WO2021115079A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021115079A1
WO2021115079A1 PCT/CN2020/129772 CN2020129772W WO2021115079A1 WO 2021115079 A1 WO2021115079 A1 WO 2021115079A1 CN 2020129772 W CN2020129772 W CN 2020129772W WO 2021115079 A1 WO2021115079 A1 WO 2021115079A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
timing offset
count value
timing
Prior art date
Application number
PCT/CN2020/129772
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021115079A1 publication Critical patent/WO2021115079A1/zh
Priority to US17/837,050 priority Critical patent/US20220304073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device in a non-terrestrial network (NTN, Non-Terrestrial Networks) in wireless communication.
  • NTN non-terrestrial network
  • NTN Non-Terrestrial Networks
  • the user equipment when the user equipment (UE, User Equipment) itself has the positioning capability and can estimate the transmission delay with the satellite, the user equipment can automatically advance the transmission when sending the uplink signal to the satellite, and realize the self-determination and Adjust the TA (Timing Advance) operation to ensure that the signal arriving at the satellite can align with the satellite's own timing.
  • UE User Equipment
  • the terminal In traditional LTE (Long-Term Evolution) and 5G systems, when a PRACH transmission is unsuccessful, the terminal often sends PRACH with a higher transmission power value through power ramping in order to expect to be received by the base station. Receive correctly. However, when the terminal does not receive feedback for multiple PRACH transmissions due to the inaccuracy of the self-adjusted TA, the terminal can use the traditional PRACH transmission without adjusting the TA. At this time, the previously accumulated power value increase will need to be renewed. Consider whether it needs to be included in the new transmit power value.
  • this application provides a solution.
  • the NTN scenario is only used as an example of an application scenario of the solution provided by this application; this application is also applicable to scenarios such as terrestrial networks to achieve similar technical effects in the NTN scenario.
  • this application is also applicable to scenarios where there is a UAV (Unmanned Aerial Vehicle, unmanned aerial vehicle) or a network of Internet of Things devices, for example, to achieve technical effects similar to NTN scenarios.
  • UAV Unmanned Aerial Vehicle, unmanned aerial vehicle
  • a network of Internet of Things devices for example
  • different scenarios including but not limited to NTN scenarios and terrestrial network scenarios
  • adopting a unified solution can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the target counter is used for counting in the random access initiated by the first node, the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first The count value of the target counter when the second signal is transmitted is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset value is Used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the difference between the first count value and the second count value The magnitude relationship of; the random access initiated by the first signal is unsuccessful.
  • the essence of the above method is that when calculating the number of transmissions of PRACH or MsgA, the number of transmissions of PRACH or MsgA with timing offset precompensation will not be calculated to that of PRACH or MsgA without timing offset precompensation. Correspondingly, the number of transmissions of PRACH or MsgA without timing offset pre-compensation will not be calculated into the number of transmissions of PRACH or MsgA with untimed offset pre-compensation; the above method guarantees the accuracy of counting.
  • the advantage of the above method is that when the first node fails to send PRACH or MsgA multiple times in a scenario where self-timing offset pre-compensation is used, it means that the TA estimated by the first node may not be successful. It is accurate, or it means that the collision on the selected PRACH resource is large, rather than the random access is unsuccessful due to insufficient transmission power; if at this time, the first node does not use timing offset precompensation to transmit PRACH instead Or MsgA, at this time, the previously raised power value needs to be recalculated to avoid interference to other terminals and reduce power consumption.
  • the above method is characterized in that, when the first timing offset value and the second timing offset value are equal, the second count value is equal to the first count value plus 1; When the first timing offset value and the second timing offset value are not equal, the second count value is not greater than the first count value.
  • the advantage of the above method is that: the first timing offset value and the second timing offset value are equal, indicating that when the first node sends the first signal and the second signal Is a timing offset that is self-compensated, or a timing offset that indicates that the first node did not self-compensate when sending the first signal and the second signal, and then the current transmission of the first signal and the timing offset The sending of the second signal is counted uniformly.
  • the advantage of the above method is that the first timing offset value and the second timing offset value are not equal, indicating that the first node compensates for the timing offset by itself when sending the first signal And the timing offset is not compensated by itself when sending the second signal, or it means that the first node does not compensate for the timing offset by itself when sending the first signal but compensates for the timing offset by itself when sending the second signal, Furthermore, the transmission of the first signal should not be counted uniformly with the transmission of the second signal.
  • the advantage of the above method is that a separate counting method is used for the random access mode that uses timing offset pre-compensation and that does not use timing offset pre-compensation, so as to ensure the accuracy of power uplift.
  • the above method is characterized in that the format adopted by the first signal is related to the first timing offset value, and the format adopted by the second signal is related to the second timing offset. Value is related; the format used by the first signal includes the length of the sequence for generating the first signal, the length of the cyclic prefix included in the first signal, and the time domain resources occupied by the first signal. At least one of the blank lengths of the second signal; the format used by the second signal includes the length of the sequence in which the second signal is generated, the length of the cyclic prefix included in the second signal, and the length of the cyclic prefix occupied by the second signal At least one of the blank lengths included in the time domain resources.
  • the advantage of the above method is that different PRACH formats are configured for the PRACH transmission modes that use timing offset pre-compensation and those that do not use timing offset pre-compensation; when timing offset pre-compensation is used, there is no need to distinguish between comparisons. Large TA, and then the adopted PRACH format corresponds to a shorter sequence length; when timing offset pre-compensation is not used, the larger TA needs to be distinguished, and then the PRACH format corresponds to a longer sequence length; the above method optimizes PRACH Configure to avoid wasting too many long sequences.
  • the above method is characterized in that it includes:
  • the first information is used to determine the first target power value and the first step length; when the first count value is greater than 1, the first target power value, the first step length, and the The first count value is jointly used to determine the transmit power value of the first signal; when the first count value is equal to 1, the first target power value, the first step length, and the first count Among the values, only the first target power value is used to determine the transmission power value of the first signal.
  • the above method is characterized in that, when the first timing offset value and the second timing offset value are equal, the first target power value, the first step length, and the The second count value is jointly used to determine the transmission power value of the second signal.
  • the above method is characterized in that it includes:
  • the second information is used to determine the second step size; when the first timing offset value and the second timing offset value are not equal and the second count value is greater than 1, the first A target power value, the second step size, and the second count value are used together to determine the transmission power value of the second signal; when the first timing offset value and the second timing offset When the values are not equal and the second count value is equal to 1, only the first target power value among the first target power value, the second step size, and the second count value is used to determine the The transmit power value of the second signal.
  • the advantage of the above method is that different power boost steps are configured for random access with timing offset pre-compensation and random access without timing offset pre-compensation to optimize the selection of transmission power.
  • the above method is characterized in that it includes:
  • the third signal is used to determine the reference timing; the timing offset between the transmission timing of the first signal and the reference timing is equal to the first timing offset value, and the second signal The timing offset between the sending timing of and the reference timing is equal to the second timing offset value.
  • the above method is characterized in that the capability of the first node is used to determine the first timing offset value.
  • the above method is characterized in that it includes:
  • the second count value is equal to 1
  • the third information is used to determine the upper limit of the first count value .
  • the essence of the above method is that the first node uses timing offset pre-compensation to send the first signal and the first node does not use timing offset pre-compensation to send the second signal, the The second signal is recorded as the first transmission without timing offset precompensation.
  • the essence of the above method is that the first node does not use timing offset precompensation to transmit the first signal and the first node uses timing offset precompensation to transmit the second signal, and The second signal is recorded as the first transmission with timing offset pre-compensation.
  • the above method is characterized in that it includes:
  • the fourth signal is used to indicate that the first node can determine the first timing offset value according to its own capability, or the fourth signal is used to indicate that the first node can determine the first timing offset value according to its own capability. Ability to determine the second timing offset value.
  • the advantage of the above method whether the first node can determine the first timing offset value through its own capabilities, and using the first timing offset value to send the first signal requires a base station Instructed and allowed, which facilitates the allocation of PRACH resources by the base station.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • Detecting a first signal the first signal being used to initiate random access
  • the target counter is used for counting in random access initiated by the sender of the first signal, the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent Is the first count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset The shift value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the first count value and the second count The magnitude relationship between the values; the random access initiated by the first signal is unsuccessful.
  • the above method is characterized in that, when the first timing offset value and the second timing offset value are equal, the second count value is equal to the first count value plus 1; When the first timing offset value and the second timing offset value are not equal, the second count value is not greater than the first count value.
  • the above method is characterized in that the format adopted by the first signal is related to the first timing offset value, and the format adopted by the second signal is related to the second timing offset. Value is related; the format used by the first signal includes the length of the sequence for generating the first signal, the length of the cyclic prefix included in the first signal, and the time domain resources occupied by the first signal. At least one of the blank lengths of the second signal; the format used by the second signal includes the length of the sequence in which the second signal is generated, the length of the cyclic prefix included in the second signal, and the length of the cyclic prefix occupied by the second signal At least one of the blank lengths included in the time domain resources.
  • the above method is characterized in that it includes:
  • the first information is used to determine the first target power value and the first step length; when the first count value is greater than 1, the first target power value, the first step length, and the The first count value is jointly used to determine the transmit power value of the first signal; when the first count value is equal to 1, the first target power value, the first step length, and the first count Among the values, only the first target power value is used to determine the transmission power value of the first signal.
  • the above method is characterized in that, when the first timing offset value and the second timing offset value are equal, the first target power value, the first step length, and the The second count value is jointly used to determine the transmission power value of the second signal.
  • the above method is characterized in that it includes:
  • the second information is used to determine the second step size; when the first timing offset value and the second timing offset value are not equal and the second count value is greater than 1, the first A target power value, the second step size, and the second count value are used together to determine the transmission power value of the second signal; when the first timing offset value and the second timing offset When the values are not equal and the second count value is equal to 1, only the first target power value among the first target power value, the second step size, and the second count value is used to determine the The transmit power value of the second signal.
  • the above method is characterized in that it includes:
  • the third signal is used to determine the reference timing; the timing offset between the transmission timing of the first signal and the reference timing is equal to the first timing offset value, and the second signal The timing offset between the sending timing of and the reference timing is equal to the second timing offset value.
  • the above method is characterized in that the capability of the sender of the first signal is used to determine the first timing offset value.
  • the above method is characterized in that it includes:
  • the second count value is equal to 1
  • the third information is used to determine the upper limit of the first count value .
  • the above method is characterized in that it includes:
  • the fourth signal is used to indicate that the sender of the first signal can determine the first timing offset value according to its own ability, or the fourth signal is used to indicate the first signal The sender of can determine the second timing offset value by itself according to its own capabilities.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transceiver sends a first signal, and the first signal is used to initiate random access;
  • the first transmitter sends a second signal, and the second signal is used to initiate random access;
  • the target counter is used for counting in the random access initiated by the first node, the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first The count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the sending timing of the first signal, and the second timing offset value is Used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the difference between the first count value and the second count value The magnitude relationship of; the random access initiated by the first signal is unsuccessful.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transceiver detects the first signal, and the first signal is used to initiate random access;
  • the first receiver detects a second signal, and the second signal is used to initiate random access;
  • the target counter is used for counting in random access initiated by the sender of the first signal, the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent Is the first count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset The shift value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the first count value and the second count The magnitude relationship between the values; the random access initiated by the first signal is unsuccessful.
  • this application has the following advantages:
  • the number of transmissions of PRACH or MsgA with timing offset pre-compensation will not be calculated into the number of transmissions of PRACH or MsgA without timing offset pre-compensation; accordingly, it is not used
  • the transmission times of PRACH or MsgA with timing offset pre-compensation will not be counted into the transmission times of PRACH or MsgA with non-timing offset pre-compensation; the above method guarantees the accuracy of counting;
  • the first node fails to send PRACH or MsgA multiple times in the scenario of using self-timing offset precompensation, it indicates that the TA estimated by the first node may be inaccurate, or indicates the selected PRACH resource However, the random access is not successful due to insufficient transmission power; if the first node does not use timing offset pre-compensation to transmit PRACH or MsgA instead, the previous uplift The power value needs to be recalculated to avoid interference to other terminals and reduce power consumption;
  • timing offset pre-compensation In order to adopt the timing offset pre-compensation and the random access method without timing offset pre-compensation, a separate counting method is adopted to ensure the accuracy of the power rise; in addition, the timing offset pre-compensation and the non-timing offset are adopted.
  • the transmission mode of pre-compensated PRACH is configured with different PRACH formats; when timing offset pre-compensation is used, there is no need to distinguish between larger TAs, and the sequence length corresponding to the adopted PRACH format is shorter; timing offset pre-compensation is not used Because the larger TA needs to be distinguished, the sequence length corresponding to the adopted PRACH format is longer; the above method optimizes the PRACH configuration to avoid wasting too many long sequences;
  • the first node can determine the first timing offset value through its own capabilities, and using the first timing offset value to send the first signal needs to be instructed and allowed by the base station, thereby facilitating the base station The allocation of PRACH resources.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5 shows a flowchart of a second signal according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a given timing offset value according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a target timing offset value according to an embodiment of the present application.
  • Fig. 8 shows a flowchart of a target counter according to an embodiment of the present application
  • Fig. 9 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • Fig. 10 shows a structural block diagram used in a second node according to an embodiment of the present application
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application sends a first signal in step 101, and the first signal is used to initiate random access; in step 102, a second signal is sent, and the second signal is Used to initiate random access.
  • the target counter is used for counting in random access initiated by the first node, and the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent Is the first count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset The shift value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the first count value and the second count The magnitude relationship between the values; the random access initiated by the first signal is unsuccessful.
  • the first signal includes PRACH.
  • the second signal includes PRACH.
  • the first signal includes MsgA.
  • the second signal includes MsgA.
  • the first signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second signal includes PUSCH.
  • both the first signal and the second signal include PRACH.
  • both the first signal and the second signal include MsgA.
  • the first count value is a positive integer.
  • the second count value is a positive integer.
  • the transmission timing of the first signal includes the time domain position of the boundary of the radio frame occupied by the first signal.
  • the sending timing of the second signal includes the time domain position of the boundary of the radio frame occupied by the second signal.
  • the transmission timing of the first signal includes the time domain position of the boundary of the radio frame occupied by the first signal.
  • the sending timing of the second signal includes the time domain position of the boundary of the radio frame occupied by the second signal.
  • the first timing offset value is equal to zero.
  • the first timing offset value is equal to N_TA, and the unit of N_TA is milliseconds.
  • the first timing offset value includes N_TA, and the unit of N_TA is milliseconds.
  • the N_TA is the timing advance of the uplink transmission from the first node to the second node in this application estimated by the first node.
  • the N_TA is greater than zero.
  • the second timing offset value is equal to zero.
  • the second timing offset value is equal to N_TA, and the unit of N_TA is milliseconds.
  • the second timing offset value includes N_TA, and the unit of N_TA is milliseconds.
  • the N_TA is the timing advance of the uplink transmission from the first node to the second node in this application estimated by the first node.
  • the N_TA is greater than zero.
  • the first node has a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) capability.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the first node has an uplink synchronization pre-compensation (Pre-Compensation) capability (Capability).
  • Pre-Compensation uplink synchronization pre-compensation
  • Capability Capability
  • the first node has the ability to estimate the uplink TA by itself and perform uplink synchronization pre-compensation.
  • the meaning of the unsuccessful random access initiated by the above phrase includes: the first node does not receive feedback on the first signal in a given time window after sending the first signal .
  • the meaning of the unsuccessful random access initiated by the above phrase includes: the first node does not receive the MsgB for the first signal in a given time window after sending the first signal .
  • the given time window is configured through ra-ResponseWindow.
  • the feedback of the first signal is random access feedback (Random Access Response).
  • the feedback of the first signal includes MsgB.
  • the meaning of the unsuccessful random access initiated by the above phrase includes: the first node receives the first feedback within a given time window after sending the first signal, the first feedback
  • the carried MAC subPDU includes a Backoff indication.
  • the meaning of the unsuccessful random access initiated by the above phrase includes: the first node receives the first feedback within a given time window after sending the first signal, the first feedback
  • the carried MAC (Medium Access Control) subPDU (Protocol Data Unit) cannot find the same random access preamble sequence identifier (Random Access Preamble) as the PREAMBLE_INDEX used by the first signal. identifiers).
  • the first node in this application is always in the RRC_IDLE state from when the first signal is sent to when the second signal is sent.
  • the first node in this application has been in an uplink out of synchronization (out of synchronization) state from when the first signal is sent to when the second signal is sent.
  • the first timing offset value is not equal to 0, and the first timing offset value is related to the type of the second node in this application.
  • the type corresponding to the second node is GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite, MEO (Medium Earth Orbiting, medium earth orbit) satellite, LEO (Low Earth Orbit) , Low Earth Orbit) satellite, HEO (Highly Elliptical Orbiting, Highly Elliptical Orbiting) satellite, Airborne Platform (air platform).
  • GEO Global System for Mobile Communications
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit
  • HEO Highly Elliptical Orbiting, Highly Elliptical Orbiting
  • Airborne Platform air platform
  • the first timing offset value is not equal to 0, and the first timing offset value is related to the height of the second node in the present application.
  • the first timing offset value is not equal to 0, and the first timing offset value is related to the location information of the first node.
  • the second timing offset value is not equal to 0, and the second timing offset value is related to the type of the second node in this application.
  • the type corresponding to the second node is one of GEO satellites, MEO satellites, LEO satellites, HEO satellites, and Airborne Platform.
  • the second timing offset value is not equal to 0, and the first timing offset value is related to the height of the second node in the present application.
  • the second timing offset value is not equal to 0, and the second timing offset value is related to the location information of the first node.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the second signal is a wireless signal.
  • the second signal is a baseband signal.
  • the first node determines the first timing offset by itself.
  • the first node determines the second timing offset by itself.
  • the first signal includes one PRACH in the four-step RACH.
  • the second signal includes one PRACH in the four-step RACH.
  • the first signal includes a Preamble in a two-step RACH.
  • the second signal includes a Preamble in a two-step RACH.
  • the first signal includes one MsgA in the two-step RACH.
  • the second signal includes one MsgA in the two-step RACH.
  • a first sequence is used to generate the first signal, and the first sequence is a pseudo-random sequence.
  • a first sequence is used to generate the first signal, and the first sequence is generated by a 31-long Gold sequence.
  • a second sequence is used to generate the second signal, and the second sequence is a pseudo-random sequence.
  • a second sequence is used to generate the second signal, and the second sequence is generated by a 31-long Gold sequence.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function, user plane function
  • S-GW Service Gateway
  • P-GW Packet Date Network Gateway
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the wireless link between the gNB203 and the ground station is Feeder Link.
  • the first node in this application is a terminal within the coverage of the gNB203.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a large delay network.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a large delay network.
  • the first node has GPS (Global Positioning System, Global Positioning System) capability.
  • GPS Global Positioning System, Global Positioning System
  • the first node has a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) capability.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • the first node has a BDS (BeiDou Navigation Satellite System) capability.
  • BDS BeiDou Navigation Satellite System
  • the first node has GALILEO (Galileo Satellite Navigation System) capability.
  • GALILEO Globalileo Satellite Navigation System
  • the first node has the ability to perform uplink synchronization precompensation.
  • the first node has the ability to estimate the uplink TA by itself.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the second signal is generated in the PHY301 or the PHY351.
  • the second signal is generated in the MAC352 or the MAC302.
  • the first information is generated in the MAC352 or the MAC302.
  • the first information is generated in the RRC306.
  • the second information is generated in the MAC352 or the MAC302.
  • the second information is generated in the RRC306.
  • the third signal is generated in the PHY301 or the PHY351.
  • the third signal is generated in the MAC352 or the MAC302.
  • the third information is generated in the MAC352 or the MAC302.
  • the third information is generated in the RRC306.
  • the fourth information is generated in the MAC352 or the MAC302.
  • the fourth information is generated in the RRC306.
  • the fourth signal is generated in the PHY301 or the PHY351.
  • the fourth signal is generated in the MAC352 or the MAC302.
  • the fourth signal is generated in the RRC306.
  • the second node in this application sends a positioning signal
  • the first node in this application receives a positioning signal
  • SMLC Serving Mobile Location Centre
  • the E-SMLC is triggered to send the positioning signal.
  • SUPL Secure User Plane Location (Secure User Plane Location).
  • LMU Location Measurement Unit
  • the operation that triggers the sending of the positioning signal comes from the core network.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), and M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, as well as multiplexing between logic and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used together with the at least one processor, the first communication device 450 means at least: sending a first signal, the first signal is used to initiate random access; and sending a second signal, the second signal is used Initiate random access; a target counter is used to count the random access initiated by the first node, and the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent Is the first count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset The shift value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the first count value and the second count The magnitude relationship between the values; the random access initiated by the first signal is unsuccessful.
  • the first communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: sending the first A signal, the first signal is used to initiate random access; and a second signal is sent, the second signal is used to initiate random access; a target counter is used for the random access initiated by the first node
  • the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first count value, and the count value of the target counter when the second signal is sent The value is the second count value;
  • the first timing offset value is used to determine the transmission timing of the first signal, and the second timing offset value is used to determine the transmission timing of the second signal;
  • the first timing Whether the offset value and the second timing offset value are equal is used to determine the magnitude relationship between the first count value and the second count value; the random access initiated by the first signal is unsuccessful .
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: detects a first signal, which is used to initiate random access; and detects a second signal, which is used to initiate random access; and a target counter is used to initiate random access.
  • the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first count value , The count value of the target counter when transmitting the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset value is used to Determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the size between the first count value and the second count value Relationship; the random access initiated by the first signal is unsuccessful.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: detecting The first signal, the first signal is used to initiate random access; and the detection of the second signal, the second signal is used to initiate random access; the target counter is used for the sender of the first signal In the random access initiated, the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first count value, and the target counter is sending the second The signal count value is the second count value; the first timing offset value is used to determine the transmission timing of the first signal, and the second timing offset value is used to determine the transmission timing of the second signal; so Whether the first timing offset value and the second timing offset value are equal is used to determine the magnitude relationship between the first count value and the second count value; the random signal initiated by the first signal Access is unsuccessful.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a ground terminal.
  • the first communication device 450 is a ground device.
  • the first communication device 450 is a near ground terminal.
  • the first communication device 450 is an airplane.
  • the first communication device 450 is an aircraft.
  • the first communication device 450 is a surface vehicle.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a non-terrestrial base station.
  • the second communication device 410 is a GEO satellite.
  • the second communication device 410 is an MEO satellite.
  • the second communication device 410 is a LEO satellite.
  • the second communication device 410 is a HEO satellite.
  • the second communication device 410 is Airborne Platform.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 are used to transmit the A signal; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 at least the first four are used to detect the first signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 are used to transmit the Two signals; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 at least the first four are used to detect the second signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving First information; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first One information.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving Second information; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Two information.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving The third signal; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Three signals.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving Third information; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Three information.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used for receiving The fourth signal; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to transmit the first Four signals.
  • At least one of the receiving processor 456 or the controller/processor 459 is used to determine the first timing offset value.
  • At least one of the receiving processor 456 or the controller/processor 459 is used to determine the second timing offset value.
  • At least one of the receiving processor 456 or the controller/processor 459 is used to determine the first count value.
  • At least one of the receiving processor 456 or the controller/processor 459 is used to determine the second count value.
  • Embodiment 5 illustrates a flow chart of the second signal, as shown in FIG. 5.
  • the first node U1 and the second node N2 communicate via a wireless link; wherein, the steps in the block F0, the block F1 and the block F2 are optional.
  • step S10 For the first node U1, received in step S10, a third signal; receiving a first message in step S11; second information received in step S12; step S13, receiving a third information; receiving a fourth signal in step S14 ; Send the first signal in step S15; send the second signal in step S16.
  • step S20 the third transmission signal; a first message transmitted in step S21; second information transmitted in the step S22; the third transmission information in step S23; transmitting a fourth signal in step S24 Detect the first signal in step S25; detect the second signal in step S26.
  • the first signal is used to initiate random access
  • the second signal is used to initiate random access
  • the target counter is used in the random access initiated by the first node U1.
  • the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent is the first count value, and the count value of the target counter when the second signal is sent is the first count value.
  • the first information is used to determine the first target power value and the first step length; when the first count value is greater than 1, the first target power value, the first step length, and the first count value Are used together to determine the transmit power value of the first signal; when the first count value is equal to 1, only all of the first target power value, the first step length, and the first count value
  • the first target power value is used to determine the transmit power value of the first signal
  • the second information is used to determine the second step size; when the first timing offset value and the second timing offset value When the shift values are not equal and the second count value is greater than 1, the first target power value, the second step size, and the second count value are jointly used to determine the transmission power value of the second
  • the second count value is equal to the first count value plus 1; when the first timing offset value When the value and the second timing offset value are not equal, the second count value is not greater than the first count value.
  • the second count value is equal to 1.
  • the first count value is equal to M
  • the second count value is equal to M+1
  • the M is a positive integer.
  • the M is less than the maximum number of PRACH retransmissions.
  • the M is less than the maximum number of retransmissions of MsgA.
  • the meaning that the first timing offset value and the second timing offset value are equal includes: the first timing offset value and the second timing offset value are both Equal to 0.
  • the meaning that the first timing offset value and the second timing offset value are equal includes: the first timing offset value and the second timing offset value are both Equal to the N_TA in this application.
  • the meaning that the first timing offset value and the second timing offset value are not equal includes: the first timing offset value is equal to 0, and the second timing offset value The shift value is equal to N_TA.
  • the meaning that the first timing offset value and the second timing offset value are not equal includes: the second timing offset value is equal to 0, and the first timing offset value The shift value is equal to N_TA.
  • the format adopted by the first signal is related to the first timing offset value
  • the format adopted by the second signal is related to the second timing offset value
  • the format used includes at least one of the length of the sequence for generating the first signal, the length of the cyclic prefix included in the first signal, and the blank length included in the time domain resources occupied by the first signal
  • the format used by the second signal includes the length of the sequence in which the second signal is generated, the length of the cyclic prefix included in the second signal, and the blank space included in the time domain resources occupied by the second signal At least one of the lengths.
  • the meaning related to the format adopted by the first signal of the above phrase and the first timing offset value includes: the format adopted by the first signal is the first format, so The first format is a format in a first format set, the first format set includes one or more formats, and the first node U1 uses the first timing offset value to send the first signal When using the first format in the first format set to generate the first signal.
  • the meaning related to the format adopted by the first signal of the above phrase and the first timing offset value includes: the format adopted by the first signal is the first format, so The first format is one format in a first format set, the first format set includes one or more formats, and the first format set is associated with the first timing offset value.
  • the meaning related to the format adopted by the second signal of the above phrase and the second timing offset value includes: the format adopted by the second signal is the second format, so The second format is a format in a second format set, the second format set includes one or more formats, and the first node U1 uses the second timing offset value to send the second signal When using the second format in the second format set to generate the second signal.
  • the meaning related to the format adopted by the second signal of the above phrase and the second timing offset value includes: the format adopted by the second signal is the second format, so The second format is one format in a second format set, the second format set includes one or more formats, and the second format set is associated with the second timing offset value.
  • the first format and the second format in this application respectively correspond to different generation sequence lengths.
  • the first format and the second format in this application respectively correspond to different cyclic prefix lengths.
  • the first format and the second format in this application respectively occupy different blank lengths.
  • the signaling that carries the first information is RRC signaling.
  • the IE Information Elements, information particle
  • RACH-ConfigGeneric in TS 38.331 carries the first information.
  • the first target power value includes preambleReceivedTargetPower in TS 38.331.
  • the first target power value includes DELTA_PREAMBLE in TS 38.321.
  • the unit of the first target power value is dBm.
  • the unit of the first target power value is watts.
  • the unit of the first target power value is milliwatts.
  • the unit of the first target power value is dB.
  • the first step includes PREAMBLE_POWER_RAMPING_STEP in TS 38.321.
  • the first step includes powerRampingStep in TS 38.331.
  • the unit of the first step length is dB.
  • the first count value includes PREAMBLE_POWER_RAMPING_COUNTER in TS 38.321.
  • the first target power value is related to the first timing offset value.
  • the first target power value is related to the second timing offset value.
  • the first target power value is related to the type of the second node N2.
  • the first target power value is related to the height of the second node N2.
  • the first step length is related to the first timing offset value.
  • the first step length is related to the type of the second node N2.
  • the first step length is related to the height of the second node N2.
  • the transmit power value of the first signal is the smaller of the first maximum power value and the first power value, and the first power value is the same as the first power value.
  • the first target power value is linearly related, and the first power value is linearly related to the product of the first step length and the first count value.
  • the first maximum power value includes PCMAX ,f,c (i) in TS 38.213.
  • the first power value is equal to the sum of the first target power value, DELTA_PREAMBLE, and the first path loss value, and the first path loss value includes the PL in TS 38.213 b,f,c .
  • the first power value is P 1
  • the P 1 is determined by the following formula:
  • P 1 preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1) ⁇ PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
  • -PREAMBLE_POWER_RAMPING_STEP is the first step length.
  • the transmit power value of the first signal is the smaller of the first maximum power value and the first power value, and the first power value is the same as the first power value.
  • the first target power value is linearly related.
  • the first maximum power value includes PCMAX ,f,c (i) in TS 38.213.
  • the first power value is equal to the sum of the first target power value, DELTA_PREAMBLE, and the first path loss value, and the first path loss value includes the PL in TS 38.213 b,f,c .
  • the first power value is P 1
  • the P 1 is determined by the following formula:
  • P 1 preambleReceivedTargetPower+DELTA_PREAMBLE+PL b,f,c
  • the first target power value, the first step length, and the second count value are used together. To determine the transmit power value of the second signal.
  • the second count value is equal to the first count value plus one.
  • the first signal and the second signal follow the same power-up process.
  • the second count value is related to the first count value.
  • the first signal and the second signal share the target counter.
  • the transmit power value of the second signal is the first maximum power value and the second power value.
  • the second power value is linearly related to the first target power value, and the second power value is linearly related to the product of the first step length and the second count value.
  • the first maximum power value includes PCMAX ,f,c (i) in TS 38.213.
  • the second power value is equal to the sum of the first target power value, DELTA_PREAMBLE, and the first path loss value, and the first path loss value includes TS 38.213 PL b,f,c .
  • the second power value is P 2
  • the P 2 is determined by the following formula:
  • P 2 preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1) ⁇ PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
  • -PREAMBLE_POWER_RAMPING_STEP is the first step length.
  • the signaling that carries the second information is RRC signaling.
  • the second count value does not change the value of the first signal Send count.
  • the second count value has nothing to do with the first count value .
  • the first count value and the second count value are respectively for the random access power increase count value when the terminal adopts the advance compensation timing advance and the random access power increase count value when the terminal does not use the advance compensation timing advance.
  • the transmit power value of the second signal is the first The smaller of the maximum power value and the second power value, the second power value is linearly related to the first target power value, and the second power value is related to the second step size and the second power value.
  • the product of the count value is linearly related.
  • the first maximum power value includes PCMAX ,f,c (i) in TS 38.213.
  • the second power value is equal to the sum of the first target power value, DELTA_PREAMBLE, and the first path loss value, and the first path loss value includes the PL in TS 38.213 b,f,c .
  • the second power value is P 2
  • P 2 is determined by the following formula:
  • P 2 preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1) ⁇ PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
  • -PREAMBLE_POWER_RAMPING_STEP is the second step length.
  • the transmit power value of the second signal is the first The smaller of the maximum power value and the second power value, and the second power value is linearly related to the first target power value.
  • the first maximum power value includes PCMAX ,f,c (i) in TS 38.213.
  • the second power value is equal to the sum of the first target power value, DELTA_PREAMBLE, and the first path loss value, and the first path loss value includes the PL in TS 38.213 b,f,c .
  • the second power value is P 2
  • P 2 is determined by the following formula:
  • P 2 preambleReceivedTargetPower+DELTA_PREAMBLE+PL b,f,c
  • the third signal is a wireless signal.
  • the third signal is a baseband signal.
  • the third signal is a synchronization signal.
  • the third signal includes PSS (Primary Synchronization Signal, primary synchronization signal).
  • PSS Primary Synchronization Signal, primary synchronization signal
  • the third signal includes SSS (Secondary Synchronization Signal).
  • the third signal includes SSB (SS/PBCH Block, synchronization signal/physical broadcast signal block).
  • SSB SS/PBCH Block, synchronization signal/physical broadcast signal block.
  • the start time determined by the first node U1 according to the reference timing to reserve the time domain resources for sending the first signal is the first candidate time, and the first node U1 actually sends
  • the start time of the time domain resource occupied by the first signal is the first time, and the time interval between the first time and the first candidate time is equal to the first timing offset value.
  • the start time determined by the first node U1 according to the reference timing to reserve the time domain resources for sending the second signal is the second candidate time, and the first node U1 actually sends
  • the start moment of the time domain resource occupied by the second signal is the second moment, and the time interval between the second moment and the second candidate moment is equal to the second timing offset value.
  • the reference timing is downlink timing.
  • the reference timing includes a boundary (Boundary) of a radio frame (Radio Frame).
  • the reference timing includes the boundary of the time slot in the radio frame.
  • the determining the reference timing includes determining a downlink SFN (System Frame Number, system frame number).
  • the reference timing is determined to determine a downlink time slot (Slot) boundary.
  • the determining the reference timing includes determining a downlink OFDM symbol boundary.
  • the capability of the first node U1 is used to determine the first timing offset value.
  • the capability of the first node U1 is used to determine the second timing offset value.
  • the capability of the first node U1 includes the positioning capability of the first node U1.
  • the capability of the first node U1 includes an uplink synchronization precompensation capability of the first node U1.
  • the capability of the first node U1 includes the capability of the first node U1 to estimate the uplink TA by itself.
  • the capability of the first node U1 includes: the first node U1 determines the capability of performing uplink synchronization precompensation according to the positioning result.
  • the above phrase means that the capability of the first node U1 is used to determine the first timing offset value includes: the first node U1 determines the first timing offset according to the uplink synchronization precompensation capability Shift value.
  • the above phrase means that the capability of the first node U1 is used to determine the first timing offset value includes: the first node U1 determines the first timing offset according to the uplink TA estimated by itself. Shift value.
  • the capability of the first node U1 includes the positioning capability of the first node U1.
  • the capability of the first node U1 includes a timing pre-compensation capability (Capability) of the first node U1.
  • the capability of the first node U1 includes the positioning accuracy of the first node U1.
  • the capability of the first node U1 includes whether the first node U1 supports a global positioning system (GNSS, Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the capability of the first node U1 includes the calculation capability of the first node U1 for the transmission distance between the first node U1 and the second node N2 in this application.
  • the capability of the first node U1 includes the calculation capability of the first node U1 for the transmission delay between the first node U1 and the second node N2 in this application.
  • the capability of the first node U1 includes the pre-compensation (Pre-compensation of the first node U1 for the transmission delay between the first node U1 and the second node N2 in this application). Compensation) ability.
  • the RSRP Reference Signal Received Power
  • the RSRP and the capabilities of the first node U1 are jointly used to determine the first timing offset value.
  • the wireless signal from the second node N2 includes a CSI-RS (Channel State Information Reference Signal) sent by the second node N2.
  • CSI-RS Channel State Information Reference Signal
  • the third information is carried by RRC signaling.
  • the upper limit of the first count value is a positive integer greater than 1.
  • the first count value when the first count value reaches the upper limit, the first count value is reset to 1.
  • the upper limit of the second count value is a positive integer greater than 1.
  • the second first count value is reset to 1.
  • the detection of the first signal by the second node N2 includes that the second node N2 correctly receives the first signal.
  • the second node N2 after detecting the first signal, does not send feedback for the first signal in the given time window in this application.
  • the detecting the first signal includes incorrectly receiving the first signal.
  • the second node N2 after detecting the first signal, does not send MsgB for the first signal in the given time window in this application.
  • the second node N2 after detecting the first signal, the second node N2 sends a first feedback in the given time window in this application, and the MAC subPDU carried by the first feedback includes Backoff Instructions.
  • the second node N2 after detecting the first signal, the second node N2 sends a first feedback in the given time window in this application, and the MAC subPDU carried by the first feedback includes Backoff Instructions.
  • the second node N2 after detecting the first signal, the second node N2 sends the first feedback in the given time window in this application, and the MAC subPDU carried by the first feedback cannot be found To the same random access preamble sequence identifier (Random Access Preamble identifiers) as the PREAMBLE_INDEX used by the first signal.
  • Random Access Preamble identifiers Random Access Preamble identifiers
  • detecting the second signal by the second node N2 includes that the second node N2 correctly receives the second signal.
  • the detection of the second signal by the second node N2 includes that the second node N2 does not correctly receive the second signal.
  • the second node N2 is a satellite.
  • the second node N2 is a base station used for non-terrestrial communication.
  • the first node U1 determines the first timing offset value according to the location information of the first node U1.
  • the first node U1 determines the second timing offset value according to the location information of the first node U1.
  • the location information of the first node U1 in the present application includes: the longitude and latitude of the first node U1 when sending the first signal.
  • the location information of the first node U1 in this application includes: the distance between the first node U1 and the projection point of the second node N2 on the ground surface when the first node U1 sends the first signal.
  • the location information of the first node U1 in this application includes: the distance between the first node U1 and the second node N2 when sending the first signal.
  • the target counter in the process from when the count value of the target counter is equal to the first count value to when the count value of the target counter is equal to the second count value, the target counter has not been suspended (Suspended).
  • the target counter has not been suspended.
  • the first node in the process from when the count value of the target counter is equal to the first count value to when the count value of the target counter is equal to the second count value, the first node does not go from a lower level ( Lower Layer) has received a notification of suspending the target counter (Notification).
  • the first node has not received the Suspending from the lower layer. Notification of the target counter (Notification).
  • the first signal and the first Both signals are associated with the same SSB or the same CSI-RS.
  • both the first signal and the second signal are associated with the same SSB or the same CSI -RS.
  • the first node device in the process from when the count value of the target counter is equal to the first count value to when the count value of the target counter is equal to the second count value, the first node device does not go from a lower level (Lower Layer) has received a notification to suspend the target counter, and both the first signal and the second signal are associated with the same SSB or the same CSI-RS.
  • a lower level Lower Layer
  • the first node device from the sending start time of the first signal to the sending start time of the second signal, the first node device has not received a notification to suspend the target counter from a lower layer, and Both the first signal and the second signal are associated with the same SSB or the same CSI-RS.
  • Embodiment 6 illustrates a schematic diagram of a given timing offset value, as shown in FIG. 6.
  • the first node has positioning capability, and the first node has uplink timing advance pre-compensation capability; the first node estimates that the first node sends the second node in this application to the second node.
  • the timing advance of the node's uplink transmission, and the timing advance is equal to the given timing offset value.
  • the start time of the time slot reserved for sending a given signal determined by the first node according to the reference timing is the first candidate time, and the first node actually The start moment of the time slot occupied by the given signal is the first moment, and the time interval between the first moment and the first candidate moment is equal to the given timing offset value; in the figure
  • the squares identify timeslots, and the numbers in the squares indicate timeslot numbers; T1 identified in the figure corresponds to the given timing offset value.
  • the given timing offset value is the first timing offset value in this application, and the given signal is the first signal.
  • the given timing offset value is the second timing offset value in this application, and the given signal is the second signal.
  • the unit of the given timing offset value is milliseconds.
  • the duration of the given timing offset value in the time domain is equal to the duration of a positive integer number of time slots.
  • the duration of the given timing offset value in the time domain is equal to the duration of a positive integer number of consecutive multi-carrier symbols.
  • Embodiment 7 illustrates a schematic diagram of the target timing offset value, as shown in FIG. 7.
  • the start time of the time slot reserved for sending the target signal determined by the first node according to the reference timing is the second candidate moment, and the first node actually sends the target signal occupied
  • the start time of the time slot is the second time, and the time interval between the second time and the second candidate time is equal to the target timing offset value;
  • the square in the figure identifies the time slot, and the square in the square
  • the number represents the time slot number; T2 identified in the figure corresponds to the target timing offset value, and the T2 is equal to zero.
  • the target timing offset value is the first timing offset value in this application, and the given signal is the first signal.
  • the target timing offset value is the second timing offset value in this application, and the given signal is the second signal.
  • Embodiment 8 illustrates the flow chart of the target counter according to the present application; as shown in FIG. 8.
  • the first node performs the following steps:
  • step 801 determine whether the first timing offset value is equal to the second timing offset value, if "yes” go to step 802, if "no” go to step 803;
  • step 802 the first count value remains unchanged, and the second count value is equal to the first count value plus 1;
  • step 803 the first count value remains unchanged, and the second count value is equal to 1;
  • step 804 determine whether the first counting system is greater than the first threshold; if "yes”, go to step 8041; if "no”, go to step 805; in step 8041, reset the first count value to "1" , And go to step 805;
  • step 805 determine whether the second counting system is greater than the second threshold; if "yes”, go to step 8051; if "no”, go to step 801; in step 8051, reset the first count value to "1" , And go to step 801.
  • the first threshold is an upper limit of the first count value.
  • the second threshold is an upper limit of the second count value.
  • the first threshold is configured through higher layer (Higher Layer) signaling.
  • the first threshold is configured through RRC signaling.
  • the second threshold is configured through higher layer signaling.
  • the second threshold is configured through RRC signaling.
  • the target counter includes a first sub-counter and a second sub-counter, the first sub-counter is used for counting the first count value, and the second sub-counter is used for the first sub-counter. Count of two count values.
  • Embodiment 9 illustrates a structural block diagram in the first node, as shown in FIG. 9.
  • the first node 900 includes a first transceiver 901 and a first transmitter 902.
  • the first transceiver 901 sends a first signal, and the first signal is used to initiate random access;
  • the first transmitter 902 sends a second signal, and the second signal is used to initiate random access;
  • the target counter is used for counting in the random access initiated by the first node, and the count value of the target counter is a positive integer; the count value of the target counter when the first signal is sent Is the first count value, the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the timing of the first signal transmission, and the second timing offset The shift value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal is used to determine the first count value and the second count The magnitude relationship between the values; the random access initiated by the first signal is unsuccessful.
  • the second count value is equal to the first count value plus 1; when the first timing offset value When the value and the second timing offset value are not equal, the second count value is not greater than the first count value.
  • the format adopted by the first signal is related to the first timing offset value
  • the format adopted by the second signal is related to the second timing offset value
  • the format used includes at least one of the length of the sequence for generating the first signal, the length of the cyclic prefix included in the first signal, and the blank length included in the time domain resources occupied by the first signal
  • the format used by the second signal includes the length of the sequence in which the second signal is generated, the length of the cyclic prefix included in the second signal, and the blank space included in the time domain resources occupied by the second signal At least one of the lengths.
  • the first transceiver 901 receives first information; the first information is used to determine the first target power value and the first step length; when the first count value is greater than 1, the The first target power value, the first step length, and the first count value are used together to determine the transmit power value of the first signal; when the first count value is equal to 1, the first target Among the power value, the first step length, and the first count value, only the first target power value is used to determine the transmission power value of the first signal.
  • the first target power value, the first step length, and the second count value are used together. To determine the transmit power value of the second signal.
  • the first transceiver 901 receives second information; the second information is used to determine the second step size; when the first timing offset value and the second timing offset value are different When equal and the second count value is greater than 1, the first target power value, the second step size, and the second count value are jointly used to determine the transmission power value of the second signal; When the first timing offset value and the second timing offset value are not equal and the second count value is equal to 1, the first target power value, the second step size, and the second count value Only the first target power value is used to determine the transmission power value of the second signal.
  • the first transceiver 901 receives a third signal; the third signal is used to determine the reference timing; the timing offset between the transmission timing of the first signal and the reference timing Equal to the first timing offset value, and the timing offset between the sending timing of the second signal and the reference timing is equal to the second timing offset value.
  • the capability of the first node is used to determine the first timing offset value.
  • the first transceiver 901 receives third information; when the first timing offset value and the second timing offset value are not equal, the second count value is equal to 1, and the The third information is used to determine the upper limit of the first count value.
  • the first transceiver 901 receives a fourth signal; the fourth signal is used to indicate that the first node can determine the first timing offset value by itself according to its own capabilities.
  • the first transceiver 901 includes the antenna 452, the receiver/transmitter 454, the multi-antenna receiving processor 458, the receiving processor 456, the multi-antenna transmitting processor 457, and the transmitting processor in the fourth embodiment. 468. At least the first 6 of the controller/processor 459.
  • the first transmitter 902 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 10 illustrates a structural block diagram in the second node, as shown in FIG. 10.
  • the second node 1000 includes a second transceiver 1001 and a first receiver 1002.
  • the second transceiver 1001 detects a first signal, and the first signal is used to initiate random access;
  • the first receiver 1002 detects a second signal, and the second signal is used to initiate random access;
  • the target counter is used for counting in the random access initiated by the sender of the first signal, and the count value of the target counter is a positive integer; when the target counter sends the first signal The count value of is the first count value, and the count value of the target counter when sending the second signal is the second count value; the first timing offset value is used to determine the sending timing of the first signal, The second timing offset value is used to determine the transmission timing of the second signal; whether the first timing offset value and the second timing offset value are equal are used to determine the first count value and the The magnitude relationship between the second count values; the random access initiated by the first signal is unsuccessful.
  • the second count value is equal to the first count value plus 1; when the first timing offset value When it is not equal to the second timing offset value, the second count value is not greater than the first count value.
  • the format adopted by the first signal is related to the first timing offset value
  • the format adopted by the second signal is related to the second timing offset value
  • the format used includes at least one of the length of the sequence for generating the first signal, the length of the cyclic prefix included in the first signal, and the blank length included in the time domain resources occupied by the first signal
  • the format used by the second signal includes the length of the sequence in which the second signal is generated, the length of the cyclic prefix included in the second signal, and the blank space included in the time domain resources occupied by the second signal At least one of the lengths.
  • the second transceiver 1001 sends first information; the first information is used to determine the first target power value and the first step length; when the first count value is greater than 1, the first information A target power value, the first step length, and the first count value are used together to determine the transmit power value of the first signal; when the first count value is equal to 1, the first target power Among the value, the first step length, and the first count value, only the first target power value is used to determine the transmission power value of the first signal.
  • the first target power value, the first step length, and the second count value are used together Determine the transmission power value of the second signal.
  • the second transceiver 1001 sends second information; the second information is used to determine the second step size; when the first timing offset value and the second timing offset value are not equal And when the second count value is greater than 1, the first target power value, the second step size, and the second count value are jointly used to determine the transmit power value of the second signal; when the When the first timing offset value and the second timing offset value are not equal and the second count value is equal to 1, the first target power value, the second step size, and the second count value Only the first target power value is used to determine the transmission power value of the second signal.
  • the second transceiver 1001 sends a third signal; the third signal is used to determine the reference timing; the timing offset between the sending timing of the first signal and the reference timing is equal to The first timing offset value, the timing offset between the transmission timing of the second signal and the reference timing is equal to the second timing offset value.
  • the capability of the sender of the first signal is used to determine the first timing offset value.
  • the second transceiver 1001 sends third information; when the first timing offset value and the second timing offset value are not equal, the second count value is equal to 1, and the first Three pieces of information are used to determine the upper limit of the first count value.
  • the second transceiver 1001 sends a fourth signal; the fourth signal is used to indicate that the sender of the first signal can determine the first timing offset value according to its own capabilities, or The fourth signal is used to indicate that the sender of the first signal can determine the second timing offset value by itself according to its own capabilities.
  • the second transceiver 1001 includes the antenna 420, the transmitter/receiver 418, the multi-antenna transmitting processor 471, the transmitting processor 416, the multi-antenna receiving processor 472, and the receiving processor in the fourth embodiment. 470. At least the first 6 of the controller/processor 475.
  • the first receiver 1002 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the first and second nodes in this application include, but are not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, and aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNBs, gNBs, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, air base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点发送第一信号,和第二信号,所述第一信号和所述第二信号均被用于发起随机接入;目标计数器被用于随机接入的计数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系。本申请通过将定时偏移值和随机接入信道的发送次数的计数建立联系,优化随机接入信道的发送方案,提高***性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中非地面网络(NTN,Non-Terrestrial Networks)中的传输方法和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络中,当用户设备(UE,User Equipment)自身具有定位能力,且能够估计与卫星之间的传输延迟时,用户设备能够在给卫星发送上行信号时自行将发送提前,实现自行确定并调整TA(Timing Advance,定时提前)的操作,以保证到达卫星的信号能够对齐卫星自身的定时。
传统的LTE(Long-Term Evolution,长期演进)及5G***中,当一次PRACH的发送没有成功后,终端往往通过功率抬升(Power Ramping)的方式以更高的发送功率值发送PRACH以期待被基站正确接收。然而,当终端因为自行调整的TA不准确造成多次PRACH发送没有收到反馈后,终端可以采用传统的不调整TA下的PRACH发送,而此时,先前被累计的功率值抬升将需要被重新考虑是否需要计入新的发送功率值中。
针对上述问题的一个解决方案,本申请提供了一种解决方案。需要说明的是,上述问题描述中,NTN场景仅作为本申请所提供方案的一个应用场景的举例;本申请也同样适用于例如地面网络的场景,取得类似NTN场景中的技术效果。类似的,本申请也同样适用于例如存在UAV(Unmanned Aerial Vehicle,无人驾驶空中飞行器),或物联网设备的网络的场景,以取得类似NTN场景中的技术效果。此外,不同场景(包括但不限于NTN场景和地面网络场景)采用统一解决方案还有助于降低硬件复杂度和成本。
需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
发送第一信号,所述第一信号被用于发起随机接入;
发送第二信号,所述第二信号被用于发起随机接入;
其中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述 第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,上述方法的实质在于:在计算PRACH或者MsgA的发送次数时,采用定时偏移预补偿的PRACH或MsgA的发送次数不会计算到不采用定时偏移预补偿的PRACH或MsgA的发送次数中;相应的,不采用定时偏移预补偿的PRACH或MsgA的发送次数不会计算到采用不定时偏移预补偿的PRACH或MsgA的发送次数中;上述方式保证计数的准确性。
作为一个实施例,上述方法的好处在于:当所述第一节点在采用自行定时偏移预补偿的场景下多次发送PRACH或MsgA仍未成功时,说明所述第一节点估计的TA可能不准确,或者说明所选择的PRACH资源上的碰撞较大,而非因为发送功率不够导致随机接入不成功;若此时,所述第一节点改为不采用定时偏移预补偿的方式发送PRACH或MsgA,则此时前面抬升的功率值需要被重新计算,以避免对其它终端的干扰,且降低功耗。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
作为一个实施例,上述方法的好处在于:所述第一定时偏移值和所述第二定时偏移值相等,说明所述第一节点在发送所述第一信号和所述第二信号时均自行补偿的定时偏移,或者说明所述第一节点在发送所述第一信号和所述第二信号时均未自行补偿的定时偏移,进而所述第一信号的这次发送和所述第二信号的发送统一计数。
作为一个实施例,上述方法的好处在于:所述第一定时偏移值和所述第二定时偏移值不相等,说明所述第一节点在发送所述第一信号时自行补偿定时偏移而发送所述第二信号时未自行补偿定时偏移,或者说明所述第一节点在发送所述第一信号时未自行补偿定时偏移而发送所述第二信号时自行补偿定时偏移,进而所述第一信号的发送不应和所述第二信号的发送统一计数。
作为一个实施例,上述方法的好处在于:为采用定时偏移预补偿和不采用定时偏移预补偿的随机接入方式采用分开的计数方式,以保证功率抬升的准确性。
根据本申请的一个方面,上述方法的特征在于,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
作为一个实施例,上述方法的好处在于:为采用定时偏移预补偿和不采用定时偏移预补偿的PRACH的传输方式配置不同的PRACH格式;采用定时偏移预补偿时因为已不需要区分较大的TA,进而采用的PRACH格式所对应的序列长度较短;不采用定时偏移预补偿时因为需要区分较大的TA,进而采用的PRACH格式所对应的序列长度较长;上述方法优化PRACH配置,避免浪费过多的长序列。
根据本申请的一个方面,上述方法的特征在于包括:
接收第一信息;
其中,所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
根据本申请的一个方面,上述方法的特征在于包括:
接收第二信息;
其中,所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值。
作为一个实施例,上述方法的好处在于:为采用定时偏移预补偿的随机接入和未采用定时偏移预补偿的随机接入分别配置不同的功率抬升步长,以优化发送功率的选择。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信号;
其中,所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值。
根据本申请的一个方面,上述方法的特征在于,所述第一节点的能力被用于确定所述第一定时偏移值。
根据本申请的一个方面,上述方法的特征在于包括:
接收第三信息;
其中,当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限。
作为一个实施例,上述方法的本质在于:所述第一节点采用定时偏移预补偿发送所述第一信号且所述第一节点未采用定时偏移预补偿发送所述第二信号,所述第二信号被记为未采用定时偏移预补偿下的第一次发送。
作为一个实施例,上述方法的本质在于:所述第一节点未采用定时偏移预补偿发送所述第一信号且所述第一节点采用定时偏移预补偿发送所述第二信号,所述第二信号被记为采用定时偏移预补偿下的第一次发送。
根据本申请的一个方面,上述方法的特征在于包括:
接收第四信号;
其中,所述第四信号被用于指示所述第一节点能够根据自身的能力确定所述第一定时偏移值,或者所述第四信号被用于指示所述第一节点能够根据自身的能力确定所述第二定时偏移值。
作为一个实施例,上述方法的好处:所述第一节点是否能够通过自身能力确定所述第一定时偏移值,并采用所述第一定时偏移值发送所述第一信号是需要通过基站指示并允许的,进而方便基站对PRACH资源的分配。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
检测第一信号,所述第一信号被用于发起随机接入;
检测第二信号,所述第二信号被用于发起随机接入;
其中,目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值 和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
根据本申请的一个方面,上述方法的特征在于,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
根据本申请的一个方面,上述方法的特征在于包括:
发送第一信息;
其中,所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值。
根据本申请的一个方面,上述方法的特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信息;
其中,所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值。
根据本申请的一个方面,上述方法的特征在于包括:
发送第三信号;
其中,所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值。
根据本申请的一个方面,上述方法的特征在于,所述第一信号的发送者的能力被用于确定所述第一定时偏移值。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息;
其中,当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限。
根据本申请的一个方面,上述方法的特征在于包括:
发送第四信号;
其中,所述第四信号被用于指示所述第一信号的发送者能够根据自身的能力自行确定所述第一定时偏移值,或者所述第四信号被用于指示所述第一信号的发送者能够根据自身的能力自行确定所述第二定时偏移值。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一收发机,发送第一信号,所述第一信号被用于发起随机接入;
第一发射机,发送第二信号,所述第二信号被用于发起随机接入;
其中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值, 所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第二收发机,检测第一信号,所述第一信号被用于发起随机接入;
第一接收机,检测第二信号,所述第二信号被用于发起随机接入;
其中,目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.在计算PRACH或者MsgA的发送次数时,采用定时偏移预补偿的PRACH或MsgA的发送次数不会计算到不采用定时偏移预补偿的PRACH或MsgA的发送次数中;相应的,不采用定时偏移预补偿的PRACH或MsgA的发送次数不会计算到采用不定时偏移预补偿的PRACH或MsgA的发送次数中;上述方式保证计数的准确性;
-.当所述第一节点在采用自行定时偏移预补偿的场景下多次发送PRACH或MsgA仍未成功时,说明所述第一节点估计的TA可能不准确,或者说明所选择的PRACH资源上的碰撞较大,而非因为发送功率不够导致随机接入不成功;若此时,所述第一节点改为不采用定时偏移预补偿的方式发送PRACH或MsgA,则此时前面抬升的功率值需要被重新计算,以避免对其它终端的干扰,且降低功耗;
-.为采用定时偏移预补偿和不采用定时偏移预补偿的随机接入方式采用分开的计数方式,以保证功率抬升的准确性;此外为采用定时偏移预补偿和不采用定时偏移预补偿的PRACH的传输方式配置不同的PRACH格式;采用定时偏移预补偿时因为已不需要区分较大的TA,进而采用的PRACH格式所对应的序列长度较短;不采用定时偏移预补偿时因为需要区分较大的TA,进而采用的PRACH格式所对应的序列长度较长;上述方法优化PRACH配置,避免浪费过多的长序列;
-.采用定时偏移预补偿的随机接入和未采用定时偏移预补偿的随机接入分别配置不同的功率抬升步长,以优化发送功率的选择;
-.所述第一节点是否能够通过自身能力确定所述第一定时偏移值,并采用所述第一定时偏移值发送所述第一信号是需要通过基站指示并允许的,进而方便基站对PRACH资源的分配。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第二信号的流程图;
图6示出了根据本申请的一个实施例的一个给定定时偏移值的示意图;
图7示出了根据本申请的一个实施例的一个目标定时偏移值的示意图;
图8示出了根据本申请的一个实施例的目标计数器的流程图;
图9示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中发送第一信号,所述第一信号被用于发起随机接入;在步骤102中发送第二信号,所述第二信号被用于发起随机接入。
实施例1中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,所述第一信号包括PRACH。
作为一个实施例,所述第二信号包括PRACH。
作为一个实施例,所述第一信号包括MsgA。
作为一个实施例,所述第二信号包括MsgA。
作为一个实施例,所述第一信号包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第二信号包括PUSCH。
作为一个实施例,所述第一信号和所述第二信号均包括PRACH。
作为一个实施例,所述第一信号和所述第二信号均包括MsgA。
作为一个实施例,所述第一计数值是正整数。
作为一个实施例,所述第二计数值是正整数。
作为一个实施例,所述第一信号的发送定时包括所述第一信号所占用的无线帧的边界的时域位置。
作为一个实施例,所述第二信号的发送定时包括所述第二信号所占用的无线帧的边界的时域位置。
作为一个实施例,所述第一信号的发送定时包括所述第一信号所占用的无线帧的边界的时域位置。
作为一个实施例,所述第二信号的发送定时包括所述第二信号所占用的无线帧的边界的时域位置。
作为一个实施例,所述第一定时偏移值等于0。
作为一个实施例,所述第一定时偏移值等于N_TA,所述N_TA的单位是毫秒。
作为一个实施例,所述第一定时偏移值包括N_TA,所述N_TA的单位是毫秒。
作为上述两个实施例的一个子实施例,所述N_TA是所述第一节点估计的所述第一节点到本申请中所述第二节点的上行传输的定时提前。
作为上述两个实施例的一个子实施例,所述N_TA大于0。
作为一个实施例,所述第二定时偏移值等于0。
作为一个实施例,所述第二定时偏移值等于N_TA,所述N_TA的单位是毫秒。
作为一个实施例,所述第二定时偏移值包括N_TA,所述N_TA的单位是毫秒。
作为上述两个实施例的一个子实施例,所述N_TA是所述第一节点估计的所述第一节点到本申请中所述第二节点的上行传输的定时提前。
作为上述两个实施例的一个子实施例,所述N_TA大于0。
作为一个实施例,所述第一节点具备GNSS(Global Navigation Satellite System,全球导航卫星***)能力。
作为一个实施例,所述第一节点具备上行同步预补偿(Pre-Compensation)能力(Capability)。
作为一个实施例,所述第一节点具备自行估计上行TA并进行上行同步预补偿能力。
作为一个实施例,上述短语所发起的随机接入不成功的意思包括:所述第一节点在发送完所述第一信号后的给定时间窗中没有收到针对所述第一信号的反馈。
作为一个实施例,上述短语所发起的随机接入不成功的意思包括:所述第一节点在发送完所述第一信号后的给定时间窗中没有收到针对所述第一信号的MsgB。
作为该实施例的一个子实施例,所述给定时间窗通过ra-ResponseWindow配置。
作为该实施例的一个子实施例,所述第一信号的所述反馈是随机接入反馈(Random Access Response)。
作为该实施例的一个子实施例,所述第一信号的所述反馈包括MsgB。
作为一个实施例,上述短语所发起的随机接入不成功的意思包括:所述第一节点在发送完所述第一信号后的给定时间窗中收到第一反馈,所述第一反馈所携带的MAC subPDU中包括Backoff指示。
作为一个实施例,上述短语所发起的随机接入不成功的意思包括:所述第一节点在发送完所述第一信号后的给定时间窗中收到第一反馈,所述第一反馈所携带的MAC(Medium Access Control,媒体接入控制)subPDU(Protocol Data Unit,协议数据单元)中找不到与所述第一信号所采用的PREAMBLE_INDEX相同的随机接入前导序列标识(Random Access Preamble identifiers)。
作为一个实施例,本申请中的所述第一节点从发送所述第一信号时开始到发送所述第二信号一直处于RRC_IDLE状态。
作为一个实施例,本申请中的所述第一节点从发送所述第一信号时开始到发送所述第二信号一直处于上行失步(out of synchronization)状态。
作为一个实施例,所述第一定时偏移值不等于0,所述第一定时偏移值与本申请中的所述第二节点的类型有关。
作为该子实施例的一个附属实施例,所述第二节点所对应的类型是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星、Airborne Platform(空中平台)中的一种。
作为一个实施例,所述第一定时偏移值不等于0,所述第一定时偏移值与本申请中的所述第二节点的高度有关。
作为一个实施例,所述第一定时偏移值不等于0,所述第一定时偏移值与所述第一节点的位置信息有关。
作为一个实施例,所述第二定时偏移值不等于0,所述第二定时偏移值与本申请中的所述第二节点的类型有关。
作为该子实施例的一个附属实施例,所述第二节点所对应的类型是GEO卫星、MEO卫星、LEO卫星、HEO卫星、Airborne Platform中的一种。
作为一个实施例,所述第二定时偏移值不等于0,所述第一定时偏移值与本申请中的所述第二节点的高度有关。
作为一个实施例,所述第二定时偏移值不等于0,所述第二定时偏移值与所述第一节点 的位置信息有关。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第二信号是无线信号。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第一节点自行确定所述第一定时偏移量。
作为一个实施例,所述第一节点自行确定所述第二定时偏移量。
作为一个实施例,所述第一信号包括四步RACH中的一个PRACH。
作为一个实施例,所述第二信号包括四步RACH中的一个PRACH。
作为一个实施例,所述第一信号包括两步RACH中的一个Preamble。
作为一个实施例,所述第二信号包括两步RACH中的一个Preamble。
作为一个实施例,所述第一信号包括两步RACH中的一个MsgA。
作为一个实施例,所述第二信号包括两步RACH中的一个MsgA。
作为一个实施例,第一序列被用于生成所述第一信号,所述第一序列是伪随机序列。
作为一个实施例,第一序列被用于生成所述第一信号,所述第一序列由31长的Gold序列生成。
作为一个实施例,第二序列被用于生成所述第二信号,所述第二序列是伪随机序列。
作为一个实施例,第二序列被用于生成所述第二信号,所述第二序列由31长的Gold序列生成。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理 UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述gNB203与地面站之间的无线链路是Feeder Link。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大延迟网络中的传输。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大延迟网络中的传输。
作为一个实施例,所述第一节点具有GPS(Global Positioning System,全球定位***)能力。
作为一个实施例,所述第一节点具有GNSS(Global Navigation Satellite System,全球导航卫星***)能力。
作为一个实施例,所述第一节点具有BDS(BeiDou Navigation Satellite System,北斗卫星导航***)能力。
作为一个实施例,所述第一节点具有GALILEO(Galileo Satellite Navigation System,伽利略卫星导航***)能力。
作为一个实施例,所述第一节点具有进行上行同步预补偿的能力。
作为一个实施例,所述第一节点具有自行估计上行TA的能力。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体 上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信息生成于所述RRC306。
作为一个实施例,所述第二信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信息生成于所述RRC306。
作为一个实施例,所述第三信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第三信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第三信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第三信息生成于所述RRC306。
作为一个实施例,所述第四信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信息生成于所述RRC306。
作为一个实施例,所述第四信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第四信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二节点发送定位信号,且本申请中的所述第一节点接收定位信号。
作为该实施例的一个子实施例,触发所述定位信号发送的是SMLC(Serving Mobile Location Centre,移动台定位服务中心)。
作为该实施例的一个子实施例,触发所述定位信号发送的是E-SMLC。
作为该实施例的一个子实施例,触发所述定位信号发送的是SLP(SUPL Location Platform,SUPL定位平台);其中,SUPL是Secure User Plane Location(安全用户面定位)。
作为该实施例的一个子实施例,触发所述定位信号发送的是LMU(Location Measurement Unit,定位测量单元)。
作为该实施例的一个子实施例,触发所述定位信号发送的操作来自核心网。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410 处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:发送第一信号,所述第一信号被用于发起随机接入;以及发送第二信号,所述第二信号被用于发起随机接入;目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号,所述第一信号被用于发起随机接入;以及发送第二信号,所述第二信号被用于发起随机接入;目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:检测第一信号,所述第一信号被用于发起随机接入;以及检测第二信号,所述第二信号被用于发起随机接入;目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:检测第一信号,所述第一信号被用于发起随机接入;以及检测第二信号,所述第二信号被用于发起随机接入;目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之 间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个地面终端。
作为一个实施例,所述第一通信设备450是一个地面设备。
作为一个实施例,所述第一通信设备450是一个近地终端。
作为一个实施例,所述第一通信设备450是一架飞机。
作为一个实施例,所述第一通信设备450是一个飞行器。
作为一个实施例,所述第一通信设备450是一艘水面交通工具。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个非地面基站。
作为一个实施例,所述第二通信设备410是GEO卫星。
作为一个实施例,所述第二通信设备410是MEO卫星。
作为一个实施例,所述第二通信设备410是LEO卫星。
作为一个实施例,所述第二通信设备410是HEO卫星。
作为一个实施例,所述第二通信设备410是Airborne Platform。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于检测第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于检测第二信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第二信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二信息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第三信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第三信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第三信息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第三信息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第四信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第四信号。
作为一个实施例,所述接收处理器456,或所述控制器/处理器459中的至少之一被用 于确定所述第一定时偏移值。
作为一个实施例,所述接收处理器456,或所述控制器/处理器459中的至少之一被用于确定所述第二定时偏移值。
作为一个实施例,所述接收处理器456,或所述控制器/处理器459中的至少之一被用于确定所述第一计数值。
作为一个实施例,所述接收处理器456,或所述控制器/处理器459中的至少之一被用于确定所述第二计数值。
实施例5
实施例5示例了一个第二信号的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信;其中,方框F0、方框F1和方框F2中的步骤是可选的。
对于 第一节点U1,在步骤S10中接收第三信号;在步骤S11中接收第一信息;在步骤S12中接收第二信息;在步骤S13中接收第三信息;在步骤S14中接收第四信号;在步骤S15中发送第一信号;在步骤S16中发送第二信号。
对于 第二节点N2,在步骤S20中发送第三信号;在步骤S21中发送第一信息;在步骤S22中发送第二信息;在步骤S23中发送第三信息;在步骤S24中发送第四信号;在步骤S25中检测第一信号;在步骤S26中检测第二信号。
实施例5中,所述第一信号被用于发起随机接入,所述第二信号被用于发起随机接入;目标计数器被用于所述第一节点U1所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功;所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值;所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值;所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限;所述第四信号被用于指示所述第一节点U1能够根据自身的能力自行确定所述第一定时偏移值,或者所述第四信号被用于指示所述第一节点U1能够根据自身的能力自行确定所述第二定时偏移值。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一计数值等于M,所述第二计数值等于M+1,所述M是正整数。
作为该子实施例的一个附属实施例,所述M小于PRACH的最大重传次数。
作为该子实施例的一个附属实施例,所述M小于MsgA的最大重传次数。
作为该实施例的一个子实施例,所述第一定时偏移值和所述第二定时偏移值相等的意思包括:所述第一定时偏移值和所述第二定时偏移值均等于0。
作为该实施例的一个子实施例,所述第一定时偏移值和所述第二定时偏移值相等的意思包括:所述第一定时偏移值和所述第二定时偏移值均等于本申请中的所述N_TA。
作为该实施例的一个子实施例,所述第一定时偏移值和所述第二定时偏移值不相等的意思包括:所述第一定时偏移值等于0,所述第二定时偏移值等于N_TA。
作为该实施例的一个子实施例,所述第一定时偏移值和所述第二定时偏移值不相等的意思包括:所述第二定时偏移值等于0,所述第一定时偏移值等于N_TA。
作为一个实施例,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
作为该实施例的一个子实施例,上述短语所述第一信号所采用的格式和所述第一定时偏移值有关的意思包括:所述第一信号所采用的格式是第一格式,所述第一格式是第一格式集合中的一个格式,所述第一格式集合包括1个或多个格式,所述第一节点U1在采用所述第一定时偏移值发送所述第一信号时采用所述第一格式集合中的第一格式生成所述第一信号。
作为该实施例的一个子实施例,上述短语所述第一信号所采用的格式和所述第一定时偏移值有关的意思包括:所述第一信号所采用的格式是第一格式,所述第一格式是第一格式集合中的一个格式,所述第一格式集合包括1个或多个格式,所述第一格式集合与所述第一定时偏移值相关联。
作为该实施例的一个子实施例,上述短语所述第二信号所采用的格式和所述第二定时偏移值有关的意思包括:所述第二信号所采用的格式是第二格式,所述第二格式是第二格式集合中的一个格式,所述第二格式集合包括1个或多个格式,所述第一节点U1在采用所述第二定时偏移值发送所述第二信号时采用所述第二格式集合中的第二格式生成所述第二信号。
作为该实施例的一个子实施例,上述短语所述第二信号所采用的格式和所述第二定时偏移值有关的意思包括:所述第二信号所采用的格式是第二格式,所述第二格式是第二格式集合中的一个格式,所述第二格式集合包括1个或多个格式,所述第二格式集合与所述第二定时偏移值相关联。
作为该实施例的一个子实施例,本申请中的所述第一格式和所述第二格式分别对应不同的生成序列长度。
作为该实施例的一个子实施例,本申请中的所述第一格式和所述第二格式分别对应不同的循环前缀的长度。
作为该实施例的一个子实施例,本申请中的所述第一格式和所述第二格式分别占用不同的空白的长度。
作为一个实施例,承载所述第一信息的信令是RRC信令。
作为一个实施例,承载所述第一信息的是TS 38.331中的IE(Information Elements,信息颗粒)RACH-ConfigGeneric。
作为一个实施例,所述第一目标功率值包括TS 38.331中的preambleReceivedTargetPower。
作为一个实施例,所述第一目标功率值包括TS 38.321中的DELTA_PREAMBLE。
作为一个实施例,所述第一目标功率值的单位是dBm。
作为一个实施例,所述第一目标功率值的单位是瓦。
作为一个实施例,所述第一目标功率值的单位是毫瓦。
作为一个实施例,所述第一目标功率值的单位是dB。
作为一个实施例,所述第一步长包括TS 38.321中的PREAMBLE_POWER_RAMPING_STEP。
作为一个实施例,所述第一步长包括TS 38.331中的powerRampingStep。
作为一个实施例,所述第一步长的单位是dB。
作为一个实施例,所述第一计数值包括TS 38.321中的PREAMBLE_POWER_RAMPING_COUNTER。
作为一个实施例,所述第一目标功率值与所述第一定时偏移值有关。
作为一个实施例,所述第一目标功率值与所述第二定时偏移值有关。
作为一个实施例,所述第一目标功率值与所述第二节点N2的类型有关。
作为一个实施例,所述第一目标功率值与所述第二节点N2的高度有关。
作为一个实施例,所述第一步长与所述第一定时偏移值有关。
作为一个实施例,所述第一步长与所述第二节点N2的类型有关。
作为一个实施例,所述第一步长与所述第二节点N2的高度有关。
作为一个实施例,当所述第一计数值大于1时,所述第一信号的发射功率值是第一最大功率值和第一功率值中的较小值,所述第一功率值与所述第一目标功率值线性相关,且所述第一功率值与所述第一步长和所述第一计数值的乘积线性相关。
作为该实施例的一个子实施例,所述第一最大功率值包括TS 38.213中的P CMAX,f,c(i)。
作为该实施例的一个子实施例,所述第一功率值等于所述第一目标功率值、DELTA_PREAMBLE与第一路损值三者之和,所述第一路损值包括TS 38.213中的PL b,f,c
作为该实施例的一个子实施例,所述第一功率值是P 1,所述P 1通过下面公式确定:
P 1=preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1)×PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
其中,
-preambleReceivedTargetPowe是所述第一目标功率值,
-PREAMBLE_POWER_RAMPING_COUNTER是所述第一计数值,
-PL b,f,c对应所述第一节点U1到所述第二节点N2的路径损耗,
-PREAMBLE_POWER_RAMPING_STEP是所述第一步长。
作为一个实施例,当所述第一计数值等于1时,所述第一信号的发射功率值是第一最大功率值和第一功率值中的较小值,所述第一功率值与所述第一目标功率值线性相关。
作为该实施例的一个子实施例,所述第一最大功率值包括TS 38.213中的P CMAX,f,c(i)。
作为该实施例的一个子实施例,所述第一功率值等于所述第一目标功率值、DELTA_PREAMBLE与第一路损值三者之和,所述第一路损值包括TS 38.213中的PL b,f,c
作为该实施例的一个子实施例,所述第一功率值是P 1,所述P 1通过下面公式确定:
P 1=preambleReceivedTargetPower+DELTA_PREAMBLE+PL b,f,c
其中,
-preambleReceivedTargetPowe是所述第一目标功率值,
-PL b,f,c对应所述第一节点U1到所述第二节点N2的路径损耗。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一信号和所述第二信号遵循相同的功率抬升进程。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值与所述第一计数值有关。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一信号和所述第二信号共享所述目标计数器。
作为该实施例的一个子实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二信号的发射功率值是第一最大功率值和第二功率值中的较小值,所述第二功率值与所述第一目标功率值线性相关,且所述第二功率值与所述第一步长和所述第二计数值的乘积线性相关。
作为该子实施例的一个附属实施例,所述第一最大功率值包括TS 38.213中的P CMAX,f,c(i)。
作为该子实施例的一个附属实施例,所述第二功率值等于所述第一目标功率值、DELTA_PREAMBLE与第一路损值三者之和,所述第一路损值包括TS 38.213中的PL b,f,c
作为该子实施例的一个附属实施例,所述第二功率值是P 2,所述P 2通过下面公式确定:
P 2=preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1)×PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
其中,
-preambleReceivedTargetPowe是所述第一目标功率值,
-PREAMBLE_POWER_RAMPING_COUNTER是所述第二计数值,
-PL b,f,c对应所述第一节点U1到所述第二节点N2的路径损耗,
-PREAMBLE_POWER_RAMPING_STEP是所述第一步长。
作为一个实施例,承载所述第二信息的信令是RRC信令。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第二计数值不将所述第一信号的发送计数。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第二计数值与所述第一计数值无关。
作为一个实施例,所述第一计数值和所述第二计数值分别针对终端采用提前补偿定时提前时随机接入功率抬升计数值和终端不采用提前补偿定时提前时随机接入功率抬升计数值。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值不相等时,并且所述第二计数值大于1时,所述第二信号的发射功率值是第一最大功率值和第二功率值中的较小值,所述第二功率值与所述第一目标功率值线性相关,且所述第二功率值与所述第二步长和所述第二计数值的乘积线性相关。
作为该实施例的一个子实施例,所述第一最大功率值包括TS 38.213中的P CMAX,f,c(i)。
作为该实施例的一个子实施例,所述第二功率值等于所述第一目标功率值、DELTA_PREAMBLE与第一路损值三者之和,所述第一路损值包括TS 38.213中的PL b,f,c
作为该实施例的一个子实施例,所述第二功率值是P 2,所述P 2通过下面公式确定:
P 2=preambleReceivedTargetPower+DELTA_PREAMBLE+(PREAMBLE_POWER_RAMPING_COUNTER–1)×PREAMBLE_POWER_RAMPING_STEP+PL b,f,c
其中,
-preambleReceivedTargetPowe是所述第一目标功率值,
-PREAMBLE_POWER_RAMPING_COUNTER是所述第二计数值,
-PL b,f,c对应所述第一节点到所述第二节点的路径损耗,
-PREAMBLE_POWER_RAMPING_STEP是所述第二步长。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值不相等时,并且所述第二计数值等于1时,所述第二信号的发射功率值是第一最大功率值和第二功率值中的较小值,所述第二功率值与所述第一目标功率值线性相关。
作为该实施例的一个子实施例,所述第一最大功率值包括TS 38.213中的P CMAX,f,c(i)。
作为该实施例的一个子实施例,所述第二功率值等于所述第一目标功率值、DELTA_PREAMBLE与第一路损值三者之和,所述第一路损值包括TS 38.213中的PL b,f,c
作为该实施例的一个子实施例,所述第二功率值是P 2,所述P 2通过下面公式确定:
P 2=preambleReceivedTargetPower+DELTA_PREAMBLE+PL b,f,c
其中,
-preambleReceivedTargetPowe是所述第一目标功率值,
-PL b,f,c对应所述第一节点U1到所述第二节点N2的路径损耗。
作为一个实施例,所述第三信号是无线信号。
作为一个实施例,所述第三信号是基带信号。
作为一个实施例,所述第三信号是同步信号。
作为一个实施例,所述第三信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第三信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第三信号包括SSB(SS/PBCH Block,同步信号/物理广播信号块)。
作为一个实施例,所述第一节点U1根据所述参考定时确定的预留用于发送所述第一信号的时域资源的起始时刻是第一候选时刻,所述第一节点U1实际发送所述第一信号所占用的时域资源的起始时刻是第一时刻,所述第一时刻与所述第一候选时刻之间的时间间隔等于所述第一定时偏移值。
作为一个实施例,所述第一节点U1根据所述参考定时确定的预留用于发送所述第二信号的时域资源的起始时刻是第二候选时刻,所述第一节点U1实际发送所述第二信号所占用的时域资源的起始时刻是第二时刻,所述第二时刻与所述第二候选时刻之间的时间间隔等于所述第二定时偏移值。
作为一个实施例,所述参考定时是下行定时。
作为一个实施例,所述参考定时包括无线帧(Radio Frame)的边界(Boundary)。
作为一个实施例,所述参考定时包括无线帧中时隙的边界。
作为一个实施例,所述确定所述参考定时包括确定下行SFN(System Frame Number,***帧号)。
作为一个实施例,所述确定所述参考定时确定确定下行时隙(Slot)边界。
作为一个实施例,所述确定所述参考定时包括确定下行OFDM符号边界。
作为一个实施例,所述第一节点U1的能力被用于确定所述第一定时偏移值。
作为一个实施例,所述第一节点U1的能力被用于确定所述第二定时偏移值。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1的定位能力。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1的上行同步预补偿的能力。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1的能够自行估计上行TA的能力。
作为一个实施例,所述第一节点U1的能力包括:所述第一节点U1根据定位结果确定进 行上行同步预补偿的能力。
作为一个实施例,上述短语所述第一节点U1的能力被用于确定所述第一定时偏移值的意思包括:所述第一节点U1根据上行同步预补偿能力确定所述第一定时偏移值。
作为一个实施例,上述短语所述第一节点U1的能力被用于确定所述第一定时偏移值的意思包括:所述第一节点U1根据自行估计的上行TA确定所述第一定时偏移值。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1的定位能力。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1对定时的预补偿(Pre-Compensation)能力(Capability)。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1的定位精度。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1是否支持全球定位***(GNSS,Global Navigation Satellite System)。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1对于所述第一节点U1到本申请中的所述第二节点N2之间的传输距离的计算能力。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1对于所述第一节点U1到本申请中的所述第二节点N2之间的传输延时的计算能力。
作为一个实施例,所述第一节点U1的能力包括所述第一节点U1对于所述第一节点U1到本申请中的所述第二节点N2之间的传输延时的预补偿(Pre-Compensation)能力。
作为一个实施例,所述第一节点U1确定的来自所述第二节点N2的无线信号的RSRP(Reference Signal Received Power,参考信号接收功率)被用于确定所述第一定时偏移值。
作为该实施例的一个子实施例,所述RSRP和所述第一节点U1的能力被共同用于确定所述第一定时偏移值。
作为该实施例的一个子实施例,所述来自所述第二节点N2的无线信号包括所述第二节点N2发送的CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,承载所述第三信息的是RRC信令。
作为一个实施例,所述第一计数值的所述上限是一个大于1的正整数。
作为一个实施例,当所述第一计数值达到上限时,所述第一计数值重置为1。
作为一个实施例,所述第二计数值的所述上限是一个大于1的正整数。
作为一个实施例,当所述第二计数值达到上限时,所述第二一计数值重置为1。
作为一个实施例,所述第二节点N2检测所述第一信号包括所述第二节点N2正确接收所述第一信号。
作为一个实施例,所述第二节点N2在检测所述第一信号后,在本申请中的所述给定时间窗中没有发送针对所述第一信号的反馈。
作为一个实施例,所述检测第一信号包括没有正确接收所述第一信号。
作为一个实施例,所述第二节点N2在检测所述第一信号后,在本申请中的所述给定时间窗中没有发送针对所述第一信号的MsgB。
作为一个实施例,所述第二节点N2在检测所述第一信号后,在本申请中的所述给定时间窗中发送第一反馈,所述第一反馈所携带的MAC subPDU中包括Backoff指示。
作为一个实施例,所述第二节点N2在检测所述第一信号后,在本申请中的所述给定时间窗中发送第一反馈,所述第一反馈所携带的MAC subPDU中包括Backoff指示。
作为一个实施例,所述第二节点N2在检测所述第一信号后,在本申请中的所述给定时间窗中发送第一反馈,所述第一反馈所携带的MAC subPDU中找不到与所述第一信号所采用的PREAMBLE_INDEX相同的随机接入前导序列标识(Random Access Preamble identifiers)。
作为一个实施例,所述第二节点N2检测所述第二信号包括所述第二节点N2正确接收所述第二信号。
作为一个实施例,所述第二节点N2检测所述第二信号包括所述第二节点N2没有正确接 收所述第二信号。
作为一个实施例,所述第二节点N2是一个卫星。
作为一个实施例,所述第二节点N2是一个用于非地面通信的基站。
作为一个实施例,所述第一节点U1根据所述第一节点U1的位置信息确定所述第一定时偏移值。
作为一个实施例,所述第一节点U1根据所述第一节点U1的位置信息确定所述第二定时偏移值。
作为一个实施例,本申请中的所述第一节点U1的位置信息包括:所述第一节点U1在发送所述第一信号时所在的经度和纬度。
作为一个实施例,本申请中的所述第一节点U1的位置信息包括:所述第一节点U1在发送所述第一信号时与所述第二节点N2在地表的投影点的距离。
作为一个实施例,本申请中的所述第一节点U1的位置信息包括:所述第一节点U1在发送所述第一信号时与所述第二节点N2的距离。
作为一个实施例,从所述目标计数器的计数值等于所述第一计数值到所述目标计数器的计数值等于所述第二计数值之间的过程中,所述目标计数器没有被挂起过(Suspended)。
作为一个实施例,从所述第一信号的发送起始时刻到所述第二信号的发送起始时刻,所述目标计数器没有被挂起过。
作为一个实施例,从所述目标计数器的计数值等于所述第一计数值到所述目标计数器的计数值等于所述第二计数值之间的过程中,所述第一节点没有从低层(Lower Layer)收到过挂起所述目标计数器的通知(Notification)。
作为一个实施例,从所述第一信号的发送起始时刻到所述第二信号的发送起始时刻,所述第一节点没有从低层(Lower Layer)收到过挂起(Suspending)所述目标计数器的通知(Notification)。
作为一个实施例,从所述目标计数器的计数值等于所述第一计数值到所述目标计数器的计数值等于所述第二计数值之间的过程中,所述第一信号和所述第二信号都被关联到相同的SSB或者相同的CSI-RS。
作为一个实施例,从所述第一信号的发送起始时刻到所述第二信号的发送起始时刻,所述第一信号和所述第二信号都被关联到相同的SSB或者相同的CSI-RS。
作为一个实施例,从所述目标计数器的计数值等于所述第一计数值到所述目标计数器的计数值等于所述第二计数值之间的过程中,所述第一节点设备没有从低层(Lower Layer)收到过挂起所述目标计数器的通知,并且所述第一信号和所述第二信号都被关联到相同的SSB或者相同的CSI-RS。
作为一个实施例,从所述第一信号的发送起始时刻到所述第二信号的发送起始时刻,所述第一节点设备没有从低层收到过挂起所述目标计数器的通知,并且所述第一信号和所述第二信号都被关联到相同的SSB或者相同的CSI-RS。
实施例6
实施例6示例了一个给定定时偏移值的示意图,如附图6所示。在附图6中,所述第一节点具有定位能力,且所述第一节点具有上行定时提前预补偿能力;所述第一节点自行估计所述第一节点向本申请中的所述第二节点的上行发送的定时提前,所述定时提前等于所述给定定时偏移值。
如图中所示,作为一个实施例,所述第一节点根据所述参考定时确定的预留用于发送给定信号的时隙的起始时刻是第一候选时刻,所述第一节点实际发送所述给定信号所占用的时隙的起始时刻是第一时刻,所述第一时刻与所述第一候选时刻之间的时间间隔等于所述给定定时偏移值;图中的方格标识时隙,方格中的数字表示时隙编号;图中标识的T1对应所述给定定时偏移值。
作为一个实施例,所述给定定时偏移值是本申请中的所述第一定时偏移值,所述给 定信号是所述第一信号。
作为一个实施例,所述给定定时偏移值是本申请中的所述第二定时偏移值,所述给定信号是所述第二信号。
作为一个实施例,所述给定定时偏移值的单位是毫秒。
作为一个实施例,所述给定定时偏移值在时域的持续时间等于正整数个时隙的持续时间。
作为一个实施例,所述给定定时偏移值在时域的持续时间等于正整数个连续的多载波符号的持续时间。
实施例7
实施例7示例了一个目标定时偏移值的示意图,如附图7所示。在附图7中,所述第一节点按照参考定时确定的预留用于发送目标信号的时隙的起始时刻是第二候选时刻,所述第一节点实际发送所述目标信号所占用的时隙的起始时刻是第二时刻,所述第二时刻与所述第二候选时刻之间的时间间隔等于所述目标定时偏移值;图中的方格标识时隙,方格中的数字表示时隙编号;图中标识的T2对应所述目标定时偏移值,所述T2等于0。
作为一个实施例,所述目标定时偏移值是本申请中的所述第一定时偏移值,所述给定信号是所述第一信号。
作为一个实施例,所述目标定时偏移值是本申请中的所述第二定时偏移值,所述给定信号是所述第二信号。
实施例8
实施例8示例了根据本申请的目标计数器的流程图;如附图8所示。在附图8中,所述第一节点执行以下步骤:
-.在步骤801中,判断所述第一定时偏移值是否等于所述第二定时偏移值,如果“是”进入步骤802,如果“否”进入步骤803;
-.在步骤802中,第一计数值保持不变,第二计数值等于第一计数值加1;
-.在步骤803中,第一计数值保持不变,第二计数值等于1;
-.在步骤804中,判断第一计数制是否大于第一阈值;如果“是”则进入步骤8041;如果“否”则进入步骤805;在步骤8041将第一计数值重置为“1”,并进入步骤805;
-.在步骤805中,判断第二计数制是否大于第二阈值;如果“是”则进入步骤8051;如果“否”则进入步骤801;在步骤8051将第一计数值重置为“1”,并进入步骤801。
作为一个实施例,所述第一阈值是所述第一计数值的上限值。
作为一个实施例,所述第二阈值是所述第二计数值的上限值。
作为一个实施例,所述第一阈值是通过更高层(Higher Layer)信令配置的。
作为一个实施例,所述第一阈值是通过RRC信令配置的。
作为一个实施例,所述第二阈值是通过更高层信令配置的。
作为一个实施例,所述第二阈值是通过RRC信令配置的。
作为一个实施例,所述目标计数器包括第一子计数器和第二子计数器,所述第一子计数器被用于所述第一计数值的计数,所述第二子计数器被用于所述第二计数值的计数。
实施例9
实施例9示例了一个第一节点中的结构框图,如附图9所示。附图9中,第一节点900包括第一收发机901和第一发射机902。
第一收发机901,发送第一信号,所述第一信号被用于发起随机接入;
第一发射机902,发送第二信号,所述第二信号被用于发起随机接入;
实施例9中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定 时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
作为一个实施例,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
作为一个实施例,所述第一收发机901接收第一信息;所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值。
作为一个实施例,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
作为一个实施例,所述第一收发机901接收第二信息;所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值。
作为一个实施例,所述第一收发机901接收第三信号;所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值。
作为一个实施例,所述第一节点的能力被用于确定所述第一定时偏移值。
作为一个实施例,所述第一收发机901接收第三信息;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限。
作为一个实施例,所述第一收发机901接收第四信号;所述第四信号被用于指示所述第一节点能够根据自身的能力自行确定所述第一定时偏移值。
作为一个实施例,所述第一收发机901包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、接收处理器456、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一发射机902包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例10
实施例10示例了一个第二节点中的结构框图,如附图10所示。附图10中,第二节点1000包括第二收发机1001和第一接收机1002。
第二收发机1001,检测第一信号,所述第一信号被用于发起随机接入;
第一接收机1002,检测第二信号,所述第二信号被用于发起随机接入;
实施例10中,目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用 于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
作为一个实施,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
作为一个实施,,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
作为一个实施,所述第二收发机1001发送第一信息;所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值。
作为一个实施,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
作为一个实施,所述第二收发机1001发送第二信息;所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值。
作为一个实施,所述第二收发机1001发送第三信号;所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值。
作为一个实施,所述第一信号的发送者的能力被用于确定所述第一定时偏移值。
作为一个实施,所述第二收发机1001发送第三信息;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限。
作为一个实施,所述第二收发机1001发送第四信号;所述第四信号被用于指示所述第一信号的发送者能够根据自身的能力自行确定所述第一定时偏移值,或者所述第四信号被用于指示所述第一信号的发送者能够根据自身的能力自行确定所述第二定时偏移值。
作为一个实施例,所述第二收发机1001包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、发射处理器416、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前6者。
作为一个实施例,所述第一接收机1002包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块 的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一收发机,发送第一信号,所述第一信号被用于发起随机接入;
    第一发射机,发送第二信号,所述第二信号被用于发起随机接入;
    其中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
  2. 根据权利要求1所述的第一节点,其特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第二计数值等于所述第一计数值加1;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值不大于所述第一计数值。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一信号所采用的格式和所述第一定时偏移值有关,所述第二信号所采用的格式和所述第二定时偏移值有关;所述第一信号所采用的格式包括生成所述第一信号的序列的长度、所述第一信号所包括的循环前缀的长度、所述第一信号所占用的时域资源所包括的空白长度中的至少之一;所述第二信号所采用的格式包括生成所述第二信号的序列的长度、所述第二信号所包括的循环前缀的长度、所述第二信号所占用的时域资源所包括的空白长度中的至少之一。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一收发机接收第一信息;所述第一信息被用于确定第一目标功率值和第一步长;当所述第一计数值大于1时,所述第一目标功率值、所述第一步长和所述第一计数值共同被用于确定所述第一信号的发射功率值;当所述第一计数值等于1时,所述第一目标功率值、所述第一步长和所述第一计数值中只有所述第一目标功率值被用于确定所述第一信号的发射功率值。
  5. 根据权利要求4所述的第一节点,其特征在于,当所述第一定时偏移值和所述第二定时偏移值相等时,所述第一目标功率值、所述第一步长和所述第二计数值共同被用于确定所述第二信号的发射功率值。
  6. 根据权利要求4所述的第一节点中的方法,其特征在于,所述第一收发机接收第二信息;所述第二信息被用于确定第二步长;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值大于1时,所述第一目标功率值、所述第二步长和所述第二计数值共同被用于确定所述第二信号的发射功率值;当所述第一定时偏移值和所述第二定时偏移值不相等并且所述第二计数值等于1时,所述第一目标功率值、所述第二步长和所述第二计数值中只有所述第一目标功率值被用于确定所述第二信号的发射功率值。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一收发机接收第三信号;所述第三信号被用于确定所述参考定时;所述第一信号的发送定时和所述参考定时之间的定时偏移等于所述第一定时偏移值,所述第二信号的发送定时和所述参考定时之间的定时偏移等于所述第二定时偏移值。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一节点的能力被用于确定所述第一定时偏移值。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,所述第一收发机接收第三信息;当所述第一定时偏移值和所述第二定时偏移值不相等时,所述第二计数值等于1,所述第三信息被用于确定所述第一计数值的上限。
  10. 一种用于无线通信中的第二节点,其特征在于包括:
    第二收发机,检测第一信号,所述第一信号被用于发起随机接入;
    第一接收机,检测第二信号,所述第二信号被用于发起随机接入;
    其中,目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值, 所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
  11. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    发送第一信号,所述第一信号被用于发起随机接入;
    发送第二信号,所述第二信号被用于发起随机接入;
    其中,目标计数器被用于所述第一节点所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
  12. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    检测第一信号,所述第一信号被用于发起随机接入;
    检测第二信号,所述第二信号被用于发起随机接入;
    其中,目标计数器被用于所述第一信号的发送者所发起的随机接入中的计数,所述目标计数器的计数值是正整数;所述目标计数器在发送所述第一信号时的计数值是第一计数值,所述目标计数器在发送所述第二信号时的计数值是第二计数值;第一定时偏移值被用于确定所述第一信号的发送定时,第二定时偏移值被用于确定所述第二信号的发送定时;所述第一定时偏移值和所述第二定时偏移值是否相等被用于确定所述第一计数值和所述第二计数值之间的大小关系;所述第一信号所发起的随机接入不成功。
PCT/CN2020/129772 2019-12-13 2020-11-18 一种被用于无线通信的节点中的方法和装置 WO2021115079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/837,050 US20220304073A1 (en) 2019-12-13 2022-06-10 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911282862.7A CN112996134B (zh) 2019-12-13 2019-12-13 一种被用于无线通信的节点中的方法和装置
CN201911282862.7 2019-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/837,050 Continuation US20220304073A1 (en) 2019-12-13 2022-06-10 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021115079A1 true WO2021115079A1 (zh) 2021-06-17

Family

ID=76329583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129772 WO2021115079A1 (zh) 2019-12-13 2020-11-18 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220304073A1 (zh)
CN (2) CN115348684A (zh)
WO (1) WO2021115079A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203698A1 (ko) * 2017-05-04 2018-11-08 엘지전자 주식회사 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
US20190045457A1 (en) * 2017-08-07 2019-02-07 Qualcomm Incorporated Uplink transmit power control during random access procedures
CN109845384A (zh) * 2016-07-26 2019-06-04 夏普株式会社 终端装置、基站装置以及通信方法
CN109845354A (zh) * 2016-07-26 2019-06-04 夏普株式会社 终端装置、基站装置以及通信方法
CN110536403A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 功率确定方法、装置、终端及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909409A1 (de) * 2006-10-04 2008-04-09 Nokia Siemens Networks Gmbh & Co. Kg Verfahren zur zeitlichen Steuerung einer Signalübertragung in Aufwärtsrichtung in einem Funk-Kommunikationssystem
CN108260197B (zh) * 2016-12-29 2019-03-08 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
EP3668194A4 (en) * 2017-08-11 2021-03-24 Fujitsu Limited METHOD AND DEVICE FOR DIRECT ACCESS PERFORMANCE CONTROL AND COMMUNICATION SYSTEM
US10873481B2 (en) * 2017-11-27 2020-12-22 Qualcomm Incorporated Reference signal transmission window and timing considerations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845384A (zh) * 2016-07-26 2019-06-04 夏普株式会社 终端装置、基站装置以及通信方法
CN109845354A (zh) * 2016-07-26 2019-06-04 夏普株式会社 终端装置、基站装置以及通信方法
WO2018203698A1 (ko) * 2017-05-04 2018-11-08 엘지전자 주식회사 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
US20190045457A1 (en) * 2017-08-07 2019-02-07 Qualcomm Incorporated Uplink transmit power control during random access procedures
CN110536403A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 功率确定方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN115348684A (zh) 2022-11-15
CN112996134B (zh) 2022-11-01
US20220304073A1 (en) 2022-09-22
CN112996134A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
US11284323B2 (en) Method and device in node for wireless communication
CN114080020A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129250A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
CN113543357B (zh) 一种被用于无线通信的节点中的方法和装置
CN112910615B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021057598A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021115079A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112911697B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113079580B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098469A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098468A1 (zh) 一种被用于无线通信的方法和设备
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024152941A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113141240B (zh) 一种被用于无线通信的节点中的方法和装置
US20240172139A1 (en) Method and device in nodes used for wireless communication
WO2024120191A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN112994857B (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900674

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20900674

Country of ref document: EP

Kind code of ref document: A1