WO2021117209A1 - 溶接方法及び溶接構造 - Google Patents

溶接方法及び溶接構造 Download PDF

Info

Publication number
WO2021117209A1
WO2021117209A1 PCT/JP2019/048858 JP2019048858W WO2021117209A1 WO 2021117209 A1 WO2021117209 A1 WO 2021117209A1 JP 2019048858 W JP2019048858 W JP 2019048858W WO 2021117209 A1 WO2021117209 A1 WO 2021117209A1
Authority
WO
WIPO (PCT)
Prior art keywords
members
joined
auxiliary member
boundary
facing
Prior art date
Application number
PCT/JP2019/048858
Other languages
English (en)
French (fr)
Inventor
中村 友美
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201980101169.7A priority Critical patent/CN114555279B/zh
Priority to DE112019007968.9T priority patent/DE112019007968T5/de
Priority to JP2020547437A priority patent/JP7003284B2/ja
Priority to PCT/JP2019/048858 priority patent/WO2021117209A1/ja
Priority to US17/782,335 priority patent/US20230039275A1/en
Publication of WO2021117209A1 publication Critical patent/WO2021117209A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof

Definitions

  • the present invention relates to a welding method and a welded structure.
  • Patent Document 1 discloses a welding method in which a plurality of members to be joined are joined to each other by laser welding.
  • electricity does not pass through the member to be welded during welding, and the range affected by heat during welding can be kept small, so the effect of welding on electronic components (electrical effect, thermal effect) ) Is small.
  • the present invention has been made in view of the above circumstances, and is a welding method and a welding structure capable of easily welding a member to be welded having a low laser absorption rate even in laser welding in which the output of laser light is small.
  • the purpose is to provide.
  • an auxiliary member having a higher laser beam absorption rate than a plurality of members to be joined to each other is provided with a boundary between the plurality of members to be joined and a boundary between the plurality of members to be joined appears.
  • the auxiliary member is irradiated with a laser beam to melt the auxiliary member, and the molten portion of the auxiliary member raises the temperature of the boundary portion of the plurality of members to be joined.
  • the plurality of members to be welded are welded by shifting the boundary portion to a state in which it easily absorbs the laser beam, irradiating the boundary portion with the laser beam, and melting the boundary portion.
  • the welded structure according to one aspect of the present invention is arranged so as to face the boundary exposed surfaces of the plurality of members to be joined and the plurality of members to be joined in which the boundaries of the plurality of members to be joined appear.
  • Auxiliary members having a higher absorption rate of laser light than the joining members are provided, and the plurality of members to be joined and the auxiliary members are joined to each other by an alloy portion containing the plurality of members to be joined and the components of the auxiliary members. ing.
  • FIG. 5 is a cross-sectional view taken along the line VI-VI of FIG. 5 and 6 are cross-sectional views showing a state before the auxiliary members are attached to the three members to be joined.
  • FIG. 8 is a plan view of FIG. 9 is a cross-sectional view taken along the line XX of FIG. It is a perspective view which shows the plurality of members to be joined and auxiliary member used in the welding method which concerns on 2nd Embodiment of this invention.
  • FIG. 11 is a cross-sectional view taken along the line XII-XII of FIG. It is sectional drawing which shows the welding method and the welding structure which concerns on 2nd Embodiment of this invention. It is sectional drawing which shows the modification of the plurality of members to be joined and auxiliary member used in the welding method which concerns on 2nd Embodiment of this invention.
  • the welding method according to the present embodiment is a method of joining two members 1 to be joined to each other by using a laser beam LL.
  • auxiliary member 2 is a material having a higher absorption rate of laser light LL (hereinafter, referred to as laser absorption rate) than the member 1 to be joined. Further, the auxiliary member 2 is a material having a higher melting point than the member 1 to be joined.
  • the member 1 to be joined is copper (Cu)
  • stainless steel (SUS) can be used for the auxiliary member 2.
  • the laser beam LL is the laser beam of a fiber laser
  • the laser absorption rate of copper is about 2%
  • the laser absorption rate of stainless steel is about 25%.
  • the two members are covered so that the two members 1 are in contact with each other and the boundary exposed surface 12 of the two members 1 where the boundary 11 of the two members 1 appears is flush with each other.
  • the joining member 1 is arranged.
  • the auxiliary member 2 is arranged so that the auxiliary member 2 faces and contacts the boundary exposed surface 12 of the two members to be joined 1.
  • the facing surface 21 of the auxiliary member 2 facing the two members to be joined 1 comes into surface contact with the boundary exposed surface 12.
  • Both the boundary exposed surface 12 and the facing surface 21 of the auxiliary member 2 are formed on a flat surface.
  • the auxiliary member 2 is formed in a plate shape in which the direction in which the facing surface 21 and the opposite surface 22 facing the opposite side to the facing surface 21 are lined up is the plate thickness direction.
  • the laser beam LL is applied to the opposite surface 22 of the auxiliary member 2 to melt the auxiliary member 2.
  • the laser beam LL is the boundary 11 between the two members 1 to be joined in the direction in which the member 1 to be joined and the auxiliary member 2 are aligned (the thickness direction of the auxiliary member 2) in the opposite surface 22 of the auxiliary member 2. Is irradiated to a position overlapping with (or a region in the vicinity thereof).
  • the laser beam LL irradiates not the position overlapping the boundary 11 but another position on the opposite surface 22 of the auxiliary member 2 depending on the output of the laser beam LL, the diameter of the focal point, or the size of the member 1 to be joined. May be done.
  • the temperature of the boundary exposed surface 12 and the boundary portion 13 of the two members 1 to be joined rises due to the molten portion 23 of the auxiliary member 2, and the laser beam LL reaches the boundary exposed surface 12 of the two members 1 to be joined. As a result, the boundary portion 13 is melted.
  • the temperature of the boundary exposed surface 12 and the boundary portion 13 of the two members 1 to be joined rises due to the molten portion 23 of the auxiliary member 2, so that the boundary exposed surface 12 and the boundary portion 13 of the two members 1 to be joined are subjected to laser light LL.
  • the laser absorption rate of the boundary exposed surface 12 and the boundary portion 13 of the two members 1 to be joined becomes high. Since the boundary exposed surface 12 and the boundary portion 13 of the two members 1 to be joined have a high laser absorption rate, they are heated not only by the heat of the molten portion 23 of the auxiliary member 2 but also by the laser beam LL. As a result, the temperature of the boundary portion 13 of the two members 1 to be joined is likely to rise further, and the boundary portion 13 is likely to be melted.
  • the alloy portion 3 containing the components of the two joint members 1 and the auxiliary member 2 is formed. It is formed. Then, the two members 1 to be joined and the auxiliary member 2 are joined to each other by the alloy portion 3.
  • the welding method of the present embodiment for welding the two members 1 to be joined is completed.
  • the two members 1 to be joined may be arranged with a slight gap at the boundary 11. Further, the two members 1 to be joined may be arranged in a state where the boundary exposed surface 12 is not flush with each other and has a slight step. Further, the auxiliary member 2 may be arranged with a slight gap between the facing surface 21 of the auxiliary member 2 and the boundary exposed surface 12 of the two members to be joined 1.
  • the welded structure obtained by the welding method of the present embodiment includes two members to be joined 1 and an auxiliary member 2 arranged so as to face the boundary exposed surface 12.
  • the two members to be joined 1 and the auxiliary member 2 are joined to each other by an alloy portion 3 containing the components of the two members to be joined 1 and the auxiliary member 2.
  • the alloy portion 3 is a combination of the melted portion 23 of the auxiliary member 2 (see FIGS. 2 and 3) and the melted portion of the two members 1 to be joined.
  • three or more members to be joined may be joined to each other by using the auxiliary member 2.
  • the first embodiment is a welding method and a welding structure in which three plate-shaped members to be joined 1A are arranged so as to be stacked in the plate thickness direction and these three members to be joined 1A are welded.
  • the boundary 11A appearing on the boundary exposed surface 12A of the three members to be joined 1A is linear (particularly see FIG. 5).
  • the boundary exposed surface 12A of the three members to be joined 1A is a side surface of the members to be joined 1A extending in the arrangement direction (horizontal direction in FIGS. 6 and 7) of the three members to be joined 1A.
  • the three members to be joined 1A are arranged so that the boundary exposed surfaces 12A of the three members to be joined 1A are flat.
  • the number of members 1A to be joined in the first embodiment is not limited to three, and may be two or four or more, for example.
  • the auxiliary member 2A in the first embodiment is formed by bending a plate-shaped member.
  • the auxiliary member 2A has a clip shape having a facing portion 25A and a pair of wall portions 26A extending from both ends of the facing portion 25A.
  • the facing portion 25A is formed in a flat plate shape having a rectangular shape in a plan view. Both sides (opposing surface 21A, opposite surface 22A) of the facing portion 25A facing opposite sides in the plate thickness direction of the facing portion 25A are formed flat.
  • the length between the pair of wall portions 26A in the facing portion 25A (the width dimension of the facing portion 25A, more specifically, the width dimension of the facing surface 21A) is such that the three members to be joined 1A are overlapped in the plate thickness direction. It is longer than the dimensions of the three members to be joined 1A in the arrangement direction. That is, the facing surfaces 21A of the facing portions 25A are arranged to face each other in the entire arrangement direction of the boundary exposed surfaces 12A of the three members to be joined 1A.
  • the pair of wall portions 26A are bent and extend toward the facing surface 21A from both ends of the facing portion 25A.
  • the pair of wall portions 26A do not extend at right angles to the facing portions 25A, but extend from both ends of the facing portions 25A in a state where the pair of wall portions 26A are inclined in a direction approaching each other.
  • the pair of wall portions 26A are elastically flexible and deformable in a direction away from each other (and in a direction approaching each other) with a connecting portion (bending portion) with the facing portion 25A as a fulcrum.
  • the tip ends of the pair of wall portions 26A are bent and extended in directions away from each other.
  • the facing surface 21A of the facing portion 25A is arranged to face the boundary exposed surface 12A of the three joined members 1A, and the three joined members 1A are sandwiched by the pair of wall portions 26A from these arrangement directions.
  • Attached to the three members to be joined 1A In this state, the flat facing surface 21A of the facing portion 25A facing the boundary exposed surface 12A comes into surface contact with the flat boundary exposed surface 12A.
  • the three members to be joined 1A are sandwiched by the pair of wall portions 26A from the arrangement direction, whereby the three members to be joined 1A are joined. It is held in a state of being.
  • the pair of wall portions 26A function as movement limiting portions that limit the relative movement of the three members to be joined 1A.
  • the welding method of welding the three members to be joined 1A using the auxiliary members 2A is the same as the method shown in FIGS. 1 to 4 after the auxiliary members 2A are attached to the three members to be joined 1A as described above.
  • the three members to be joined 1A are welded by the method. That is, on the opposite surface 22A of the facing portion 25A of the auxiliary member 2A, the laser beam LL is irradiated to a position (or a region in the vicinity thereof) where the boundary 11A of the two adjacent members 1A and the facing portion 25A overlap in the plate thickness direction. To do.
  • the irradiation position of the laser beam LL on the auxiliary member 2 is moved along the linear boundary 11A.
  • the laser beam LL may be irradiated along the boundary 11A so as to have a predetermined width such as a spiral shape or a sawtooth shape. Since the three members to be joined 1A have two boundaries 11A on the boundary exposed surface 12A, the laser beam LL is irradiated to the positions corresponding to the two boundaries 11A, respectively.
  • the portion of the facing portion 25A that overlaps the boundary 11A of the bonded member 1A melts from the opposite surface 22A side to the facing surface 21A side, and then the two bonded members 1A including the boundary 11A. The boundary part of is melted. Then, an alloy portion composed of a melted portion of the facing portion 25A and a boundary portion between the two melted members to be joined 1A is formed, and the two bonded members 1A and the facing portion 25A are joined to each other by the alloy portion. Since the two boundaries 11A are exposed on the boundary exposed surface 12A of the three members 1A to be joined, the portions corresponding to the two boundaries 11A are irradiated with the laser beam LL and joined in the same manner as described above.
  • the pair of wall portions 26A of the auxiliary members 2A remain unmelted by the laser beam LL. Therefore, even in the welded structure, the auxiliary member 2A is kept in a state for joining the three members to be joined 1A.
  • the second embodiment is a welding method and a welding structure in which two members 1B and 1C having different shapes are arranged so as to be in contact with each other and the two members 1B and 1C to be welded are welded.
  • the first member to be joined 1B in the second embodiment is a member formed in a columnar shape extending in one direction.
  • the second member to be joined 1C is a member formed in a square columnar shape extending in one direction.
  • the first and second members 1B and 1C to be joined extend in the same direction and are arranged in a state where their outer surfaces are in contact with each other.
  • the boundary exposed surfaces 12B of the first and second members 1B and 1C are end faces of the two members 1B and 1C to be joined in the longitudinal direction.
  • the first and second members to be joined 1B and 1C are arranged so that the boundary exposed surface 12B is flat.
  • the first and second members 1B and 1C may be arranged in a state where the boundary exposed surface 12B is not flush with each other and has a slight step. Further, the number of the members 1B and 1C to be joined in the second embodiment is two, but the number is not limited to this, and may be three or more.
  • the curved side surface of the first member to be joined 1B and the flat side surface of the second member to be joined 1C are close to each other.
  • the boundary 11B appearing on the boundary exposed surface 12B of the two members 1B and 1C is point-shaped (see FIG. 9).
  • the auxiliary member 2B in the second embodiment has a cap shape having a facing portion 25B and a peripheral wall portion 26B extending from the peripheral end portion of the facing portion 25B.
  • the facing portion 25B is formed in a circular plate shape in a plan view. Both sides (opposing surface 21B, opposite surface 22B) of the opposing portion 25B facing opposite sides in the plate thickness direction of the opposing portion 25B are formed flat.
  • the area of the facing surface 21B of the facing portion 25B is substantially the same as the area of the circumscribed circle of the boundary exposed surface 12B of the first and second members 1B and 1C to be joined. That is, the facing surface 21B of the facing portion 25B is arranged to face the entire boundary exposed surface 12B of the first and second members 1B and 1C to be joined.
  • the peripheral wall portion 26B extends from the peripheral end portion of the facing portion 25B toward the facing surface 21B side and is formed in a cylindrical shape.
  • the inner peripheral surface 26B1 of the peripheral wall portion 26B is formed in a circular shape when viewed from the axial direction of the peripheral wall portion 26B.
  • the circular area of the inner peripheral surface 26B1 of the peripheral wall portion 26B is the same as the area of the facing surface 21B of the facing portion 25B, and is the circumscribed circle of the boundary exposed surfaces 12B of the first and second bonded members 1B and 1C. It is approximately the same size as the area (see FIG. 9).
  • the axial length of the peripheral wall portion 26B is shorter than the longitudinal length of the first and second joined members 1B and 1C.
  • the facing surfaces 21B of the facing portions 25B are arranged to face the boundary exposed surfaces 12B of the two joined members 1B and 1C, and the peripheral wall portion 26B surrounds the two joined members 1B and 1C. It is attached to the members 1B and 1C to be joined. In this state, the flat facing surface 21B of the facing portion 25B comes into surface contact with the flat boundary exposed surface 12B. Further, the inner peripheral surface 26B1 of the peripheral wall portion 26B is circumscribed with respect to the side surfaces of the first and second joined members 1B and 1C (closely opposed to three points on the side surfaces of the two joined members 1B and 1C). It becomes a state).
  • the peripheral wall portion 26B functions as a movement limiting portion that limits the relative movement of the two members 1B and 1C to be joined.
  • the two members 1B and 1C to be joined are welded by the same method as that shown in FIG. That is, on the opposite surface 22B of the facing portion 25B of the auxiliary member 2B, the laser beam LL is irradiated to a position (or a region in the vicinity thereof) where the boundary 11B of the two members to be joined 1B and 1C and the facing portion 25B overlap in the plate thickness direction. To do.
  • the boundary 11B of the members 1B and 1C to be joined exposed on the boundary exposed surface 12B is point-shaped, the irradiation position of the laser beam LL on the auxiliary member 2 can be irradiated with almost no movement from the position of the boundary 11B. it can.
  • the portion of the facing portion 25B that overlaps the boundary 11B of the two members 1B and 1C melts from the opposite surface 22B side to the facing surface 21B side, and then the two parts including the boundary 11B are included.
  • the boundary portion of the members 1B and 1C to be joined is melted.
  • an alloy portion composed of a molten portion of the facing portion 25B and a boundary portion between the two melted members 1B and 1C to be joined is formed, and the two welded members 1B and 1C and the facing portions 25B are mutually formed by the alloy portion. Be joined.
  • the peripheral wall portion 26B of the auxiliary member 2B remains unmelted by the laser beam LL. Therefore, even in the welded structure, the auxiliary member 2B is kept in a state for joining the two members 1B and 1C to be joined.
  • the auxiliary member 2 having a laser absorption rate higher than that of the plurality of members 1 to be joined is opposed to the boundary exposed surface 12 of the plurality of members 1 to be joined.
  • the auxiliary member 2 is melted by irradiating the auxiliary member 2 with the laser beam LL.
  • the temperature of the boundary portions 13 of the plurality of members 1 to be joined can be raised by the molten portion 23 of the auxiliary member 2.
  • the boundary portion 13 shifts to a state in which it easily absorbs the laser beam LL, and the laser absorption rate of the boundary portion 13 increases.
  • the boundary portion 13 is efficiently heated by the laser beam LL, so that the boundary portion 13 can be melted and the plurality of members 1 to be joined can be welded. Therefore, when the output of the laser beam LL is small and the laser absorption rate of the plurality of members 1 to be joined is low, it is difficult to perform laser welding even if the plurality of members 1 to be joined are directly irradiated with the laser beam LL. Even if there is, the plurality of members 1 to be joined can be easily welded.
  • the melting point of the auxiliary member 2 is higher than the melting point of the plurality of members 1 to be joined. Therefore, the temperature of the molten portion 23 of the auxiliary member 2 melted by the laser beam LL is higher than the melting point of the plurality of members 1 to be joined. As a result, the boundary portions 13 of the plurality of members 1 to be joined are easily melted by the heat of the melted portions 23 of the auxiliary members 2. Therefore, the plurality of members 1 to be joined (particularly the boundary portion 13) can be easily welded without being influenced by the size of the plurality of members 1 to be joined.
  • the auxiliary member 2 is first melted by the irradiation of the laser beam LL.
  • the temperature of the plurality of members 1 to be joined can be raised by the molten portion 23 of the auxiliary member 2.
  • the plurality of members 1 to be joined are shifted to a state in which they can easily absorb the laser beam, and the laser absorption rates of the plurality of members 1 to be joined become high.
  • the plurality of members 1 to be joined are heated not only by the heat of the molten portion 23 of the auxiliary member 2 but also by the laser beam LL, so that the plurality of members 1 to be joined are more reliably melted and welded. Can be done.
  • a plurality of movement restricting portions (a pair of wall portions 26A and peripheral wall portions 26B) of the auxiliary members 2A and 2B. It limits the relative movement of the member 1 to be joined. With this movement limiting portion, it is possible to suppress the variation in the relative positions of the plurality of members 1 to be joined, which occurs when the plurality of members 1 to be joined are assembled in a state of being joined. In addition, it is possible to prevent the members 1 to be joined from being relatively moved and displaced from the state in which the plurality of members 1 are joined. Further, it is possible to prevent the gap between the adjacent members 1 to be joined from being excessively widened.
  • the auxiliary member 2A of the first embodiment sandwiches the three members to be joined 1A, the gap between the members to be joined 1A can be minimized.
  • the auxiliary member 2B of the second embodiment since the inner peripheral surface 26B1 of the peripheral wall portion 26B surrounds the side surfaces of the two members 1B and 1C so as to be close to each other, the two members 1B and 1C are to be joined. The gap between the two can be kept small. From the above, it is possible to suppress welding defects due to excessive expansion of the gap between the members to be joined 1 and to stabilize the quality of welding.
  • the facing surface 21 of the auxiliary member 2 is not limited to the boundary exposed surface 12 of the plurality of members 1 to be joined being formed on a flat surface, for example, on a curved surface, an uneven surface, or the like. May be formed.
  • the facing surface 21 of the auxiliary member 2 may be formed in a shape corresponding to at least the boundary exposed surface 12 so as to make surface contact with the boundary exposed surface 12.
  • FIGS. 11 to 13 a second embodiment of the present invention will be described with reference to FIGS. 11 to 13.
  • three flat plate-shaped members to be joined 1D, 1E, 1F are arranged so as to be overlapped in the plate thickness direction, and these three members to be joined 1D, 1E, 1F are welded by using a laser beam LL. And a welded structure.
  • three members to be joined 1D, 1E, 1F and an auxiliary member 2D are first prepared as in the first embodiment.
  • the materials and characteristics of the three members to be joined 1D, 1E, 1F and the auxiliary member 2D are the same as those in the first embodiment.
  • the three flat plate-shaped members 1D, 1E, and 1F have through holes 15D, 15E, and 15F penetrating in the plate thickness direction (vertical direction in FIGS. 11 and 12, respectively).
  • the through holes 15D, 15E, and 15F are circular through holes when viewed from the plate thickness direction of the members 1D, 1E, and 1F to be joined.
  • the auxiliary member 2D is formed in the shape of a cylindrical rod.
  • the through holes 15D and 15E of the two members 1D and 1E have substantially the same diameter dimension.
  • the diameter dimension of the through holes 15D and 15E is larger than the diameter dimension of the auxiliary member 2D.
  • the diameter dimension of the through hole 15F of the remaining one member to be joined 1F is substantially equal to the diameter dimension of the auxiliary member 2D, and the auxiliary member 2D can be fitted into the through hole 15F.
  • the three members to be joined 1D, 1E, 1F are arranged so as to communicate with each other through the three through holes 15D, 15E, 15F in the plate thickness direction.
  • the member 1F to be joined having the through hole 15F having a small hole diameter dimension is arranged at the end in the arrangement direction of the three members 1D, 1E, 1F to be joined (bottom in FIGS. 11 and 12).
  • the boundaries 11D and 11E of the three members to be joined 1D, 1E and 1F are exposed on the inner peripheral surfaces of the through holes 15D, 15E and 15F of the three members to be joined 1D, 1E and 1F. That is, the inner peripheral surfaces of the through holes 15D, 15E, and 15F are boundary exposed surfaces 12D on which the boundaries 11D, 11E of the three members to be joined 1D, 1E, and 1F appear.
  • the auxiliary member 2D is inserted into the through holes 15D, 15E, 15F of the three members to be joined 1D, 1E, 1F arranged as described above.
  • the auxiliary member 2D fits into the through hole 15F of the member 1F to be joined, which has a smaller hole diameter among the three through holes 15D, 15E, and 15F, and is fixed to the member 1F to be joined.
  • one end surface of the auxiliary member 2 is flush with the surface of the member 1F to be joined (the surface opposite to the boundary 11E), and the other end surface of the auxiliary member 2 is the surface of the member 1D to be joined (the surface of the boundary 11D). It will be in a state of slightly protruding from the opposite surface).
  • the auxiliary member 2D is a boundary formed by the inner peripheral surfaces of the through holes 15D, 15E, 15F of the three members to be joined 1D, 1E, 1F. It is arranged so as to face the exposed surface 12D.
  • the auxiliary member 2D is in a state of being fitted to the through hole 15F of the member to be joined 1F having a small hole diameter as described above.
  • the auxiliary member 2D inserted in this way is a movement limiting unit that restricts the relative movement of the three members to be joined 1D, 1E, 1F in the direction orthogonal to the arrangement direction of the three members to be joined 1D, 1E, 1F. Functions as. That is, by arranging the auxiliary member 2D so as to face the boundary exposed surface 12D, the state for joining the three members 1D, 1E, and 1F to be joined is maintained.
  • the three members to be joined 1D, 1E, 1F and the auxiliary member 2D are arranged as described above, and then shown in FIG.
  • the auxiliary member 2D is irradiated with the laser beam LL to melt the auxiliary member 2D.
  • the laser beam LL is applied to the other end face of the auxiliary member 2D located on the side of the member to be joined 1D, and the irradiation position of the laser beam LL is applied from the center to the periphery of the other end face of the auxiliary member 2D.
  • the auxiliary member 2D is melted.
  • the laser beam LL may be irradiated so as to move from the center to the peripheral edge of the other end surface of the auxiliary member 2D, for example, in a spiral shape.
  • the molten portion of the auxiliary member 2D reaches the boundary exposed surface 12D of the three members to be joined 1D, 1E, 1F.
  • the gap between the inner peripheral surfaces (boundary exposed surface 12D) of the through holes 15D and 15E and the outer peripheral surface of the auxiliary member 2D is filled by the portion of the auxiliary member 2 that protrudes from the member to be joined 1D.
  • the temperature of the boundary portion 13D of the three members 1D, 1E, and 1F to be joined rises due to the melted portion of the auxiliary member 2D, and the boundary portion 13D is melted by irradiating the boundary portion 13D with the laser beam LL. ..
  • the boundary portion 13D shifts to a state in which it easily absorbs the laser beam LL, and the laser absorption rate of the boundary portion 13D increases.
  • an alloy portion 3D containing the components of the three members to be joined 1D, 1E, 1F and the auxiliary member 2D is formed.
  • the three members to be joined 1D, 1E, 1F and the auxiliary member 2D are joined to each other by the alloy portion 3D.
  • the welding method of the present embodiment in which the three members 1D, 1E, and 1F to be welded are welded is completed.
  • the welded structure obtained by the welding method of the present embodiment has three members to be joined 1D, 1E, 1F and three members to be joined 1D, 1E, 1F, as in the first embodiment.
  • the auxiliary member 2D is inserted into the through holes 15D, 15E, 15F and is arranged so as to face the boundary exposed surface 12D formed by the inner peripheral surfaces of the through holes 15D, 15E, 15F.
  • the three members to be joined 1D, 1E, 1F and the auxiliary member 2D are joined to each other by the alloy portion 3D containing the components of the three members to be joined 1D, 1E, 1F and the auxiliary member 2D.
  • the alloy portion 3D is a combination of the melted portion of the auxiliary member 2D and the melted portion of the three members 1D, 1E, and 1F to be joined in the above-mentioned welding method.
  • the entire auxiliary member 2D since the entire auxiliary member 2D is melted, the entire auxiliary member 2D is included in the alloy portion 3D in the welded structure.
  • the portion on one end surface side of the auxiliary member 2D (the portion of the auxiliary member 2D located on the surface side of the member to be joined 1F) may remain without melting.
  • the welding method of the second embodiment has the same effect as that of the first embodiment.
  • the auxiliary member 2D is inserted into the through holes 15D, 15E, 15F of the three members to be joined 1D, 1E, 1F. With the auxiliary member 2D inserted in this way, the variation in the relative positions of the three members to be joined 1D, 1E, 1F that occur when the three members to be joined 1D, 1E, 1F are assembled to be joined is suppressed to a small extent. be able to.
  • three or more members to be welded 1D, 1E, and 1F can be welded by irradiating a single laser beam.
  • the shapes of the through holes 15D, 15E, 15F and the auxiliary member 2D seen from the arrangement direction of the three members to be joined 1D, 1E, 1F are not limited to circular shapes but correspond to each other. It may be formed. Further, the auxiliary member 2D does not have to be fitted and fixed in the through hole 15F of the member to be joined 1F, and is held in a state of being inserted into the three through holes 15D, 15E, 15F. It should be.
  • the diameter dimensions of the three through holes 15D, 15E, and 15F may be equal to each other or different from each other.
  • the inner peripheral surfaces of the three through holes 15D, 15E, 15F may be inclined with respect to the arrangement direction of the three members to be joined 1D, 1E, 1F.
  • the inner peripheral surfaces of the three through holes 15D, 15E, and 15F communicating with each other may be formed in a V-shaped or tapered cross section.
  • the auxiliary member 2D may be formed in a shape corresponding to the inner peripheral surface of the through holes 15D, 15E, 15F, such as a conical shape.
  • the auxiliary member 2D may include a flange portion that projects radially outward of the auxiliary member 2D at one end in the longitudinal direction.
  • the flange portion of the auxiliary member 2D is located at the end in the arrangement direction. You can hook it on the 1st floor.
  • the auxiliary member 2D can be positioned with respect to the three members 1D, 1E, 1F without fitting the auxiliary member 2D into the through hole 15F of the member 1F to be joined.
  • the number of members to be joined may be two or four or more.
  • the members 1F to be joined arranged at one end of the three members 1D, 1E, 1F in the arrangement direction have through holes 15F, for example, as shown in FIG. May also have a recess 15Fb that opens to the boundary 11E side and into which the auxiliary member 2D can be inserted. That is, the hole of the member to be joined 1F into which the auxiliary member 2D is inserted does not have to penetrate. With such a configuration, it is possible to prevent the melted portion of the auxiliary member 2D from being exposed on the opposite side of the boundary 11E of the member to be joined 1F.
  • the auxiliary member may be made of a material having the same or lower melting point as the member to be joined.
  • the type of laser used for irradiating the laser beam is not limited to the one illustrated in the above embodiment, and may be appropriately selected depending on the material of the auxiliary member 2 and the member to be joined 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

互いに接合する複数の被接合部材(1)よりもレーザ光(LL)の吸収率が高い補助部材(2)を、前記複数の被接合部材の境界(11)が現れる前記複数の被接合部材の境界露出面(12)に対向するように配置し、レーザ光を前記補助部材に照射して前記補助部材を溶融し、前記補助部材の溶融部分(23)により前記複数の被接合部材の境界部分(13)の温度を上昇させて当該境界部分がレーザ光を吸収しやすい状態に移行させ、当該境界部分にレーザ光を照射して当該境界部分を溶融することにより前記複数の被接合部材を溶接する。

Description

溶接方法及び溶接構造
本発明は、溶接方法及び溶接構造に関する。
特許文献1には、複数の被接合部材をレーザ溶接によって互いに接合する溶接方法が開示されている。レーザ溶接は、溶接時に被接合部材に電気が通らないため、また、溶接時に熱が影響する範囲を小さく抑えることができるため、電子部品などに対する溶接の影響(電気的な影響、熱的な影響)が小さいという利点がある。
特開平10-334957号公報
しかしながら、レーザ溶接に用いるレーザ光の出力が小さい場合、銅などのようにレーザ光の吸収率(レーザ吸収率)が低い被接合部材をレーザ溶接によって接合することは難しい。
本発明は、上述した事情に鑑みたものであって、レーザ光の出力が小さいレーザ溶接であっても、レーザ吸収率が低い被接合部材を容易に溶接することが可能な溶接方法及び溶接構造を提供することを目的とする。
本発明の一態様に係る溶接方法は、互いに接合する複数の被接合部材よりもレーザ光の吸収率が高い補助部材を、前記複数の被接合部材の境界が現れる前記複数の被接合部材の境界露出面に対向するように配置し、レーザ光を前記補助部材に照射して前記補助部材を溶融し、前記補助部材の溶融部分により前記複数の被接合部材の境界部分の温度を上昇させて当該境界部分がレーザ光を吸収しやすい状態に移行させ、当該境界部分にレーザ光を照射して当該境界部分を溶融することにより前記複数の被接合部材を溶接する。
本発明の一態様に係る溶接構造は、複数の被接合部材と、前記複数の被接合部材の境界が現れる前記複数の被接合部材の境界露出面に対向するように配置され、前記複数の被接合部材よりもレーザ光の吸収率が高い補助部材と、を備え、前記複数の被接合部材及び前記補助部材は、前記複数の被接合部材及び前記補助部材の成分を含む合金部によって互いに接合されている。
本発明によれば、レーザ光の出力が小さいレーザ溶接であっても、レーザ吸収率が低い被接合部材を容易に溶接することが可能となる。
本発明の第一実施形態に係る溶接方法を示す断面図である。 本発明の第一実施形態に係る溶接方法を示す断面図である。 本発明の第一実施形態に係る溶接方法を示す断面図である。 本発明の第一実施形態に係る溶接方法及び溶接構造を示す断面図である。 本発明の第一実施形態に係る溶接方法及び溶接構造の第一実施例を示す斜視図である。 図5のVI-VI矢視断面図である。 図5,6において、補助部材を三つの被接合部材に取り付ける前の状態を示す断面図である。 本発明の第一実施形態に係る溶接方法及び溶接構造の第二実施例を示す斜視図である。 図8の平面図である。 図9のX-X矢視断面図である。 本発明の第二実施形態に係る溶接方法に用いる複数の被接合部材及び補助部材を示す斜視図である。 図11のXII-XII矢視断面図である。 本発明の第二実施形態に係る溶接方法及び溶接構造を示す断面図である。 本発明の第二実施形態に係る溶接方法に用いる複数の被接合部材及び補助部材の変形例を示す断面図である。
〔第一実施形態〕
以下、図1~図10を参照して本発明の第一実施形態について説明する。図1~図4に示すように、本実施形態に係る溶接方法は、二つの被接合部材1をレーザ光LLを用いて互いに接合させる方法である。
図1に示すように、本実施形態の溶接方法では、はじめに二つの被接合部材1及び補助部材2を用意する。二つの被接合部材1の材質は、例えば同じであってもよいし、異なっていてもよい。補助部材2は、被接合部材1よりもレーザ光LLの吸収率(以下、レーザ吸収率と呼ぶ)が高い材質である。また、補助部材2は、被接合部材1よりも融点が高い材質である。例えば、被接合部材1が銅(Cu)である場合、補助部材2にはステンレス鋼(SUS)を用いることができる。レーザ光LLがファイバーレーザのレーザ光である場合、銅のレーザ吸収率は約2%であり、ステンレス鋼のレーザ吸収率は約25%である。
次いで、二つの被接合部材1が互いに接触するように、且つ、二つの被接合部材1の境界11が現れる二つの被接合部材1の境界露出面12が面一となるように、二つの被接合部材1を配置する。また、補助部材2が二つの被接合部材1の境界露出面12に対向且つ接触するように補助部材2を配置する。この状態では、二つの被接合部材1に対向する補助部材2の対向面21が、境界露出面12に面接触する。境界露出面12及び補助部材2の対向面21は、いずれも平坦な面に形成されている。また、補助部材2は、その対向面21と対向面21に対して反対側に向く反対面22とが並ぶ方向を板厚方向とする板状に形成されている。
その後、レーザ光LLを補助部材2の反対面22に照射して補助部材2を溶融する。具体的に、レーザ光LLは、補助部材2の反対面22のうち、被接合部材1と補助部材2とが並ぶ方向(補助部材2の板厚方向)において二つの被接合部材1の境界11と重なる位置(或いはその近傍領域)に照射される。なお、レーザ光LLは、レーザ光LLの出力や焦点の径、或いは被接合部材1のサイズに応じて、当該境界11と重なる位置ではなく、補助部材2の反対面22における他の位置に照射されても良い。
レーザ光LLを補助部材2の反対面22に照射した際には、図2に示すように、はじめに補助部材2の反対面22側の部分が溶融する。図2における符号23は、補助部材2の溶融部分を示している。その後、図3に示すように、補助部材2の対向面21側の部分も溶融し、補助部材2の溶融部分23が補助部材2の対向面21及び対向面21に接している二つの被接合部材1の境界露出面12に到達する。そして、補助部材2の溶融部分23によって二つの被接合部材1の境界露出面12及び境界部分13の温度が上昇するとともに、レーザ光LLが二つの被接合部材1の境界露出面12に到達することにより、当該境界部分13が溶融する。
補助部材2の溶融部分23によって二つの被接合部材1の境界露出面12及び境界部分13の温度が上昇することにより、二つの被接合部材1の境界露出面12及び境界部分13がレーザ光LLを吸収しやすい状態に移行され、二つの被接合部材1の境界露出面12及び境界部分13のレーザ吸収率が高くなる。二つの被接合部材1の境界露出面12及び境界部分13は、レーザ吸収率が高くなっているため、補助部材2の溶融部分23の熱だけではなく、レーザ光LLによっても加熱される。これにより、二つの被接合部材1の境界部分13の温度がさらに上昇しやすくなり、当該境界部分13が溶融しやすくなる。
上記のように、補助部材2及び二つの被接合部材1の境界部分13が溶融することで、図4に示すように、二つの被接合部材1及び補助部材2の成分を含む合金部3が形成される。そして、二つの被接合部材1及び補助部材2が、合金部3によって互いに接合される。以上により、二つの被接合部材1を溶接する本実施形態の溶接方法が完了する。なお、この溶接方法において、二つの被接合部材1は境界11に多少の隙間がある状態で配置されていても良い。また、境界露出面12が面一ではなく多少の段差がある状態で二つの被接合部材1が配置されていても良い。また、補助部材2の対向面21と、二つの被接合部材1の境界露出面12との間に多少の隙間がある状態で補助部材2が配置されていても良い。
本実施形態の溶接方法によって得られる溶接構造は、図4に示すように、二つの被接合部材1と、これらの境界露出面12に対向するように配置される補助部材2と、を備える。溶接構造において、二つの被接合部材1及び補助部材2は、二つの被接合部材1及び補助部材2の成分を含む合金部3によって互いに接合されている。合金部3は、前述した溶接方法において、補助部材2の溶融部分23(図2,3参照)と二つの被接合部材1の溶融部分とが合わさったものである。
上記した溶接方法及び溶接構造では、三つ以上の被接合部材を補助部材2を用いて互いに接合させてもよい。
次に、本実施形態の第一実施例について図5~図7を参照して説明する。第一実施例は、三つの板状の被接合部材1Aを板厚方向に重ねて配置し、これら三つの被接合部材1Aを溶接する溶接方法及び溶接構造である。
第一実施例における三つの被接合部材1Aは板厚方向に重なるため、三つの被接合部材1Aの境界露出面12Aに現れる境界11Aは線状となる(特に図5参照)。三つの被接合部材1Aの境界露出面12Aは、三つの被接合部材1Aの配列方向(図6,7において左右方向)に延びる被接合部材1Aの側面である。三つの被接合部材1Aは、三つの被接合部材1Aの境界露出面12Aが平坦になるように配置されている。なお、第一実施例における被接合部材1Aの数は三つに限らず、例えば二つでも四つ以上であってもよい。
第一実施例における補助部材2Aは、板状部材に折り曲げ加工を施すことで形成されている。補助部材2Aは、対向部25Aと、対向部25Aの両端部から延びる一対の壁部26Aと、を有するクリップ状になっている。対向部25Aは、平面視矩形の平板状に形成されている。対向部25Aの板厚方向において互いに逆側に向く対向部25Aの両面(対向面21A、反対面22A)は、平坦に形成されている。対向部25Aにおける一対の壁部26Aの間の長さ(対向部25Aの幅寸法、より具体的には対向面21Aの幅寸法)は、三つの被接合部材1Aをこれらの板厚方向に重ねた三つの被接合部材1Aの配列方向の寸法よりも長くなっている。すなわち、対向部25Aの対向面21Aが、三つの被接合部材1Aにおける境界露出面12Aの配列方向全体に対向配置されるようになっている。
一対の壁部26Aは、対向部25Aの両端部から対向面21A側に屈曲されて延びている。一対の壁部26Aは、対向部25Aに対して直角に延びているのではなく、一対の壁部26Aが互いに近づく方向に傾斜した状態で、対向部25Aの両端部から延びている。一対の壁部26Aは、対向部25Aとの接続部(屈曲部)を支点として、互いに離れる方向(及び互いに近づく方向)に弾性的に撓み変形可能になっている。一対の壁部26Aの先端部側はそれぞれ、互いに離れる方向に屈曲されて延びている。
補助部材2Aは、対向部25Aの対向面21Aを三つの被接合部材1Aの境界露出面12Aに対向配置させ、一対の壁部26Aによって三つの被接合部材1Aをこれらの配列方向から挟むように、三つの被接合部材1Aに対して取り付けられる。この状態において、境界露出面12Aに対向する対向部25Aの平坦な対向面21Aは、平坦な境界露出面12Aに面接触する。また、一対の壁部26Aが互いに離れる方向に弾性的に撓み変形することで、三つの被接合部材1Aを一対の壁部26Aによって配列方向から挟み、これにより三つの被接合部材1Aが接合される状態で保持される。また、三つの被接合部材1Aが一対の壁部26Aによって挟持されることにより、三つの被接合部材1Aが互いに動くことを防ぎ、三つの被接合部材1Aを接合するための状態に固定する。一対の壁部26Aは、三つの被接合部材1Aの相対的な移動を制限する移動制限部として機能する。
補助部材2Aを用いて三つの被接合部材1Aを溶接する溶接方法では、上記のように補助部材2Aを三つの被接合部材1Aに取り付けた後に、図1~図4で示した方法と同様の方法で三つの被接合部材1Aを溶接する。すなわち、補助部材2Aの対向部25Aの反対面22Aにおいて、隣り合う二つの被接合部材1Aの境界11Aと対向部25Aの板厚方向に重なる位置(或いはその近傍領域)に、レーザ光LLを照射する。なお、境界露出面12Aに露出する被接合部材1Aの境界11Aは線状であるため、補助部材2に対するレーザ光LLの照射位置を線状の境界11Aに沿って移動させる。このとき、境界11Aに沿って、例えば螺旋状や鋸歯状等のように所定の幅を持たせるようにレーザ光LLを照射するようにしてもよい。三つの被接合部材1Aでは境界露出面12Aにおいて二つの境界11Aを有しているため、二つの境界11Aに対応する位置にそれぞれ、レーザ光LLを照射する。
このようにレーザ光LLを照射すると、対向部25Aにおいて被接合部材1Aの境界11Aと重なる部分が反対面22A側から対向面21A側まで溶融し、その後、境界11Aを含む二つの被接合部材1Aの境界部分が溶融する。そして、対向部25Aの溶融部分と、溶融した二つの被接合部材1Aの境界部分とからなる合金部が形成され、当該合金部によって二つの被接合部材1A及び対向部25Aが互いに接合される。三つの被接合部材1Aでは境界露出面12Aにおいて二つの境界11Aが露出するため、二つの境界11Aにそれぞれ対応する部分において、レーザ光LLを照射して上記と同様に接合される。
三つの被接合部材1Aを溶接した後の溶接構造において、補助部材2Aの一対の壁部26Aは、レーザ光LLによって溶融されずに残る。このため、溶接構造においても、補助部材2Aは三つの被接合部材1Aを接合するための状態に保つ。
次に、本実施形態の第二実施例について図8~図10を参照して説明する。第二実施例は、形状が異なる二つの被接合部材1B,1Cを互いに接触させるように配置し、これら二つの被接合部材1B,1Cを溶接する溶接方法及び溶接構造である。
第二実施例における第一被接合部材1Bは、一方向に延びる円柱状に形成された部材である。第二被接合部材1Cは、一方向に延びる四角柱状に形成された部材である。第一及び第二被接合部材1B,1Cは、同じ方向に延びて互いの外面を接触させた状態で配置される。第一及び第二被接合部材1B,1Cの境界露出面12Bは、長手方向における二つの被接合部材1B,1Cの端面である。第一及び第二被接合部材1B,1Cは、境界露出面12Bが平坦になるように配置されている。なお、境界露出面12Bが面一ではなく多少の段差がある状態で第一及び第二被接合部材1B,1Cが配置されてもよい。また、第二実施例における被接合部材1B,1Cの数は二つであるが、これに限らず、三つ以上であってもよい。
上記のように第一及び第二被接合部材1B,1Cが配置されると、第一被接合部材1Bの曲面形状の側面と、第二被接合部材1Cの平坦な側面とが近接するため、二つの被接合部材1B,1Cの境界露出面12Bに現れる境界11Bは、点状となる(図9参照)。
第二実施例における補助部材2Bは、対向部25Bと、対向部25Bの周端部から延びる周壁部26Bと、を有するキャップ状になっている。対向部25Bは、平面視円形の板状に形成されている。対向部25Bの板厚方向において互いに逆側に向く対向部25Bの両面(対向面21B、反対面22B)は、平坦に形成されている。対向部25Bの対向面21Bの面積は、第一及び第二被接合部材1B,1Cの境界露出面12Bの外接円の面積と略同じ大きさになっている。すなわち、対向部25Bの対向面21Bが、第一及び第二被接合部材1B,1Cの境界露出面12Bの全体に対向配置されるようになっている。
周壁部26Bは、対向部25Bの周端部から対向面21B側に延びて円筒状に形成されている。周壁部26Bの内周面26B1は、周壁部26Bの軸方向から見て円形に形成されている。周壁部26Bの内周面26B1の円形の面積は、対向部25Bの対向面21Bの面積と同じ大きさであり、第一及び第二被接合部材1B,1Cの境界露出面12Bの外接円の面積と略同じ大きさになっている(図9参照)。周壁部26Bの軸方向の長さは、第一及び第二被接合部材1B,1Cの長手方向の長さよりも短くなっている。
補助部材2Bは、対向部25Bの対向面21Bを二つの被接合部材1B,1Cの境界露出面12Bに対向配置させ、周壁部26Bによって二つの被接合部材1B,1Cを囲むように、二つの被接合部材1B,1Cに対して取り付けられる。この状態において、対向部25Bの平坦な対向面21Bは、平坦な境界露出面12Bに面接触する。また、周壁部26Bの内周面26B1が、第一及び第二被接合部材1B,1Cの側面に対して外接する(二つの被接合部材1B,1Cの側面における三箇所に対して近接対向した状態となる)。これにより、二つの被接合部材1B,1Cが接合される状態で保持され、二つの被接合部材1B,1Cが互いに動くことが抑制又は防止される。周壁部26Bは、二つの被接合部材1B,1Cの相対的な移動を制限する移動制限部として機能する。
第二実施例の補助部材2Bを用いて二つの被接合部材1B,1Cを溶接する溶接方法では、上記のように補助部材2Bを二つの被接合部材1B,1Cに取り付けた後に、図1~図4で示した方法と同様の方法で二つの被接合部材1B,1Cを溶接する。すなわち、補助部材2Bの対向部25Bの反対面22Bにおいて、二つの被接合部材1B,1Cの境界11Bと対向部25Bの板厚方向に重なる位置(或いはその近傍領域)に、レーザ光LLを照射する。なお、境界露出面12Bに露出する被接合部材1B,1Cの境界11Bは点状であるため、補助部材2に対するレーザ光LLの照射位置を境界11Bの位置からほとんど移動させずに照射することができる。
このようにレーザ光LLを照射すると、対向部25Bにおいて二つの被接合部材1B,1Cの境界11Bと重なる部分が反対面22B側から対向面21B側まで溶融し、その後、境界11Bを含む二つの被接合部材1B,1Cの境界部分が溶融する。そして、対向部25Bの溶融部分と、溶融した二つの被接合部材1B,1Cの境界部分とからなる合金部が形成され、当該合金部によって二つの被接合部材1B,1C及び対向部25Bが互いに接合される。
二つの被接合部材1B,1Cを溶接した後の溶接構造において、補助部材2Bの周壁部26Bは、レーザ光LLによって溶融されずに残る。このため、溶接構造においても、補助部材2Bは二つの被接合部材1B,1Cを接合するための状態に保つ。
以上説明したように、第一実施形態の溶接方法によれば、複数の被接合部材1よりもレーザ吸収率が高い補助部材2を、複数の被接合部材1の境界露出面12に対向するように配置した状態で、レーザ光LLを補助部材2に照射して補助部材2を溶融する。そして、補助部材2の溶融部分23によって複数の被接合部材1の境界部分13の温度を上昇させることができる。境界部分13の温度が上昇することで、境界部分13がレーザ光LLを吸収しやい状態に移行され、境界部分13のレーザ吸収率が高くなる。これにより、境界部分13がレーザ光LLによって効率良く加熱されることで、境界部分13を溶融して複数の被接合部材1を溶接することができる。したがって、レーザ光LLの出力が小さく、且つ複数の被接合部材1のレーザ吸収率が低いために、複数の被接合部材1に直接レーザ光LLを照射してもレーザ溶接することが難しい場合であっても、当該複数の被接合部材1を容易に溶接することが可能となる。
また、第一実施形態の溶接方法及び溶接構造によれば、補助部材2の融点が、複数の被接合部材1の融点よりも高い。このため、レーザ光LLによって溶融した補助部材2の溶融部分23の温度は、複数の被接合部材1の融点よりも高くなる。これにより、複数の被接合部材1の境界部分13が補助部材2の溶融部分23の熱によって溶融しやすくなる。したがって、複数の被接合部材1の大きさ(サイズ)に左右されることなく、複数の被接合部材1(特に境界部分13)を容易に溶接することができる。
また、第一実施形態の溶接方法では、複数の被接合部材1と反対側に向く補助部材2の反対面22にレーザ光LLを照射するため、レーザ光LLの照射によって先ず補助部材2が溶融し、補助部材2の溶融部分23によって複数の被接合部材1の温度を上昇させることができる。複数の被接合部材1の温度が上昇することにより、複数の被接合部材1がレーザ光を吸収しやすい状態に移行され、複数の被接合部材1のレーザ吸収率が高くなる。これにより、複数の被接合部材1が補助部材2の溶融部分23の熱だけではなく、レーザ光LLによっても加熱されることで、複数の被接合部材1をより確実に溶融して溶接することができる。
第一実施例の補助部材2Aや第二実施例の補助部材2Bを用いた溶接方法及び溶接構造では、補助部材2A,2Bの移動制限部(一対の壁部26A、周壁部26B)が複数の被接合部材1の相対的な移動を制限する。この移動制限部により、複数の被接合部材1を接合させる状態に組み付ける際に生じる複数の被接合部材1の相対的な位置のばらつきを小さく抑えることができる。また、複数の被接合部材1を接合させる状態から相対的に移動してずれることを抑えることができる。さらに、隣り合う被接合部材1の隙間(ギャップ)が過度に広がることを抑えることができる。特に、第一実施例の補助部材2Aでは、三つの被接合部材1Aを挟むため、被接合部材1A同士の隙間を最小限に抑えることができる。また、第二実施例の補助部材2Bでは、その周壁部26Bの内周面26B1が二つの被接合部材1B,1Cの側面に対して近接対向して囲むため、二つの被接合部材1B,1Cの隙間を小さく抑えることができる。以上のことから、被接合部材1同士の隙間の過度な広がりに基づく溶接不良を抑制し、溶接の品質安定化を図ることができる。
第一実施形態において、補助部材2の対向面21は、複数の被接合部材1の境界露出面12は平坦な面に形成されることに限らず、例えば湾曲した面、凹凸のある面などに形成されてよい。この場合、補助部材2の対向面21は、境界露出面12に面接触するように、少なくとも境界露出面12に対応する形状に形成されればよい。
〔第二実施形態〕
次に、図11~図13を参照して本発明の第二実施形態について説明する。本実施形態は、三つの平板状の被接合部材1D,1E,1Fを板厚方向に重ねて配置し、これら三つの被接合部材1D,1E,1Fをレーザ光LLを用いて溶接する溶接方法及び溶接構造である。
図11及び図12に示すように、本実施形態の溶接方法では、第一実施形態と同様に、はじめに三つの被接合部材1D,1E,1F及び補助部材2Dを用意する。三つの被接合部材1D,1E,1F及び補助部材2Dの材質や特性は第一実施形態と同様である。
三つの平板状の被接合部材1D,1E,1Fはそれぞれ、板厚方向(図11及び図12において上下方向)に貫通する貫通孔15D,15E,15Fを有している。貫通孔15D,15E,15Fは、被接合部材1D,1E,1Fの板厚方向から見て円形状の貫通孔である。補助部材2Dは、円柱棒状に形成されている。二つの被接合部材1D,1Eの貫通孔15D,15Eは、互いに直径の寸法が略等しくなっている。貫通孔15D,15Eの直径寸法は、補助部材2Dの直径寸法よりも大きくなっている。残り一つの被接合部材1Fの貫通孔15Fの直径寸法は、補助部材2Dの直径寸法と略等しく、貫通孔15Fに補助部材2Dが嵌合可能になっている。
三つの被接合部材1D,1E,1Fは、板厚方向に三つの貫通孔15D,15E,15Fが連通するように重ねて配置される。孔径寸法が小さい貫通孔15Fを有する被接合部材1Fが、三つの被接合部材1D,1E,1Fの配列方向の端(図11,12において一番下)に配置される。この状態では、三つの被接合部材1D,1E,1Fの境界11D,11Eが、三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fの内周面に露出する。すなわち、貫通孔15D,15E,15Fの内周面が、三つの被接合部材1D,1E,1Fの境界11D,11Eが現れる境界露出面12Dとなる。
上記のように配置された三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fに、補助部材2Dが挿入される。補助部材2Dは、三つの貫通孔15D,15E,15Fのうち孔径が小さい被接合部材1Fの貫通孔15Fに嵌まり、当該被接合部材1Fに固定される。この状態において、補助部材2の一方の端面が被接合部材1Fの表面(境界11Eの反対側の面)と面一となり、補助部材2の他方の端面が被接合部材1Dの表面(境界11Dの反対側の面)から少し突出した状態となる。
補助部材2Dが三つの貫通孔15D,15E,15Fに挿入された状態において、補助部材2Dは、三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fの内周面からなる境界露出面12Dに対向するように配置される。補助部材2Dは、孔径が小さい被接合部材1Fの貫通孔15Fに対しては、上記のように嵌合された状態となる。残りの二つの被接合部材1D,1Eの貫通孔15D,15Eに対しては、貫通孔15D、15Eの内周面(境界露出面12D)と補助部材2Dの外周面との間に隙間を有している。このように挿入された補助部材2Dは、三つの被接合部材1D,1E,1Fの配列方向に直交する方向において三つの被接合部材1D,1E,1Fが相対移動することを制限する移動制限部として機能する。すなわち、補助部材2Dが境界露出面12Dに対向するように配置されることにより、三つの被接合部材1D,1E,1Fを接合するための状態に保つ。
補助部材2Dを用いて三つの被接合部材1D,1E,1Fを溶接する溶接方法では、上記のように三つの被接合部材1D,1E,1F及び補助部材2Dを配置した後に、図12に示すように、レーザ光LLを補助部材2Dに照射して補助部材2Dを溶融する。具体的には、レーザ光LLを被接合部材1D側に位置する補助部材2Dの他方の端面に照射し、且つ、当該レーザ光LLの照射位置を補助部材2Dの他方の端面の中心から周縁まで移動させることで補助部材2Dを溶融する。このとき、補助部材2Dの他方の端面の中心から周縁まで、例えば渦巻き状に移動させるようにレーザ光LLを照射するようにしてもよい。補助部材2Dの溶融部分は、三つの被接合部材1D,1E,1Fの境界露出面12Dに到達する。このとき、補助部材2における被接合部材1Dから突出していた部分により、貫通孔15D、15Eの内周面(境界露出面12D)と補助部材2Dの外周面との間の隙間が埋められる。
そして、補助部材2Dの溶融部分によって三つの被接合部材1D,1E,1Fの境界部分13Dの温度が上昇するとともに、レーザ光LLが境界部分13Dに照射されることにより、境界部分13Dが溶融する。補助部材2Dの溶融部分によって境界部分13Dの温度が上昇することにより、境界部分13Dがレーザ光LLを吸収しやすい状態に移行され、境界部分13Dのレーザ吸収率が高くなる。そして、図13に示すように、三つの被接合部材1D,1E,1F及び補助部材2Dの成分を含む合金部3Dが形成される。そして、三つの被接合部材1D,1E,1F及び補助部材2Dが、合金部3Dによって互いに接合される。以上により三つの被接合部材1D,1E,1Fが溶接する本実施形態の溶接方法が完了する。
図13に示すように、本実施形態の溶接方法によって得られる溶接構造は、第一実施形態と同様に、三つの被接合部材1D,1E,1Fと、三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fに挿入されて、これらの貫通孔15D,15E,15Fの内周面からなる境界露出面12Dに対向するように配置される補助部材2Dと、を備える。溶接構造において、三つの被接合部材1D,1E,1F及び補助部材2Dは、三つの被接合部材1D,1E,1F及び補助部材2Dの成分を含む合金部3Dによって互いに接合されている。合金部3Dは、前述した溶接方法において、補助部材2Dの溶融部分と、三つの被接合部材1D,1E,1Fの溶融部分とが合わさったものである。ただし、本実施形態では、補助部材2Dの全体が溶融するため、溶接構造においては、補助部材2Dの全体が合金部3Dに含まれる。なお、この溶接構造において、補助部材2Dの一方の端面側の部分(被接合部材1Fの表面側に位置する補助部材2Dの部分)は溶融せずに残っていてもよい。
以上説明したように、第二実施形態の溶接方法によれば、第一実施形態と同様の効果を奏する。また、第二実施形態の溶接方法及び溶接構造によれば、補助部材2Dが三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fに挿入される。このように挿入された補助部材2Dにより、三つの被接合部材1D,1E,1Fを接合させる状態に組み付ける際に生じる三つの被接合部材1D,1E,1Fの相対的な位置のばらつきを小さく抑えることができる。また、本実施形態の溶接方法によれば、一回のレーザ光の照射で、三つ以上の被接合部材1D,1E,1Fを溶接することができる。
第二実施形態の溶接方法において、三つの被接合部材1D,1E,1Fの配列方向から見た貫通孔15D,15E,15F及び補助部材2Dの形状は、円形に限らず、互いに対応する形状に形成されればよい。また、補助部材2Dは、被接合部材1Fの貫通孔15Fに嵌合されて固定される構成ではなくてもよく、三つの貫通孔15D,15E,15Fに挿入された状態で保持されるようになっていればよい。三つの貫通孔15D,15E,15Fの直径寸法は、互いに等しい寸法であっても、或いは互いに異なる寸法であってもよい。
第二実施形態の溶接方法において、三つの貫通孔15D,15E,15Fの内周面は、三つの被接合部材1D,1E,1Fの配列方向に対して傾斜してもよい。例えば、互いに連通する三つの貫通孔15D,15E,15Fの内周面が、断面V字状あるいは先細り状に形成されてよい。この場合には、補助部材2Dは、例えば円錐形状等のように、貫通孔15D,15E,15Fの内周面に対応する形状に形成されてもよい。
第二実施形態において、補助部材2Dは、長手方向の一端部において補助部材2Dの径方向外側に突出する鍔部を備えてもよい。この場合には、補助部材2Dを三つの被接合部材1D,1E,1Fの貫通孔15D,15E,15Fに挿入した状態で、補助部材2Dの鍔部を配列方向の端に位置する被接合部材1Fに引っ掛けることができる。これにより、補助部材2Dを被接合部材1Fの貫通孔15Fに嵌め入れなくても、補助部材2Dを三つの被接合部材1D,1E,1Fに対して位置決めすることができる。第二実施形態において、被接合部材の数は、二つであっても、或いは四つ以上であってもよい。
第二実施形態の溶接方法において、三つの被接合部材1D,1E,1Fの配列方向の一方の端に配される被接合部材1Fは、貫通孔15Fを有する代わりに、例えば図14に示すように、境界11E側に開口して補助部材2Dが挿入可能な凹部15Fbを有してもよい。すなわち、補助部材2Dが挿入される被接合部材1Fの孔は、貫通しなくてもよい。このような構成とすれば、補助部材2Dの溶融部分が被接合部材1Fの境界11Eの反対側に露出することを防ぐことができる。
以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更を加えることができる。例えば、本発明において、補助部材は、被接合部材に対して融点が同じ又は低い材質であってもよい。また、レーザ光の照射に用いるレーザの種類は、上記実施形態で例示したものに限らず、補助部材2や被接合部材1の材質に応じて適宜選択されてよい。
1,1A,1B,1C,1D,1E,1F 被接合部材
2,2A,2B,2C,2D 補助部材
3,3D 合金部
11,11A,11B,11D,11E 境界
12,12A,12B,12D 境界露出面
13,13D 境界部分
15D,15E,15F 貫通孔
21,21A,21B 対向面
22,22A,22B 反対面
23 溶融部分
25A,25B 対向部
26A 壁部(移動制限部)
26B 周壁部(移動制限部)
LL レーザ光

Claims (9)

  1. 互いに接合する複数の被接合部材よりもレーザ光の吸収率が高い補助部材を、前記複数の被接合部材の境界が現れる前記複数の被接合部材の境界露出面に対向するように配置し、
    レーザ光を前記補助部材に照射して前記補助部材を溶融し、
    前記補助部材の溶融部分により前記複数の被接合部材の境界部分の温度を上昇させて当該境界部分がレーザ光を吸収しやすい状態に移行させ、
    当該境界部分にレーザ光を照射して当該境界部分を溶融することにより前記複数の被接合部材を溶接する溶接方法。
  2. 前記補助部材の融点が、前記複数の被接合部材の融点よりも高い請求項1に記載の溶接方法。
  3. 前記境界露出面に対向するように配置された前記補助部材により、前記複数の被接合部材を接合するための状態に保つ請求項1又は2に記載の溶接方法。
  4. 前記複数の被接合部材に対向する前記補助部材の対向面に対して反対側に向く前記補助部材の反対面に、前記レーザ光を照射する請求項1から3のいずれか一項に記載の溶接方法。
  5. 前記補助部材は、前記境界露出面に対向配置される板状の対向部と、前記対向部の両端部から延びて前記複数の被接合部材を前記複数の被接合部材の配列方向から挟む一対の壁部と、を有する請求項1から4のいずれか一項に記載の溶接方法。
  6. 前記補助部材は、前記境界露出面に対向配置される板状の対向部と、前記対向部の周端部から延びて前記複数の被接合部材を囲む周壁部と、を有する請求項1から4のいずれか一項に記載の溶接方法。
  7. 前記複数の被接合部材は、前記複数の被接合部材の配列方向で互いに連通する孔を有し、
    前記補助部材が、棒状に形成されて複数の前記孔に挿入される請求項1から3のいずれか一項に記載の溶接方法。
  8. 複数の被接合部材と、前記複数の被接合部材の境界が現れる前記複数の被接合部材の境界露出面に対向するように配置され、前記複数の被接合部材よりもレーザ光の吸収率が高い補助部材と、を備え、
    前記複数の被接合部材及び前記補助部材は、前記複数の被接合部材及び前記補助部材の成分を含む合金部によって互いに接合されている溶接構造。
  9. 前記補助部材は、前記境界露出面に対向するように配置されて前記複数の被接合部材を接合するための状態に保つ請求項8に記載の溶接構造。
PCT/JP2019/048858 2019-12-13 2019-12-13 溶接方法及び溶接構造 WO2021117209A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980101169.7A CN114555279B (zh) 2019-12-13 2019-12-13 焊接方法及焊接结构
DE112019007968.9T DE112019007968T5 (de) 2019-12-13 2019-12-13 Schweissverfahren und geschweisste struktur
JP2020547437A JP7003284B2 (ja) 2019-12-13 2019-12-13 溶接方法及び溶接構造
PCT/JP2019/048858 WO2021117209A1 (ja) 2019-12-13 2019-12-13 溶接方法及び溶接構造
US17/782,335 US20230039275A1 (en) 2019-12-13 2019-12-13 Welding method and welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048858 WO2021117209A1 (ja) 2019-12-13 2019-12-13 溶接方法及び溶接構造

Publications (1)

Publication Number Publication Date
WO2021117209A1 true WO2021117209A1 (ja) 2021-06-17

Family

ID=76330083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048858 WO2021117209A1 (ja) 2019-12-13 2019-12-13 溶接方法及び溶接構造

Country Status (5)

Country Link
US (1) US20230039275A1 (ja)
JP (1) JP7003284B2 (ja)
CN (1) CN114555279B (ja)
DE (1) DE112019007968T5 (ja)
WO (1) WO2021117209A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127088A (ja) * 1983-12-15 1985-07-06 Nippon Steel Corp レ−ザによる薄鋼板の溶接法
JPS6250095A (ja) * 1985-08-27 1987-03-04 Fujitsu Ltd レ−ザ溶接方法
JPH0480381A (ja) * 1990-07-19 1992-03-13 Kobe Steel Ltd レーザ溶接用のアルミニウム系部材
JP2008274333A (ja) * 2007-04-26 2008-11-13 Sumitomo Light Metal Ind Ltd レーザ溶接用アルミニウム又はアルミニウム合金部材
WO2019171659A1 (ja) * 2018-03-05 2019-09-12 パナソニックIpマネジメント株式会社 接合構造及び接合方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296070B2 (ja) * 1994-01-31 2002-06-24 株式会社デンソー 接合構造体及びその製造方法
JPH10334957A (ja) * 1997-05-28 1998-12-18 Harness Sogo Gijutsu Kenkyusho:Kk バスバーのレーザ溶接構造
JP2010075967A (ja) * 2008-09-26 2010-04-08 Nec Personal Products Co Ltd 異種金属の溶接方法
JP2014007794A (ja) * 2012-06-21 2014-01-16 Aisin Aw Co Ltd 回転電機の導体接合方法及び回転電機のコイル
WO2017170517A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 レーザ溶接方法
JP6250095B2 (ja) 2016-05-13 2017-12-20 三菱電機ビルテクノサービス株式会社 エレベータ監視システム
JP2018051570A (ja) * 2016-09-26 2018-04-05 株式会社神戸製鋼所 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127088A (ja) * 1983-12-15 1985-07-06 Nippon Steel Corp レ−ザによる薄鋼板の溶接法
JPS6250095A (ja) * 1985-08-27 1987-03-04 Fujitsu Ltd レ−ザ溶接方法
JPH0480381A (ja) * 1990-07-19 1992-03-13 Kobe Steel Ltd レーザ溶接用のアルミニウム系部材
JP2008274333A (ja) * 2007-04-26 2008-11-13 Sumitomo Light Metal Ind Ltd レーザ溶接用アルミニウム又はアルミニウム合金部材
WO2019171659A1 (ja) * 2018-03-05 2019-09-12 パナソニックIpマネジメント株式会社 接合構造及び接合方法

Also Published As

Publication number Publication date
US20230039275A1 (en) 2023-02-09
JP7003284B2 (ja) 2022-01-20
DE112019007968T5 (de) 2022-10-13
JPWO2021117209A1 (ja) 2021-12-09
CN114555279B (zh) 2024-06-11
CN114555279A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP5525246B2 (ja) ガラス溶着方法及びガラス層定着方法
EP1400303B1 (en) Pin to thin plate joint and method for making the joint
JP5466929B2 (ja) ガラス溶着方法及びガラス層定着方法
WO2014119342A1 (ja) 部材接合方法、部材接合構造、および継手管
US6872911B2 (en) Welding method
KR20120104967A (ko) 유리 용착 방법 및 유리층 정착 방법
JP2007523763A (ja) 熱可塑性プラスチックのレーザー溶接用接合部設計
WO2021117209A1 (ja) 溶接方法及び溶接構造
JP6782650B2 (ja) 光学ユニット
WO2017170106A1 (ja) 接合構造
JP6952632B2 (ja) レーザー重ね溶接の構造および方法
JP2010221572A (ja) 樹脂材および樹脂材のレーザー溶着方法
CN111819025B (zh) 接合结构以及接合方法
JP2010004336A (ja) 中空管、部材および接合方法
JP2005288947A (ja) 接合方法、接合部材及び部品
WO2018128026A1 (ja) ワイヤの固定方法およびワイヤの固定構造
JP2016047552A5 (ja) レーザ溶接方法
Tan et al. Characterization of Kovar-to-Kovar laser welded joints and its mechanical strength
JP6923004B2 (ja) ロータの製造方法
JP2020093285A (ja) 異種金属の接合方法
JP2004223719A (ja) レーザーによる熱可塑性樹脂の接合方法
JP2001068176A (ja) 平板端子とピン端子との接合方法
JPH10156565A (ja) 溶接方法、電池容器の製造方法及び電池容器
JP2006017818A (ja) 組レンズとその製造方法
JP2022038651A (ja) 異種金属の接合方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956157

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19956157

Country of ref document: EP

Kind code of ref document: A1