WO2023174375A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023174375A1
WO2023174375A1 PCT/CN2023/081918 CN2023081918W WO2023174375A1 WO 2023174375 A1 WO2023174375 A1 WO 2023174375A1 CN 2023081918 W CN2023081918 W CN 2023081918W WO 2023174375 A1 WO2023174375 A1 WO 2023174375A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
signaling
pdsch
pdcch monitoring
dci
Prior art date
Application number
PCT/CN2023/081918
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023174375A1 publication Critical patent/WO2023174375A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared CHannel, (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared Channel), etc.
  • scheduling scheduling
  • using a single DCI signaling to perform scheduling on multiple serving cells (serving cells) is to reduce DCI
  • how to reasonably design the domains in DCI and the related interpretation of the domains is an important issue that needs to be solved.
  • this application discloses a solution. It should be noted that the above description uses 5G NR as an example; this application is also applicable to other scenarios, such as 6G network, Internet of Vehicles, Internet of Things, etc., and achieves similar technical effects. In addition, using unified solutions in different scenarios (including but not limited to 5G network, 6G network, Internet of Vehicles, and Internet of Things) can also help reduce hardware complexity and cost, or improve performance. Without conflict, the embodiments and features in the embodiments in any node of this application can be applied to any other node. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • the benefits of the above method include: improving the flexibility of base station side scheduling, which is beneficial to improving system performance.
  • the benefits of the above method include: enhancing the understanding and consistency of DCI scheduling between communicating parties.
  • the benefits of the above method include: improving the performance of HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement, Hybrid Automatic Repeat Request Acknowledgment) feedback.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement, Hybrid Automatic Repeat Request Acknowledgment
  • the benefits of the above method include: saving DCI signaling overhead.
  • the benefits of the above method include: helping to improve the timeliness of UE side processing.
  • the benefits of the above method include: helping to improve the timeliness of scheduling, or improving system capacity.
  • the above method is characterized by,
  • the reference PDSCH corresponding to the first signaling is transmitted on the first serving cell.
  • the above method is characterized by,
  • the reference PDSCH corresponding to the first signaling is the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell with the largest index among the plurality of serving cells scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell with the smallest index among the plurality of serving cells scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell to which the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling belongs.
  • the above method is characterized by,
  • the serving cells in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that are counted are reference serving cells, and each of the counted ⁇ serving cells, PDCCH monitoring opportunity ⁇ pairs are reference serving cells.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first block of bits including at least HARQ-ACK bits associated with the first signaling
  • the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • the above method is characterized by,
  • the reference PDSCH corresponding to the first signaling is transmitted on the first serving cell.
  • the above method is characterized by,
  • the reference PDSCH corresponding to the first signaling is the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell with the largest index among the plurality of serving cells scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell with the smallest index among the plurality of serving cells scheduled by the first signaling.
  • the above method is characterized by,
  • the first serving cell is the serving cell to which the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling belongs.
  • the above method is characterized by,
  • the serving cells in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that are counted are reference serving cells, and each of the counted ⁇ serving cells, PDCCH monitoring opportunity ⁇ pairs are reference serving cells.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives the first signaling in the first PDCCH monitoring opportunity, where the first signaling includes the first domain;
  • a first transmitter transmitting a first bit block, the first bit block including at least HARQ-ACK bits associated with the first signaling;
  • the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends first signaling in the first PDCCH monitoring opportunity, where the first signaling includes the first domain;
  • a second receiver receiving a first bit block, the first bit block including at least HARQ-ACK bits associated with the first signaling;
  • the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows an illustrative diagram of a first cumulative quantity according to an embodiment of the present application
  • Figure 7 shows an illustrative diagram of obtaining the first cumulative amount according to the first rule according to an embodiment of the present application
  • Figure 8 shows an illustrative diagram of obtaining the first cumulative amount according to the first rule according to an embodiment of the present application
  • Figure 9 shows an illustrative diagram of obtaining the first cumulative amount according to the first rule according to an embodiment of the present application.
  • Figure 10 shows an illustrative diagram of obtaining the first cumulative amount according to the first rule according to an embodiment of the present application
  • Figure 11 shows an illustrative diagram of obtaining the first cumulative amount according to the first rule according to an embodiment of the present application
  • Figure 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node in this application receives the first signaling in the first PDCCH monitoring opportunity in step 101; and sends the first bit block in step 102.
  • the first signaling includes a first domain; the first bit block includes at least HARQ-ACK bits associated with the first signaling; the first signaling is used for downlink grant , the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate the deadline for the first PDCCH monitoring opportunity and the first serving cell according to the first rule.
  • the first cumulative number is the cumulative number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or the first cumulative number is the cumulative number of HARQ-ACK bits;
  • the first rule includes first following the reference In the increasing order of the reception start time of the PDSCH, secondly in the ascending order of the index of the reference serving cell, and again in the ascending order of the index of the PDCCH monitoring opportunity; for the first signaling, the corresponding reference PDSCH is in the scheduled multiple is transmitted on one of the serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the serving cell according to the serving cell among the plurality of serving cells scheduled by the first signaling.
  • the first signaling is physical layer signaling.
  • the first signaling is downlink control signaling.
  • the first signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the first signaling is a DCI signaling.
  • the first signaling includes a DCI signaling.
  • the first signaling includes one or more fields (field(s)) in a DCI signaling.
  • the first node receives the first signaling in a PDCCH (Physical downlink control channel).
  • PDCCH Physical downlink control channel
  • the first signaling is DCI format 1_0.
  • DCI format 1_0 For the specific definition of DCI format 1_0, please refer to Chapter 7.3.1.2 in 3GPP TS 38.212.
  • the first signaling is DCI format 1_1.
  • DCI format 1_1 For the specific definition of DCI format 1_1, please refer to Chapter 7.3.1.2 in 3GPP TS 38.212.
  • the first signaling is DCI format 1_2.
  • DCI format 1_2 For the specific definition of DCI format 1_2, see Chapter 7.3.1.2 in 3GPP TS 38.212.
  • the first signaling adopts DCI format.
  • the first signaling adopts DCI format 1_0.
  • the first signaling adopts DCI format 1_1.
  • the first signaling adopts DCI format 1_2.
  • the first signaling adopts one of DCI format 1_0, DCI format 1_1 or DCI format 1_2.
  • the first signaling adopts one of DCI format 1_1 or DCI format 1_2.
  • the first signaling adopts a DCI format other than DCI format 1_0, DCI format 1_1 and DCI format 1_2.
  • the first signaling includes higher layer signaling.
  • the first signaling includes RRC signaling.
  • the first signaling includes MAC CE.
  • the first PDCCH monitoring opportunity includes at least one time domain symbol.
  • a PDCCH monitoring opportunity includes at least one time domain symbol.
  • one of the time domain symbols is a downlink symbol.
  • one of the time domain symbols is a flexible symbol.
  • the time domain symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the time domain symbols are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the time domain symbols are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • a PDCCH monitoring opportunity is determined based on the PDCCH monitoring period (PDCCH monitoring periodicity), the PDCCH monitoring offset (PDCCH monitoring offset) and the PDCCH monitoring pattern (PDCCH monitoring pattern within a slot) within a slot.
  • PDCCH monitoring period PDCCH monitoring periodicity
  • PDCCH monitoring offset PDCCH monitoring offset
  • PDCCH monitoring pattern PDCCH monitoring pattern within a slot
  • a PDCCH monitoring opportunity is configurable.
  • a PDCCH monitoring opportunity is configured through a search space set.
  • the first field is a quantity indication field.
  • the first domain is a DAI (downlink assignment indicator) domain.
  • the first field is a counter DAI (counter downlink assignment indicator) field.
  • the first field includes at least one bit.
  • the first field consists of 2 bits.
  • the first field consists of 3 bits.
  • the first field includes at most 64 bits.
  • the first bit block is sent on a PUCCH (Physical uplink control channel).
  • PUCCH Physical uplink control channel
  • the first bit block includes UCI (Uplink control information) bits.
  • UCI Uplink control information
  • the first bit block includes 1 bit.
  • the first bit block includes 2 bits.
  • the first bit block includes at least 3 bits.
  • the first bit block is sent after at least channel coding.
  • the first bit block is sent after at least sequence generation.
  • the HARQ-ACK bits associated with the first signaling are HARQ-ACK bits used to indicate whether the transport blocks in the PDSCH scheduled by the first signaling are correctly decoded.
  • the HARQ-ACK bits associated with the first signaling are HARQ-ACK bits of the PDSCH scheduled for the first signaling.
  • the expression "the first signaling is used for downlink grant, and the first signaling schedules multiple serving cells” includes: the first signaling is used to schedule multiple serving cells. of multiple PDSCHs.
  • the expression "the first signaling schedules multiple serving cells” includes: the first signaling schedules at least one serving cell on each of the scheduled serving cells. PDSCH.
  • the first signaling is used to schedule multiple PDSCHs, and the multiple PDSCHs are respectively transmitted on multiple serving cells.
  • the meaning of a signaling scheduling a serving cell includes: the signaling schedules at least one physical layer channel on the serving cell.
  • the meaning of a signaling scheduling a serving cell includes: the signaling schedules at least one PDSCH on the serving cell.
  • the expression "the first accumulated number is the accumulated number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or the first accumulated number is the accumulated number of HARQ-ACK bits" includes: The first accumulated number is the accumulated number of ⁇ reference serving cell, PDCCH monitoring opportunity ⁇ pairs.
  • a reference serving cell is a serving cell associated with a signaling.
  • a reference PDSCH is a PDSCH scheduled by signaling.
  • the corresponding reference serving cell is the scheduled only one serving cell.
  • the corresponding reference PDSCH is the scheduled PDSCH on the only one serving cell.
  • the corresponding reference PDSCH is the scheduled only one PDSCH.
  • the corresponding reference serving cell is one of the multiple scheduled serving cells.
  • the corresponding reference serving cell is the serving cell with the largest index among the multiple scheduled serving cells.
  • the corresponding reference serving cell is the serving cell with the smallest index among the multiple scheduled serving cells.
  • the corresponding reference serving cell is the serving cell to which the PDSCH with the earliest reception start time among the scheduled PDSCHs belongs.
  • the corresponding reference serving cell is the serving cell to which the PDSCH with the latest reception start time among the scheduled PDSCHs belongs.
  • the corresponding reference PDSCH is the PDSCH with the earliest reception start time among the scheduled PDSCHs.
  • the corresponding reference PDSCH is the PDSCH transmitted on the corresponding reference serving cell.
  • the corresponding reference PDSCH is the PDSCH with the earliest reception start time among the multiple scheduled PDSCHs.
  • the corresponding reference PDSCH is the PDSCH with the latest reception start time among the scheduled PDSCHs.
  • the corresponding reference PDSCH is the PDSCH with the latest reception start time among the multiple scheduled PDSCHs.
  • the corresponding reference serving cell is a serving cell among the multiple scheduled serving cells that is determined based on the index of the serving cell or the reception order of the PDSCH.
  • the corresponding reference PDSCH is a PDSCH determined according to the reception order of PDSCHs.
  • the corresponding reference PDSCH is a PDSCH determined according to the reception order of PDSCHs.
  • the first rule includes: first, in the increasing order of the reference PDSCH starting time (starting time), second in the ascending order of the reference serving cell index, and again in accordance with the PDCCH The ascending order of the index for monitoring opportunities.
  • the expression "the first rule includes firstly following the ascending order of the reception start time of the reference PDSCH, secondly following the ascending order of the index of the reference serving cell, and thirdly following the ascending order of the index of the PDCCH monitoring opportunity" includes:
  • the first rule includes: first, for the same ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair, according to the increasing order of the reference PDSCH reception starting time (starting time), and secondly, according to the ascending order of the index of the reference serving cell ( ascending order), again according to the ascending order of the index of the PDCCH monitoring opportunity.
  • the expression "the first rule includes firstly following the ascending order of the reception start time of the reference PDSCH, secondly following the ascending order of the index of the reference serving cell, and thirdly following the ascending order of the index of the PDCCH monitoring opportunity" includes:
  • the first rule includes: first, for the same ⁇ reference serving cell, PDCCH monitoring opportunity ⁇ pair according to the increasing order of the reference PDSCH reception starting time (starting time), and secondly according to the reference serving cell.
  • the ascending order of the index (ascending order) is again followed by the ascending order of the index of the PDCCH monitoring timing (ascending order).
  • the signaling in this application is physical layer signaling.
  • the signaling in this application is DCI signaling.
  • the signaling in this application is in DCI format.
  • the signaling in this application is signaling in DCI format.
  • the HARQ-ACK bits in this application are HARQ-ACK information bits (information bit(s)).
  • each serving cell can be counted up to N times, where N is configurable.
  • the first signaling schedules two cells.
  • the first signaling schedules three cells.
  • the first signaling schedules four cells.
  • the first signaling schedules 5 cells.
  • the first signaling schedules 6 cells.
  • the first signaling schedules 7 cells.
  • the first signaling schedules 8 cells.
  • the first signaling schedules up to 32 cells.
  • the first signaling schedules at most 128 cells.
  • the corresponding reference PDSCH is the PDSCH transmitted on the serving cell with the smallest scheduled index.
  • the corresponding reference PDSCH is the PDSCH transmitted on the serving cell with the largest scheduled index.
  • the reference PDSCH corresponding to the first signaling is transmitted on a serving cell scheduled by the first signaling outside the first serving cell.
  • the expression "reception sequence of PDSCH” includes: reception time sequence of PDSCH.
  • the expression "PDSCH reception sequence” includes: PDSCH reception start time.
  • the meaning of a signaling scheduling a PDSCH includes: the signaling schedules the reception (reception) of the PDSCH.
  • the first serving cell is serving cell c
  • the first PDCCH monitoring opportunity is PDCCH monitoring opportunity m
  • any ⁇ serving cell i, PDCCH monitoring opportunity counted to the first cumulative number j ⁇ pairs all satisfy one of the following: the j is less than the m, or the j is equal to the m and the i is less than the c, or the j is equal to the m and the i is equal to c and the reception start time of ⁇ serving cell i, PDCCH monitoring opportunity j ⁇ to the corresponding reference PDSCH is earlier than the reception start time of ⁇ serving cell c, PDCCH monitoring opportunity m ⁇ to the corresponding reference PDSCH,
  • the pair ⁇ serving cell i, PDCCH monitoring opportunity j ⁇ is a pair ⁇ serving cell c, PDCCH monitoring opportunity m ⁇ ; the c and i are both indexes of the serving cell, and the m and j are both PDCCH Index of monitoring opportunities.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet service 230.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB203 is available via the Xn interface (eg, backhaul) to other gNBs 204.
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE 201 include cellular phones, smartphones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 corresponds to the second node in this application.
  • the gNB 203 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the first node and the second node in this application both correspond to the UE 201, for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between the communication node device (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the first signaling in this application is generated in the MAC sublayer 352.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in this application is generated in the PHY351.
  • At least part of the first bit block in this application is generated from the SDAP sublayer 356.
  • At least part of the first bit block in this application is generated from the RRC sublayer 306.
  • At least part of the first bit block in this application is generated in the MAC sublayer 302.
  • At least part of the first bit block in this application is generated in the MAC sublayer 352.
  • At least part of the first bit block in this application is generated by the PHY301.
  • At least part of the first bit block in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, It includes codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 at least: receives first signaling in a first PDCCH monitoring opportunity, where the first signaling includes a first domain; and sends a first bit block, where the first bit block includes at least one associated HARQ-ACK bits of the first signaling; wherein the first signaling is used for downlink grant, and the first signaling schedules multiple serving cells; the first signaling in the first signaling
  • the field is used to indicate the first accumulated number of the first PDCCH monitoring opportunity and the first serving cell according to the first rule; the first accumulated number is the accumulated number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or , the first cumulative number is the cumulative number of HARQ-ACK bits; the first rule includes first following the ascending order of the reception start time of the reference PDSCH, secondly following
  • the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, and the corresponding reference serving cell is the first serving cell;
  • the first serving cell is a serving cell determined based on the index of the serving cell or the reception order of the PDSCH among the plurality of serving cells scheduled by the first signaling.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first Receive first signaling in a PDCCH monitoring opportunity, the first signaling including a first domain; sending a first bit block, the first bit block including at least HARQ-ACK bits associated with the first signaling; Wherein, the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the first accumulated number of the first PDCCH monitoring opportunity and the first serving cell is the accumulated number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or the first accumulated number is HARQ-ACK bits
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication equipment 410 device at least: sends first signaling in the first PDCCH monitoring opportunity, the first signaling includes a first domain; receives a first bit block, the first bit block includes at least one associated with HARQ-ACK bits of the first signaling; wherein the first signaling is used for downlink grant, and the first signaling schedules multiple serving cells; the first signaling in the first signaling domain is used to indicate the first rule cut-off to The first cumulative number of the first PDCCH monitoring opportunity and the first serving cell; the first cumulative number is the cumulative number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or the first cumulative number is HARQ-ACK The cumulative number of bits; the first rule includes first following the ascending order of the reception start time of the reference PDSCH, secondly following the ascending order of the index
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first Send first signaling in a PDCCH monitoring opportunity, where the first signaling includes a first domain; receive a first bit block, where the first bit block includes at least HARQ-ACK bits associated with the first signaling; Wherein, the first signaling is used for downlink granting, and the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate that all deadlines are reached according to the first rule.
  • the first accumulated number of the first PDCCH monitoring opportunity and the first serving cell is the accumulated number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs, or the first accumulated number is HARQ-ACK bits
  • the accumulated number of , the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, the corresponding reference serving cell is the first serving cell; the first serving cell is the first signaling
  • One serving cell among the plurality of scheduled serving cells is determined based on the index of the serving cell or the reception order of the PDSCH.
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the first bit block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive the first bit block in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the first node U1 receives the first signaling in the first PDCCH monitoring opportunity in step S511 and sends the first bit block in step S512.
  • the second node U2 sends the first signaling in the first PDCCH monitoring opportunity in step S521; and receives the first bit block in step S522.
  • the first signaling includes a first domain; the first bit block includes at least HARQ-ACK bits associated with the first signaling; the first signaling is used for downlink grant , the first signaling schedules multiple serving cells; the first domain in the first signaling is used to indicate the deadline for the first PDCCH monitoring opportunity and the first serving cell according to the first rule.
  • the first serving cell is a serving cell determined according to the index of the serving cell or the reception order of PDSCH among the plurality of serving cells scheduled by the first signaling; for the first cumulative number,
  • the serving cells in each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair are reference serving cells, and each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair has PDSCH reception associated with the DCI format. Or do not respond to the HARQ-ACK bit received by the PDSCH.
  • the reference PDSCH corresponding to the first signaling is transmitted on the first serving cell, or the reference PDSCH corresponding to the first signaling is The PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling, or the reference PDSCH corresponding to the first signaling is the serving cell with the smallest index scheduled by the first signaling.
  • PDSCH transmitted on, or the reference PDSCH corresponding to the first signaling is the PDSCH transmitted on the serving cell with the largest index scheduled by the first signaling.
  • the first serving cell is the serving cell with the largest index among the plurality of serving cells scheduled by the first signaling, or the first serving cell is the The serving cell with the smallest index among the plurality of serving cells scheduled by the first signaling, or the first serving cell is the service to which the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling belongs. community.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between user equipment and user equipment.
  • the problem to be solved by this application includes: how to interpret the first domain in the first signaling.
  • the problems to be solved by this application include: how to interpret the DAI field.
  • the problems to be solved by this application include: how to interpret the counting DAI field in DCI signaling used to schedule multiple serving cells.
  • the problems to be solved by this application include: how to indicate the cumulative number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs.
  • the problems to be solved by this application include: how to enhance the indication of the cumulative number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs.
  • the problems to be solved by this application include: how to alleviate the problem of missed detection of control signaling.
  • the first node also receives multiple PDSCHs scheduled by the first signaling.
  • the second node also sends multiple PDSCHs scheduled by the first signaling.
  • the plurality of PDSCHs scheduled by the first signaling are transmitted on the plurality of serving cells scheduled by the first signaling.
  • Embodiment 6 illustrates a schematic diagram of the first cumulative quantity according to an embodiment of the present application, as shown in FIG. 6 .
  • the serving cells in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that are counted are reference serving cells, and each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that is counted There are HARQ-ACK bits associated with PDSCH reception in DCI format or not responding to PDSCH reception in each pair of monitoring opportunities.
  • the first cumulative number there is a PDSCH reception associated with the DCI format in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ -pair that is counted. Do not respond to the HARQ-ACK bits received on the PDSCH.
  • the serving cells in each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair are reference serving cells.
  • the serving cell in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair is a reference serving cell.
  • the expression "associated with DCI format” includes: associated with DCI signaling.
  • the expression "associated with DCI format” includes: associated with signaling including the first domain.
  • the expression "associated to DCI format” includes: associated to signaling using the DCI format including the first domain.
  • the first accumulated number is the accumulated number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs.
  • the serving cell in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair is a reference serving cell.
  • the HARQ-ACK bits that do not respond to PDSCH reception include: HARQ-ACK bits for PDCCH indicating SPS (Semi-persistent scheduling) PDSCH release (release).
  • the HARQ-ACK bits that do not respond to PDSCH reception include: HARQ-ACK bits for PDCCH indicating Scell dormancy (dormancy).
  • the HARQ-ACK bits that do not respond to PDSCH reception include: HARQ-ACK bits for PDCCH that provide TCI (Transmission Configuration Indicator) status update.
  • TCI Transmission Configuration Indicator
  • the first cumulative number there is PDSCH reception associated with the DCI format in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ -pair.
  • the first cumulative number is a cumulative number of HARQ-ACK bits.
  • the first cumulative number is a cumulative number of HARQ-ACK bits received for PDSCH or HARQ-ACK bits not responding to PDSCH reception.
  • each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair is for a reference serving cell.
  • Embodiment 7 illustrates an illustrative diagram of obtaining the first cumulative quantity according to the first rule according to an embodiment of the present application, as shown in FIG. 7 .
  • DCI#0 is received in PDCCH monitoring opportunity 0, and the DCI#0 schedules serving cell 3, and the serving cell 3 is the reference serving cell corresponding to the DCI#0;
  • DCI#1 is in It is received in PDCCH monitoring opportunity 1, and the DCI#1 schedules serving cell 1, and the serving cell 1 is the reference serving cell corresponding to the DCI#1;
  • DCI#2 is received in PDCCH monitoring opportunity 1, and the DCI#2 is received in PDCCH monitoring opportunity 1.
  • DCI#2 schedules serving cell 0 and serving cell 2.
  • the corresponding reference serving cell is the serving cell with the largest index among the scheduled serving cells; so
  • the DCI#2 is the first signaling in this application
  • the PDCCH monitoring opportunity 1 is the first PDCCH monitoring opportunity in this application
  • the serving cell 2 is the first service in this application.
  • Embodiment 8 illustrates an illustrative diagram of obtaining the first cumulative quantity according to the first rule according to an embodiment of the present application, as shown in FIG. 8 .
  • DCI#0 is received in PDCCH monitoring opportunity 0, and the DCI#0 schedules serving cell 0.
  • the serving cell 0 is the reference serving cell corresponding to the DCI#0.
  • the DCI# The reference PDSCH corresponding to 0 is PDSCH#0; DCI#1 is received in PDCCH monitoring opportunity 0.
  • the DCI#1 schedules serving cell 0, serving cell 1, serving cell 3 and serving cell 4.
  • the DCI#1 The corresponding reference PDSCH is PDSCH#1; the reception start time of PDSCH#0 is earlier than the reception start time of PDSCH#1.
  • the corresponding reference serving cell is the serving cell with the smallest index among the scheduled serving cells; the DCI#1 is the current serving cell.
  • the PDCCH monitoring opportunity 0 is the first PDCCH monitoring opportunity in the application
  • the serving cell 0 is the first serving cell in the application; according to the third A rule, ⁇ serving cell 0, PDCCH monitoring opportunity 0 ⁇ pair (for the reception start time of the earlier reference PDSCH corresponding to the DCI#0), ⁇ serving cell 0, PDCCH monitoring opportunity 0 ⁇ pair (for all The reception start time of the later reference PDSCH corresponding to the DCI#1) is counted into the first cumulative number, and the first cumulative number is equal to 2.
  • the corresponding reference PDSCH is the PDSCH with the earliest reception start time among the scheduled PDSCHs.
  • the corresponding reference PDSCH is the PDSCH with the latest reception start time among the scheduled PDSCHs.
  • the corresponding reference PDSCH is the PDSCH transmitted on the scheduled reference serving cell.
  • the corresponding reference PDSCH is the PDSCH transmitted on the serving cell with the smallest scheduled index.
  • the corresponding reference PDSCH is the PDSCH transmitted on the serving cell with the largest scheduled index.
  • Embodiment 9 illustrates an illustrative diagram of obtaining the first cumulative quantity according to the first rule according to an embodiment of the present application, as shown in FIG. 9 .
  • DCI#0 is received in PDCCH monitoring opportunity 0, and the DCI#0 schedules serving cell 3.
  • the serving cell 3 is the reference serving cell corresponding to the DCI#0.
  • the DCI# The reference PDSCH corresponding to 0 is PDSCH#0;
  • DCI#1 is received in PDCCH monitoring opportunity 1.
  • the DCI#1 schedules serving cell 0, serving cell 1, serving cell 3 and serving cell 4.
  • the serving cell 4 is the reference serving cell corresponding to the DCI#1, the reference PDSCH corresponding to the DCI#1 is PDSCH#1; DCI#2 is received in PDCCH monitoring opportunity 1, the DCI#2 schedules the serving cell 3 and Serving cell 4, the reference PDSCH corresponding to the DCI#2 is PDSCH#2; the reception start time of the PDSCH#2 is earlier than the reception start time of the PDSCH#1; DCI#3 is at PDCCH monitoring opportunity 1 is received in, the DCI#3 schedules serving cell 1, serving cell 2 and serving cell 5.
  • the serving cell 5 is the reference serving cell corresponding to the DCI#3, and the reference PDSCH corresponding to the DCI#3 It's PDSCH#3.
  • the corresponding reference serving cell is the index in the scheduled serving cell.
  • the first serving cell; according to the first rule, ⁇ serving cell 3, PDCCH monitoring opportunity 0 ⁇ pair (corresponding to the DCI #0), ⁇ serving cell 4, PDCCH monitoring opportunity 1 ⁇ pair (corresponding to the DCI#2) is counted into the first cumulative number, which is equal to 2.
  • the corresponding reference PDSCH is the scheduled PDSCH Receive the PDSCH with the earliest start time.
  • the corresponding reference PDSCH is the PDSCH with the latest reception start time among the scheduled PDSCHs.
  • the corresponding reference PDSCH is in the scheduled Refer to the PDSCH transmitted on the serving cell.
  • the corresponding reference PDSCH is in the scheduled PDSCH transmitted on the serving cell with the smallest index.
  • the corresponding reference PDSCH is in the scheduled The PDSCH transmitted on the serving cell with the largest index.
  • the ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair corresponding to the DCI#1 and the DCI#3 is not counted to the first cumulative number. middle.
  • the DCI#0 in this application is DCI signaling.
  • the DCI#0 in this application includes one or more fields in a DCI signaling.
  • the DCI#0 in this application is a DCI format.
  • the DCI#0 in this application adopts DCI format.
  • the DCI#1 in this application is DCI signaling.
  • the DCI#1 in this application includes one or more fields in a DCI signaling.
  • the DCI#1 in this application is a DCI format.
  • the DCI#1 in this application adopts DCI format.
  • the DCI#2 in this application is DCI signaling.
  • the DCI#2 in this application includes one or more fields in a DCI signaling.
  • the DCI#2 in this application is a DCI format.
  • the DCI#2 in this application adopts DCI format.
  • the DCI#3 in this application is DCI signaling.
  • the DCI#3 in this application includes one or more fields in a DCI signaling.
  • the DCI#3 in this application is a DCI format.
  • the DCI#3 in this application adopts DCI format.
  • Embodiment 10 illustrates an illustrative diagram of obtaining the first cumulative quantity according to the first rule according to an embodiment of the present application, as shown in FIG. 10 .
  • DCI#0 is received in PDCCH monitoring opportunity 0.
  • the DCI#0 schedules serving cell 0, serving cell 2 and serving cell 3.
  • the serving cell 3 is corresponding to the DCI#0.
  • the reference PDSCH corresponding to the DCI#0 is PDSCH#0, and the PDSCH#0 is transmitted on the serving cell 3;
  • DCI#1 is received in PDCCH monitoring opportunity 1, and the DCI# 1 Scheduling serving cell 0, serving cell 1, serving cell 3 and serving cell 4.
  • the serving cell 3 is the reference serving cell corresponding to the DCI#1, and the reference PDSCH corresponding to the DCI#1 is PDSCH#1 , the PDSCH#1 is transmitted on the serving cell 3; DCI#2 is received in the PDCCH monitoring opportunity 1, the DCI#2 schedules the serving cell 3 and the serving cell 4, and the DCI#2 corresponds to The reference PDSCH is PDSCH#2, which is transmitted on the serving cell 4; DCI#3 is received in the PDCCH monitoring opportunity 2, and the DCI#3 schedules serving cell 1, serving cell 2 and serving cell 5.
  • the serving cell 1 is the reference serving cell corresponding to the DCI#3, the reference PDSCH corresponding to the DCI#3 is PDSCH#3, and the PDSCH#3 is transmitted on the serving cell 1.
  • the DCI#2 is the first signaling in this application
  • the PDCCH monitoring opportunity 1 is the first PDCCH monitoring opportunity in this application
  • the serving cell 4 is the first signaling in this application.
  • the first serving cell in; According to the first rule, ⁇ serving cell 3, PDCCH monitoring opportunity 0 ⁇ pair (corresponding to the DCI #0), ⁇ serving cell 3, PDCCH monitoring opportunity 1 ⁇ pair (corresponding to all The DCI#1) and the pair ⁇ serving cell 4, PDCCH monitoring opportunity 1 ⁇ (corresponding to the DCI#2) are counted into the first cumulative number, and the first cumulative number is equal to 3.
  • the corresponding reference serving cell is used The serving cell of the reference PDSCH corresponding to the transmission.
  • the corresponding reference PDSCH is the scheduled PDSCH Receive the PDSCH with the earliest start time.
  • the corresponding reference PDSCH is the scheduled PDSCH Receive the PDSCH with the latest start time.
  • the ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair corresponding to the DCI#3 is not counted into the first cumulative number.
  • Embodiment 11 illustrates an illustrative diagram of obtaining the first cumulative quantity according to the first rule according to an embodiment of the present application, as shown in FIG. 11 .
  • DCI#0 is received in PDCCH monitoring opportunity 0, and the DCI#0 schedules serving cell 0, serving cell 1, serving cell 2 and serving cell 3, and the serving cell 0 is the DCI#
  • the reference serving cell corresponding to 0, the reference PDSCH corresponding to the DCI#0 is PDSCH#0;
  • DCI#1 is received in PDCCH monitoring opportunity 0, the DCI#1 schedules serving cell 4, serving cell 5, serving Cell 6 and serving cell 7.
  • the serving cell 4 is the reference serving cell corresponding to the DCI#1, and the reference PDSCH corresponding to the DCI#1 is PDSCH#1;
  • DCI#2 is used in PDCCH monitoring opportunity 0.
  • the DCI#2 schedules serving cell 4, serving cell 5, serving cell 6 and serving cell 7, the reference PDSCH corresponding to the DCI#2 is PDSCH#2; the reception start time of the PDSCH#1 is earlier At the reception start time of PDSCH#2; DCI#3 is received in PDCCH monitoring opportunity 1, and the DCI#3 schedules serving cell 0, serving cell 1, serving cell 2 and serving cell 3.
  • the serving cell 0 is the reference serving cell corresponding to the DCI#3, and the reference PDSCH corresponding to the DCI#3 is PDSCH#3.
  • the corresponding reference serving cell is the index in the scheduled serving cell.
  • the first serving cell according to the first rule, ⁇ serving cell 0, PDCCH monitoring opportunity 0 ⁇ pair (corresponding to the DCI #0), ⁇ serving cell 4, PDCCH monitoring opportunity 0 ⁇ pair (corresponding to the DCI#1) and the pair ⁇ serving cell 4, PDCCH monitoring opportunity 0 ⁇ (corresponding to the DCI#2) are counted into the first cumulative number, and the first cumulative number is equal to 3.
  • the corresponding reference PDSCH is the scheduled PDSCH Receive the PDSCH with the earliest start time.
  • the corresponding reference PDSCH is the scheduled PDSCH Receive the PDSCH with the latest start time.
  • the corresponding reference PDSCH is in the scheduled Refer to the PDSCH transmitted on the serving cell.
  • the corresponding reference PDSCH is in the scheduled PDSCH transmitted on the serving cell with the smallest index.
  • the corresponding reference PDSCH is in the scheduled The PDSCH transmitted on the serving cell with the largest index.
  • the ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair corresponding to the DCI#3 is not counted into the first cumulative number.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 12 .
  • the first node device processing device 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first node device 1200 is a base station.
  • the first node device 1200 is user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a vehicle-mounted communication device.
  • the first node device 1200 is a user equipment supporting V2X communication.
  • the first node device 1200 is a relay node that supports V2X communication.
  • the first node device 1200 is a user equipment that supports a single DCI to schedule multiple serving cells.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least one of the sources 467.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first three of source 467.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first two in source 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first five of data sources 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first four of data sources 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first three of data sources 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first two of data sources 467.
  • the first receiver 1201 receives the first signaling in the first PDCCH monitoring opportunity, and the first signaling includes the first domain; the first transmitter 1202 sends the first bit block, the first bit block includes at least HARQ-ACK bits associated with the first signaling; wherein the first signaling is used for downlink grant, and the first signaling schedules multiple serving cells;
  • the first domain in the first signaling is used to indicate the first cumulative number of the first PDCCH monitoring opportunity and the first serving cell according to the first rule;
  • the first cumulative number is ⁇ serving cell, the cumulative number of PDCCH monitoring opportunity pairs, or the first cumulative number is the cumulative number of HARQ-ACK bits;
  • the first rule includes first following the increasing order of the reception start time of the reference PDSCH, and secondly following the reference
  • the ascending order of the index of the serving cell is again in the ascending order of the index of the PDCCH monitoring opportunity; for the first signaling, the corresponding reference PDSCH is transmitted on one of the multiple scheduled serving cells, and the corresponding The reference
  • the reference PDSCH corresponding to the first signaling is transmitted on the first serving cell.
  • the reference PDSCH corresponding to the first signaling is the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling.
  • the first serving cell is the serving cell with the largest index among the multiple serving cells scheduled by the first signaling.
  • the first serving cell is the serving cell with the smallest index among the plurality of serving cells scheduled by the first signaling.
  • the first serving cell is the serving cell to which the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling belongs.
  • the serving cells in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that are counted are reference serving cells, and each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair There are HARQ-ACK bits associated with PDSCH reception in DCI format or no response to PDSCH reception in each opportunity pair.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 13 .
  • the second node device processing device 1300 includes a second transmitter 1301 and a second receiver 1302.
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a satellite device.
  • the second node device 1300 is a relay node.
  • the second node device 1300 is a vehicle-mounted communication device.
  • the second node device 1300 is a user equipment supporting V2X communication.
  • the second node device 1300 is a device that supports a single DCI to schedule multiple serving cells.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second transmitter 1301 sends the first signaling in the first PDCCH monitoring opportunity, and the first signaling includes the first domain;
  • the second receiver 1302 receives the first bit block, the first bit block includes at least HARQ-ACK bits associated with the first signaling; wherein the first signaling is used for downlink grant, and the first signaling schedules multiple serving cells;
  • the first domain in the first signaling is used to indicate the first cumulative number of the first PDCCH monitoring opportunity and the first serving cell according to the first rule;
  • the first cumulative number is ⁇ serving community, The cumulative number of PDCCH monitoring opportunity pairs, or the first cumulative number is the cumulative number of HARQ-ACK bits;
  • the first rule includes first following the increasing order of the reception start time of the reference PDSCH, and secondly following the reference serving cell
  • the ascending order of the index is again in the ascending order of the index of the PDCCH monitoring opportunity; for the first signaling, the corresponding reference PDSCH is transmitted on one of the plurality of scheduled serving cells, and the corresponding
  • the reference PDSCH corresponding to the first signaling is transmitted on the first serving cell.
  • the reference PDSCH corresponding to the first signaling is the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling.
  • the first serving cell is the serving cell with the largest index among the multiple serving cells scheduled by the first signaling.
  • the first serving cell is the serving cell with the smallest index among the plurality of serving cells scheduled by the first signaling.
  • the first serving cell is the serving cell to which the PDSCH with the earliest reception start time among the PDSCHs scheduled by the first signaling belongs.
  • the serving cells in each ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair that are counted are reference serving cells, and each counted ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair There are HARQ-ACK bits associated with PDSCH reception in DCI format or no response to PDSCH reception in each opportunity pair.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;第一发射机,发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
在5G NR***中,为了支持更高的通信业务需求,大量的DCI(Downlink Control Information,下行链路控制信息)信令需要被发送以完成对物理层信道(如,PDSCH(Physical Downlink Shared CHannel,物理下行链路共享信道),PUSCH(Physical Uplink Shared CHannel,物理上行链路共享信道)等)的调度(scheduling);使用单个DCI信令在多个服务小区(serving cells)上执行调度是降低DCI开销的一种有效手段,如何合理设计DCI中的域以及域的相关解读是需要解决的一个重要问题。
发明内容
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述描述采用5G NR为例子;本申请也同样适用于其他场景,比如6G网络,车联网,物联网等,并取得类似的技术效果。此外,不同场景(包括但不限于5G网络,6G网络,车联网,物联网)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;
发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为一个实施例,上述方法的好处包括:提高了基站侧调度的灵活性,有利于***性能的提升。
作为一个实施例,上述方法的好处包括:增强了通信双方对DCI的调度的理解一致性。
作为一个实施例,上述方法的好处包括:提高了HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)反馈的性能。
作为一个实施例,上述方法的好处包括:节省了DCI信令的开销。
作为一个实施例,上述方法的好处包括:有利于提高UE侧处理的及时性。
作为一个实施例,上述方法的好处包括:有利于提高调度的及时性,或者,提高***容量。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
根据本申请的一个方面,上述方法的特征在于,
对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;
接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区。
根据本申请的一个方面,上述方法的特征在于,
所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
根据本申请的一个方面,上述方法的特征在于,
对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;
第一发射机,发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;
第二接收机,接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一累积数量的说明示意图;
图7示出了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图;
图8示出了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图;
图9示出了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图;
图10示出了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图;
图11示出了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情 况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中在第一PDCCH监测时机中接收第一信令;在步骤102中发送第一比特块。
在实施例1中,所述第一信令包括第一域;所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是下行链路控制信令。
作为一个实施例,所述第一信令是一个DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是一个DCI信令。
作为一个实施例,所述第一信令包括一个DCI信令。
作为一个实施例,所述第一信令包括一个DCI信令中的一个或多个域(field(s))。
作为一个实施例,所述第一节点在一个PDCCH(Physical downlink control channel)中接收所述第一信令。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS 38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS 38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS 38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令采用DCI格式(format)。
作为一个实施例,所述第一信令采用DCI格式1_0。
作为一个实施例,所述第一信令采用DCI格式1_1。
作为一个实施例,所述第一信令采用DCI格式1_2。
作为一个实施例,所述第一信令采用DCI格式1_0,DCI格式1_1或DCI格式1_2中之一。
作为一个实施例,所述第一信令采用DCI格式1_1或DCI格式1_2中之一。
作为一个实施例,所述第一信令采用DCI格式1_0,DCI格式1_1以及DCI格式1_2之外的DCI格式。
作为一个实施例,所述第一信令包括更高层(higher layer)信令。
作为一个实施例,所述第一信令包括RRC信令。
作为一个实施例,所述第一信令包括MAC CE。
作为一个实施例,所述第一PDCCH监测时机包括至少一个时域符号。
作为一个实施例,一个PDCCH监测时机包括至少一个时域符号。
作为一个实施例,一个所述时域符号是下行链路符号(downlink symbol)。
作为一个实施例,一个所述时域符号是灵活符号(flexible symbol)。
作为一个实施例,所述时域符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述时域符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述时域符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,一个PDCCH监测时机是根据PDCCH监测周期(PDCCH monitoring periodicity)、PDCCH监测偏移量(PDCCH monitoring offset)和时隙内的PDCCH监测模式(PDCCH monitoring pattern within a slot)来确定的。
作为一个实施例,一个PDCCH监测时机是可配置的。
作为一个实施例,一个PDCCH监测时机是通过搜索空间集合(search space set)来配置的。
作为一个实施例,所述第一域是一个数量指示域。
作为一个实施例,所述第一域是DAI(downlink assignment indicator)域。
作为一个实施例,所述第一域是计数DAI(counter downlink assignment indicator)域。
作为一个实施例,所述第一域包括至少一个比特。
作为一个实施例,所述第一域由2个比特构成。
作为一个实施例,所述第一域由3个比特构成。
作为一个实施例,所述第一域包括至多64个比特。
作为一个实施例,所述第一比特块在一个PUCCH(Physical uplink control channel)上被发送。
作为一个实施例,所述第一比特块包括UCI(Uplink control information)比特。
作为一个实施例,所述第一比特块包括1个比特。
作为一个实施例,所述第一比特块包括2个比特。
作为一个实施例,所述第一比特块包括至少3个比特。
作为一个实施例,所述第一比特块经过至少信道编码后被发送。
作为一个实施例,所述第一比特块经过至少序列生成后被发送。
作为一个实施例,关联到所述第一信令的HARQ-ACK比特是被用于指示所述第一信令所调度的PDSCH中的传输块是否被正确译码的HARQ-ACK比特。
作为一个实施例,关联到所述第一信令的HARQ-ACK比特是针对所述第一信令所调度的PDSCH的HARQ-ACK比特。
作为一个实施例,所述表述“所述第一信令被用于下行授予,所述第一信令调度多个服务小区”包括:所述第一信令被用于调度多个服务小区上的多个PDSCH。
作为一个实施例,所述表述“所述第一信令调度多个服务小区”包括:所述第一信令在所调度的所述多个服务小区上的每个服务小区上都调度至少一个PDSCH。
作为一个实施例,所述第一信令被用于调度多个PDSCH,所述多个PDSCH分别在多个服务小区上被传输。
作为一个实施例,在本申请中,一个信令调度一个服务小区的意思包括:这个信令在这个服务小区上调度至少一个物理层信道。
作为一个实施例,在本申请中,一个信令调度一个服务小区的意思包括:这个信令在这个服务小区上调度至少一个PDSCH。
作为一个实施例,所述表述“所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量”包括:所述第一累积数量是{参考服务小区,PDCCH监测时机}对的累积数量。
作为一个实施例,一个参考服务小区是关联到一个信令的一个服务小区。
作为一个实施例,一个参考PDSCH是一个信令所调度的一个PDSCH。
作为一个实施例,对于调度仅一个服务小区的信令,所对应的参考服务小区是所调度的所述仅一个服务小区。
作为一个实施例,对于调度仅一个服务小区的信令,所对应的参考PDSCH是所调度的所述仅一个服务小区上的PDSCH。
作为一个实施例,对于调度仅一个PDSCH的信令,所对应的参考PDSCH是所调度的所述仅一个PDSCH。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的所述多个服务小区中之一。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的所述多个服务小区中索引最大的服务小区。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的所述多个服务小区中索引最小的服务小区。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的PDSCH中接收起始时间最晚的PDSCH所属的服务小区。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最早的PDSCH。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考PDSCH是在所对应的参考服务小区上被传输的PDSCH。
作为一个实施例,对于调度多个PDSCH的信令,所对应的参考PDSCH是所调度的所述多个PDSCH中接收起始时间最早的PDSCH。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最晚的PDSCH。
作为一个实施例,对于调度多个PDSCH的信令,所对应的参考PDSCH是所调度的所述多个PDSCH中接收起始时间最晚的PDSCH。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考服务小区是所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为一个实施例,对于调度多个服务小区的信令,所对应的参考PDSCH是根据PDSCH的接收顺序所确定的一个PDSCH。
作为一个实施例,对于所述第一信令,所对应的参考PDSCH是根据PDSCH的接收顺序所确定的一个PDSCH。
作为一个实施例,所述第一规则包括:首先按照参考PDSCH的接收起始时间(starting time)的增序(increasing order),其次按照参考服务小区的索引的升序(ascending order),再次按照PDCCH监测时机的索引的升序(ascending order)。
作为一个实施例,所述表述“所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序”包括:
所述第一规则包括:首先对于相同的{服务小区,PDCCH监测时机}对按照参考PDSCH的接收起始时间(starting time)的增序(increasing order),其次按照参考服务小区的索引的升序(ascending order),再次按照PDCCH监测时机的索引的升序(ascending order)。
作为一个实施例,所述表述“所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序”包括:
所述第一规则包括:首先对于相同的{参考服务小区,PDCCH监测时机}对按照参考PDSCH的接收起始时间(starting time)的增序(increasing order),其次按照参考服务小区 的索引的升序(ascending order),再次按照PDCCH监测时机的索引的升序(ascending order)。
作为一个实施例,本申请中的所述信令是物理层信令。
作为一个实施例,本申请中的所述信令是DCI信令。
作为一个实施例,本申请中的所述信令是DCI格式。
作为一个实施例,本申请中的所述信令是采用DCI格式的信令。
作为一个实施例,本申请中的所述HARQ-ACK比特是HARQ-ACK信息比特(information bit(s))。
作为一个实施例,每个服务小区可以被计数至多N次,所述N是可配置的。
作为一个实施例,所述第一信令调度2个小区。
作为一个实施例,所述第一信令调度3个小区。
作为一个实施例,所述第一信令调度4个小区。
作为一个实施例,所述第一信令调度5个小区。
作为一个实施例,所述第一信令调度6个小区。
作为一个实施例,所述第一信令调度7个小区。
作为一个实施例,所述第一信令调度8个小区。
作为一个实施例,所述第一信令调度至多32个小区。
作为一个实施例,所述第一信令调度至多128个小区。
作为一个实施例,对于所述第一信令,所对应的参考PDSCH是在所调度的索引最小的服务小区上被传输的PDSCH。
作为一个实施例,对于所述第一信令,所对应的参考PDSCH是在所调度的索引最大的服务小区上被传输的PDSCH。
作为一个实施例,所述第一信令所对应的所述参考PDSCH在所述第一服务小区之外的所述第一信令所调度的一个服务小区上被传输。
作为一个实施例,所述表述“PDSCH的接收顺序”包括:PDSCH的接收时间顺序。
作为一个实施例,所述表述“PDSCH的接收顺序”包括:PDSCH的接收起始时间。
作为一个实施例,在本申请中,一个信令调度一个PDSCH的意思包括:这个信令调度这个PDSCH的接收(reception)。
作为一个实施例,所述第一服务小区是服务小区c,所述第一PDCCH监测时机是PDCCH监测时机m;被计数到所述第一累积数量中的任一{服务小区i,PDCCH监测时机j}对都满足下述中之一:所述j小于所述m,或者,所述j等于所述m且所述i小于所述c,或者,所述j等于所述m且所述i等于所述c且{服务小区i,PDCCH监测时机j}对所对应的参考PDSCH的接收起始时间早于{服务小区c,PDCCH监测时机m}对所对应的参考PDSCH的接收起始时间,或者,{服务小区i,PDCCH监测时机j}对是{服务小区c,PDCCH监测时机m}对;所述c和所述i都是服务小区的索引,所述m和所述j都是PDCCH监测时机的索引。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口 (例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。 PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块中的至少部分生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码, 包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到 所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一比特块。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一比特块。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。
第一节点U1,在步骤S511中在第一PDCCH监测时机中接收第一信令;在步骤S512中发送第一比特块。
第二节点U2,在步骤S521中在第一PDCCH监测时机中发送第一信令;在步骤S522中接收第一比特块。
在实施例5中,所述第一信令包括第一域;所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照 PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区;对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
作为实施例5的一个子实施例,所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输,或者,所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH,或者,所述第一信令所对应的所述参考PDSCH是在所述第一信令所调度的索引最小的服务小区上被传输的PDSCH,或者,所述第一信令所对应的所述参考PDSCH是在所述第一信令所调度的索引最大的服务小区上被传输的PDSCH。
作为实施例5的一个子实施例,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区,或者,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区,或者,所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请要解决的问题包括:如何解读所述第一信令中的所述第一域。
作为一个实施例,本申请要解决的问题包括:如何解读DAI域。
作为一个实施例,本申请要解决的问题包括:如何解读被用于调度多个服务小区的DCI信令中的计数DAI域。
作为一个实施例,本申请要解决的问题包括:如何对{服务小区,PDCCH监测时机}对的累积数量进行指示。
作为一个实施例,本申请要解决的问题包括:如何增强对{服务小区,PDCCH监测时机}对的累积数量的指示。
作为一个实施例,本申请要解决的问题包括:如何缓解控制信令漏检的问题。
作为一个实施例,所述第一节点还接收所述第一信令所调度的多个PDSCH。
作为一个实施例,所述第二节点还发送所述第一信令所调度的多个PDSCH。
作为一个实施例,所述第一信令所调度的所述多个PDSCH分别在所述第一信令所调度的所述多个服务小区上被传输。
实施例6
实施例6示例了根据本申请的一个实施例的第一累积数量的说明示意图,如附图6所示。
在实施例6中,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
作为一个实施例,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对({serving cell,PDCCH monitoring occasion}-pair)中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
作为一个实施例,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区。
作为一个实施例,对于所述第一累积数量,每个{服务小区,PDCCH监测时机}对({serving cell,PDCCH monitoring occasion}-pair)中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
作为一个实施例,对于所述第一累积数量,每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区。
作为一个实施例,所述表述“关联到DCI格式”包括:关联到DCI信令。
作为一个实施例,所述表述“关联到DCI格式”包括:关联到包括所述第一域的信令。
作为一个实施例,所述表述“关联到DCI格式”包括:关联到采用包括所述第一域的DCI格式的信令。
作为一个实施例,所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量。
作为一个实施例,对于所述第一累积数量,每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区。
作为一个实施例,不响应PDSCH接收的HARQ-ACK比特包括:针对指示SPS(Semi-persistent scheduling)PDSCH释放(release)的PDCCH的HARQ-ACK比特。
作为一个实施例,不响应PDSCH接收的HARQ-ACK比特包括:针对指示Scell休眠(dormancy)的PDCCH的HARQ-ACK比特。
作为一个实施例,不响应PDSCH接收的HARQ-ACK比特包括:针对提供TCI(Transmission Configuration Indicator)状态更新的PDCCH的HARQ-ACK比特。
作为一个实施例,对于所述第一累积数量,每个{服务小区,PDCCH监测时机}对({serving cell,PDCCH monitoring occasion}-pair)中都存在关联到DCI格式的PDSCH接收。
作为一个实施例,所述第一累积数量是HARQ-ACK比特的累积数量。
作为一个实施例,所述第一累积数量是针对PDSCH接收的HARQ-ACK比特或不响应PDSCH接收的HARQ-ACK比特的累积数量。
作为一个实施例,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对都是针对参考服务小区而言的。
实施例7
实施例7示例了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图,如附图7所示。
在实施例7中,DCI#0在PDCCH监测时机0中被接收,所述DCI#0调度服务小区3,所述服务小区3是所述DCI#0所对应的参考服务小区;DCI#1在PDCCH监测时机1中被接收,所述DCI#1调度服务小区1,所述服务小区1是所述DCI#1所对应的参考服务小区;DCI#2在PDCCH监测时机1中被接收,所述DCI#2调度服务小区0和服务小区2。
在实施例7中,对于所述DCI#0,所述DCI#1或所述DCI#2中的任一者,所对应的参考服务小区是所调度的服务小区中索引最大的服务小区;所述DCI#2是本申请中的所述第一信令,所述PDCCH监测时机1是本申请中的所述第一PDCCH监测时机,所述服务小区2是本申请中的所述第一服务小区;按照所述第一规则,{服务小区3,PDCCH监测时机0}对,{服务小区1,PDCCH监测时机1}对,{服务小区2,PDCCH监测时机1}对被计数到所述第一累积数量中,所述第一累积数量等于3。
实施例8
实施例8示例了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图,如附图8所示。
在实施例8中,DCI#0在PDCCH监测时机0中被接收,所述DCI#0调度服务小区0,所述服务小区0是所述DCI#0所对应的参考服务小区,所述DCI#0所对应的参考PDSCH是PDSCH#0;DCI#1在PDCCH监测时机0中被接收,所述DCI#1调度服务小区0,服务小区1,服务小区3以及服务小区4,所述DCI#1所对应的参考PDSCH是PDSCH#1;所述PDSCH#0的接收起始时间早于所述PDSCH#1的接收起始时间。
在实施例8中,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考服务小区是所调度的服务小区中索引最小的服务小区;所述DCI#1是本申请中的所述第一信令,所述PDCCH监测时机0是本申请中的所述第一PDCCH监测时机,所述服务小区0是本申请中的所述第一服务小区;按照所述第一规则,{服务小区0,PDCCH监测时机0}对(针对所述DCI#0所对应的较早的参考PDSCH的接收起始时间),{服务小区0,PDCCH监测时机0}对(针对所述DCI#1所对应的较晚的参考PDSCH的接收起始时间)被计数到所述第一累积数量中,所述第一累积数量等于2。
作为实施例8的一个子实施例,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最早的PDSCH。
作为实施例8的一个子实施例,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最晚的PDSCH。
作为实施例8的一个子实施例,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考PDSCH是在所调度的参考服务小区上被传输的PDSCH。
作为实施例8的一个子实施例,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考PDSCH是在所调度的索引最小的服务小区上被传输的PDSCH。
作为实施例8的一个子实施例,对于所述DCI#0或所述DCI#1中的任一者,所对应的参考PDSCH是在所调度的索引最大的服务小区上被传输的PDSCH。
实施例9
实施例9示例了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图,如附图9所示。
在实施例9中,DCI#0在PDCCH监测时机0中被接收,所述DCI#0调度服务小区3,所述服务小区3是所述DCI#0所对应的参考服务小区,所述DCI#0所对应的参考PDSCH是PDSCH#0;DCI#1在PDCCH监测时机1中被接收,所述DCI#1调度服务小区0,服务小区1,服务小区3以及服务小区4,所述服务小区4是所述DCI#1所对应的参考服务小区,所述DCI#1所对应的参考PDSCH是PDSCH#1;DCI#2在PDCCH监测时机1中被接收,所述DCI#2调度服务小区3以及服务小区4,所述DCI#2所对应的参考PDSCH是PDSCH#2;所述PDSCH#2的接收起始时间早于所述PDSCH#1的接收起始时间;DCI#3在PDCCH监测时机1中被接收,所述DCI#3调度服务小区1,服务小区2以及服务小区5,所述服务小区5是所述DCI#3所对应的参考服务小区,所述DCI#3所对应的参考PDSCH是PDSCH#3。
在实施例9中,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考服务小区是所调度的服务小区中索引最大的服务小区;所述DCI#2是本申请中的所述第一信令,所述PDCCH监测时机1是本申请中的所述第一PDCCH监测时机,所述服务小区4是本申请中的所述第一服务小区;按照所述第一规则,{服务小区3,PDCCH监测时机0}对(对应所述DCI#0),{服务小区4,PDCCH监测时机1}对(对应所述DCI#2)被计数到所述第一累积数量中,所述第一累积数量等于2。
作为实施例9的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最早的PDSCH。
作为实施例9的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3 中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最晚的PDSCH。
作为实施例9的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的参考服务小区上被传输的PDSCH。
作为实施例9的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的索引最小的服务小区上被传输的PDSCH。
作为实施例9的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的索引最大的服务小区上被传输的PDSCH。作为实施例9的一个子实施例,按照所述第一规则,所述DCI#1和所述DCI#3所对应的{服务小区,PDCCH监测时机}对不被计数到所述第一累积数量中。
作为一个实施例,本申请中的所述DCI#0是DCI信令。
作为一个实施例,本申请中的所述DCI#0包括一个DCI信令中的一个或多个域。
作为一个实施例,本申请中的所述DCI#0是DCI格式。
作为一个实施例,本申请中的所述DCI#0采用DCI格式。
作为一个实施例,本申请中的所述DCI#1是DCI信令。
作为一个实施例,本申请中的所述DCI#1包括一个DCI信令中的一个或多个域。
作为一个实施例,本申请中的所述DCI#1是DCI格式。
作为一个实施例,本申请中的所述DCI#1采用DCI格式。
作为一个实施例,本申请中的所述DCI#2是DCI信令。
作为一个实施例,本申请中的所述DCI#2包括一个DCI信令中的一个或多个域。
作为一个实施例,本申请中的所述DCI#2是DCI格式。
作为一个实施例,本申请中的所述DCI#2采用DCI格式。
作为一个实施例,本申请中的所述DCI#3是DCI信令。
作为一个实施例,本申请中的所述DCI#3包括一个DCI信令中的一个或多个域。
作为一个实施例,本申请中的所述DCI#3是DCI格式。
作为一个实施例,本申请中的所述DCI#3采用DCI格式。
实施例10
实施例10示例了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图,如附图10所示。
在实施例10中,DCI#0在PDCCH监测时机0中被接收,所述DCI#0调度服务小区0,服务小区2以及服务小区3,所述服务小区3是所述DCI#0所对应的参考服务小区,所述DCI#0所对应的参考PDSCH是PDSCH#0,所述PDSCH#0在所述服务小区3上被传输;DCI#1在PDCCH监测时机1中被接收,所述DCI#1调度服务小区0,服务小区1,服务小区3以及服务小区4,所述服务小区3是所述DCI#1所对应的参考服务小区,所述DCI#1所对应的参考PDSCH是PDSCH#1,所述PDSCH#1在所述服务小区3上被传输;DCI#2在PDCCH监测时机1中被接收,所述DCI#2调度服务小区3以及服务小区4,所述DCI#2所对应的参考PDSCH是PDSCH#2,所述PDSCH#2在所述服务小区4上被传输;DCI#3在PDCCH监测时机2中被接收,所述DCI#3调度服务小区1,服务小区2以及服务小区5,所述服务小区1是所述DCI#3所对应的参考服务小区,所述DCI#3所对应的参考PDSCH是PDSCH#3,所述PDSCH#3在所述服务小区1上被传输。
在实施例10中,所述DCI#2是本申请中的所述第一信令,所述PDCCH监测时机1是本申请中的所述第一PDCCH监测时机,所述服务小区4是本申请中的所述第一服务小区;按照所述第一规则,{服务小区3,PDCCH监测时机0}对(对应所述DCI#0),{服务小区3,PDCCH监测时机1}对(对应所述DCI#1)以及{服务小区4,PDCCH监测时机1}对(对应所述DCI#2)被计数到所述第一累积数量中,所述第一累积数量等于3。
作为实施例10的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考服务小区是被用于传输所对应的参考PDSCH的服务小区。
作为实施例10的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最早的PDSCH。
作为实施例10的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最晚的PDSCH。
作为实施例10的一个子实施例,按照所述第一规则,所述DCI#3所对应的{服务小区,PDCCH监测时机}对不被计数到所述第一累积数量中。
实施例11
实施例11示例了根据本申请的一个实施例的根据第一规则得到第一累积数量的说明示意图,如附图11所示。
在实施例11中,DCI#0在PDCCH监测时机0中被接收,所述DCI#0调度服务小区0,服务小区1,服务小区2以及服务小区3,所述服务小区0是所述DCI#0所对应的参考服务小区,所述DCI#0所对应的参考PDSCH是PDSCH#0;DCI#1在PDCCH监测时机0中被接收,所述DCI#1调度服务小区4,服务小区5,服务小区6以及服务小区7,所述服务小区4是所述DCI#1所对应的参考服务小区,所述DCI#1所对应的参考PDSCH是PDSCH#1;DCI#2在PDCCH监测时机0中被接收,所述DCI#2调度服务小区4,服务小区5,服务小区6以及服务小区7,所述DCI#2所对应的参考PDSCH是PDSCH#2;所述PDSCH#1的接收起始时间早于所述PDSCH#2的接收起始时间;DCI#3在PDCCH监测时机1中被接收,所述DCI#3调度服务小区0,服务小区1,服务小区2以及服务小区3,所述服务小区0是所述DCI#3所对应的参考服务小区,所述DCI#3所对应的参考PDSCH是PDSCH#3。
在实施例11中,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考服务小区是所调度的服务小区中索引最小的服务小区;所述DCI#2是本申请中的所述第一信令,所述PDCCH监测时机0是本申请中的所述第一PDCCH监测时机,所述服务小区4是本申请中的所述第一服务小区;按照所述第一规则,{服务小区0,PDCCH监测时机0}对(对应所述DCI#0),{服务小区4,PDCCH监测时机0}对(对应所述DCI#1)以及{服务小区4,PDCCH监测时机0}对(对应所述DCI#2)被计数到所述第一累积数量中,所述第一累积数量等于3。
作为实施例11的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最早的PDSCH。
作为实施例11的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是所调度的PDSCH中接收起始时间最晚的PDSCH。
作为实施例11的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的参考服务小区上被传输的PDSCH。
作为实施例11的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的索引最小的服务小区上被传输的PDSCH。
作为实施例11的一个子实施例,对于所述DCI#0,所述DCI#1,所述DCI#2或所述DCI#3中的任一者,所对应的参考PDSCH是在所调度的索引最大的服务小区上被传输的PDSCH。
作为实施例11的一个子实施例,按照所述第一规则,所述DCI#3所对应的{服务小区,PDCCH监测时机}对不被计数到所述第一累积数量中。
实施例12
实施例12示例了一个第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一节点设备处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备1200是基站。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是车载通信设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1200是支持单个DCI调度多个服务小区的用户设备。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例12中,所述第一接收机1201,在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;所述第一发射机1202,发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为一个实施例,所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输。
作为一个实施例,所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH。
作为一个实施例,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区。
作为一个实施例,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区。
作为一个实施例,所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
作为一个实施例,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
实施例13
实施例13示例了一个第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是卫星设备。
作为一个实施例,所述第二节点设备1300是中继节点。
作为一个实施例,所述第二节点设备1300是车载通信设备。
作为一个实施例,所述第二节点设备1300是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1300是支持单个DCI调度多个服务小区的设备。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例13中,所述第二发射机1301,在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;所述第二接收机1302,接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区, PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
作为一个实施例,所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输。
作为一个实施例,所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH。
作为一个实施例,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区。
作为一个实施例,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区。
作为一个实施例,所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
作为一个实施例,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;
    第一发射机,发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
    其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一信令所对应的所述参考PDSCH在所述第一服务小区上被传输。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一信令所对应的所述参考PDSCH是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最大的服务小区。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一服务小区是所述第一信令所调度的所述多个服务小区中索引最小的服务小区。
  6. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一服务小区是所述第一信令所调度的PDSCH中接收起始时间最早的PDSCH所属的服务小区。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,对于所述第一累积数量,被计数的每个{服务小区,PDCCH监测时机}对中的所述服务小区都是参考服务小区,被计数的每个{服务小区,PDCCH监测时机}对中都存在关联到DCI格式的PDSCH接收或不响应PDSCH接收的HARQ-ACK比特。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;
    第二接收机,接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
    其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一PDCCH监测时机中接收第一信令,所述第一信令包括第一域;
    发送第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
    其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一PDCCH监测时机中发送第一信令,所述第一信令包括第一域;
    接收第一比特块,所述第一比特块包括至少关联到所述第一信令的HARQ-ACK比特;
    其中,所述第一信令被用于下行授予,所述第一信令调度多个服务小区;所述第一信令中的所述第一域被用于指示按照第一规则截止到所述第一PDCCH监测时机和第一服务小区的第一累积数量;所述第一累积数量是{服务小区,PDCCH监测时机}对的累积数量,或者,所述第一累积数量是HARQ-ACK比特的累积数量;所述第一规则包括首先按照参考PDSCH的接收起始时间的增序,其次按照参考服务小区的索引的升序,再次按照PDCCH监测时机的索引的升序;对于所述第一信令,所对应的参考PDSCH在所调度的所述多个服务小区中之一上被传输,所对应的参考服务小区是所述第一服务小区;所述第一服务小区是所述第一信令所调度的所述多个服务小区中根据服务小区的索引或PDSCH的接收顺序所确定的一个服务小区。
PCT/CN2023/081918 2022-03-18 2023-03-16 一种被用于无线通信的节点中的方法和装置 WO2023174375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210270293.X 2022-03-18
CN202210270293.XA CN116827498A (zh) 2022-03-18 2022-03-18 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023174375A1 true WO2023174375A1 (zh) 2023-09-21

Family

ID=88022379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081918 WO2023174375A1 (zh) 2022-03-18 2023-03-16 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116827498A (zh)
WO (1) WO2023174375A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294960A (zh) * 2020-02-12 2020-06-16 北京紫光展锐通信技术有限公司 识别下行控制信息的方法及设备
US20210058113A1 (en) * 2019-08-23 2021-02-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
CN113302963A (zh) * 2019-01-15 2021-08-24 上海诺基亚贝尔股份有限公司 利用信令消息调度服务小区
CN113498173A (zh) * 2020-03-20 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113542174A (zh) * 2020-04-14 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302963A (zh) * 2019-01-15 2021-08-24 上海诺基亚贝尔股份有限公司 利用信令消息调度服务小区
US20210058113A1 (en) * 2019-08-23 2021-02-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
CN111294960A (zh) * 2020-02-12 2020-06-16 北京紫光展锐通信技术有限公司 识别下行控制信息的方法及设备
CN113498173A (zh) * 2020-03-20 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113542174A (zh) * 2020-04-14 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116827498A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061231A1 (zh) 用于无线通信的方法和装置
WO2023202414A1 (zh) 用于无线通信的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769877

Country of ref document: EP

Kind code of ref document: A1