separated from dust and the like other than the projecting material by centrifugation in the recovery tank 161.
  • the selected projecting material is supplied to the injection unit 111 again via the projecting material supply hose 131.
  • the dust and the like separated from the projection material are collected by the dust collector 163, and the gas cleaned by the dust collection is discharged from the blower 165.
  • the foreign matter removing device 100 on the surface of the roll has a gas supply source 167 outside the furnace.
  • the gas of a predetermined pressure supplied from the gas supply source 167 is supplied to the injection unit 111 via the gas supply hose 132.
  • the projection material is injected together with the gas supplied from the gas supply source 167.
  • An example of the gas supply source 167 is an air supply facility in a factory.
  • FIG. 4 is a top view showing a configuration example of the foreign matter removing device 100 on the roll surface according to the present embodiment.
  • the foreign matter removing device 100 on the roll surface may have a moving mechanism 170 that moves the blast processing unit 110 along the axial direction of the roll 11 parallel to the X direction in FIG. ..
  • the moving mechanism 170 makes the blast processing unit 110 movable in a region (that is, a region W in FIG. 4) of the roll 11 excluding the inclined portion of the end portion in the axial direction.
  • the moving mechanism 170 As an example of the moving mechanism 170, as shown in FIG. 4, a screw feeding mechanism can be mentioned. Specifically, the moving mechanism 170 includes a screw feed mechanism 171, a drive source 173, and a guide shaft 175.
  • the screw feed mechanism 171 includes a screw shaft 171A whose axial direction is provided along the direction of the rotation shaft X1 of the roll 11, and a support portion 171B that rotatably supports both ends of the screw shaft 171A.
  • roll axial direction the direction of the rotation axis X1 is simply referred to as "roll axial direction”.
  • the rotation axis X1 coincides with the axial direction of the roll 11.
  • the screw shaft 171A is a rod-shaped member in which threads are provided on the outer peripheral surface at a predetermined pitch. As shown in FIG. 4, the screw shaft 171A is inserted while being screwed into the other end 101B of the link arm 101. Further, a drive source 173 is connected to the end of the screw shaft 171A, and the screw shaft 171A is configured to be rotated by the drive source 173. As a result, the rotation of the screw shaft 171A causes the blast processing unit 110 to be screwed forward and move along the axial direction of the roll 11.
  • the guide shaft 175 is a rod-shaped member provided along the axial direction of the roll 11 in parallel with the screw shaft 171A. Both ends of the guide shaft 175 are supported by the support portion 171B of the screw shaft 171A.
  • the moving mechanism 170 has been described with an example of linearly moving the blast processing unit 110 along the axial direction of the roll 11, but the present disclosure is not limited to such an example.
  • the moving mechanism 170 may move the blasting unit 110 so as to include the axial component of the roll 11 in the moving direction of the blasting unit 110.
  • the blasting unit 110 meanders or It may be moved diagonally.
  • FIG. 5 is a schematic diagram for explaining a configuration example of the blast processing unit 110.
  • the blasting unit 110 performs a blasting process on the roll surface 11A while being pressed by the air cylinder 121 as the pressing unit 120.
  • an injection unit 111 is provided in the center of the blast processing unit 110, and a recovery unit 113 is provided around the injection unit 111. That is, the projecting material P injected from the injection unit 111 collides with the roll surface 11A and is then collected from the collection unit 113 provided around the injection unit 111.
  • the blast processing unit 110 has a double cylinder shape 115. That is, the blast processing unit 110 has a double tubular body shape 115 including an inner cylinder portion 115A and an outer cylinder portion 115B surrounding the inner cylinder portion 115A. As shown in FIG. 5, in the blast processing unit 110, the inner cylinder portion 115A forms at least a part of the injection unit 111, and the outer cylinder portion 115B forms at least a part of the recovery unit 113.
  • the double cylinder shape 115 is a shape in which a double annular structure is formed at least partially by the inner cylinder portion 115A and the outer cylinder portion 115B in the cross-sectional view of the blast processing unit 110. Point to.
  • the inner cylinder portion 115A is a so-called blast gun for injecting the projection material P
  • the outer cylinder portion 115B is a hollow semi-spindle-shaped hood provided around the blast gun. ..
  • the reflected projection material P is collected from the collection unit 113 along the inner peripheral surface of the hood. That is, as illustrated by the arrow in FIG. 5, the projection material P is sucked from the recovery unit 113 by the flow of the gas G in the hood of the blast gun. In this way, the projection material P is prevented from scattering after colliding with the roll surface 11A.
  • the projection material P is injected by the injection unit 111 in a state where the blast processing unit 110 is pressed by the pressing unit 120 and a closed space 117 is formed between the blast processing unit 110 and the roll surface 11A.
  • the collection unit 113 collects the space.
  • the closed space does not mean a space completely closed to the outside, but may be a space isolated from the outside to the extent that scattering of the projection material P can be suppressed.
  • a flexible member 180 may be provided at the end of the outer cylinder portion 115B on the roll surface 11A side.
  • a load associated with the pressing is applied to the roll surface 11A. Therefore, since the flexible member 180 is provided at the end of the outer cylinder portion 115B, the load applied to the roll surface 11A when the blast processing portion 110 is pressed toward the roll surface 11A by the pressing portion 120. Is distributed. As a result, the occurrence of flaws on the roll surface 11A is suppressed. Further, the flexible member 180 fills the gap between the outer cylinder portion 115B of the blasting portion 110 and the roll surface 11A, so that the projection material P is further suppressed from being scattered into the heating furnace 10.
  • a brush-shaped member 181 attached to the end of the outer cylinder portion 115B.
  • the brush-shaped member 181 has a plurality of bristles having one end fixed to the outer cylinder portion 115B side and the other end extending toward the roll surface 11A.
  • a plurality of bristles of the brush-shaped member 181 are deformed so as to fall in the outer peripheral direction to fill the gap between the outer cylinder portion 115B and the roll surface 11A. Can be done.
  • the flexible member 180 is sufficient as long as it can fill the gap between the outer cylinder portion 115B and the roll surface 11A and has sufficient flexibility to withstand the load applied by the pressing portion 120.
  • the shape, structure, and material of the flexible member 180 are not particularly limited.
  • a rubber sheet may be attached to the surface of the end of the outer cylinder portion 115B facing the roll surface 11A.
  • a sponge-like member may be attached to the end portion of the outer cylinder portion 115B.
  • the blast processing unit 110 is pressed against the roll surface 11A by the air cylinder 121 as the pressing unit 120. Further, the projection material P is projected from the injection unit 111 of the blast processing unit 110, and the foreign matter on the roll surface 11A is removed. Further, the collecting unit 113 collects the projecting material P that hits the roll surface 11A and bounces off.
  • the projection angle ⁇ of the projection material P with respect to the roll surface 11A is the tangent line L1 at the projection target position 11A1 on the roll surface 11A and the blast processing unit 110 when viewed along the axial direction of the roll 11. It is defined as the angle on the acute angle side of the angles formed between the injection portion 111 and the central axis L2 of the inner cylinder portion. In this embodiment, the projection angle ⁇ is 90 degrees.
  • the intersection of the tangent line L1 of the alternate long and short dash line extending in the left-right direction and the central axis L2 of the alternate long and short dash line extending in the vertical direction is the projection target position 11A1 of the projection material P.
  • the range of the projection angle ⁇ is preferably 80 degrees or more and 90 degrees or less.
  • the oxide film C adhering to the roll surface 11A can be efficiently removed.
  • the projection angle ⁇ is less than 80 degrees, the injected projection material P is less likely to bite into the oxide film C, so that the oxide film C cannot be sufficiently scraped off.
  • the distance between the blast processing unit 110 and the roll surface 11A is detected by the detection unit 140.
  • the injection of the projection material P is stopped.
  • An example of a predetermined distance at which the injection of the projection material P is stopped is about several mm to several tens of mm.
  • scattering of the projection material P into the heating furnace 10 is suppressed.
  • the distance between the blasting unit 110 and the roll surface 11A is 5 mm or less. It is preferable from the viewpoint of achieving both efficient removal of C and reduction of compressed air loss.
  • the above operation example is controlled by the control unit 190 in FIG. 5 as an example.
  • the control unit 190 supplies the projection material P and the gas G to the blast processing unit 110, and controls the air supply / exhaust system 160 so as to recover the projection material P. Further, the control unit 190 controls the operation of the air cylinder 121 that presses the blast processing unit 110.
  • control unit 190 derives the distance between the blast processing unit 110 and the roll surface 11A based on the detection result of the distance to the roll surface 11A detected by the laser sensor as the detection unit 140. Further, the control unit 190 controls the air cylinder 121 or the air supply / exhaust system 160 based on the derivation result.
  • the function as the control unit 190 is realized, for example, by the cooperation of a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • control unit 190 may control the roll rotation mechanism 150 and the movement mechanism 170. That is, the control unit 190 may operate the roll rotation mechanism 150 to rotate the roll 11 while removing foreign matter from the roll surface 11A by the blast processing unit 110. Further, the control unit 190 may operate the movement mechanism 170 to move the blast processing unit 110 from one position in the axial direction of the roll 11 to another position.
  • the schematic configuration of the foreign matter removing device 100 on the roll surface according to the present embodiment has been described above.
  • FIGS. 7A to 7C are schematic views of the roll surface 11A for explaining the state of foreign matter removal by the blast processing unit 110.
  • an oxide film C may be formed on the roll surface 11A in the initial state before the foreign matter is removed.
  • Mn oxide caused by Mn which is a component in the steel strip 1 is formed on the roll surface 11A in the form of a film having an average thickness of about 100 ⁇ m as shown in FIG. 7A. If the roughness of the roll surface 11A is reduced by the formation of the oxide film C as such, meandering of the steel strip 1 may occur. Therefore, foreign matter is removed to restore the surface roughness of the roll 11 when the operation of the heating furnace 10 is stopped, such as during regular repair of the heating furnace 10.
  • the roughness of the roll surface 11A is restored by injecting the projection material P onto the roll surface 11A.
  • a pressure of about 0.5 MPa It is injected onto the roll surface 11A together with the compressed air of. As a result, the oxide film C that has reduced the roughness is removed, and the roll surface 11A is roughened.
  • the roughening treatment of the roll surface 11A by removing foreign matter means a treatment of setting the surface roughness Ra of the roll surface 11A to a predetermined value or more.
  • Ra should be 3 ⁇ m or more, and Ra should be 6 ⁇ m or more.
  • the projection material P having a smaller particle size may be projected.
  • the particle size of the alumina particles is about # 80 to # 250
  • the projection material P having the first average particle size is sprayed as the first projection material, the first blast treatment is performed, and then the second average particle size is smaller than the first average particle size.
  • the projection material P having the above is injected as the second projection material to perform the second blast treatment.
  • the oxide film C on the roll surface 11A can be efficiently removed, and the surface roughness of the roll surface 11A can be adjusted.
  • the projection material P having the second average particle size may be injected a plurality of times about 3 to 5 times to perform the second blasting treatment.
  • the first blasting process may be performed a plurality of times.
  • the projection material P having a third average particle diameter smaller than the second average particle diameter may be injected as the third projection material to perform the third blast treatment. That is, in the present disclosure, the subsequent blasting treatment using a projection material having an average particle size smaller than the average particle size in the immediately preceding blasting treatment may be performed a plurality of times. The state of the roughening treatment of the roll surface 11A according to the present embodiment has been described above.
  • FIG. 8 is a flowchart of a method for removing foreign matter on the roll surface according to the present embodiment.
  • step S101 in the foreign matter removing step S100 on the roll surface first, the blast processing portion 110 of the foreign matter removing device 100 on the roll surface installed in the heating furnace 10 is pressed against the roll surface 11A. ..
  • step S103 the projection material P is ejected from the blast processing unit 110, and the projection material P is recovered in the blast processing unit 110. Specifically, the projection material P is injected together with the gas G from the injection unit 111 of the blast processing unit 110. Further, the projecting material P is sucked together with the gas G by the collecting unit 113 of the blast processing unit 110.
  • step S105 it is determined whether or not the foreign matter removing step S100 on the roll surface satisfies the end condition.
  • Specific termination conditions include whether the foreign matter on the roll surface 11A has been removed for a predetermined time, or whether an input for ending the foreign matter removing work has been made by the operator. If it is determined that the end condition is satisfied, the foreign matter removing step S100 on the roll surface ends. On the other hand, if it is not determined that the foreign matter removing step S100 on the roll surface satisfies the end condition, the foreign matter removing step S100 on the roll surface returns to step S101. After the work on one roll 11 is completed, the foreign matter removing work on the other roll 11 may be performed.
  • a step of moving the blast processing unit 110 along the axial direction of the roll by the moving mechanism 170 and a step of rotating the roll 11 by the roll rotating mechanism 150 may be included.
  • the second particle size is smaller than the first particle size.
  • the projection and recovery of the projection material P having an average particle size may be configured to be performed as a second blasting step.
  • FIG. 9 is a flowchart of a method for manufacturing the steel strip 1 according to the present embodiment.
  • the foreign matter removing step S100 on the roll surface is performed as described above. Specifically, since periodic repairs and the like are performed in the heating furnace 10, foreign matter on the roll surface 11A is removed from the roll 11 in the heating furnace 10 when the operation is stopped. After that, in step S110 in FIG. 9, the steel strip 1 is passed through the heating furnace 10 provided with the roll 11 to perform the heat treatment.
  • the heating furnace 10 starts operation, the steel strip 1 passes through the heating furnace 10 while being supported by the roll 11, and the steel strip 1 is subjected to various heat treatments such as overaging treatment or annealing. Is processed.
  • the roll surface 11A can be roughened and the meandering of the steel strip 1 in the heating furnace 10 can be suppressed.
  • the steel strip 1 may be high-strength steel.
  • high-strength steel an oxide film C due to the components in the steel is formed on the roll surface 11A, and the roughness of the roll surface 11A is lowered.
  • meandering of the steel strip 1 may easily occur. Therefore, by transporting the steel strip 1 by the roll 11 in the heating furnace 10 that has undergone the foreign matter removing step S100 on the roll surface, the occurrence of meandering of the steel strip 1 is suppressed.
  • the oxide film C is likely to be formed on the roll surface 11A due to the components contained in the steel strip 1, it can be removed by the blast treatment. As a result, the meandering of the steel strip 1 can be suppressed.
  • the plating treatment step of continuously immersing the steel strip 1 in the plating bath 13A may be performed after the heat treatment step in step S110.
  • various processing, control, or inspection steps for manufacturing the steel strip 1 may be added. The method for manufacturing the steel strip 1 according to the embodiment of the present invention has been described above.
  • a blast including an injection unit 111 that injects the projection material P onto the roll surface 11A of the roll 11 that conveys the steel strip in the heating furnace 10 and a recovery unit 113 that collects the projection material P.
  • Foreign matter is removed by the processing unit 110, and the blast processing unit 110 is pressed toward the roll surface 11A by the pressing unit 120.
  • the projection material P is injected while pressing the blast processing unit 110 and the projection material P is further recovered by the recovery unit 113, the residual projection material P in the heating furnace 10 is suppressed.
  • the roll 11 can be attached to the heating furnace 10, that is, the foreign matter can be removed on the operation line, and the foreign matter removing work can be easily realized. Further, according to the present embodiment, the cost required for the work of preparing and storing the replacement roll 11 is reduced as compared with the roll replacement.
  • the removal of the oxide film C may be uneven. Further, in pickling, there is a concern that the equipment may be deteriorated due to acid scattering into the heating furnace 10, and it is expected that the handling of the acidic solution requires a lot of man-hours such as preparation and disposal.
  • the roughness of the roll surface 11A is restored by removing the physical oxide film C by the blasting unit 110, so that it is more uniform than the chemical treatment such as pickling. Roughness recovery is realized.
  • the injection unit 111 is provided in the center of the blast processing unit 110, and the recovery unit 113 is provided around the injection unit 111.
  • the recovery unit 113 is provided around the injection unit 111, the projection material P injected from the injection unit 111 can be efficiently collected, and the blast processing unit 110 can be miniaturized.
  • the blast processing unit 110 has a double tubular body shape 115 including an inner cylinder portion 115A and an outer cylinder portion 115B surrounding the inner cylinder portion 115A, and the inner cylinder portion 115A injects the inner cylinder portion 115A. It is a unit 111, and the outer cylinder portion 115B is a collection unit 113. Therefore, the projection material P injected from the injection unit 111 can be efficiently recovered, and the blast processing unit 110 can be miniaturized.
  • the flexible member 180 is provided at the end of the outer cylinder portion 115B, when the flexible member 180 comes into contact with the roll surface 11A, the projection material from the blast processing portion 110 Leakage of P can be suppressed. Further, since the flexible member 180 is provided, the load on the roll surface 11A can be dispersed at the time of pressing.
  • the blasting unit 110 detects the distance between the blasting unit 110 and the roll surface 11A by the detecting unit 140 that detects the distance between the blasting unit 110 and the roll surface 11A, so that the blasting unit 110 rolls on the roll surface. It is possible to detect that the distance from 11A is large, and it is possible to prevent leakage of the projection material P.
  • the moving mechanism 170 that moves the blasting unit 110 along the axial direction of the roll 11 moves the blasting unit 110 in the axial direction of the roll to move the foreign matter on the roll surface 11A in the axial direction. Can be uniformly removed and roughened along the line. Further, since it is not necessary to provide a plurality of blast processing units 110 or widen the projection range, the foreign matter removing device 100 on the roll surface including the blast processing unit 110 can be miniaturized.
  • the roll rotation mechanism 150 for rotating the roll 11 by blasting while rotating the roll 11 by the roll rotation mechanism 150 that rotates the roll 11, foreign matter on the roll surface 11A can be uniformly removed and roughened along the circumferential direction. Further, when the roll rotation mechanism 150 for rotating the roll 11 is provided in a state where the rotational force for transporting the steel strip 1 is not supplied to the roll 11, the roll drive source used when transporting the steel strip 1 is used. The roll 11 can be rotated without using it. That is, the roll 11 is rotated by applying a rotational force from the outside through the rotating portion 151 that is in contact with the roll surface 11A. Therefore, it is easy to control the roll rotation speed according to the blasting process.
  • the injection unit 111 injects the projection material P together with the gas G
  • the recovery unit 113 collects the projection material P by sucking the projection material P together with the gas G.
  • the projecting material P is injected together with the gas G and further sucked together with the gas G, so that the projecting material P can be easily recovered.
  • the residue of impurities on the roll surface 11A can be suppressed as compared with the case of wet blasting.
  • the projection material P is polygonal alumina particles, it has sufficient hardness, so that foreign matter on the roll surface 11A can be efficiently removed. Further, since the polygonal alumina particles are chemically stable, even if they remain on the roll surface 11A, they are unlikely to be the starting points for the growth of the oxide film C.
  • the foreign matter removing device 100 on the roll surface and the foreign matter removing method on the roll surface according to the embodiment of the present invention have been described above.
  • the foreign matter removing device 100 on the roll surface 11A is applied to the foreign matter on the roll 11 in the heating furnace 10. The removal was performed, and the amount of the oxide film C removed from the roll surface 11A was examined.
  • Comparative Example 1 when the projection material P is dry ice, as Comparative Example 2, when the projection material P is a spherical powder having a particle size # 40, and as Comparative Example 3, the projection material P has a particle size #.
  • the amount of Mn oxide film removed on the roll surface 11A was examined in each of the 120 spherical powders. Further, as an example, the amount of Mn oxide film removed when the projection material P was made into polygonal alumina particles having a particle size of # 46 was investigated.
  • the amount of Mn oxide removed is the amount of decrease in the composition of the Mn component in the vicinity of the roll surface before and after the removal of foreign matter.
  • the projecting material P was projected onto the roll surface 11A at a projection angle of 90 degrees together with compressed air having a pressure of 0.3 MPa.
  • the projection conditions such as the pressure of the gas other than the projection material P are the same.
  • the amount of Mn was measured by a portable fluorescent X-ray apparatus.
  • the amount of Mn was measured by a portable fluorescent X-ray apparatus. Then, the amount of decrease in the composition of the Mn component was calculated by subtracting the amount of Mn measured after removing the foreign matter from the amount of Mn measured before removing the foreign matter.
  • 10 projection materials P are randomly extracted with respect to the shape of the projection material P. Then, the cross-sectional shape of the extracted projection material P is observed by SEM. An inspection device other than SEM may be used as long as the cross-sectional shape can be confirmed. Next, the angle of the angular portion (that is, the corner portion, hereinafter referred to as “corner”) of the outer edges of the cross-sectional shapes of each of the extracted projecting materials P is measured. The angle of the internal angle in these angles is within a preset range, that is, an angle satisfying the condition of 60 degrees or more and 170 degrees or less is defined as an angle satisfying the criteria of the present embodiment. Then, for each particle, the number of corners satisfying this criterion is counted.
  • an average value indicating how many corners satisfying the standard for the measured particle group is included in each particle is calculated.
  • the shape of the projection material P is defined as "polygonal shape”.
  • the shape of the projection material P is defined as "spherical”. In the examples, a projection material P satisfying the above conditions was used.
  • FIG. 10 is a graph showing the amount of Mn oxide removed from the roll surface 11A as an example.
  • the amount of Mn oxide removed was about 1 wt% (weight percent).
  • the amount of Mn oxide removed was about 6 wt% in Comparative Example 2 having a relatively large particle size and 2 wt% in Comparative Example 3 having a small particle size. It was about%.
  • the amount of Mn oxide removed was about 23 wt%. According to the examples, it was clarified that the amount of Mn oxide removed exceeds 20 wt%, which is a guideline for the amount of oxide removed, by using polygonal alumina particles as the projection material P.
  • the oxide film C on the roll surface 11A is removed, and the roll surface 11A is removed. It was shown that the roughness of the can be recovered. Furthermore, it was shown that by using the polygonal alumina particles as the projection material P, the oxide film C can be effectively removed as compared with the projection material in other comparative examples.
  • the difference in effect between Comparative Examples 1 to 3 and Examples is caused by the following reasons.
  • the projection material P since the projection material P has a polygonal shape, the portion including the apex of the polygon of the projection material P and the region near the apex is sharp. Therefore, when the projecting material P collides with the oxide film C of the roll surface 11A, a large force is applied to the oxide film C at the collision position of the sharp portion of the projecting material P. As a result, the oxide film C is largely destroyed by the collision of the projection material P, and the amount of Mn oxide removed can be increased.
  • the particle size of the particles of the projection material P is # 40, which is relatively close to the particle size of the particles of the projection material P of the example # 46.
  • the shape of the particles of the projection material P of Comparative Example 2 is not a polygonal shape as in the example, but a spherical shape. Therefore, for example, even in the case of particles having the same maximum length, in Comparative Example 2, the ejected spherical projection material P is compared with the case where the polygonal particles are ejected as in the example.
  • the contact area between the particles and the oxide film C is larger than that in the example.
  • the pressure per contact area given to the oxide film C by the ejected particles of the projection material P becomes smaller than that in the case of injecting the polygonal particles. Therefore, in Comparative Example 2, the oxide film C is not sufficiently destroyed.
  • Comparative Example 3 the shape of the projection material P is spherical as in the case of Comparative Example 2. Therefore, the force per contact area given to the oxide film C by the ejected particles is smaller than that in the case of ejecting the polygonal particles. Further, the particle size of the particles of the projection material P of Comparative Example 3 is # 120, which is larger than the particle size of the projection material P of Comparative Example 2 # 40. Therefore, in Comparative Example 3, the contact area between the ejected particles of the projection material P and the oxide film C is further larger than that in Comparative Example 2. As a result, in Comparative Example 3, the amount of the oxide film C to be destroyed is further reduced as compared with the case of Comparative Example 2.
  • the blast processing unit 110 may be provided on the lower surface side of the roll 11 so that the projection material P is ejected from below.
  • the example in which the blast processing unit 110 is one is shown, but a plurality of blast processing units 110, for example, two units may be provided.
  • different types of projection material P may be ejected from each blast processing unit 110.
  • the projection material P having the first particle size is ejected from the injection unit 111 of one blast processing unit 110, and the projection material P having the first particle size is smaller than the first particle size from the injection unit 111 of the other blast processing unit 110.
  • the projection material P having a particle size of 2 may be injected.
  • the injection unit 111 and the recovery unit 113 are integrated in the blast processing unit 110 is shown, but the present disclosure is not limited to such an example.
  • the injection unit 111 and the recovery unit 113 may be separate bodies.
  • the roll rotation mechanism 150 has shown an example in which the rotating portion 151 is brought into contact with the roll 11 to rotate the roll 11, but the present disclosure is not limited to such an example.
  • a belt that transmits a rotational force from a drive source may be attached to the roll 11 as the rotation mechanism of the present disclosure, and the roll 11 may be rotated via such a belt.
  • the roll 11 may be rotated by a roll drive source that rotates the roll 11 when the steel strip 1 is conveyed without providing the roll rotation mechanism 150.
  • the first aspect is A blasting unit including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
  • a pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
  • Aspect 2 is The foreign matter removing device on the roll surface according to the first aspect, wherein the injection unit is provided in the center of the blast processing unit, and the collection unit is provided around the injection unit.
  • Aspect 3 is The blast processing portion has a double tubular body shape including an inner cylinder portion and an outer cylinder portion surrounding the inner cylinder portion.
  • Aspect 4 is The foreign matter removing device on the roll surface according to the third aspect, wherein a flexible member is provided at the end of the outer cylinder portion.
  • Aspect 5 is The foreign matter removing device on the roll surface according to any one of aspects 1 to 4, further comprising a detection unit for detecting the distance between the blast processing unit and the surface of the roll.
  • Aspect 6 is The roll according to aspect 5, wherein when the distance between the surface of the roll detected by the detection unit and the blast processing unit becomes a predetermined value or more, the injection of the projection material by the injection unit is stopped. Surface foreign matter remover.
  • Aspect 7 is The foreign matter removing device on the surface of a roll according to any one of aspects 1 to 6, further comprising a moving mechanism for moving the blasting unit along the axial direction of the roll.
  • Aspect 8 is The foreign matter removing device on the surface of a roll according to any one of aspects 1 to 7, further comprising a roll rotation mechanism for rotating the roll.
  • Aspect 9 is The injection unit injects the projection material together with the gas, and the injection unit injects the projection material together with the gas.
  • the foreign matter removing device on the roll surface according to any one of aspects 1 to 8, wherein the recovery unit recovers the projection material by sucking it together with the gas.
  • Aspect 10 is The injection unit injects the gas in a pressure range of 0.2 MPa or more and 0.5 MPa or less.
  • Aspect 11 is The injection unit projects the projection material at a projection angle of 80 degrees or more and 90 degrees or less with respect to the roll surface when viewed along the axial direction of the roll.
  • the foreign matter removing device on the roll surface according to any one of aspects 1 to 10.
  • Aspect 12 is The foreign matter removing device on the roll surface according to any one of aspects 1 to 11, wherein the projection material is alumina particles.
  • Aspect 13 is A step of pressing the blasting portion of the foreign matter removing device on the roll surface according to any one of aspects 1 to 12 against the roll surface.
  • Aspect 14 is In the process of injecting the projection material, after injecting the first projection material having the first average particle size, the second projection material having the second average particle size smaller than the first average particle size is ejected. Spray, The method for removing foreign matter on the roll surface according to the thirteenth aspect.
  • Aspect 16 is The removal step is performed while rotating the roll by applying a rotational force via a rotation mechanism in contact with the roll surface.
  • Aspect 17 is The method for producing a steel strip according to aspect 15 or 16, wherein the steel strip is a high-strength steel.
  • the other aspect 1 is A blasting unit including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
  • a pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
  • a roll surface roughening treatment device including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
  • a pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
  • a roll surface roughening treatment device A roll surface roughening treatment device.
  • Another aspect 2 is The roll surface roughening treatment apparatus according to another aspect 1, wherein the injection unit is provided in the center of the blast processing unit, and the recovery unit is provided around the injection unit.
  • the blast processing portion has a double tubular body shape including an inner cylinder portion and an outer cylinder portion surrounding the inner cylinder portion.
  • Another aspect 4 is The roll surface roughening treatment device according to another aspect 3, wherein a flexible member is provided at the end of the outer cylinder portion.
  • Another aspect 5 is The roll surface roughening treatment apparatus according to any one of other aspects 1 to 4, further comprising a detection unit for detecting the distance between the blast processing unit and the surface of the roll.
  • Another aspect 6 is 5.
  • Another aspect 7 is The roll surface roughening treatment device according to any one of other aspects 1 to 6, further comprising a moving mechanism for moving the blasting unit along the axial direction of the roll.
  • Another aspect 8 is The roll surface roughening treatment device according to any one of other aspects 1 to 7, further comprising a roll rotation mechanism for rotating the roll.
  • Another aspect 9 is The injection unit injects the projection material together with the gas, and the injection unit injects the projection material together with the gas.
  • the roll surface roughening treatment device according to any one of other aspects 1 to 8, wherein the recovery unit recovers the projection material by sucking it together with the gas.
  • Another aspect 10 is The roll surface roughening treatment apparatus according to any one of other aspects 1 to 9, wherein the projection material is alumina particles.
  • Another aspect 11 is The step of pressing the blasting portion according to any one of the other aspects 1 to 10 against the roll surface, and A step of injecting a projection material from the blast processing unit and collecting the projection material in the blast processing unit.
  • Roughening treatment method for roll surface including.
  • Another aspect 12 is A step of roughening the surface of the roll provided in the heating furnace by the method of roughening the surface of the roll according to another aspect 11.
  • Another aspect 13 is The method for manufacturing a steel strip according to another aspect 12, wherein the steel strip is a high-strength steel.
  • the roughening of the surface of the transport roll provided in the heating furnace can be easily realized. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning In General (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

This device for removing foreign matter from a roller surface comprises: a blast processing unit that comprises a spray unit and a recovery unit, said spray unit spraying a projectile material at the surface of a roller that conveys a steel strip inside a heating furnace, and said recovery unit recovering the projectile material; and a pressing unit that presses the blast processing unit toward the surface of the roller.

Description

ロール表面の異物除去装置、ロール表面の異物除去方法、及び鋼帯の製造方法Foreign matter removing device on the roll surface, foreign matter removing method on the roll surface, and manufacturing method of steel strips
 本開示は、ロール表面の異物除去装置、ロール表面の異物除去方法、及び鋼帯の製造方法に関する。 The present disclosure relates to a foreign matter removing device on the roll surface, a foreign matter removing method on the roll surface, and a method for manufacturing a steel strip.
 鋼板の製造工程における連続焼鈍炉等の加熱炉内には、鋼帯を搬送するためのロールが設けられる。かかるロールの表面に対しては、種々の処理を施すことが求められる。例えば、特許第3932947号公報には、熱処理炉内の搬送ロールに対して、薄肉部材の一部をロールに面接触させる異物掻取手段によってロールに付着した異物を除去し、ロール表面手入れを行う技術が記載されている。 A roll for transporting the steel strip is provided in a heating furnace such as a continuous annealing furnace in the steel sheet manufacturing process. The surface of such a roll is required to be subjected to various treatments. For example, in Japanese Patent No. 3932947, foreign matter adhering to the roll is removed by a foreign matter scraping means for bringing a part of the thin-walled member into surface contact with the roll for the transport roll in the heat treatment furnace, and the surface of the roll is cleaned. The technology is described.
 また、特開2002-120153号公報には、原子炉圧力容器内の構成部材であるシュラウドの溶接部にショットピーニングを行うことにより、表面層を塑性変形させる技術が記載されている。具体的には、鋼球等の粒子を溶接部の表面層に打ち付けることによって、表面層に残存している引張り残留応力を圧縮残留応力に転換させる。 Further, Japanese Patent Application Laid-Open No. 2002-120153 describes a technique for plastically deforming a surface layer by performing shot peening on a welded portion of a shroud which is a constituent member in a reactor pressure vessel. Specifically, by striking particles such as steel balls against the surface layer of the welded portion, the tensile residual stress remaining in the surface layer is converted into compressive residual stress.
 特許第3932947号公報は、熱処理炉内の高温環境下に長時間曝されるロール表面手入れ装置における異物掻取手段に関し、操業中の加熱炉内に永続的に取り付けられた異物掻取手段によって、ロールに付着した異物が除去される。通板中に異物が除去されるため、除去された異物が鋼板に付着して疵になるという問題がある。 Japanese Patent No. 3932947 relates to a foreign matter scraping means in a roll surface care device that is exposed to a high temperature environment in a heat treatment furnace for a long time by means of a foreign matter scraping means permanently installed in the heating furnace in operation. Foreign matter adhering to the roll is removed. Since the foreign matter is removed during the threading, there is a problem that the removed foreign matter adheres to the steel sheet and causes a defect.
 また、特許第3932947号公報においては、加熱炉の停止中に搬送用ロールに対して行われる定期的な修理及び保全に関する処理については考慮されていない。例えば、搬送用ロールの表面粗度を回復させる異物除去については考慮されていない。また、仮に特許第3932947号公報の技術を定期修理に適用したとしても、異物掻取手段によってロール表面に付着した異物が除去され、むしろロール表面は平坦化する。 Further, in Japanese Patent No. 3932947, the processing related to periodic repair and maintenance performed on the transport roll while the heating furnace is stopped is not considered. For example, the removal of foreign matter that restores the surface roughness of the transport roll is not considered. Even if the technique of Japanese Patent No. 3932947 is applied to periodic repairs, the foreign matter adhering to the roll surface is removed by the foreign matter scraping means, and the roll surface is rather flattened.
 また、仮に特開2002-120153号公報の技術を、搬送用ロールの異物除去に適用した場合、粒子を搬送用ロールの表面に打ち付けることによって表面の形状を変形させ、表面に圧縮残留応力を生じさせることは可能である。しかし、特開2002-120153号公報では、搬送用ロールの表面から効果的に異物を除去することは考慮されていない。このため、特開2002-120153号公報の技術を用いて、粒子を搬送用ロールの表面に打ち付けたとしても、ロール表面の異物を効果的に除去することは困難である。 Further, if the technique of JP-A-2002-120153 is applied to the removal of foreign matter from the transport roll, the surface shape is deformed by striking the particles against the surface of the transport roll, and compressive residual stress is generated on the surface. It is possible to make it. However, Japanese Patent Application Laid-Open No. 2002-120153 does not consider effective removal of foreign matter from the surface of the transport roll. Therefore, even if the particles are struck on the surface of the transport roll by using the technique of JP-A-2002-120153, it is difficult to effectively remove the foreign matter on the roll surface.
 また、特開2002-120153号公報の場合、搬送用ロールの表面の形状の変形が促進されるように粒子が打ち付けられるため、打ち付けられたロール表面の形状が、異物が付着する前の本来の形状に復元しない程度に、大きく変形する可能性が高い。このため、粒子の打ち付け後、大きく変形した搬送ロールの影響で、鋼帯の搬送に不具合が生じる懸念がある。 Further, in the case of JP-A-2002-120153, since the particles are struck so as to promote the deformation of the surface shape of the transport roll, the shape of the struck roll surface is the original shape before the foreign matter adheres. There is a high possibility that it will be deformed so much that it will not be restored to its shape. For this reason, there is a concern that problems may occur in the transportation of the steel strip due to the influence of the transport roll that is greatly deformed after the particles are struck.
 そこで、本開示は、上記問題に鑑みてなされたものであり、本開示の目的は、加熱炉内に設けられた搬送用ロールの表面の異物除去を簡便に実現することが可能な新規かつ優れたロール表面の異物除去装置、ロール表面の異物除去方法、及び鋼帯の製造方法を提供することである。 Therefore, the present disclosure has been made in view of the above problems, and the purpose of the present disclosure is new and excellent in that it is possible to easily realize the removal of foreign matter on the surface of the transport roll provided in the heating furnace. It is an object of the present invention to provide a foreign matter removing device on a roll surface, a foreign matter removing method on a roll surface, and a method for manufacturing a steel strip.
 上記課題を解決するために、本開示のある観点によれば、加熱炉内において鋼帯を搬送するロールの表面に対して投射材を噴射する噴射部と、上記投射材を回収する回収部とを備えるブラスト処理部と、上記ブラスト処理部を上記ロールの表面に向かって押圧させる押圧部と、を備える、ロール表面の異物除去装置が提供される。 In order to solve the above problems, according to a certain viewpoint of the present disclosure, an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that recovers the projection material. Provided is a foreign matter removing device on the surface of the roll, comprising: a blasting unit comprising the above, and a pressing portion for pressing the blasting unit toward the surface of the roll.
 上記課題を解決するために、本開示の他の観点によれば、上記ロール表面の異物除去装置のブラスト処理部をロール表面に押圧させる工程と、上記ブラスト処理部内から投射材を噴射するとともに、上記ブラスト処理部内で上記投射材を回収する工程と、を含むロール表面の異物除去方法が提供される。 In order to solve the above problems, according to another viewpoint of the present disclosure, a step of pressing the blast processing portion of the foreign matter removing device on the roll surface against the roll surface, a step of injecting a projection material from the inside of the blast treatment portion, and the like. A step of collecting the projection material in the blasting unit and a method of removing foreign matter on the roll surface including the step of collecting the projection material are provided.
 上記課題を解決するために、本開示の他の観点によれば、上記ロール表面の異物除去方法によって、加熱炉内に設けられたロールの表面の異物を除去する工程と、上記ロールが設けられた加熱炉内に鋼帯を通過させて熱処理を行う工程と、を含む鋼帯の製造方法が提供される。 In order to solve the above-mentioned problems, according to another viewpoint of the present disclosure, the step of removing the foreign matter on the surface of the roll provided in the heating furnace and the above-mentioned roll are provided by the method for removing foreign matter on the surface of the roll. A method for manufacturing a steel strip including a step of passing a steel strip through a heating furnace to perform heat treatment is provided.
 以上、説明したように本開示によれば、加熱炉内に設けられた搬送用ロールの表面の異物除去を簡便に実現することが可能なロール表面の異物除去装置、ロール表面の異物除去方法、及び鋼帯の製造方法が提供される。 As described above, according to the present disclosure, a foreign matter removing device on the roll surface, a foreign matter removing method on the roll surface, which can easily realize the foreign matter removal on the surface of the transport roll provided in the heating furnace. And a method of manufacturing a steel strip is provided.
図1は、本開示の一の実施形態に係る加熱炉の設けられる操業ラインの一部の構成例を示す模式図である。FIG. 1 is a schematic view showing a configuration example of a part of an operation line provided with a heating furnace according to an embodiment of the present disclosure. 本実施形態に係る加熱炉の設けられる操業ラインの一部の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a part of the operation line provided with the heating furnace which concerns on this embodiment. 本実施形態に係るロール表面の異物除去装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the foreign matter removing apparatus on the roll surface which concerns on this embodiment. 本実施形態に係るロール表面の異物除去装置の構成例を示す上面図である。It is a top view which shows the structural example of the foreign matter removing apparatus of the roll surface which concerns on this embodiment. 本実施形態に係るブラスト処理部の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the blast processing part which concerns on this embodiment. 本実施形態に係るブラスト処理部による異物除去の際の投射材の投射角度を説明する模式図である。It is a schematic diagram explaining the projection angle of the projection material at the time of removing foreign matter by the blast processing part which concerns on this embodiment. 本実施形態に係るブラスト処理部による異物除去の様子を説明するためのロール表面の模式図である。It is a schematic diagram of the roll surface for demonstrating the state of the foreign matter removal by the blast processing part which concerns on this embodiment. 本実施形態に係るブラスト処理部による異物除去の様子を説明するためのロール表面の模式図である。It is a schematic diagram of the roll surface for demonstrating the state of the foreign matter removal by the blast processing part which concerns on this embodiment. 本実施形態に係るブラスト処理部による異物除去の様子を説明するためのロール表面の模式図である。It is a schematic diagram of the roll surface for demonstrating the state of the foreign matter removal by the blast processing part which concerns on this embodiment. 本実施形態におけるロール表面の異物除去方法のフローチャートである。It is a flowchart of the foreign matter removal method of the roll surface in this embodiment. 本実施形態に係る鋼帯の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the steel strip which concerns on this embodiment. 実施例及び比較例におけるロール表面のMn酸化物除去量を示すグラフである。It is a graph which shows the Mn oxide removal amount of the roll surface in an Example and a comparative example.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。但し、図面における厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted. Further, in the description of the following drawings, the same parts and similar parts are designated by the same reference numerals or similar reference numerals. However, the relationship between the thickness and the plane dimension in the drawing, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, there are parts in which the relations and ratios of the dimensions of the drawings are different from each other.
<1.加熱炉>
 まず、図1及び図2を参照しながら、本開示の一の実施形態に係る加熱炉10について説明する。図1は、本実施形態に係る加熱炉10Aの設けられる操業ラインの一部の構成例を示す模式図である。また、図2は、本実施形態に係る加熱炉10Bの設けられる操業ラインの一部の構成例を示す模式図である。
<1. Heating furnace >
First, the heating furnace 10 according to the embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing a configuration example of a part of an operation line provided with the heating furnace 10A according to the present embodiment. Further, FIG. 2 is a schematic view showing a configuration example of a part of the operation line provided with the heating furnace 10B according to the present embodiment.
 図1に示すように、加熱炉10Aは、一例としてめっき浴13Aへ鋼帯1を連続的に浸漬し、鋼帯表面にめっき処理を施す連続溶融めっきライン(CGL;Continuous Galvanizing Line)に設けられる連続焼鈍炉である。加熱炉10Aは、冷間圧延後の鋼帯1に対して、焼鈍を行う。加熱炉10Aは、特に限定されず、例えば、鋼帯1に対して連続的に熱処理を施すことが可能な連続式加熱炉である。 As shown in FIG. 1, the heating furnace 10A is provided in, for example, a continuous hot-dip plating line (CGL; Continuus Galvanizing Line) in which the steel strip 1 is continuously immersed in the plating bath 13A and the surface of the steel strip is plated. It is a continuous annealing furnace. In the heating furnace 10A, the steel strip 1 after cold rolling is annealed. The heating furnace 10A is not particularly limited, and is, for example, a continuous heating furnace capable of continuously heat-treating the steel strip 1.
 また、図1に示すように、めっき処理設備13は、加熱炉10Aよりも搬送方向下流側に設けられ、鋼帯1に対して合金化溶融亜鉛めっき処理を行う。搬送方向は、鋼帯1が図1中の右側から左側に向かう方向である。めっき処理設備13は、鋼帯1を、溶融金属Mを満たしためっき浴13Aに浸漬することにより、鋼帯1の表面に溶融金属Mを連続的に付着させた後、溶融金属Mを所定の目付量にするとともに、めっき被膜の合金化を行う設備である。 Further, as shown in FIG. 1, the plating treatment equipment 13 is provided on the downstream side in the transport direction from the heating furnace 10A, and the steel strip 1 is subjected to alloying hot dip galvanizing treatment. The transport direction is the direction in which the steel strip 1 goes from the right side to the left side in FIG. The plating processing equipment 13 continuously attaches the molten metal M to the surface of the steel strip 1 by immersing the steel strip 1 in a plating bath 13A filled with the molten metal M, and then attaches the molten metal M to a predetermined value. It is a facility that alloys the plating film as well as the amount of grain.
 図1に示すように、加熱炉10A内には、鋼帯1を搬送するためのロール11が設けられている。ロール11は、いわゆるハースロールであり、図示しないロール駆動源からの回転力によって回転し、加熱炉10A内において鋼帯1を搬送する。 As shown in FIG. 1, a roll 11 for transporting the steel strip 1 is provided in the heating furnace 10A. The roll 11 is a so-called hearth roll, which is rotated by a rotational force from a roll drive source (not shown) to convey the steel strip 1 in the heating furnace 10A.
 また、図2に示すように、加熱炉10Bは、圧延工程の一部に設けられる連続焼鈍設備(CAPL;Continuous Annealing and Processing Line(なお、C.A.P.L.は、登録商標))である。加熱炉10Bは、冷間圧延後の鋼帯1に対して、焼鈍を行う。加熱炉10Bは、特に限定されず、例えば、鋼帯1に対して連続的に過時効処理などの熱処理を施すことが可能な縦型の加熱炉である。 Further, as shown in FIG. 2, the heating furnace 10B is a continuous annealing facility (CAPL; Continuus Annealing and Processing Line (CAPL; CAPL is a registered trademark)) provided as a part of the rolling process. Is. In the heating furnace 10B, the steel strip 1 after cold rolling is annealed. The heating furnace 10B is not particularly limited, and is, for example, a vertical heating furnace capable of continuously performing heat treatment such as overaging treatment on the steel strip 1.
 図2に示すように、加熱炉10B内には、鋼帯1を搬送するためのロール11が設けられている。また、ロール11は、縦型の加熱炉である加熱炉10Bにおいて、鋼帯1の搬送方向を上下方向において転向させる。ロール11は、いわゆるハースロールであり、図示しないロール駆動源からの回転力によって回転される。なお、以下の説明において、加熱炉10A、10Bを単に加熱炉10と称する場合がある。 As shown in FIG. 2, a roll 11 for transporting the steel strip 1 is provided in the heating furnace 10B. Further, the roll 11 rotates the transport direction of the steel strip 1 in the vertical direction in the heating furnace 10B, which is a vertical heating furnace. The roll 11 is a so-called hearth roll, and is rotated by a rotational force from a roll drive source (not shown). In the following description, the heating furnaces 10A and 10B may be simply referred to as the heating furnace 10.
 以上、説明したような加熱炉10において使用されるロール11は、鋼帯1を搬送するため、所定の粗度(すなわち、表面粗さ)を有している。これにより、ロール11と鋼帯1との間の摩擦力が確保され、通板時の鋼帯1の蛇行等が抑制される。しかし、長期間のロール11の使用による摩耗、またはロール表面の酸化物形成等によって、ロール表面の粗度が所定値よりも小さくなることがある。この結果、通板時に鋼帯1の蛇行が生じ易くなり、操業安定性に影響を及ぼすことがある。 The roll 11 used in the heating furnace 10 as described above has a predetermined roughness (that is, surface roughness) for transporting the steel strip 1. As a result, the frictional force between the roll 11 and the steel strip 1 is secured, and meandering of the steel strip 1 during plate passing is suppressed. However, the roughness of the roll surface may become smaller than the predetermined value due to wear due to the use of the roll 11 for a long period of time, oxide formation on the roll surface, or the like. As a result, meandering of the steel strip 1 is likely to occur during plate passing, which may affect the operational stability.
 特に、鋼帯1が高張力鋼から成る場合、ロール表面に鋼中成分に起因した酸化物が形成されることがある。具体的には、鋼中成分であるマンガン(Mn)に起因したMn酸化物がロール表面に被膜状に形成される。このため、ロール表面の粗度が所定値よりも小さくなり、鋼帯1とロール11との間の摩擦力低下によって鋼帯1の蛇行等が生じ得る。特に、鋼帯1が、引張強さ(TS;Tensile Strength)で780MPa以上を有する高張力鋼である場合、上記のような現象が生じ易くなる。 In particular, when the steel strip 1 is made of high-strength steel, oxides due to the components in the steel may be formed on the roll surface. Specifically, Mn oxide derived from manganese (Mn), which is a component in steel, is formed on the roll surface in the form of a film. Therefore, the roughness of the roll surface becomes smaller than the predetermined value, and the steel strip 1 may meander due to a decrease in the frictional force between the steel strip 1 and the roll 11. In particular, when the steel strip 1 is a high-strength steel having a tensile strength (TS; Tensile Strength) of 780 MPa or more, the above phenomenon is likely to occur.
<2.ロール表面の異物除去装置>
 そこで、本開示者らが鋭意検討したところ、本開示者らは、加熱炉10に設けられたロール11に対して粗度を回復する異物除去を行うことを想到した。異物除去の処理によって、ロール11の表面粗さが大きくなり、粗度が回復する。以下、図3及び図4を参照しながら、本実施形態に係るロール表面の異物除去装置100について説明する。図3は、本実施形態に係るロール表面の異物除去装置100の構成例を示す模式図である。
<2. Foreign matter removal device on the roll surface>
Therefore, as a result of diligent studies by the present disclosers, the present disclosers have come up with the idea of removing foreign matter for recovering the roughness of the roll 11 provided in the heating furnace 10. By the foreign matter removing process, the surface roughness of the roll 11 is increased and the roughness is restored. Hereinafter, the foreign matter removing device 100 on the roll surface according to the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a schematic view showing a configuration example of the foreign matter removing device 100 on the roll surface according to the present embodiment.
 図3に示すように、ロール表面の異物除去装置100は、ロール表面11Aに対して粗度を回復するための処理を行う装置である。ロール表面の異物除去装置100は、その構成の一部(すなわち、図3に示す二点鎖線で囲まれた領域に含まれる部分)が加熱炉10内に設けられ、ロール表面11Aに対して異物除去を行う。例えば、ロール表面の異物除去装置100は、定期修理中等の理由により操業停止中の加熱炉10に設置され、通常の操業時には、加熱炉10内から撤去されている。つまり、ロール表面の異物除去装置100は、加熱炉10内に一時的に取り付けられ、異物除去作業が終了した後、取り外し可能とされる。 As shown in FIG. 3, the foreign matter removing device 100 on the roll surface is a device that performs a process for recovering the roughness of the roll surface 11A. A part of the structure of the foreign matter removing device 100 on the roll surface (that is, a portion included in the region surrounded by the alternate long and short dash line shown in FIG. 3) is provided in the heating furnace 10, and the foreign matter is removed from the roll surface 11A. Perform removal. For example, the foreign matter removing device 100 on the surface of the roll is installed in the heating furnace 10 whose operation is stopped due to reasons such as during periodic repairs, and is removed from the heating furnace 10 during normal operation. That is, the foreign matter removing device 100 on the surface of the roll is temporarily installed in the heating furnace 10 and can be removed after the foreign matter removing work is completed.
 加熱炉10内に複数のロール11が設けられている場合、ロール表面の異物除去装置100は、各ロール11に対して順次、異物除去を行う。すなわち、ロール表面の異物除去装置100が加熱炉10内の一のロール11に対して異物除去を行った後、ロール表面の異物除去装置100は、一旦取り外され、移動された後、他のロール11に対応する箇所に再度取り付けられる。その後、ロール表面の異物除去装置100は、他のロール11に対して異物除去を行う。なお、ロール表面の異物除去装置100は、加熱炉10内に複数設置されてもよい。 When a plurality of rolls 11 are provided in the heating furnace 10, the foreign matter removing device 100 on the surface of the rolls sequentially removes foreign matter from each roll 11. That is, after the foreign matter removing device 100 on the roll surface removes foreign matter from one roll 11 in the heating furnace 10, the foreign matter removing device 100 on the roll surface is once removed, moved, and then the other roll. It is reattached to the location corresponding to 11. After that, the foreign matter removing device 100 on the roll surface removes foreign matter from the other rolls 11. A plurality of foreign matter removing devices 100 on the roll surface may be installed in the heating furnace 10.
(ブラスト処理部)
 具体的には、図3に示すように、ロール表面の異物除去装置100は、ブラスト処理部110と、押圧部120とを有している。ブラスト処理部110は、ロール表面11Aに対してブラスト処理を行い、ロール表面11Aの異物を除去することによって、ロール表面11Aを粗化する。具体的には、ブラスト処理部110は、図5において後述する投射材Pに相当する投射材をロール表面11Aに対して噴射する噴射部111と、投射材を回収する回収部113とを備える。噴射部111は、一例として、投射材を、図5において後述する気体Gに相当する気体とともに噴射する。これにより、投射材がロール表面11Aに対して衝突される。また、回収部113は一例として、投射材を気体とともに吸引することで回収する。
(Blast processing unit)
Specifically, as shown in FIG. 3, the foreign matter removing device 100 on the roll surface has a blast processing unit 110 and a pressing unit 120. The blasting unit 110 roughens the roll surface 11A by performing a blasting treatment on the roll surface 11A and removing foreign substances on the roll surface 11A. Specifically, the blast processing unit 110 includes an injection unit 111 that injects a projection material corresponding to the projection material P, which will be described later in FIG. 5, onto the roll surface 11A, and a recovery unit 113 that collects the projection material. As an example, the injection unit 111 injects the projection material together with the gas corresponding to the gas G described later in FIG. As a result, the projecting material collides with the roll surface 11A. Further, as an example, the recovery unit 113 recovers by sucking the projection material together with the gas.
 投射材の一例としては、金属酸化物の多角形状粉末が挙げられ、特にアルミニウム酸化物の粉末(すなわち、アルミナ粒子)が挙げられる。アルミニウム酸化物は、化学的に安定であり、加熱炉内に残留した場合でも、加熱炉の操業への影響が抑制される。また、研削材として一般的なアルミナ粉末は比較的廉価であることから、異物除去の作業に要する費用を低減できる。 As an example of the projection material, a polygonal powder of a metal oxide can be mentioned, and in particular, an aluminum oxide powder (that is, alumina particles) can be mentioned. The aluminum oxide is chemically stable, and even if it remains in the heating furnace, its influence on the operation of the heating furnace is suppressed. Further, since alumina powder, which is generally used as an abrasive, is relatively inexpensive, the cost required for the work of removing foreign matter can be reduced.
 また、その他の多角形状金属酸化物の投射材の例としては、ジルコニウム酸化物(すなわち、ジルコニア)の粉末が挙げられる。さらに、投射材のその他の例としては、炭化ケイ素(SiC)粉末が挙げられる。投射材の硬度の一例としては、ビッカース硬度で2000~3000程度である。また、投射材の粒度の一例としては、#30~#220程度である。 Further, as an example of the projection material of other polygonal metal oxides, a powder of zirconium oxide (that is, zirconia) can be mentioned. Further, other examples of the projection material include silicon carbide (SiC) powder. As an example of the hardness of the projection material, the Vickers hardness is about 2000 to 3000. Further, as an example of the particle size of the projection material, it is about # 30 to # 220.
 投射材とともに噴射される気体の一例としては、圧縮空気が挙げられる。噴射の際の圧力は、一例として、0.2MPa~0.7MPa程度である。なお、本実施形態では、圧縮空気の噴射圧力の範囲は、0.2MPa以上、0.5MPa以下であることが好ましい。噴射圧力の範囲が0.2MPa以上、0.5MPa以下に設定されていることにより、異物である酸化物被膜Cを効率的に除去できる。 Compressed air is an example of the gas injected together with the projection material. The pressure at the time of injection is, for example, about 0.2 MPa to 0.7 MPa. In this embodiment, the range of the injection pressure of the compressed air is preferably 0.2 MPa or more and 0.5 MPa or less. By setting the injection pressure range to 0.2 MPa or more and 0.5 MPa or less, the oxide film C which is a foreign substance can be efficiently removed.
 噴射圧力が0.2MPa未満である場合、圧力が小さいため、噴射された投射材Pが酸化物被膜Cに食い込み難くなる結果、酸化物被膜Cを十分に除去できない。また、噴射圧力が0.5MPaを超える場合、噴射された投射材Pがロール表面11Aに食い込み、ロール表面11Aに残留するおそれがある。このため食い込んだ投射材Pにより鋼板疵を発生させるおそれがある。酸化物被膜CがMn酸化物である本実施形態では、噴射圧力の値が、0.2MPa以上、0.5MPa以下の範囲内の比較的低い値であっても、Mn酸化物を十分に除去できることが分かった。 When the injection pressure is less than 0.2 MPa, the pressure is small, so that the injected projection material P does not easily bite into the oxide film C, and as a result, the oxide film C cannot be sufficiently removed. Further, when the injection pressure exceeds 0.5 MPa, the injected projection material P may bite into the roll surface 11A and remain on the roll surface 11A. Therefore, the projecting material P that bites into the steel sheet may cause a flaw in the steel sheet. In the present embodiment in which the oxide film C is a Mn oxide, the Mn oxide is sufficiently removed even if the injection pressure value is a relatively low value within the range of 0.2 MPa or more and 0.5 MPa or less. I found that I could do it.
 噴射部111から噴射される投射材及び気体は、図3中のホース130を介して炉外から供給される。具体的には、投射材は、投射材供給用ホース131を介して炉外から供給される。また、気体は、気体供給用ホース132を介して炉外から供給される。詳細は後述するが、投射材供給用ホース131及び気体供給用ホース132の炉外側の端部は、それぞれ投射材供給源、及び気体供給源に接続されている。また、回収部113によって回収された投射材及び気体は、排出ホース133を介して炉外へ排出される。 The projection material and gas injected from the injection unit 111 are supplied from outside the furnace via the hose 130 in FIG. Specifically, the projection material is supplied from outside the furnace via the projection material supply hose 131. Further, the gas is supplied from outside the furnace via the gas supply hose 132. Although the details will be described later, the end portions of the projection material supply hose 131 and the gas supply hose 132 on the outside of the furnace are connected to the projection material supply source and the gas supply source, respectively. Further, the projection material and the gas recovered by the recovery unit 113 are discharged to the outside of the furnace via the discharge hose 133.
(押圧部)
 押圧部120は、ブラスト処理部110をロールの表面11Aに向かって押圧させる。詳細は後述するが、ブラスト処理部110をロール表面11Aに向かって押圧することにより、ブラスト処理部110の内面とロール表面11Aとで閉空間が形成される。これにより、噴射部111から噴射された投射材が、炉内に飛散することが防止される。押圧部120の一例としては、エアシリンダ121である。
(Pressing part)
The pressing unit 120 presses the blasting unit 110 toward the surface 11A of the roll. Although the details will be described later, by pressing the blast processing unit 110 toward the roll surface 11A, a closed space is formed between the inner surface of the blast processing unit 110 and the roll surface 11A. As a result, the projecting material injected from the injection unit 111 is prevented from being scattered in the furnace. An example of the pressing portion 120 is an air cylinder 121.
 ロール表面の異物除去装置100は、ブラスト処理部110及び押圧部120をロール表面11Aに対して所定の位置に配置するリンクアーム101をさらに有してもよい。リンクアーム101は、1つ又は複数の関節構造によって連結されたアーム状部材である。リンクアーム101によって、加熱炉10内に設けられた複数のロール11の径がそれぞれ異なる場合でも、ブラスト処理部110及び押圧部120をロール表面11Aに対して所定の位置に配置させることができる。リンクアーム101の一端部101Aには、ブラスト処理部110と押圧部120がブラケットを介して取り付けられている。リンクアーム101の他端部101Bは、後述するロール表面の異物除去装置100の本体部103に取り付けられている。 The foreign matter removing device 100 on the roll surface may further have a link arm 101 that arranges the blast processing unit 110 and the pressing unit 120 at predetermined positions with respect to the roll surface 11A. The link arm 101 is an arm-shaped member connected by one or more joint structures. The link arm 101 allows the blasting unit 110 and the pressing unit 120 to be arranged at predetermined positions with respect to the roll surface 11A even when the diameters of the plurality of rolls 11 provided in the heating furnace 10 are different from each other. A blast processing portion 110 and a pressing portion 120 are attached to one end portion 101A of the link arm 101 via a bracket. The other end 101B of the link arm 101 is attached to the main body 103 of the foreign matter removing device 100 on the roll surface, which will be described later.
(検出部)
 また、ロール表面の異物除去装置100は、ブラスト処理部110とロールの表面11Aとの距離を検出する検出部140をさらに備える。検出部140は、リンクアームの一端部101Aに取り付けられたブラケットを介して、ロール表面11Aに対して所定の位置とされている。検出部140は、ロール表面11Aに対する距離を測定する。検出部140の一例としては、レーザセンサが挙げられる。
(Detection unit)
Further, the foreign matter removing device 100 on the roll surface further includes a detection unit 140 that detects the distance between the blast processing unit 110 and the surface 11A of the roll. The detection unit 140 is positioned at a predetermined position with respect to the roll surface 11A via a bracket attached to one end 101A of the link arm. The detection unit 140 measures the distance to the roll surface 11A. An example of the detection unit 140 is a laser sensor.
(ロール回転機構)
 ロール表面の異物除去装置100は、ロール11を回転させるロール回転機構150をさらに有してもよい。特に、ロール回転機構150は、鋼帯1を搬送するためのロール11への回転力の供給がされていない状態で、ロール11を回転させる。ロール回転機構150は、一例として、ロールの表面11Aに外周面151Aが当接された状態で回転部151が回転することでロール11を回転させる。
(Roll rotation mechanism)
The foreign matter removing device 100 on the surface of the roll may further include a roll rotation mechanism 150 for rotating the roll 11. In particular, the roll rotation mechanism 150 rotates the roll 11 in a state where the rotational force for transporting the steel strip 1 is not supplied to the roll 11. As an example, the roll rotation mechanism 150 rotates the roll 11 by rotating the rotating portion 151 in a state where the outer peripheral surface 151A is in contact with the surface 11A of the roll.
 図4に示すように、回転部151は、一例として小型のロールであり、かかる回転部151は、モータ等の駆動源153によって駆動され、回転する。ロール11を回転させながら、ブラスト処理を行うことで、ロール11の周方向に沿ってロール11の表面の異物除去を行うことが容易となる。また、一例として、加熱炉10が定期修理中であり、加熱炉10及び周辺設備への電源供給が停止されているために鋼帯1を搬送する時に使用するロール駆動源が使用できない場合でも、ロール11を回転させることができる。結果、加熱炉10及び周辺設備への電源供給が不要となり、ロール回転機構150を備えるロール表面の異物除去装置100単独で、ロール11の周方向に沿った表面異物除去が実現される。 As shown in FIG. 4, the rotating portion 151 is a small roll as an example, and the rotating portion 151 is driven by a drive source 153 such as a motor to rotate. By performing the blasting process while rotating the roll 11, it becomes easy to remove foreign matter on the surface of the roll 11 along the circumferential direction of the roll 11. Further, as an example, even when the heating furnace 10 is undergoing regular repair and the roll drive source used for transporting the steel strip 1 cannot be used because the power supply to the heating furnace 10 and the peripheral equipment is stopped. The roll 11 can be rotated. As a result, it is not necessary to supply power to the heating furnace 10 and peripheral equipment, and the foreign matter removing device 100 on the roll surface provided with the roll rotation mechanism 150 alone can remove foreign matter on the surface along the circumferential direction of the roll 11.
 また、ロール回転機構150は、ロール表面11Aに外周面151Aが当接された状態で回転部151が回転することでロール11を回転させる。すなわち、ロール11を回転させるに際し、ロール回転機構150が簡素な構成で済むので、ロール表面の異物除去装置100を小型化できる。 Further, the roll rotation mechanism 150 rotates the roll 11 by rotating the rotating portion 151 in a state where the outer peripheral surface 151A is in contact with the roll surface 11A. That is, when the roll 11 is rotated, the roll rotation mechanism 150 requires a simple structure, so that the foreign matter removing device 100 on the roll surface can be miniaturized.
 また、ロール表面の異物除去装置100は、本体部103をさらに有してもよい。本体部103には、上述したブラスト処理部110、押圧部120、及びロール回転機構150等の種々の構成が取り付けられる。また、ロール表面の異物除去装置100は、本体部103を介して加熱炉10内に設置される。本体部103により、ロール表面の異物除去装置100の種々の構成を一体的に加熱炉10内に取り付け、又は取り外しできるので、作業性が向上する。 Further, the foreign matter removing device 100 on the surface of the roll may further have a main body 103. Various configurations such as the blast processing unit 110, the pressing unit 120, and the roll rotation mechanism 150 described above are attached to the main body unit 103. Further, the foreign matter removing device 100 on the surface of the roll is installed in the heating furnace 10 via the main body 103. Since various configurations of the foreign matter removing device 100 on the roll surface can be integrally attached to or removed from the heating furnace 10 by the main body 103, workability is improved.
 一例として、本体部103は、図3中のX方向に平行なロール11の軸方向に沿って長手方向を有する構造体である。本体部103としての構造体は、一例として、長手方向の両端部において、加熱炉10内に鋼帯1の搬送方向に沿って設けられた梁状部材に取り付けられる。梁状部材の図示は省略する。一例として、本体部103は、加熱炉10の梁状部材に対して、図示しない固定冶具を介して取り付けられる。 As an example, the main body 103 is a structure having a longitudinal direction along the axial direction of the roll 11 parallel to the X direction in FIG. As an example, the structure as the main body 103 is attached to beam-shaped members provided in the heating furnace 10 along the transport direction of the steel strip 1 at both ends in the longitudinal direction. The illustration of the beam-shaped member is omitted. As an example, the main body 103 is attached to the beam-shaped member of the heating furnace 10 via a fixing jig (not shown).
 また、ロール表面の異物除去装置100は、回収部113によって回収された投射材を再利用可能とする給排気系160を炉外に有してもよい。具体的には、ロール表面の異物除去装置100は、回収タンク161と、ダストコレクタ163と、ブロア165とを有してもよい。ブロア165を介して排気されることにより、排出ホース133、回収タンク161、及びダストコレクタ163内は外気に対して負圧になっている。このため、回収部113から回収された投射材が、排出ホース133内を回収タンク161へ移動する。 Further, the foreign matter removing device 100 on the surface of the roll may have an air supply / exhaust system 160 outside the furnace so that the projection material recovered by the recovery unit 113 can be reused. Specifically, the foreign matter removing device 100 on the surface of the roll may have a recovery tank 161, a dust collector 163, and a blower 165. By exhausting air through the blower 165, the pressure inside the discharge hose 133, the recovery tank 161 and the dust collector 163 is negative with respect to the outside air. Therefore, the projection material recovered from the recovery unit 113 moves in the discharge hose 133 to the recovery tank 161.
 排出ホース133を介して回収タンク161へ移送された投射材は、回収タンク161内での遠心分離によって投射材以外の塵等と選別される。選別後の投射材は、投射材供給用ホース131を介して、再び噴射部111へ供給される。一方、投射材から分離された塵等は、ダストコレクタ163によって集塵され、集塵によって清浄化された気体が、ブロア165から排出される。 The projecting material transferred to the recovery tank 161 via the discharge hose 133 is separated from dust and the like other than the projecting material by centrifugation in the recovery tank 161. The selected projecting material is supplied to the injection unit 111 again via the projecting material supply hose 131. On the other hand, the dust and the like separated from the projection material are collected by the dust collector 163, and the gas cleaned by the dust collection is discharged from the blower 165.
 また、ロール表面の異物除去装置100は、気体供給源167を炉外に有している。気体供給源167から供給される所定の圧力の気体は、気体供給用ホース132を介して、噴射部111へ供給される。噴射部111では、気体供給源167から供給された気体と共に、投射材が噴射される。気体供給源167の一例としては、工場内の給気設備である。 Further, the foreign matter removing device 100 on the surface of the roll has a gas supply source 167 outside the furnace. The gas of a predetermined pressure supplied from the gas supply source 167 is supplied to the injection unit 111 via the gas supply hose 132. At the injection unit 111, the projection material is injected together with the gas supplied from the gas supply source 167. An example of the gas supply source 167 is an air supply facility in a factory.
(移動機構)
 図4は、本実施形態に係るロール表面の異物除去装置100の構成例を示す上面図である。図4に示すように、ロール表面の異物除去装置100は、ブラスト処理部110を、図4中のX方向に平行なロール11の軸方向に沿って移動させる移動機構170を有してもよい。移動機構170は、ロール11の軸方向の内、少なくとも軸方向の端部の傾斜部分を除いた領域(すなわち、図4における領域W)において、ブラスト処理部110を移動可能としている。ロール11の軸方向に沿ってブラスト処理部110を移動させることにより、より広い範囲のロール表面11Aの異物を除去することが可能となる。また、ブラスト処理部110を多く設けたり、投射範囲を広げたりする必要がなくなるので、ロール表面の異物除去装置100の小型化が実現される。
(Movement mechanism)
FIG. 4 is a top view showing a configuration example of the foreign matter removing device 100 on the roll surface according to the present embodiment. As shown in FIG. 4, the foreign matter removing device 100 on the roll surface may have a moving mechanism 170 that moves the blast processing unit 110 along the axial direction of the roll 11 parallel to the X direction in FIG. .. The moving mechanism 170 makes the blast processing unit 110 movable in a region (that is, a region W in FIG. 4) of the roll 11 excluding the inclined portion of the end portion in the axial direction. By moving the blasting unit 110 along the axial direction of the roll 11, it is possible to remove foreign matter on the roll surface 11A in a wider range. Further, since it is not necessary to provide a large number of blast processing units 110 or widen the projection range, the foreign matter removing device 100 on the roll surface can be downsized.
 移動機構170の一例としては、図4に示すように、ねじ送り機構が挙げられる。具体的には、移動機構170は、ねじ送り機構171と、駆動源173と、ガイドシャフト175とを備える。 As an example of the moving mechanism 170, as shown in FIG. 4, a screw feeding mechanism can be mentioned. Specifically, the moving mechanism 170 includes a screw feed mechanism 171, a drive source 173, and a guide shaft 175.
 ねじ送り機構171は、軸方向がロール11の回転軸X1の方向に沿って設けられたねじ軸171Aと、ねじ軸171Aの両端を回転可能に支持する支持部171Bとを備える。以下、回転軸X1の方向を、単に「ロールの軸方向」と称する。なお、回転軸X1は、ロール11の軸方向と一致している。 The screw feed mechanism 171 includes a screw shaft 171A whose axial direction is provided along the direction of the rotation shaft X1 of the roll 11, and a support portion 171B that rotatably supports both ends of the screw shaft 171A. Hereinafter, the direction of the rotation axis X1 is simply referred to as "roll axial direction". The rotation axis X1 coincides with the axial direction of the roll 11.
 ねじ軸171Aは、外周面に所定のピッチでねじ山が設けられた棒状の部材である。図4に示すように、ねじ軸171Aは、リンクアーム101の他端部101Bに螺合されつつ、挿通されている。また、ねじ軸171Aの端部には、駆動源173が連結され、駆動源173によってねじ軸171Aが回転するように構成されている。これにより、ねじ軸171Aの回転によって、ブラスト処理部110が、ねじ送りされ、ロール11の軸方向に沿って移動する。 The screw shaft 171A is a rod-shaped member in which threads are provided on the outer peripheral surface at a predetermined pitch. As shown in FIG. 4, the screw shaft 171A is inserted while being screwed into the other end 101B of the link arm 101. Further, a drive source 173 is connected to the end of the screw shaft 171A, and the screw shaft 171A is configured to be rotated by the drive source 173. As a result, the rotation of the screw shaft 171A causes the blast processing unit 110 to be screwed forward and move along the axial direction of the roll 11.
 ガイドシャフト175は、ねじ軸171Aと並行に、ロール11の軸方向に沿って設けられた棒状の部材である。ガイドシャフト175の両端は、ねじ軸171Aの支持部171Bによって支持される。 The guide shaft 175 is a rod-shaped member provided along the axial direction of the roll 11 in parallel with the screw shaft 171A. Both ends of the guide shaft 175 are supported by the support portion 171B of the screw shaft 171A.
 なお、上記の説明において、移動機構170が、ブラスト処理部110をロール11の軸方向に沿って直線的に移動させる例を挙げて説明したが、本開示ではかかる例に限定されない。移動機構170は、ブラスト処理部110の移動方向にロール11の軸方向成分を含むように、ブラスト処理部110を移動させればよく、一例として、移動機構170は、ブラスト処理部110が蛇行又は斜行するように移動させてもよい。 In the above description, the moving mechanism 170 has been described with an example of linearly moving the blast processing unit 110 along the axial direction of the roll 11, but the present disclosure is not limited to such an example. The moving mechanism 170 may move the blasting unit 110 so as to include the axial component of the roll 11 in the moving direction of the blasting unit 110. As an example, in the moving mechanism 170, the blasting unit 110 meanders or It may be moved diagonally.
 続いて、図5を参照しながらブラスト処理部110の構成について詳細に説明する。図5は、ブラスト処理部110の構成例を説明するための模式図である。図5に示すように、ブラスト処理部110は、押圧部120としてのエアシリンダ121によって押圧された状態でロール表面11Aに対してブラスト処理を行う。ブラスト処理部110において、ブラスト処理部110の中央に噴射部111が設けられ、噴射部111の周囲に回収部113が設けられている。すなわち、噴射部111から噴射された投射材Pは、ロール表面11Aに衝突した後、噴射部111の周囲に設けられた回収部113から回収される。 Subsequently, the configuration of the blast processing unit 110 will be described in detail with reference to FIG. FIG. 5 is a schematic diagram for explaining a configuration example of the blast processing unit 110. As shown in FIG. 5, the blasting unit 110 performs a blasting process on the roll surface 11A while being pressed by the air cylinder 121 as the pressing unit 120. In the blast processing unit 110, an injection unit 111 is provided in the center of the blast processing unit 110, and a recovery unit 113 is provided around the injection unit 111. That is, the projecting material P injected from the injection unit 111 collides with the roll surface 11A and is then collected from the collection unit 113 provided around the injection unit 111.
 具体的には、図5に示すように、ブラスト処理部110は、二重筒体形状115を有している。すなわち、ブラスト処理部110は、内筒部115Aと、当該内筒部115Aを囲繞する外筒部115Bとから成る二重筒体形状115を有している。図5に示すように、ブラスト処理部110において、内筒部115Aは、噴射部111の少なくとも一部を形成し、外筒部115Bは、回収部113の少なくとも一部を形成している。ここで、二重筒体形状115とは、ブラスト処理部110において、横断面視で内筒部115Aと外筒部115Bとにより二重の環状構造が、少なくとも部分的に形成されている形状を指す。 Specifically, as shown in FIG. 5, the blast processing unit 110 has a double cylinder shape 115. That is, the blast processing unit 110 has a double tubular body shape 115 including an inner cylinder portion 115A and an outer cylinder portion 115B surrounding the inner cylinder portion 115A. As shown in FIG. 5, in the blast processing unit 110, the inner cylinder portion 115A forms at least a part of the injection unit 111, and the outer cylinder portion 115B forms at least a part of the recovery unit 113. Here, the double cylinder shape 115 is a shape in which a double annular structure is formed at least partially by the inner cylinder portion 115A and the outer cylinder portion 115B in the cross-sectional view of the blast processing unit 110. Point to.
 より具体的には、内筒部115Aは、投射材Pを噴射するための、いわゆるブラストガンであり、外筒部115Bは、ブラストガンの周囲に設けられた中空の半紡錘形状のフードである。外筒部115Bとしてのフードの中央に取り付けられたブラストガンから気体Gとともに噴射された投射材Pは、ロール表面11Aに衝突し、反射する。反射された投射材Pは、フードの内周面に沿って回収部113から回収される。すなわち、図5中の矢印によって例示されるように、投射材Pは、ブラストガンのフード内での気体Gの流れによって回収部113から吸引される。このように、ロール表面11Aに衝突した後の投射材Pの飛散が防止される。 More specifically, the inner cylinder portion 115A is a so-called blast gun for injecting the projection material P, and the outer cylinder portion 115B is a hollow semi-spindle-shaped hood provided around the blast gun. .. The projection material P ejected together with the gas G from the blast gun attached to the center of the hood as the outer cylinder portion 115B collides with the roll surface 11A and is reflected. The reflected projection material P is collected from the collection unit 113 along the inner peripheral surface of the hood. That is, as illustrated by the arrow in FIG. 5, the projection material P is sucked from the recovery unit 113 by the flow of the gas G in the hood of the blast gun. In this way, the projection material P is prevented from scattering after colliding with the roll surface 11A.
 すなわち、ブラスト処理部110が押圧部120によって押圧されて、ブラスト処理部110とロール表面11Aとの間で閉空間117が形成された状態で、噴射部111により投射材Pが噴射される。これにより、投射材Pの加熱炉10内への飛散が抑制される。さらに、ブラスト処理部110とロール表面11Aとの間の閉空間117において、回収部113による回収が行われる。これにより、投射材Pの加熱炉10内への飛散がより抑制されるとともに、投射材Pの回収効率が向上する。ここで、閉空間とは、外部に対して完全に閉じた空間を指すものではなく、投射材Pの飛散が抑制できる程度に外部と遮断された空間であればよい。 That is, the projection material P is injected by the injection unit 111 in a state where the blast processing unit 110 is pressed by the pressing unit 120 and a closed space 117 is formed between the blast processing unit 110 and the roll surface 11A. As a result, scattering of the projection material P into the heating furnace 10 is suppressed. Further, in the closed space 117 between the blast processing unit 110 and the roll surface 11A, the collection unit 113 collects the space. As a result, the scattering of the projection material P into the heating furnace 10 is further suppressed, and the recovery efficiency of the projection material P is improved. Here, the closed space does not mean a space completely closed to the outside, but may be a space isolated from the outside to the extent that scattering of the projection material P can be suppressed.
 さらに、外筒部115Bのロール表面11A側の端部には、可撓性部材180が設けられてもよい。押圧部120によって押圧されたブラスト処理部110がロール表面11Aに直接接触する場合、ロール表面11Aには押圧に伴う荷重がかかることとなる。そこで、可撓性部材180が、外筒部115Bの端部に設けられていることで、押圧部120によってブラスト処理部110がロール表面11Aに向かって押圧される際のロール表面11Aに与える荷重を分散される。この結果、ロール表面11Aの疵の発生が抑制される。さらに、可撓性部材180によって、ブラスト処理部110の外筒部115Bとロール表面11Aの間の隙間が埋められることで、投射材Pの加熱炉10内への飛散がより抑制される。 Further, a flexible member 180 may be provided at the end of the outer cylinder portion 115B on the roll surface 11A side. When the blasting unit 110 pressed by the pressing unit 120 comes into direct contact with the roll surface 11A, a load associated with the pressing is applied to the roll surface 11A. Therefore, since the flexible member 180 is provided at the end of the outer cylinder portion 115B, the load applied to the roll surface 11A when the blast processing portion 110 is pressed toward the roll surface 11A by the pressing portion 120. Is distributed. As a result, the occurrence of flaws on the roll surface 11A is suppressed. Further, the flexible member 180 fills the gap between the outer cylinder portion 115B of the blasting portion 110 and the roll surface 11A, so that the projection material P is further suppressed from being scattered into the heating furnace 10.
 可撓性部材180の一例としては、図5に示すように、外筒部115Bの端部に取り付けられたブラシ状部材181である。ブラシ状部材181は、一端が外筒部115B側に固定され、他端がロール表面11Aに向かって延出された複数の毛を有している。押圧部120によってブラスト処理部110が押圧される際、一例としてブラシ状部材181の複数の毛が外周方向に倒れるように変形し、外筒部115Bとロール表面11Aとの間の隙間を埋めることができる。 As an example of the flexible member 180, as shown in FIG. 5, a brush-shaped member 181 attached to the end of the outer cylinder portion 115B. The brush-shaped member 181 has a plurality of bristles having one end fixed to the outer cylinder portion 115B side and the other end extending toward the roll surface 11A. When the blasting unit 110 is pressed by the pressing unit 120, as an example, a plurality of bristles of the brush-shaped member 181 are deformed so as to fall in the outer peripheral direction to fill the gap between the outer cylinder portion 115B and the roll surface 11A. Can be done.
 なお、可撓性部材180は、外筒部115Bとロール表面11Aとの間の隙間を埋めることができ、押圧部120により与えられる荷重に対応できる程度の可撓性を有していれば、可撓性部材180の形状、構成、及び材質は、特に限定されない。一例として、可撓性部材180として、ゴム製のシートが、外筒部115Bの端部のロール表面11Aに対向する面に貼り付けられてもよい。また、可撓性部材180として、スポンジ状部材が、外筒部115Bの端部に取り付けられてもよい。 The flexible member 180 is sufficient as long as it can fill the gap between the outer cylinder portion 115B and the roll surface 11A and has sufficient flexibility to withstand the load applied by the pressing portion 120. The shape, structure, and material of the flexible member 180 are not particularly limited. As an example, as the flexible member 180, a rubber sheet may be attached to the surface of the end of the outer cylinder portion 115B facing the roll surface 11A. Further, as the flexible member 180, a sponge-like member may be attached to the end portion of the outer cylinder portion 115B.
 続いて、ロール表面の異物除去装置100の動作例について説明する。すなわち、押圧部120としてのエアシリンダ121によってブラスト処理部110が、ロール表面11Aに対して押圧される。また、ブラスト処理部110の噴射部111から投射材Pが投射され、ロール表面11Aの異物除去が行われる。また、回収部113によって、ロール表面11Aに当たって跳ね返った投射材Pが回収される。 Next, an operation example of the foreign matter removing device 100 on the roll surface will be described. That is, the blast processing unit 110 is pressed against the roll surface 11A by the air cylinder 121 as the pressing unit 120. Further, the projection material P is projected from the injection unit 111 of the blast processing unit 110, and the foreign matter on the roll surface 11A is removed. Further, the collecting unit 113 collects the projecting material P that hits the roll surface 11A and bounces off.
 図6に示すように、ロール表面11Aに対する投射材Pの投射角度θは、ロール11の軸方向に沿って見て、ロール表面11A上の投射目標位置11A1における接線L1と、ブラスト処理部110の噴射部111である内筒部の中心軸線L2との間に形成される角度のうちの鋭角側の角度として定義される。本実施形態では、投射角度θは、90度である。なお、図6中で左右方向に延びる二点鎖線の接線L1と、上下方向に延びる一点鎖線に中心軸線L2との交点が、投射材Pの投射目標位置11A1である。 As shown in FIG. 6, the projection angle θ of the projection material P with respect to the roll surface 11A is the tangent line L1 at the projection target position 11A1 on the roll surface 11A and the blast processing unit 110 when viewed along the axial direction of the roll 11. It is defined as the angle on the acute angle side of the angles formed between the injection portion 111 and the central axis L2 of the inner cylinder portion. In this embodiment, the projection angle θ is 90 degrees. In FIG. 6, the intersection of the tangent line L1 of the alternate long and short dash line extending in the left-right direction and the central axis L2 of the alternate long and short dash line extending in the vertical direction is the projection target position 11A1 of the projection material P.
 本開示では、投射角度θの範囲は、80度以上、90度以下であることが好ましい。投射角度θの範囲が、80度以上、90度以下に設定されていることによって、ロール表面11Aに付着した酸化物被膜Cを効率的に除去できる。投射角度θが80度未満である場合、噴射された投射材Pが酸化物被膜Cに食い込み難くなるため、酸化物被膜Cを十分に削り取ることができない。 In the present disclosure, the range of the projection angle θ is preferably 80 degrees or more and 90 degrees or less. By setting the range of the projection angle θ to 80 degrees or more and 90 degrees or less, the oxide film C adhering to the roll surface 11A can be efficiently removed. When the projection angle θ is less than 80 degrees, the injected projection material P is less likely to bite into the oxide film C, so that the oxide film C cannot be sufficiently scraped off.
 また、ブラスト処理部110による異物除去が行われる間、検出部140によってブラスト処理部110とロール表面11Aとの距離が検出される。ブラスト処理部110とロール表面11Aとが所定の距離以上、離間した場合、投射材Pの噴射が停止される。投射材Pの噴射が停止される所定の距離の一例としては、数mm~数十mm程度が挙げられる。これにより、投射材Pの加熱炉10内への飛散が抑制される。なお、0.2MPa以上、0.5MPa以下の圧力範囲で圧縮空気が噴射される本実施形態では、ブラスト処理部110とロール表面11Aとの離間距離は、5mm以内であることが、酸化物被膜Cの効率的な除去と圧縮空気の損失低減との両立の観点から好ましい。 Further, while the foreign matter is removed by the blast processing unit 110, the distance between the blast processing unit 110 and the roll surface 11A is detected by the detection unit 140. When the blasting unit 110 and the roll surface 11A are separated from each other by a predetermined distance or more, the injection of the projection material P is stopped. An example of a predetermined distance at which the injection of the projection material P is stopped is about several mm to several tens of mm. As a result, scattering of the projection material P into the heating furnace 10 is suppressed. In the present embodiment in which compressed air is injected in a pressure range of 0.2 MPa or more and 0.5 MPa or less, the distance between the blasting unit 110 and the roll surface 11A is 5 mm or less. It is preferable from the viewpoint of achieving both efficient removal of C and reduction of compressed air loss.
 上記のような動作例は、一例として、図5中の制御部190によって制御される。具体的には、図5に示すように、制御部190は、ブラスト処理部110に投射材P及び気体Gを供給するとともに、投射材Pを回収するように給排気系160を制御する。また、制御部190は、ブラスト処理部110を押圧するエアシリンダ121の動作を制御する。 The above operation example is controlled by the control unit 190 in FIG. 5 as an example. Specifically, as shown in FIG. 5, the control unit 190 supplies the projection material P and the gas G to the blast processing unit 110, and controls the air supply / exhaust system 160 so as to recover the projection material P. Further, the control unit 190 controls the operation of the air cylinder 121 that presses the blast processing unit 110.
 さらに、制御部190は、検出部140としてのレーザセンサが検出したロール表面11Aまでの距離の検出結果を元に、ブラスト処理部110とロール表面11Aとの間の距離を導出する。さらに、制御部190は、かかる導出結果に基づいてエアシリンダ121又は給排気系160を制御する。制御部190としての機能は、一例として、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)等の協働によって実現される。 Further, the control unit 190 derives the distance between the blast processing unit 110 and the roll surface 11A based on the detection result of the distance to the roll surface 11A detected by the laser sensor as the detection unit 140. Further, the control unit 190 controls the air cylinder 121 or the air supply / exhaust system 160 based on the derivation result. The function as the control unit 190 is realized, for example, by the cooperation of a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
 さらに、制御部190は、ロール回転機構150及び移動機構170を制御してもよい。すなわち、制御部190は、ロール回転機構150を作動させて、ロール11を回転させながら、ブラスト処理部110によるロール表面11Aの異物除去を行ってもよい。また、制御部190は、移動機構170を作動させて、ブラスト処理部110をロール11の軸方向の一の位置から他の位置へ移動させてもよい。以上、本実施形態に係るロール表面の異物除去装置100の概略構成について説明した。 Further, the control unit 190 may control the roll rotation mechanism 150 and the movement mechanism 170. That is, the control unit 190 may operate the roll rotation mechanism 150 to rotate the roll 11 while removing foreign matter from the roll surface 11A by the blast processing unit 110. Further, the control unit 190 may operate the movement mechanism 170 to move the blast processing unit 110 from one position in the axial direction of the roll 11 to another position. The schematic configuration of the foreign matter removing device 100 on the roll surface according to the present embodiment has been described above.
<3.ロール表面の異物除去の様子>
 次に、図7A~図7Cを参照しながら、本実施形態に係るロール表面11Aの異物除去の様子について説明する。図7A~図7Cは、ブラスト処理部110による異物除去の様子を説明するためのロール表面11Aの模式図である。図7Aに示すように、異物除去前の初期状態では、ロール表面11Aには、酸化物被膜Cが形成されている場合がある。
<3. Removal of foreign matter on the roll surface>
Next, a state of removing foreign matter on the roll surface 11A according to the present embodiment will be described with reference to FIGS. 7A to 7C. 7A to 7C are schematic views of the roll surface 11A for explaining the state of foreign matter removal by the blast processing unit 110. As shown in FIG. 7A, an oxide film C may be formed on the roll surface 11A in the initial state before the foreign matter is removed.
 一例として、鋼帯1中の成分であるMnに起因したMn酸化物が、ロール表面11Aに、図7Aに示すように、一例としては平均厚さt=100μm程度で被膜状に形成される。このような酸化物被膜Cの形成によって、ロール表面11Aの粗さが低下すると、鋼帯1の蛇行が発生することがある。そこで、加熱炉10の定期修理中等、加熱炉10の操業停止時にロール11の表面粗度を回復するための異物除去が行われる。 As an example, Mn oxide caused by Mn, which is a component in the steel strip 1, is formed on the roll surface 11A in the form of a film having an average thickness of about 100 μm as shown in FIG. 7A. If the roughness of the roll surface 11A is reduced by the formation of the oxide film C as such, meandering of the steel strip 1 may occur. Therefore, foreign matter is removed to restore the surface roughness of the roll 11 when the operation of the heating furnace 10 is stopped, such as during regular repair of the heating furnace 10.
 本実施形態に係るロール表面の異物除去装置100による異物除去では、ロール表面11Aに投射材Pを噴射することで、ロール表面11Aの粗度を回復する。図7Bに示すように、具体的には、平均粒径r=300~425μm程度(すなわち、アルミナ粒子の粒度で、#30~#60程度)の多角形状アルミナ粒子が、0.5MPa程度の圧力の圧縮空気と共にロール表面11Aに噴射される。これにより、粗さを低下させていた酸化物被膜Cが除去されるとともに、ロール表面11Aが粗化される。 In the foreign matter removal by the foreign matter removing device 100 on the roll surface according to the present embodiment, the roughness of the roll surface 11A is restored by injecting the projection material P onto the roll surface 11A. As shown in FIG. 7B, specifically, polygonal alumina particles having an average particle size r = about 300 to 425 μm (that is, the particle size of the alumina particles is about # 30 to # 60) have a pressure of about 0.5 MPa. It is injected onto the roll surface 11A together with the compressed air of. As a result, the oxide film C that has reduced the roughness is removed, and the roll surface 11A is roughened.
 ここで、異物除去によるロール表面11Aの粗化処理とは、ロール表面11Aの表面粗さRaを所定の値以上とする処理を行うことを指す。粗化処理の目安の一例として、Raを3μm以上、特にRaを6μm以上とすることが挙げられる。 Here, the roughening treatment of the roll surface 11A by removing foreign matter means a treatment of setting the surface roughness Ra of the roll surface 11A to a predetermined value or more. As an example of the roughening treatment, Ra should be 3 μm or more, and Ra should be 6 μm or more.
 図7Bに示すように、投射材Pがロール表面11Aに衝突した際、投射材Pの一部P1が破砕し、ロール表面11Aに残留することがある。そこで、図7Cに示すように、ロール表面11Aに残留した投射材Pの一部P1を除去するため、粒径のより小さい投射材Pを投射するようにしてもよい。具体的には、平均粒径r=90~125μm程度(すなわち、アルミナ粒子の粒度で#80~#250程度)の多角形状アルミナ粒子が、ロール表面11Aに圧縮空気と共に噴射される。これにより、ロール表面11Aに残留した投射材Pの一部P1が除去されるとともに、ロール表面11Aの粗度が調整される。 As shown in FIG. 7B, when the projecting material P collides with the roll surface 11A, a part of the projecting material P P1 may be crushed and remain on the roll surface 11A. Therefore, as shown in FIG. 7C, in order to remove a part P1 of the projection material P remaining on the roll surface 11A, the projection material P having a smaller particle size may be projected. Specifically, polygonal alumina particles having an average particle size r = 90 to 125 μm (that is, the particle size of the alumina particles is about # 80 to # 250) are injected onto the roll surface 11A together with compressed air. As a result, a part P1 of the projection material P remaining on the roll surface 11A is removed, and the roughness of the roll surface 11A is adjusted.
 換言すれば、第1の平均粒径を有する投射材Pを第1の投射材として噴射し、第1のブラスト処理を行った後、第1の平均粒径よりも小さい第2の平均粒径を有する投射材Pを第2の投射材として噴射して第2のブラスト処理を行う。これにより、ロール表面11Aの酸化物被膜Cを効率的に除去できるとともに、ロール表面11Aの表面粗さを調整することが可能となる。さらに、ロール表面11Aに投射材Pの一部P1が残留することが抑制され、投射材Pの一部P1が新たな酸化物被膜Cの成長起点となることを防止できる。また、第2の平均粒径を有する投射材Pを3~5回程度の複数回噴射して第2のブラスト処理を行ってもよい。また、第1のブラスト処理も複数回行われてもよい。 In other words, the projection material P having the first average particle size is sprayed as the first projection material, the first blast treatment is performed, and then the second average particle size is smaller than the first average particle size. The projection material P having the above is injected as the second projection material to perform the second blast treatment. As a result, the oxide film C on the roll surface 11A can be efficiently removed, and the surface roughness of the roll surface 11A can be adjusted. Further, it is possible to prevent a part P1 of the projection material P from remaining on the roll surface 11A, and prevent a part P1 of the projection material P from becoming a growth starting point of a new oxide film C. Further, the projection material P having the second average particle size may be injected a plurality of times about 3 to 5 times to perform the second blasting treatment. Further, the first blasting process may be performed a plurality of times.
 また、第2の平均粒径よりも更に小さい第3の平均粒径を有する投射材Pを第3の投射材として噴射して第3のブラスト処理を行ってもよい。すなわち、本開示では、直前のブラスト処理における平均粒径よりも更に小さい平均粒径を有する投射材を用いた後続のブラスト処理が、複数回行われてもよい。以上、本実施形態に係るロール表面11Aの粗化処理の様子について説明した。 Further, the projection material P having a third average particle diameter smaller than the second average particle diameter may be injected as the third projection material to perform the third blast treatment. That is, in the present disclosure, the subsequent blasting treatment using a projection material having an average particle size smaller than the average particle size in the immediately preceding blasting treatment may be performed a plurality of times. The state of the roughening treatment of the roll surface 11A according to the present embodiment has been described above.
<4.ロール表面の異物除去方法>
 次に、図8を参照しながら、本実施形態に係るロール表面の異物除去方法について説明する。図8は、本実施形態におけるロール表面の異物除去方法のフローチャートである。図8に示すように、ロール表面の異物除去工程S100中のステップS101において、まず、加熱炉10内に設置されたロール表面の異物除去装置100のブラスト処理部110がロール表面11Aに押圧される。
<4. Foreign matter removal method on the roll surface>
Next, a method for removing foreign matter on the roll surface according to the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart of a method for removing foreign matter on the roll surface according to the present embodiment. As shown in FIG. 8, in step S101 in the foreign matter removing step S100 on the roll surface, first, the blast processing portion 110 of the foreign matter removing device 100 on the roll surface installed in the heating furnace 10 is pressed against the roll surface 11A. ..
 続いて、ステップS103において、ブラスト処理部110内から投射材Pを噴射するとともに、ブラスト処理部110内で投射材Pが回収される。具体的には、ブラスト処理部110の噴射部111から投射材Pが、気体Gと共に噴射される。さらに、ブラスト処理部110の回収部113によって、投射材Pが気体Gと共に吸引される。 Subsequently, in step S103, the projection material P is ejected from the blast processing unit 110, and the projection material P is recovered in the blast processing unit 110. Specifically, the projection material P is injected together with the gas G from the injection unit 111 of the blast processing unit 110. Further, the projecting material P is sucked together with the gas G by the collecting unit 113 of the blast processing unit 110.
 続いて、ステップS105において、ロール表面の異物除去工程S100が終了条件を満足するかどうかが判定される。具体的な終了条件としては、ロール表面11Aの異物除去が所定時間行われたか、又は、異物除去作業を終了させる入力がオペレータによってなされたか等が挙げられる。終了条件を満足すると判定された場合、ロール表面の異物除去工程S100は終了する。一方、ロール表面の異物除去工程S100が終了条件を満足すると判定されない場合、ロール表面の異物除去工程S100は、ステップS101に戻る。一のロール11での作業が終了した後、他のロール11に対する異物除去作業が行われてもよい。 Subsequently, in step S105, it is determined whether or not the foreign matter removing step S100 on the roll surface satisfies the end condition. Specific termination conditions include whether the foreign matter on the roll surface 11A has been removed for a predetermined time, or whether an input for ending the foreign matter removing work has been made by the operator. If it is determined that the end condition is satisfied, the foreign matter removing step S100 on the roll surface ends. On the other hand, if it is not determined that the foreign matter removing step S100 on the roll surface satisfies the end condition, the foreign matter removing step S100 on the roll surface returns to step S101. After the work on one roll 11 is completed, the foreign matter removing work on the other roll 11 may be performed.
 なお、本実施形態に係るロール表面の異物除去工程S100において、一部の工程が追加、又は変更されてもよい。一例として、ブラスト処理部110が移動機構170によって、ロールの軸方向に沿って移動される工程や、ロール11がロール回転機構150によって回転される工程を含んでもよい。さらに、ステップS103における投射材Pの噴射において、第1の平均粒径を有する投射材Pの噴射及び回収が第1ブラスト処理工程として行われた後、第1の粒径よりも小さい第2の平均粒径の投射材Pの噴射及び回収が第2ブラスト処理工程として行なわれるように構成されてもよい。以上、本実施形態に係るロール表面の異物除去方法について説明した。 Note that some steps may be added or changed in the foreign matter removing step S100 on the roll surface according to the present embodiment. As an example, a step of moving the blast processing unit 110 along the axial direction of the roll by the moving mechanism 170 and a step of rotating the roll 11 by the roll rotating mechanism 150 may be included. Further, in the injection of the projection material P in step S103, after the injection and recovery of the projection material P having the first average particle size are performed as the first blast treatment step, the second particle size is smaller than the first particle size. The projection and recovery of the projection material P having an average particle size may be configured to be performed as a second blasting step. The method for removing foreign matter on the roll surface according to the present embodiment has been described above.
(鋼帯の製造方法)
 次に、図9を参照しながら、鋼帯1の製造方法について説明する。図9は、本実施形態に係る鋼帯1の製造方法のフローチャートである。図9に示すように、まず、上記したようにロール表面の異物除去工程S100が行われる。具体的には、加熱炉10において、定期修理等が行われるため、操業が停止されている際に、加熱炉10内のロール11に対して、ロール表面11Aの異物除去が施される。その後、図9中のステップS110において、ロール11が設けられた加熱炉10内に鋼帯1を通過させて熱処理が行われる。具体的には、加熱炉10が操業を開始し、鋼帯1がロール11に支持されながら加熱炉10内を通過し、鋼帯1に対して、過時効処理、又は焼鈍といった熱処理を含む種々の処理が行われる。このように、鋼帯搬送用のロール11の表面に形成された異物を除去することによって、ロール表面11Aの粗化が実現され、加熱炉10内の鋼帯1の蛇行が抑制できる。
(Manufacturing method of steel strip)
Next, a method of manufacturing the steel strip 1 will be described with reference to FIG. FIG. 9 is a flowchart of a method for manufacturing the steel strip 1 according to the present embodiment. As shown in FIG. 9, first, the foreign matter removing step S100 on the roll surface is performed as described above. Specifically, since periodic repairs and the like are performed in the heating furnace 10, foreign matter on the roll surface 11A is removed from the roll 11 in the heating furnace 10 when the operation is stopped. After that, in step S110 in FIG. 9, the steel strip 1 is passed through the heating furnace 10 provided with the roll 11 to perform the heat treatment. Specifically, the heating furnace 10 starts operation, the steel strip 1 passes through the heating furnace 10 while being supported by the roll 11, and the steel strip 1 is subjected to various heat treatments such as overaging treatment or annealing. Is processed. By removing the foreign matter formed on the surface of the roll 11 for transporting the steel strip in this way, the roll surface 11A can be roughened and the meandering of the steel strip 1 in the heating furnace 10 can be suppressed.
 特に、鋼帯1は、高張力鋼であってもよい。高張力鋼の場合、鋼中の成分に起因した酸化物被膜Cがロール表面11Aに形成され、ロール表面11Aの粗度が低下する。この結果、鋼帯1の蛇行が生じ易くなることがある。そこで、ロール表面の異物除去工程S100を経た加熱炉10内のロール11によって鋼帯1を搬送することで、鋼帯1の蛇行の発生が抑制される。このように、鋼帯1中に含まれる成分に起因したロール表面11Aに酸化物被膜Cが生じ易い場合でも、ブラスト処理によって除去できる。この結果、鋼帯1の蛇行が抑制できる。 In particular, the steel strip 1 may be high-strength steel. In the case of high-strength steel, an oxide film C due to the components in the steel is formed on the roll surface 11A, and the roughness of the roll surface 11A is lowered. As a result, meandering of the steel strip 1 may easily occur. Therefore, by transporting the steel strip 1 by the roll 11 in the heating furnace 10 that has undergone the foreign matter removing step S100 on the roll surface, the occurrence of meandering of the steel strip 1 is suppressed. As described above, even when the oxide film C is likely to be formed on the roll surface 11A due to the components contained in the steel strip 1, it can be removed by the blast treatment. As a result, the meandering of the steel strip 1 can be suppressed.
 なお、本実施形態に係る鋼帯1の製造方法において、一部の工程が追加、又は変更されてもよい。一例として、鋼帯1をめっき浴13Aに連続的に浸漬させる、めっき処理工程が、ステップS110における熱処理工程の後に行われてもよい。さらに、鋼帯1の製造方法において、鋼帯1を製造するための種々の加工、管理、又は検査工程が追加されてもよい。以上、本発明の一の実施形態に係る鋼帯1の製造方法について説明した。 Note that some steps may be added or changed in the method for manufacturing the steel strip 1 according to the present embodiment. As an example, the plating treatment step of continuously immersing the steel strip 1 in the plating bath 13A may be performed after the heat treatment step in step S110. Further, in the method for manufacturing the steel strip 1, various processing, control, or inspection steps for manufacturing the steel strip 1 may be added. The method for manufacturing the steel strip 1 according to the embodiment of the present invention has been described above.
(作用効果)
 本実施形態によれば、加熱炉10内において鋼帯を搬送するロール11のロール表面11Aに対して投射材Pを噴射する噴射部111と、投射材Pを回収する回収部113とを備えるブラスト処理部110によって異物除去が行われ、ブラスト処理部110は、押圧部120によってロール表面11Aに向かって押圧されている。これにより、加熱炉10内のロール11に対してブラスト処理によって異物除去を行うことで、操業ライン上でのロール表面11Aの異物除去が簡便に実現される。また、ブラスト処理部110を押圧しながら投射材Pを噴射し、さらに回収部113によって投射材Pを回収するので、加熱炉10内の投射材Pの残存が抑制される。
(Action effect)
According to the present embodiment, a blast including an injection unit 111 that injects the projection material P onto the roll surface 11A of the roll 11 that conveys the steel strip in the heating furnace 10 and a recovery unit 113 that collects the projection material P. Foreign matter is removed by the processing unit 110, and the blast processing unit 110 is pressed toward the roll surface 11A by the pressing unit 120. As a result, foreign matter is easily removed from the roll surface 11A on the operation line by removing foreign matter from the roll 11 in the heating furnace 10 by blasting. Further, since the projection material P is injected while pressing the blast processing unit 110 and the projection material P is further recovered by the recovery unit 113, the residual projection material P in the heating furnace 10 is suppressed.
 すなわち、一例として、異物除去を行わず、粗度が低下したロール11を別のロール11と交換する場合、取り外し、及び取り付け作業自体に工数が掛かるとともに、取付けの際、再度の芯出し等の付帯作業が必要となる。本実施形態によれば、ロール11を加熱炉10に取り付けた状態、つまり操業ライン上で異物除去を行うことができ、異物除去作業が簡便に実現される。さらに、本実施形態によれば、ロール交換と比較して、交換用のロール11を用意し、保管する作業等に要するコストが低減される。 That is, as an example, when a roll 11 having a reduced roughness is replaced with another roll 11 without removing foreign matter, it takes a lot of man-hours for the removal and installation work itself, and at the time of installation, centering is performed again. Ancillary work is required. According to the present embodiment, the roll 11 can be attached to the heating furnace 10, that is, the foreign matter can be removed on the operation line, and the foreign matter removing work can be easily realized. Further, according to the present embodiment, the cost required for the work of preparing and storing the replacement roll 11 is reduced as compared with the roll replacement.
 また、一例として、ロール11の粗度回復のため、酸洗等の化学的処理を行う場合、酸化物被膜Cの除去にむらが生じる場合がある。また、酸洗では、加熱炉10内への酸飛散による設備劣化も懸念され、さらに、酸性溶液の取り扱いには、調製、廃棄処理等、多くの工数を要することが想定される。一方、本実施形態では、ブラスト処理部110による物理的な酸化物被膜Cの除去によって、ロール表面11Aの粗度回復が行われるので、酸洗等の化学的な処理と比較して、均一な粗度回復が実現される。 Further, as an example, when a chemical treatment such as pickling is performed to recover the roughness of the roll 11, the removal of the oxide film C may be uneven. Further, in pickling, there is a concern that the equipment may be deteriorated due to acid scattering into the heating furnace 10, and it is expected that the handling of the acidic solution requires a lot of man-hours such as preparation and disposal. On the other hand, in the present embodiment, the roughness of the roll surface 11A is restored by removing the physical oxide film C by the blasting unit 110, so that it is more uniform than the chemical treatment such as pickling. Roughness recovery is realized.
 本実施形態によれば、ブラスト処理部110の中央に噴射部111が設けられ、噴射部111の周囲に回収部113が設けられている。噴射部111の周囲に回収部113を設けることで、噴射部111から噴射された投射材Pを効率的に回収できるとともに、ブラスト処理部110を小型化できる。 According to the present embodiment, the injection unit 111 is provided in the center of the blast processing unit 110, and the recovery unit 113 is provided around the injection unit 111. By providing the recovery unit 113 around the injection unit 111, the projection material P injected from the injection unit 111 can be efficiently collected, and the blast processing unit 110 can be miniaturized.
 本実施形態によれば、ブラスト処理部110は、内筒部115Aと、当該内筒部115Aを囲繞する外筒部115Bとから成る二重筒体形状115を有し、内筒部115Aが噴射部111であり、外筒部115Bが回収部113とされている。このため、噴射部111から噴射された投射材Pを効率的に回収できるとともに、ブラスト処理部110を小型化できる。 According to the present embodiment, the blast processing unit 110 has a double tubular body shape 115 including an inner cylinder portion 115A and an outer cylinder portion 115B surrounding the inner cylinder portion 115A, and the inner cylinder portion 115A injects the inner cylinder portion 115A. It is a unit 111, and the outer cylinder portion 115B is a collection unit 113. Therefore, the projection material P injected from the injection unit 111 can be efficiently recovered, and the blast processing unit 110 can be miniaturized.
 本実施形態によれば、外筒部115Bの端部に可撓性部材180が設けられているので、可撓性部材180がロール表面11Aに接触することで、ブラスト処理部110からの投射材Pの漏れを抑制できる。また、可撓性部材180が設けられていることで、押圧時にロール表面11Aへの荷重を分散できる。 According to the present embodiment, since the flexible member 180 is provided at the end of the outer cylinder portion 115B, when the flexible member 180 comes into contact with the roll surface 11A, the projection material from the blast processing portion 110 Leakage of P can be suppressed. Further, since the flexible member 180 is provided, the load on the roll surface 11A can be dispersed at the time of pressing.
 本実施形態によれば、ブラスト処理部110とロール表面11Aとの距離を検出する検出部140によって、ブラスト処理部110とロール表面11Aとの距離を検出することで、ブラスト処理部110がロール表面11Aから離間したことを検出でき、投射材Pの漏れを防止できる。 According to the present embodiment, the blasting unit 110 detects the distance between the blasting unit 110 and the roll surface 11A by the detecting unit 140 that detects the distance between the blasting unit 110 and the roll surface 11A, so that the blasting unit 110 rolls on the roll surface. It is possible to detect that the distance from 11A is large, and it is possible to prevent leakage of the projection material P.
 本実施形態によれば、ブラスト処理部110をロール11の軸方向に沿って移動させる移動機構170によって、ブラスト処理部110をロールの軸方向に移動させることで、ロール表面11Aの異物を軸方向に沿って均一に除去及び粗化できる。また、ブラスト処理部110を複数設けたり、投射範囲を広げたりしなくてもよいので、ブラスト処理部110を含むロール表面の異物除去装置100を小型化できる。 According to the present embodiment, the moving mechanism 170 that moves the blasting unit 110 along the axial direction of the roll 11 moves the blasting unit 110 in the axial direction of the roll to move the foreign matter on the roll surface 11A in the axial direction. Can be uniformly removed and roughened along the line. Further, since it is not necessary to provide a plurality of blast processing units 110 or widen the projection range, the foreign matter removing device 100 on the roll surface including the blast processing unit 110 can be miniaturized.
 本実施形態によれば、ロール11を回転させるロール回転機構150によって、ロール11を回転させながらブラストすることで、ロール表面11Aの異物を周方向に沿って均一に除去及び粗化できる。また、鋼帯1を搬送するためのロール11への回転力の供給がされていない状態でロール11を回転させるロール回転機構150を有する場合、鋼帯1を搬送する時に使用するロール駆動源を用いずに、ロール11を回転できる。すなわち、ロール表面11Aに当接された回転部151を介して外部から回転力を加えることによってロール11を回転させる。このため、ブラスト処理に合わせたロール回転速度の制御がし易い。 According to the present embodiment, by blasting while rotating the roll 11 by the roll rotation mechanism 150 that rotates the roll 11, foreign matter on the roll surface 11A can be uniformly removed and roughened along the circumferential direction. Further, when the roll rotation mechanism 150 for rotating the roll 11 is provided in a state where the rotational force for transporting the steel strip 1 is not supplied to the roll 11, the roll drive source used when transporting the steel strip 1 is used. The roll 11 can be rotated without using it. That is, the roll 11 is rotated by applying a rotational force from the outside through the rotating portion 151 that is in contact with the roll surface 11A. Therefore, it is easy to control the roll rotation speed according to the blasting process.
 本実施形態によれば、噴射部111は、投射材Pを気体Gとともに噴射し、回収部113は、投射材Pを気体Gとともに吸引することで回収する。これにより、投射材Pを気体Gとともに噴射し、さらに気体Gとともに吸引するので、投射材Pの回収が容易になる。また、気体Gを噴射するので、ウェットブラストの場合と比較して、ロール表面11Aへの不純物残留を抑制できる。 According to the present embodiment, the injection unit 111 injects the projection material P together with the gas G, and the recovery unit 113 collects the projection material P by sucking the projection material P together with the gas G. As a result, the projecting material P is injected together with the gas G and further sucked together with the gas G, so that the projecting material P can be easily recovered. Further, since the gas G is injected, the residue of impurities on the roll surface 11A can be suppressed as compared with the case of wet blasting.
 本実施形態によれば、投射材Pは、多角形状アルミナ粒子であるので、十分な硬さを有していることから、ロール表面11Aの異物を効率的に除去できる。また、多角形状アルミナ粒子は、化学的に安定であるので、ロール表面11Aに残存した場合も酸化物被膜Cの成長の起点となりにくい。以上、本発明の一の実施形態に係るロール表面の異物除去装置100及びロール表面の異物除去方法について説明した。 According to the present embodiment, since the projection material P is polygonal alumina particles, it has sufficient hardness, so that foreign matter on the roll surface 11A can be efficiently removed. Further, since the polygonal alumina particles are chemically stable, even if they remain on the roll surface 11A, they are unlikely to be the starting points for the growth of the oxide film C. The foreign matter removing device 100 on the roll surface and the foreign matter removing method on the roll surface according to the embodiment of the present invention have been described above.
 本開示に係るロール表面の異物除去装置100及びロール表面の異物除去方法についての性能を評価するため、ロール表面11Aの異物除去装置100を適用して、加熱炉10内のロール11に対して異物除去を行い、ロール表面11Aの酸化物被膜Cの除去量を調べた。 In order to evaluate the performance of the foreign matter removing device 100 on the roll surface and the foreign matter removing method on the roll surface according to the present disclosure, the foreign matter removing device 100 on the roll surface 11A is applied to the foreign matter on the roll 11 in the heating furnace 10. The removal was performed, and the amount of the oxide film C removed from the roll surface 11A was examined.
 具体的には、比較例1として、投射材Pをドライアイスとした場合、比較例2として、投射材Pを粒度#40の球状粉とした場合、比較例3として、投射材Pを粒度#120の球状粉とした場合のそれぞれにおいて、ロール表面11AのMn酸化物の被膜除去量を調べた。また、実施例として、投射材Pを粒度#46の多角形状アルミナ粒子とした場合のMn酸化物の被膜除去量を調べた。ここで、Mn酸化物除去量とは、異物除去前後での、ロール表面近傍でのMn成分の組成の減少量である。 Specifically, as Comparative Example 1, when the projection material P is dry ice, as Comparative Example 2, when the projection material P is a spherical powder having a particle size # 40, and as Comparative Example 3, the projection material P has a particle size #. The amount of Mn oxide film removed on the roll surface 11A was examined in each of the 120 spherical powders. Further, as an example, the amount of Mn oxide film removed when the projection material P was made into polygonal alumina particles having a particle size of # 46 was investigated. Here, the amount of Mn oxide removed is the amount of decrease in the composition of the Mn component in the vicinity of the roll surface before and after the removal of foreign matter.
 具体的には、投射材Pを、0.3MPaの圧力の圧縮空気と共に、90度の投射角度でロール表面11Aに投射した。なお、投射材P以外の気体の圧力等の投射条件は、同一である。また、異物除去前に、Mn量をポータブル蛍光X線装置によって測定した。また、異物除去後に、Mn量をポータブル蛍光X線装置によって測定した。そして、異物除去前に測定されたMn量から異物除去後に測定されたMn量を減算することによって、Mn成分の組成の減少量を算出した。 Specifically, the projecting material P was projected onto the roll surface 11A at a projection angle of 90 degrees together with compressed air having a pressure of 0.3 MPa. The projection conditions such as the pressure of the gas other than the projection material P are the same. Further, before removing the foreign matter, the amount of Mn was measured by a portable fluorescent X-ray apparatus. Further, after removing the foreign matter, the amount of Mn was measured by a portable fluorescent X-ray apparatus. Then, the amount of decrease in the composition of the Mn component was calculated by subtracting the amount of Mn measured after removing the foreign matter from the amount of Mn measured before removing the foreign matter.
 なお、本実施形態では、投射材Pの形状に関し、10個の投射材Pをランダムに抽出する。そして、抽出された投射材Pの断面形状をSEMにより観察する。なお、断面形状を確認できる限り、SEM以外の検査装置が用いられてもよい。次いで、抽出された投射材Pそれぞれの断面形状外縁のうち、角状になっている箇所(すなわちコーナー部。以下、「角」と称する)の角度を計測する。これら角における内角の角度が、予め設定された範囲内、すなわち60度以上、170度以下の条件を満たす角を、本実施形態の基準を満たす角とする。そして一粒子ずつ、この基準を満たす角の個数を計測する。そして、計測した粒子の集団について基準を満たす角の個数が、一粒子当たりいくつ含まれているかを表す平均値を算出する。算出の結果、条件を満たす角の数が平均で2以上である場合、投射材Pの形状が「多角形状」であると規定する。また、条件を満たさない場合、投射材Pの形状が「球状」であると規定する。実施例では上記条件を満たす投射材Pを用いた。 In the present embodiment, 10 projection materials P are randomly extracted with respect to the shape of the projection material P. Then, the cross-sectional shape of the extracted projection material P is observed by SEM. An inspection device other than SEM may be used as long as the cross-sectional shape can be confirmed. Next, the angle of the angular portion (that is, the corner portion, hereinafter referred to as “corner”) of the outer edges of the cross-sectional shapes of each of the extracted projecting materials P is measured. The angle of the internal angle in these angles is within a preset range, that is, an angle satisfying the condition of 60 degrees or more and 170 degrees or less is defined as an angle satisfying the criteria of the present embodiment. Then, for each particle, the number of corners satisfying this criterion is counted. Then, an average value indicating how many corners satisfying the standard for the measured particle group is included in each particle is calculated. As a result of the calculation, when the number of corners satisfying the condition is 2 or more on average, the shape of the projection material P is defined as "polygonal shape". Further, when the condition is not satisfied, the shape of the projection material P is defined as "spherical". In the examples, a projection material P satisfying the above conditions was used.
 図10は、実施例としてロール表面11AのMn酸化物除去量を示すグラフである。図10に示すように、ドライアイスを投射材Pとした比較例1の場合、Mn酸化物除去量は、1wt%(重量パーセント)程度であった。球状粉を投射材Pとした比較例2及び比較例3の場合、Mn酸化物除去量は、比較的粒径の大きい比較例2では、6wt%程度、粒径の小さい比較例3では、2wt%程度であった。 FIG. 10 is a graph showing the amount of Mn oxide removed from the roll surface 11A as an example. As shown in FIG. 10, in the case of Comparative Example 1 in which dry ice was used as the projection material P, the amount of Mn oxide removed was about 1 wt% (weight percent). In the case of Comparative Example 2 and Comparative Example 3 in which the spherical powder was used as the projection material P, the amount of Mn oxide removed was about 6 wt% in Comparative Example 2 having a relatively large particle size and 2 wt% in Comparative Example 3 having a small particle size. It was about%.
 一方、多角形状アルミナ粒子を投射材Pとした実施例の場合は、Mn酸化物除去量は、23wt%程度であった。実施例によれば、投射材Pを多角形状アルミナ粒子とすることで、Mn酸化物除去量は、酸化物除去量の目安である20wt%を超えることが明らかとなった。 On the other hand, in the case of the example in which the polygonal alumina particles were used as the projection material P, the amount of Mn oxide removed was about 23 wt%. According to the examples, it was clarified that the amount of Mn oxide removed exceeds 20 wt%, which is a guideline for the amount of oxide removed, by using polygonal alumina particles as the projection material P.
 このように、本実施例によれば、本開示に係るロール表面の異物除去装置100及びロール表面の異物除去方法を適用することで、ロール表面11Aの酸化物被膜Cが除去され、ロール表面11Aの粗度が回復できることが示された。さらに、投射材Pとして多角形状アルミナ粒子を用いることで、他の比較例における投射材と比較して、酸化物被膜Cが効果的に除去できることが示された。 As described above, according to the present embodiment, by applying the foreign matter removing device 100 on the roll surface and the foreign matter removing method on the roll surface according to the present disclosure, the oxide film C on the roll surface 11A is removed, and the roll surface 11A is removed. It was shown that the roughness of the can be recovered. Furthermore, it was shown that by using the polygonal alumina particles as the projection material P, the oxide film C can be effectively removed as compared with the projection material in other comparative examples.
 具体的には、比較例1~3及び実施例のそれぞれの効果の違いは、以下の理由によって生じる。ここで、実施例の場合、投射材Pが多角形状であるため、投射材Pの多角形の頂点と頂点近傍の領域とを含む部分が尖っている。このため、投射材Pがロール表面11Aの酸化物被膜Cに衝突する際、投射材Pの尖った部分の衝突位置において、酸化物被膜Cに大きな力が加えられる。結果、投射材Pの衝突によって、酸化物被膜Cが大きく破壊され、Mn酸化物除去量を増大させることができる。 Specifically, the difference in effect between Comparative Examples 1 to 3 and Examples is caused by the following reasons. Here, in the case of the embodiment, since the projection material P has a polygonal shape, the portion including the apex of the polygon of the projection material P and the region near the apex is sharp. Therefore, when the projecting material P collides with the oxide film C of the roll surface 11A, a large force is applied to the oxide film C at the collision position of the sharp portion of the projecting material P. As a result, the oxide film C is largely destroyed by the collision of the projection material P, and the amount of Mn oxide removed can be increased.
 一方、比較例1の場合、投射材Pがドライアイスであることから、衝突する物質の質量が非常に小さいので、酸化物被膜Cに加えられる力も非常に小さい。このため、投射材Pの衝突によって生じる酸化物被膜Cの破壊程度は比較的小さくなり、結果、Mn酸化物除去量も少ない。 On the other hand, in the case of Comparative Example 1, since the projecting material P is dry ice, the mass of the colliding substance is very small, so the force applied to the oxide film C is also very small. Therefore, the degree of destruction of the oxide film C caused by the collision of the projection material P is relatively small, and as a result, the amount of Mn oxide removed is also small.
 また、比較例2の場合、投射材Pの粒子の粒度は#40であり、実施例の投射材Pの粒子の粒度#46と比較的近い。しかし、比較例2の投射材Pの粒子の形状は、実施例のような多角形状ではなく、球状である。このため、例えば同じ最大長さを有する粒子同士の場合であっても、実施例のように多角形状の粒子が噴射される場合と比べ、比較例2では、噴射された球状の投射材Pの粒子と酸化物被膜Cとの接触面積が、実施例の場合より大きくなる。結果、噴射された投射材Pの粒子が酸化物被膜Cに与える接触面積当たりの圧力が、多角形状の粒子を噴射した場合と比べ、小さくなる。このため、比較例2では、酸化物被膜Cが十分に破壊されない。 Further, in the case of Comparative Example 2, the particle size of the particles of the projection material P is # 40, which is relatively close to the particle size of the particles of the projection material P of the example # 46. However, the shape of the particles of the projection material P of Comparative Example 2 is not a polygonal shape as in the example, but a spherical shape. Therefore, for example, even in the case of particles having the same maximum length, in Comparative Example 2, the ejected spherical projection material P is compared with the case where the polygonal particles are ejected as in the example. The contact area between the particles and the oxide film C is larger than that in the example. As a result, the pressure per contact area given to the oxide film C by the ejected particles of the projection material P becomes smaller than that in the case of injecting the polygonal particles. Therefore, in Comparative Example 2, the oxide film C is not sufficiently destroyed.
 また、比較例3でも、比較例2の場合と同様、投射材Pの形状が球状である。このため、噴射された粒子が酸化物被膜Cに与える接触面積当たりの力が、多角形状の粒子を噴射した場合と比べ小さくなる。また、比較例3の投射材Pの粒子の粒度は、#120であり、比較例2の投射材Pの粒度#40より大きい。このため、比較例3では、噴射された投射材Pの粒子と酸化物被膜Cとの接触面積が、比較例2の場合より更に大きくなる。結果、比較例3では、破壊される酸化物被膜Cの量は、比較例2の場合より更に低下する。 Also, in Comparative Example 3, the shape of the projection material P is spherical as in the case of Comparative Example 2. Therefore, the force per contact area given to the oxide film C by the ejected particles is smaller than that in the case of ejecting the polygonal particles. Further, the particle size of the particles of the projection material P of Comparative Example 3 is # 120, which is larger than the particle size of the projection material P of Comparative Example 2 # 40. Therefore, in Comparative Example 3, the contact area between the ejected particles of the projection material P and the oxide film C is further larger than that in Comparative Example 2. As a result, in Comparative Example 3, the amount of the oxide film C to be destroyed is further reduced as compared with the case of Comparative Example 2.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示は、かかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は応用例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, the present disclosure is not limited to such examples. It is clear that anyone with ordinary knowledge in the field of technology to which this disclosure belongs can come up with various modifications or applications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present disclosure.
 例えば、上記実施形態において、ブラスト処理部110をロール11の上面側に設ける例を示したが、本開示は、かかる例に限定されない。例えば、ブラスト処理部110をロール11の下面側に設け、下方から投射材Pを噴射するようにしてもよい。 For example, in the above embodiment, an example in which the blast processing unit 110 is provided on the upper surface side of the roll 11 has been shown, but the present disclosure is not limited to such an example. For example, the blast processing unit 110 may be provided on the lower surface side of the roll 11 so that the projection material P is ejected from below.
 また、上記実施形態において、ブラスト処理部110が一つである例を示したが、ブラスト処理部110は、複数、例えば2台設けてもよい。この場合、各ブラスト処理部110からは、異なる種類の投射材Pが噴射されるように構成してもよい。例えば、一のブラスト処理部110の噴射部111からは、第1の粒径の投射材Pが噴射され、他のブラスト処理部110の噴射部111からは、第1の粒径よりも小さい第2の粒径を有する投射材Pが噴射されるようにしてもよい。 Further, in the above embodiment, the example in which the blast processing unit 110 is one is shown, but a plurality of blast processing units 110, for example, two units may be provided. In this case, different types of projection material P may be ejected from each blast processing unit 110. For example, the projection material P having the first particle size is ejected from the injection unit 111 of one blast processing unit 110, and the projection material P having the first particle size is smaller than the first particle size from the injection unit 111 of the other blast processing unit 110. The projection material P having a particle size of 2 may be injected.
 また、上記実施形態において、ブラスト処理部110において噴射部111と回収部113とが一体となっている例を示したが、本開示はかかる例に限定されない。例えば、ブラスト処理部110において、噴射部111と回収部113とが別体でもよい。 Further, in the above embodiment, an example in which the injection unit 111 and the recovery unit 113 are integrated in the blast processing unit 110 is shown, but the present disclosure is not limited to such an example. For example, in the blast processing unit 110, the injection unit 111 and the recovery unit 113 may be separate bodies.
 また、上記実施形態において、ロール回転機構150は、回転部151をロール11に当接させてロール11を回転させる例を示したが、本開示は、かかる例に限定されない。例えば、駆動源からの回転力を伝達するベルトを本開示の回転機構としてロール11に取り付け、かかるベルトを介してロール11を回転させるようにしてもよい。 Further, in the above embodiment, the roll rotation mechanism 150 has shown an example in which the rotating portion 151 is brought into contact with the roll 11 to rotate the roll 11, but the present disclosure is not limited to such an example. For example, a belt that transmits a rotational force from a drive source may be attached to the roll 11 as the rotation mechanism of the present disclosure, and the roll 11 may be rotated via such a belt.
 さらに、上記実施形態において、ロール回転機構150を設けずに、鋼帯1の搬送時にロール11を回転させるロール駆動源でロール11を回転させるようにしてもよい。 Further, in the above embodiment, the roll 11 may be rotated by a roll drive source that rotates the roll 11 when the steel strip 1 is conveyed without providing the roll rotation mechanism 150.
1     鋼帯
10、10A、10B    加熱炉
11    ロール
11A   ロール表面
11A1  投射目標位置
12    ロール軸
L1    接線
L2    中心軸線
θ     投射角度
13    めっき処理設備
13A   めっき浴
100   ロール表面の異物除去装置
101   リンクアーム
101A  一端部
101B  他端部
103   本体部
110   ブラスト処理部
111   噴射部
113   回収部
115   二重筒体形状
115A  内筒部
115B  外筒部
117   閉空間
120   押圧部
121   エアシリンダ
130   ホース
131   投射材供給用ホース
132   気体供給用ホース
133   排出ホース
140   検出部
150   ロール回転機構
151   回転部
151A  外周面
153   駆動源
160   給排気系
161   回収タンク
163   ダストコレクタ
165   ブロア
167   気体供給源
170   移動機構
171   ねじ送り機構
171A  ねじ軸
171B  支持部
173   駆動源
175   ガイドシャフト
180   可撓性部材
181   ブラシ状部材
190   制御部
C     酸化物被膜
M     溶融金属
P     投射材
G     気体
X1    回転軸
1 Steel strip 10, 10A, 10B Heating furnace 11 Roll 11A Roll surface 11A1 Projection target position 12 Roll axis L1 tangent line L2 Center axis θ Projection angle 13 Plating processing equipment 13A Plating bath 100 Foreign matter removal device on roll surface 101 Link arm 101A One end 101B Other end 103 Main body 110 Blasting 111 Injection 113 Recovery 115 Double cylinder shape 115A Inner cylinder 115B Outer cylinder 117 Closed space 120 Pressing 121 Air cylinder 130 Hose 131 Projection material supply hose 132 Gas Supply hose 133 Discharge hose 140 Detection part 150 Roll rotation mechanism 151 Rotation part 151A Outer peripheral surface 153 Drive source 160 Supply / exhaust system 161 Recovery tank 163 Dust collector 165 Blower 167 Gas supply source 170 Movement mechanism 171 Screw feed mechanism 171A Screw shaft 171B Support Part 173 Drive source 175 Guide shaft 180 Flexible member 181 Brush-like member 190 Control part C Oxide coating M Molten metal P Projection material G Gas X1 Rotating shaft
≪付記≫
 本明細書からは、以下の態様が概念化される。
≪Additional notes≫
From this specification, the following aspects are conceptualized.
 すなわち、態様1は、
 加熱炉内において鋼帯を搬送するロールの表面に対して投射材を噴射する噴射部と、前記投射材を回収する回収部とを備えるブラスト処理部と、
 前記ブラスト処理部を前記ロールの表面に向かって押圧させる押圧部と、
を備える、ロール表面の異物除去装置。
That is, the first aspect is
A blasting unit including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
A pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
A foreign matter removing device on the roll surface.
 態様2は、
 前記ブラスト処理部の中央に前記噴射部が設けられ、前記噴射部の周囲に前記回収部が設けられている、態様1に記載のロール表面の異物除去装置。
Aspect 2 is
The foreign matter removing device on the roll surface according to the first aspect, wherein the injection unit is provided in the center of the blast processing unit, and the collection unit is provided around the injection unit.
 態様3は、
 前記ブラスト処理部は、内筒部と、当該内筒部を囲繞する外筒部とから成る二重筒体形状を有し、
 前記内筒部が噴射部であり、前記外筒部が回収部とされている、態様1又は2に記載のロール表面の異物除去装置。
Aspect 3 is
The blast processing portion has a double tubular body shape including an inner cylinder portion and an outer cylinder portion surrounding the inner cylinder portion.
The foreign matter removing device on the roll surface according to the first or second aspect, wherein the inner cylinder portion is an injection portion and the outer cylinder portion is a collection portion.
 態様4は、
 前記外筒部の端部に可撓性部材が設けられている、態様3に記載のロール表面の異物除去装置。
Aspect 4 is
The foreign matter removing device on the roll surface according to the third aspect, wherein a flexible member is provided at the end of the outer cylinder portion.
 態様5は、
 前記ブラスト処理部と前記ロールの表面との距離を検出する検出部をさらに備える、態様1~4のいずれかに記載のロール表面の異物除去装置。
Aspect 5 is
The foreign matter removing device on the roll surface according to any one of aspects 1 to 4, further comprising a detection unit for detecting the distance between the blast processing unit and the surface of the roll.
 態様6は、
 前記検出部によって検出される前記ロールの表面と前記ブラスト処理部との距離が所定の値以上となった場合に、前記噴射部による前記投射材の噴射が停止される、態様5に記載のロール表面の異物除去装置。
Aspect 6 is
The roll according to aspect 5, wherein when the distance between the surface of the roll detected by the detection unit and the blast processing unit becomes a predetermined value or more, the injection of the projection material by the injection unit is stopped. Surface foreign matter remover.
 態様7は、
 前記ブラスト処理部を前記ロールの軸方向に沿って移動させる移動機構をさらに備える、態様1~6のいずれかに記載のロール表面の異物除去装置。
Aspect 7 is
The foreign matter removing device on the surface of a roll according to any one of aspects 1 to 6, further comprising a moving mechanism for moving the blasting unit along the axial direction of the roll.
 態様8は、
 前記ロールを回転させるロール回転機構をさらに備える、態様1~7のいずれかに記載のロール表面の異物除去装置。
Aspect 8 is
The foreign matter removing device on the surface of a roll according to any one of aspects 1 to 7, further comprising a roll rotation mechanism for rotating the roll.
 態様9は、
 前記噴射部は、前記投射材を気体とともに噴射し、
 前記回収部は、前記投射材を前記気体とともに吸引することで回収する、態様1~8のいずれかに記載のロール表面の異物除去装置。
Aspect 9 is
The injection unit injects the projection material together with the gas, and the injection unit injects the projection material together with the gas.
The foreign matter removing device on the roll surface according to any one of aspects 1 to 8, wherein the recovery unit recovers the projection material by sucking it together with the gas.
 態様10は、
 前記噴射部は、0.2MPa以上、0.5MPa以下の圧力範囲で前記気体を噴射する、
 態様9に記載のロール表面の異物除去装置。
Aspect 10 is
The injection unit injects the gas in a pressure range of 0.2 MPa or more and 0.5 MPa or less.
The foreign matter removing device on the roll surface according to the ninth aspect.
 態様11は、
 前記噴射部は、ロールの軸方向に沿って見て、ロール表面に対して、80度以上、90度以下の投射角度で前記投射材を投射する、
 態様1~10のいずれか一項に記載のロール表面の異物除去装置。
Aspect 11 is
The injection unit projects the projection material at a projection angle of 80 degrees or more and 90 degrees or less with respect to the roll surface when viewed along the axial direction of the roll.
The foreign matter removing device on the roll surface according to any one of aspects 1 to 10.
 態様12は、
 前記投射材は、アルミナ粒子である、態様1~11のいずれかに記載のロール表面の異物除去装置。
Aspect 12 is
The foreign matter removing device on the roll surface according to any one of aspects 1 to 11, wherein the projection material is alumina particles.
 態様13は、
 態様1~12のいずれかに記載のロール表面の異物除去装置のブラスト処理部をロール表面に押圧させる工程と、
 前記ブラスト処理部内から投射材を噴射するとともに、前記ブラスト処理部内で前記投射材を回収する工程と、
 を含むロール表面の異物除去方法。
Aspect 13 is
A step of pressing the blasting portion of the foreign matter removing device on the roll surface according to any one of aspects 1 to 12 against the roll surface.
A step of injecting a projection material from the blast processing unit and collecting the projection material in the blast processing unit.
A method for removing foreign matter on the roll surface, including.
 態様14は、
 前記投射材を噴射する処理では、第1の平均粒径を有する第1の投射材を噴射した後、前記第1の平均粒径より小さい第2の平均粒径を有する第2の投射材を噴射する、
 態様13に記載のロール表面の異物除去方法。
Aspect 14 is
In the process of injecting the projection material, after injecting the first projection material having the first average particle size, the second projection material having the second average particle size smaller than the first average particle size is ejected. Spray,
The method for removing foreign matter on the roll surface according to the thirteenth aspect.
 態様15は、
 態様13に記載のロール表面の異物除去方法によって、加熱炉内に設けられたロールの表面の異物を除去する工程と、
 前記ロールが設けられた加熱炉内に鋼帯を通過させて熱処理を行う工程と、
 を含む鋼帯の製造方法。
Aspect 15
A step of removing foreign matter on the surface of the roll provided in the heating furnace by the method for removing foreign matter on the surface of the roll according to the thirteenth aspect.
A step of passing a steel strip through a heating furnace provided with the roll to perform heat treatment, and
Method of manufacturing steel strips including.
 態様16は、
 ロール表面に当接させた回転機構を介して回転力を加えることによってロールを回転させながら、前記除去する工程を行う、
 態様15に記載の鋼帯の製造方法。
Aspect 16 is
The removal step is performed while rotating the roll by applying a rotational force via a rotation mechanism in contact with the roll surface.
The method for manufacturing a steel strip according to aspect 15.
 態様17は、
 前記鋼帯は、高張力鋼である、態様15又は16に記載の鋼帯の製造方法。
Aspect 17 is
The method for producing a steel strip according to aspect 15 or 16, wherein the steel strip is a high-strength steel.
≪他の態様≫
 また、本明細書からは、以下の他の態様が概念化される。
≪Other aspects≫
Also, from this specification, the following other aspects are conceptualized.
 すなわち、他の態様1は、
 加熱炉内において鋼帯を搬送するロールの表面に対して投射材を噴射する噴射部と、前記投射材を回収する回収部とを備えるブラスト処理部と、
 前記ブラスト処理部を前記ロールの表面に向かって押圧させる押圧部と、
を備える、ロール表面の粗化処理装置。
That is, the other aspect 1 is
A blasting unit including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
A pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
A roll surface roughening treatment device.
 他の態様2は、
 前記ブラスト処理部の中央に前記噴射部が設けられ、前記噴射部の周囲に前記回収部が設けられている、他の態様1に記載のロール表面の粗化処理装置。
Another aspect 2 is
The roll surface roughening treatment apparatus according to another aspect 1, wherein the injection unit is provided in the center of the blast processing unit, and the recovery unit is provided around the injection unit.
 他の態様3は、
 前記ブラスト処理部は、内筒部と、当該内筒部を囲繞する外筒部とから成る二重筒体形状を有し、
 前記内筒部が噴射部であり、前記外筒部が回収部とされている、他の態様1又は2に記載のロール表面の粗化処理装置。
Another aspect 3 is
The blast processing portion has a double tubular body shape including an inner cylinder portion and an outer cylinder portion surrounding the inner cylinder portion.
The roll surface roughening treatment device according to another aspect 1 or 2, wherein the inner cylinder portion is an injection portion and the outer cylinder portion is a recovery portion.
 他の態様4は、
 前記外筒部の端部に可撓性部材が設けられている、他の態様3に記載のロール表面の粗化処理装置。
Another aspect 4 is
The roll surface roughening treatment device according to another aspect 3, wherein a flexible member is provided at the end of the outer cylinder portion.
 他の態様5は、
 前記ブラスト処理部と前記ロールの表面との距離を検出する検出部をさらに備える、他の態様1~4のいずれかに記載のロール表面の粗化処理装置。
Another aspect 5 is
The roll surface roughening treatment apparatus according to any one of other aspects 1 to 4, further comprising a detection unit for detecting the distance between the blast processing unit and the surface of the roll.
 他の態様6は、
 前記検出部によって検出される前記ロールの表面と前記ブラスト処理部との距離が所定の値以上となった場合に、前記噴射部による前記投射材の噴射が停止される、他の態様5に記載のロール表面の粗化処理装置。
Another aspect 6 is
5. The other aspect 5, wherein the injection of the projection material by the injection unit is stopped when the distance between the surface of the roll detected by the detection unit and the blast processing unit becomes a predetermined value or more. Roll surface roughening treatment equipment.
 他の態様7は、
 前記ブラスト処理部を前記ロールの軸方向に沿って移動させる移動機構をさらに備える、他の態様1~6のいずれかに記載のロール表面の粗化処理装置。
Another aspect 7 is
The roll surface roughening treatment device according to any one of other aspects 1 to 6, further comprising a moving mechanism for moving the blasting unit along the axial direction of the roll.
 他の態様8は、
 前記ロールを回転させるロール回転機構をさらに備える、他の態様1~7のいずれかに記載のロール表面の粗化処理装置。
Another aspect 8 is
The roll surface roughening treatment device according to any one of other aspects 1 to 7, further comprising a roll rotation mechanism for rotating the roll.
 他の態様9は、
 前記噴射部は、前記投射材を気体とともに噴射し、
 前記回収部は、前記投射材を前記気体とともに吸引することで回収する、他の態様1~8のいずれかに記載のロール表面の粗化処理装置。
Another aspect 9 is
The injection unit injects the projection material together with the gas, and the injection unit injects the projection material together with the gas.
The roll surface roughening treatment device according to any one of other aspects 1 to 8, wherein the recovery unit recovers the projection material by sucking it together with the gas.
 他の態様10は、
 前記投射材は、アルミナ粒子である、他の態様1~9のいずれかに記載のロール表面の粗化処理装置。
Another aspect 10 is
The roll surface roughening treatment apparatus according to any one of other aspects 1 to 9, wherein the projection material is alumina particles.
 他の態様11は、
 他の態様1~10のいずれかに記載のブラスト処理部をロール表面に押圧させる工程と、
 前記ブラスト処理部内から投射材を噴射するとともに、前記ブラスト処理部内で前記投射材を回収する工程と、
を含むロール表面の粗化処理方法。
Another aspect 11 is
The step of pressing the blasting portion according to any one of the other aspects 1 to 10 against the roll surface, and
A step of injecting a projection material from the blast processing unit and collecting the projection material in the blast processing unit.
Roughening treatment method for roll surface including.
 他の態様12は、
 他の態様11に記載のロール表面の粗化処理方法によって、加熱炉内に設けられたロールの表面を粗化する工程と、
 前記ロールが設けられた加熱炉内に鋼帯を通過させて熱処理を行う工程と、
を含む鋼帯の製造方法。
Another aspect 12 is
A step of roughening the surface of the roll provided in the heating furnace by the method of roughening the surface of the roll according to another aspect 11.
A step of passing a steel strip through a heating furnace provided with the roll to perform heat treatment, and
Method of manufacturing steel strips including.
 他の態様13は、
 前記鋼帯は、高張力鋼である、他の態様12に記載の鋼帯の製造方法。
Another aspect 13 is
The method for manufacturing a steel strip according to another aspect 12, wherein the steel strip is a high-strength steel.
 上記の他の態様においては、以下の作用効果を奏する。 In the above other aspects, the following effects are exhibited.
 他の態様に係るロール表面の粗化処理装置、ロール表面の粗化処理方法、及び鋼帯の製造方法によれば、加熱炉内に設けられた搬送用ロールの表面の粗化を簡便に実現することができる。 According to the roll surface roughening treatment device, the roll surface roughening treatment method, and the steel strip manufacturing method according to the other aspects, the roughening of the surface of the transport roll provided in the heating furnace can be easily realized. can do.
 2019年12月12日に出願した日本国特許出願2019-224801号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2019-224801 filed on December 12, 2019 is incorporated herein by reference in its entirety.
 また、本明細書に記載されたすべての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 Also, all documents, patent applications and technical standards described herein are to the same extent as if the individual documents, patent applications and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (17)

  1.  加熱炉内において鋼帯を搬送するロールの表面に対して投射材を噴射する噴射部と、前記投射材を回収する回収部とを備えるブラスト処理部と、
     前記ブラスト処理部を前記ロールの表面に向かって押圧させる押圧部と、
    を備える、ロール表面の異物除去装置。
    A blasting unit including an injection unit that injects a projection material onto the surface of a roll that conveys a steel strip in a heating furnace, and a recovery unit that collects the projection material.
    A pressing portion that presses the blasting portion toward the surface of the roll, and a pressing portion.
    A foreign matter removing device on the roll surface.
  2.  前記ブラスト処理部の中央に前記噴射部が設けられ、前記噴射部の周囲に前記回収部が設けられている、請求項1に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to claim 1, wherein the injection unit is provided in the center of the blast processing unit, and the collection unit is provided around the injection unit.
  3.  前記ブラスト処理部は、内筒部と、当該内筒部を囲繞する外筒部とから成る二重筒体形状を有し、
     前記内筒部が噴射部であり、前記外筒部が回収部とされている、請求項1又は2に記載のロール表面の異物除去装置。
    The blast processing portion has a double tubular body shape including an inner cylinder portion and an outer cylinder portion surrounding the inner cylinder portion.
    The foreign matter removing device on the roll surface according to claim 1 or 2, wherein the inner cylinder portion is an injection portion and the outer cylinder portion is a collection portion.
  4.  前記外筒部の端部に可撓性部材が設けられている、請求項3に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to claim 3, wherein a flexible member is provided at the end of the outer cylinder portion.
  5.  前記ブラスト処理部と前記ロールの表面との距離を検出する検出部をさらに備える、請求項1~4のいずれか1項に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to any one of claims 1 to 4, further comprising a detection unit for detecting the distance between the blast processing unit and the surface of the roll.
  6.  前記検出部によって検出される前記ロールの表面と前記ブラスト処理部との距離が所定の値以上となった場合に、前記噴射部による前記投射材の噴射が停止される、請求項5に記載のロール表面の異物除去装置。 The fifth aspect of the present invention, wherein when the distance between the surface of the roll detected by the detection unit and the blast processing unit becomes a predetermined value or more, the injection of the projection material by the injection unit is stopped. Foreign matter remover on the roll surface.
  7.  前記ブラスト処理部を前記ロールの軸方向に沿って移動させる移動機構をさらに備える、請求項1~6のいずれか1項に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to any one of claims 1 to 6, further comprising a moving mechanism for moving the blasting unit along the axial direction of the roll.
  8.  前記ロールを回転させるロール回転機構をさらに備える、請求項1~7のいずれか1項に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to any one of claims 1 to 7, further comprising a roll rotation mechanism for rotating the roll.
  9.  前記噴射部は、前記投射材を気体とともに噴射し、
     前記回収部は、前記投射材を前記気体とともに吸引することで回収する、請求項1~8のいずれか1項に記載のロール表面の異物除去装置。
    The injection unit injects the projection material together with the gas, and the injection unit injects the projection material together with the gas.
    The foreign matter removing device on the roll surface according to any one of claims 1 to 8, wherein the recovery unit recovers the projection material by sucking it together with the gas.
  10.  前記噴射部は、0.2MPa以上、0.5MPa以下の圧力範囲で前記気体を噴射する、
     請求項9に記載のロール表面の異物除去装置。
    The injection unit injects the gas in a pressure range of 0.2 MPa or more and 0.5 MPa or less.
    The foreign matter removing device on the roll surface according to claim 9.
  11.  前記噴射部は、ロールの軸方向に沿って見て、ロール表面に対して、80度以上、90度以下の投射角度で前記投射材を投射する、
     請求項1~10のいずれか一項に記載のロール表面の異物除去装置。
    The injection unit projects the projection material at a projection angle of 80 degrees or more and 90 degrees or less with respect to the roll surface when viewed along the axial direction of the roll.
    The foreign matter removing device on the roll surface according to any one of claims 1 to 10.
  12.  前記投射材は、アルミナ粒子である、請求項1~11のいずれか1項に記載のロール表面の異物除去装置。 The foreign matter removing device on the roll surface according to any one of claims 1 to 11, wherein the projection material is alumina particles.
  13.  請求項1~12のいずれか1項に記載のロール表面の異物除去装置のブラスト処理部をロール表面に押圧させる工程と、
     前記ブラスト処理部内から投射材を噴射するとともに、前記ブラスト処理部内で前記投射材を回収する工程と、
     を含むロール表面の異物除去方法。
    A step of pressing the blasting portion of the foreign matter removing device on the roll surface according to any one of claims 1 to 12 against the roll surface.
    A step of injecting a projection material from the blast processing unit and collecting the projection material in the blast processing unit.
    A method for removing foreign matter on the roll surface, including.
  14.  前記投射材を噴射する処理では、第1の平均粒径を有する第1の投射材を噴射した後、前記第1の平均粒径より小さい第2の平均粒径を有する第2の投射材を噴射する、
     請求項13に記載のロール表面の異物除去方法。
    In the process of injecting the projection material, after injecting the first projection material having the first average particle size, the second projection material having the second average particle size smaller than the first average particle size is ejected. Spray,
    The method for removing foreign matter on the roll surface according to claim 13.
  15.  請求項13に記載のロール表面の異物除去方法によって、加熱炉内に設けられたロールの表面の異物を除去する工程と、
     前記ロールが設けられた加熱炉内に鋼帯を通過させて熱処理を行う工程と、
     を含む鋼帯の製造方法。
    A step of removing foreign matter on the surface of the roll provided in the heating furnace by the method for removing foreign matter on the surface of the roll according to claim 13.
    A step of passing a steel strip through a heating furnace provided with the roll to perform heat treatment, and
    Method of manufacturing steel strips including.
  16.  ロール表面に当接させた回転機構を介して回転力を加えることによってロールを回転させながら、前記除去する工程を行う、
     請求項15に記載の鋼帯の製造方法。
    The removal step is performed while rotating the roll by applying a rotational force via a rotation mechanism in contact with the roll surface.
    The method for manufacturing a steel strip according to claim 15.
  17.  前記鋼帯は、高張力鋼である、請求項15又は16に記載の鋼帯の製造方法。 The method for manufacturing a steel strip according to claim 15 or 16, wherein the steel strip is a high-strength steel.
PCT/JP2020/045711 2019-12-12 2020-12-08 Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip WO2021117732A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080083238.9A CN114786872A (en) 2019-12-12 2020-12-08 Device for removing foreign matter on roll surface, method for removing foreign matter on roll surface, and method for manufacturing steel strip
BR112022010602A BR112022010602A2 (en) 2019-12-12 2020-12-08 DEVICE AND METHOD FOR REMOVING FOREIGN MATTER FROM A CYLINDER SURFACE, AND, METHOD FOR MANUFACTURING A STEEL STRIP
US17/777,296 US20220402097A1 (en) 2019-12-12 2020-12-08 Device for removing foreign matter from roll surface, method for removing foreign matter from roll surface, and method for manufacturing steel strip
JP2021563978A JP7502662B2 (en) 2019-12-12 2020-12-08 Apparatus for removing foreign matter from roll surface, method for removing foreign matter from roll surface, and method for manufacturing steel strip
MX2022006954A MX2022006954A (en) 2019-12-12 2020-12-08 Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224801 2019-12-12
JP2019224801 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117732A1 true WO2021117732A1 (en) 2021-06-17

Family

ID=76329855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045711 WO2021117732A1 (en) 2019-12-12 2020-12-08 Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip

Country Status (6)

Country Link
US (1) US20220402097A1 (en)
JP (1) JP7502662B2 (en)
CN (1) CN114786872A (en)
BR (1) BR112022010602A2 (en)
MX (1) MX2022006954A (en)
WO (1) WO2021117732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114131032A (en) * 2021-11-27 2022-03-04 南华大学 Special steel shot preparation system for removing nuclear waste metal radioactivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120153A (en) * 2000-10-13 2002-04-23 Hitachi Ltd Shot peening device
JP2003112217A (en) * 2001-09-28 2003-04-15 Ikk Shotto Kk Method for removing oxidized film on surface of metallic material
JP3932947B2 (en) * 2002-03-28 2007-06-20 Jfeスチール株式会社 Roll surface care apparatus and roll surface care method
JP6111138B2 (en) * 2013-05-13 2017-04-05 オーエスジー株式会社 Flat die for worm rolling and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520551A1 (en) * 1995-06-06 1996-12-12 Roland Man Druckmasch Method and device for cleaning a cylinder of a rotary printing press
EP1038674A1 (en) * 1999-02-26 2000-09-27 Alfred M. Petersen Blast cleaning apparatus for printing machines
JP2000317836A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Processing method for surface of rolling roll
JP3976695B2 (en) * 2003-03-11 2007-09-19 日新製鋼株式会社 Foreign matter removal method for tension roll of temper rolling mill
DE102005014825B4 (en) * 2005-03-30 2007-06-21 Selim Özhan Process for cleaning the surface of rotatively driven rollers
JP2009085354A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Coating roll working method, coating roll and coating apparatus
KR100920755B1 (en) * 2009-02-24 2009-10-07 (주)오양플라테크 Recycling method and apparatus for industrial roller using plastic media
DE102011052771A1 (en) * 2011-08-17 2013-02-21 Nordenia Deutschland Gronau Gmbh Method and device for removing soiling on profiled surfaces of intermeshing draw rolls
US20130122327A1 (en) * 2011-11-11 2013-05-16 Shen Sheu Apparatus and method for imparting selected topographies to aluminum sheet metal
JP2014180728A (en) * 2013-03-19 2014-09-29 Work Up Asakura:Kk Shot blast device
JP6441113B2 (en) * 2015-02-17 2018-12-19 ビルドメンテック株式会社 Cleaning system nozzle head and cleaning system
TWM501902U (en) * 2015-03-18 2015-06-01 China Steel Corp Device for removing surface foreign matter of wringing roller
WO2017039213A1 (en) * 2015-09-04 2017-03-09 주식회사 포스코 Foreign material removal device
JP6949503B2 (en) * 2017-02-15 2021-10-13 三菱重工業株式会社 Parts manufacturing system and parts manufacturing method
CN106985080A (en) * 2017-04-10 2017-07-28 南京信息工程大学 Suction-type twin-tub sand-blasting machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120153A (en) * 2000-10-13 2002-04-23 Hitachi Ltd Shot peening device
JP2003112217A (en) * 2001-09-28 2003-04-15 Ikk Shotto Kk Method for removing oxidized film on surface of metallic material
JP3932947B2 (en) * 2002-03-28 2007-06-20 Jfeスチール株式会社 Roll surface care apparatus and roll surface care method
JP6111138B2 (en) * 2013-05-13 2017-04-05 オーエスジー株式会社 Flat die for worm rolling and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114131032A (en) * 2021-11-27 2022-03-04 南华大学 Special steel shot preparation system for removing nuclear waste metal radioactivity
CN114131032B (en) * 2021-11-27 2024-05-28 南华大学 Special steel shot preparation system for removing nuclear waste metal radioactivity

Also Published As

Publication number Publication date
US20220402097A1 (en) 2022-12-22
MX2022006954A (en) 2022-07-12
BR112022010602A2 (en) 2022-08-16
JP7502662B2 (en) 2024-06-19
JPWO2021117732A1 (en) 2021-06-17
CN114786872A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
RU2446024C2 (en) Piercing and rolling mandrel, method of its reconditioning and process line to this end
TWI787217B (en) Process for laser descaling of a running metal product, and device for implementing it
JP6444232B2 (en) Maintenance painting method for steel structure and circulating blasting device
US8920570B2 (en) Methods and apparatus for cleaning oilfield tools
WO1997013596A1 (en) Method of descaling steel sheet in coil through high draft rolling
WO2021117732A1 (en) Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip
EP2011964A1 (en) Corrosion protective coating through cold spray
EP1481763B1 (en) Method of preparing a metal seheet for pressforming
JP6249929B2 (en) Continuous surface treatment method for steel wire
JP6304901B2 (en) Preventive maintenance method for steel structure, and circulating blasting device used therefor
JP2024038318A (en) Preventive maintenance method of steel bridge and circulating blasting machine used for the same
JP2016203192A (en) Method and apparatus of descaling of metal wire material
US8900372B2 (en) Cryogenic cleaning methods for reclaiming and reprocessing oilfield tools
JP3932947B2 (en) Roll surface care apparatus and roll surface care method
JP2002233956A (en) Processing equipment for steel sheet and manufacturing method for steel sheet
WO2019087688A1 (en) Oxide scale removal method
JP6949314B2 (en) Steel structure maintenance method and steel structure maintenance treatment system
JP6924480B2 (en) Steel bridge maintenance method
JP2900812B2 (en) Continuous cold rolling line
JP4285372B2 (en) Method for cutting continuous cast slab to remove splash
JP5595825B2 (en) Cleaning method and apparatus for heat transfer tube of marine boiler
JP2006281343A (en) Warm shot peening method for thick steel plate
CN112548869B (en) Spraying material circulation method for removing oxide layer on steel surface
US20230203608A1 (en) Method for treating a surface of a metallic part of a turbomachine
KR101225765B1 (en) Method and apparatus for preventing rust on steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563978

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022010602

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022010602

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220531

122 Ep: pct application non-entry in european phase

Ref document number: 20900010

Country of ref document: EP

Kind code of ref document: A1