WO2021057598A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021057598A1
WO2021057598A1 PCT/CN2020/115948 CN2020115948W WO2021057598A1 WO 2021057598 A1 WO2021057598 A1 WO 2021057598A1 CN 2020115948 W CN2020115948 W CN 2020115948W WO 2021057598 A1 WO2021057598 A1 WO 2021057598A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
node
signal
time value
information
Prior art date
Application number
PCT/CN2020/115948
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021057598A1 publication Critical patent/WO2021057598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device in a non-terrestrial network (NTN, Non-Terrestrial Networks) in wireless communication.
  • NTN non-terrestrial network
  • NTN Non-Terrestrial Networks
  • WI Wireless Fidelity
  • user equipment In the NTN network, user equipment (UE, User Equipment) and satellites or aircraft communicate through the 5G network. Because the distance from the satellite or aircraft to the user equipment is much greater than the distance from the ground base station to the user equipment, the satellite or aircraft communicates with the user equipment. There is a long transmission delay (Propagation Delay) when the user equipment performs communication transmission. In addition, when the satellite is used as the relay device of the ground station, the delay of the feeder link between the satellite and the ground station will further increase the transmission delay between the user equipment and the base station.
  • Propagation Delay Propagation Delay
  • a terminal will maintain multiple timers for RRC (Radio Resource Control) Re-establishment and cell reselection (Cell-reselection), enter the RRC_IDLE state and other steps or operation judgments, and then the configuration of the initial value of the timer is often based on the characteristics of the ground network, and less consideration is given to the characteristics of transmission delay and processing delay in the NTN network.
  • RRC Radio Resource Control
  • this application provides a solution.
  • the NTN scenario is only used as an example of an application scenario of the solution provided by this application; this application is also applicable to scenarios such as terrestrial networks to achieve similar technical effects in the NTN scenario.
  • this application is also applicable to scenarios where there is a UAV (Unmanned Aerial Vehicle, unmanned aerial vehicle) or a network of Internet of Things devices, for example, to achieve technical effects similar to NTN scenarios.
  • UAV Unmanned Aerial Vehicle, unmanned aerial vehicle
  • a network of Internet of Things devices for example, to achieve technical effects similar to NTN scenarios.
  • different scenarios including but not limited to NTN scenarios and terrestrial network scenarios
  • adopting a unified solution can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first channel quality is used to determine a first offset
  • the first time value and the first offset are used together to determine T1
  • the T1 is a positive integer
  • the first The expiration time of the timer is equal to T1 milliseconds
  • the start time value of the first timer is the T1 milliseconds
  • the countdown of the first timer to 0 indicates that the first timer has expired.
  • one advantage of the above method is that the first node estimates the transmission delay and processing delay between the first node and the sender of the first information through the first channel quality, and The first offset is added to the configured first time value, so as to optimize the design of the timer according to the delay actually perceived by the first node.
  • another advantage of the above method is that no additional signaling is required to indicate the first offset, which reduces signaling overhead and improves spectrum efficiency.
  • another advantage of the above method is that the above method only requires the first node to determine the first offset through the first channel quality, and does not need to know the sender of the first information
  • the altitude, satellite type and other information is a more widely used and adaptable solution.
  • the essence of the above method is that the first node uses the first channel quality to infer the delay between the sender of the first information and the second node, and then adjusts the first node.
  • the start value of the timer in the RRC operation of the node to tolerate higher delays, avoid frequent switching between multiple RRC states or operations, and improve system efficiency.
  • the above method is characterized in that the first channel quality is used to determine the path loss from the sender of the first signal to the first node.
  • the advantage of the above method is that the path loss can indirectly reflect the transmission delay, thereby helping the first node to adjust the first offset more accurately.
  • the above method is characterized in that the first channel quality is used to determine a second time value between the sender of the first signal and the first node.
  • the advantage of the above method is that when the first channel quality is directly used to indicate the transmission delay, the second time value can be directly used to adjust the initial value of the timer, thereby optimizing the design of the timer.
  • the above method is characterized in that it includes:
  • the second signaling is used to trigger the transmission of the second signal, the start time of the time domain resource occupied by the second signaling and the start time of the time domain resource occupied by the second signal
  • the time interval between the start moments is equal to the first time interval, and the first time interval is associated with the first offset; the unit of the first time interval is milliseconds.
  • the advantage of the above method is that the first time interval is linked with the first offset, thereby optimizing various scheduling delays.
  • the above method Avoid introducing too many dynamic signaling bits, and only introduce an additional offset on the first node side through the first offset, so as to adapt to different transmission delay scenarios to cope with the requirements described in this application. The case where the height of the second node is different, and the case where the position of the first node is different are described.
  • the above method is characterized in that the first channel quality is used to determine the type of service supported by the sender of the first signal.
  • the advantage of the above method is that the type of service that can be provided by the first node is changed according to the different transmission delays perceived by the first node; that is, when the delay is large, the delay is changed. More demanding services will not be provided, thereby optimizing the performance of the entire network.
  • the above method is characterized in that the first timer is used to initiate an RRC connection re-establishment operation during handover, the first timer expires, and the performing the RRC operation includes initiating an RRC connection re-establishment.
  • the above method is characterized in that the first timer is used to determine whether the first node is out of synchronization, the first timer expires, and the performing RRC operation includes initiating connection re-establishment.
  • the above method is characterized in that it includes:
  • the third signal is used to indicate third information, and the third information is used to determine the first type of time value set, and the first time value belongs to the first type of time value set.
  • the advantage of the above method is that the third information is connected with the height of the sender of the first information, and then the first node determines the value of the first time value through the third information.
  • the value range thereby improving the accuracy of the first time value, and avoiding the problem of excessive system signaling overhead caused by the first information occupying too many bits.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first channel quality is used to determine a first offset
  • the first time value and the first offset are used together to determine T1
  • the T1 is a positive integer
  • the receiver of includes a first node
  • the first node includes a first timer
  • the expiration time of the first timer is equal to T1 milliseconds
  • the start time value of the first timer is the T1 milliseconds
  • the countdown of the first timer to 0 indicates that the first timer expires; when the first timer expires, the first node performs an RRC operation.
  • the above method is characterized in that the first channel quality is used to determine the path loss from the second node to the first node.
  • the above method is characterized in that the first channel quality is used to determine the path loss from the second node to the first node.
  • the above method is characterized in that the first channel quality is used to determine a second time value between the second node and the first node.
  • the above method is characterized in that it includes:
  • the second signaling is used to trigger the transmission of the second signal, the start time of the time domain resource occupied by the second signaling and the start time of the time domain resource occupied by the second signal
  • the time interval between the start moments is equal to the first time interval, and the first time interval is associated with the first offset; the unit of the first time interval is milliseconds.
  • the above method is characterized in that the first channel quality is used to determine the type of service supported by the second node.
  • the above method is characterized in that the first timer is used to initiate an RRC connection re-establishment operation during handover, the first timer expires, and the performing the RRC operation includes initiating an RRC connection re-establishment.
  • the above method is characterized in that the first timer is used to determine whether the first node is out of synchronization, the first timer expires, and the performing RRC operation includes initiating connection re-establishment.
  • the above method is characterized in that it includes:
  • the third signal is used to indicate third information, and the third information is used to determine the first type of time value set, and the first time value belongs to the first type of time value set.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first information, where the first information is used to determine a first time value
  • a second receiver receiving a first signal, and the first signal is used to determine the first channel quality
  • the first transceiver determines that the first timer expires, and executes the RRC operation
  • the first channel quality is used to determine a first offset
  • the first time value and the first offset are used together to determine T1
  • the T1 is a positive integer
  • the first The expiration time of the timer is equal to T1 milliseconds
  • the start time value of the first timer is the T1 milliseconds
  • the countdown of the first timer to 0 indicates that the first timer has expired.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends first information, where the first information is used to determine the first time value;
  • a second transmitter sending a first signal, and the first signal is used to determine the first channel quality
  • the first channel quality is used to determine a first offset
  • the first time value and the first offset are used together to determine T1
  • the T1 is a positive integer
  • the receiver of includes a first node
  • the first node includes a first timer
  • the expiration time of the first timer is equal to T1 milliseconds
  • the start time value of the first timer is the T1 milliseconds
  • the countdown of the first timer to 0 indicates that the first timer expires; when the first timer expires, the first node performs an RRC operation.
  • this application has the following advantages:
  • the first node uses the first channel quality to infer the delay between the sender of the first information and the second node, and then adjusts the timer in the RRC operation of the first node Start value to tolerate higher delays, avoid frequent switching between multiple RRC states or operations, and improve system efficiency;
  • This application adds the first offset on the basis of the configured first time value, and furthermore, under the guarantee of configuration flexibility through the first time value, the delay according to the actual perception of the first node
  • the design of the timer is optimized; and no additional signaling is required to indicate the first offset, which reduces signaling overhead and improves spectrum efficiency;
  • the first time interval is linked with the first offset to optimize various scheduling delays.
  • the scheduling delay is indicated by dynamic signaling
  • the above method avoids the introduction of too many dynamic signaling bits , And only use the first offset to introduce an additional offset on the side of the first node to adapt to different transmission delay scenarios to deal with the different heights of the second node in this application. Scenes, and scenes where the first node is at a different location.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5 shows a flowchart of the first information according to an embodiment of the present application
  • Fig. 6 shows a flowchart of a second signal according to an embodiment of the present application
  • FIG. 7 shows a flowchart of judging whether the first timer has expired according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of the first channel quality according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of the first channel quality and the first offset according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the second signaling and the second signal according to an embodiment of the present application.
  • Fig. 11 shows a schematic diagram of a service type according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of an application scenario of an RRC operation according to the present application.
  • FIG. 13 shows a schematic diagram of another application scenario of RRC operation according to the present application.
  • Fig. 14 shows a schematic diagram of a first-type time value set according to the present application
  • Fig. 15 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • Fig. 16 shows a structural block diagram used in the second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives first information in step 101, and the first information is used to determine the first time value; in step 102, it receives the first signal, and the first signal is used. To determine the first channel quality; in step 103, it is determined that the first timer has expired, and the RRC operation is performed.
  • the first channel quality is used to determine a first offset, and the first time value and the first offset are used together to determine T1, where T1 is a positive integer, and so
  • the expiration time of the first timer is equal to T1 milliseconds; the start time value of the first timer is the T1 milliseconds, and the countdown of the first timer to 0 indicates that the first timer has expired.
  • the unit of the first time value is milliseconds.
  • the unit of the first offset is milliseconds.
  • the first time value is equal to T2 milliseconds
  • the first offset is equal to T3 millimeters
  • the T1 is equal to the sum of the T2 and the T3.
  • the first time value is equal to T2 milliseconds
  • the first offset is equal to T3 millimeters
  • the T1 is equal to the difference between the T2 and the T3.
  • the T2 and the T3 are both positive integers.
  • the T2 is greater than the T3.
  • the first information is common to the cell.
  • the first information is exclusive to the user equipment.
  • the signaling that carries the first information is RRC signaling.
  • the signaling that carries the first information is broadcast signaling.
  • the signaling that carries the first information is SIB (System Information Block, System Information Block).
  • RLF-TimersAndConstants IE Information Elements
  • TS Technical Specification
  • the UE-TimersAndConstants IE in TS 38.331 includes the first information.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the meaning of the expiration of the first timer in the above phrase includes the expiration of the first timer (Expire).
  • the meaning of the expiration of the first timer in the above phrase includes that the first timer is equal to zero.
  • the first timer is T300 in TS 38.331, and the first node sets the value of the first timer to the T1 millisecond according to the transmission of the RRCSetupRequest, and starts counting down.
  • the first timer is T300 in TS 38.331, and the first node stops the countdown of the first timer according to the reception of RRCSetup or RRCReject.
  • the first timer is used to determine whether the RRC Setup (setup) of the first node is successful within the T1 milliseconds.
  • the RRC operation includes resetting (Reset) MAC (Medium Access Control).
  • the RRC operation includes releasing (Release) the MAC configuration.
  • the RRC operation includes re-establishing RLC for all radio bearers.
  • the RRC operation includes notifying a higher-layer RRC connection establishment failure.
  • the first timer is T301 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to the transmission of the RRCReestablishmentRequest, and starts a countdown.
  • the first node stops the countdown of the first timer according to the reception of RRCReestablishment or the reception of an RRCSetup message (Message).
  • the first timer is used to determine whether the first node needs to enter the RRC_IDLE state.
  • the RRC operation includes entering the RRC_IDLE state.
  • the first timer is T302 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to the reception of RRCReject when the operation RRC connection is established or resumed, and starts a countdown.
  • the first node stops counting down the first timer according to entering the RRC_CONNECTED state and according to cell reselection.
  • the first timer is used to determine whether the first node needs to enter RRC reconstruction.
  • the RRC operation includes notifying a higher layer of Barring Alleviation.
  • the first timer is T304 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to the reception of the RRCReconfiguration message included in reconfigurationWithSync, and starts a countdown.
  • the first node stops the countdown of the first timer according to the successful completion of random access of the relevant serving cell.
  • the first timer is used in the cell handover of the first node.
  • the first node does not complete the cell handover before the first timer counts down to "0", and the first node enters an RRC reestablishment (Reestablishment) process (Procedure).
  • the RRC operation includes initiating an RRC re-establishment process.
  • the first timer is T310 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to the detected (Detecting) physical layer channel problem of the serving cell, and starts a countdown.
  • the first node sets the value of the first timer to the T1 millisecond according to the received N310 out-of-sync indication, and starts counting down.
  • the first node stops the countdown of the first timer according to the received N311 synchronization (in-sync) instruction.
  • the first node stops the countdown of the first timer according to the received RRCReconfigurationWithSync.
  • the first node stops the countdown of the first timer according to the initiation of the connection re-establishment process.
  • the first timer is used to determine whether to enter the RRC connection re-establishment process.
  • the first node enters the RRC connection re-establishment process when the first timer counts down to "0".
  • the first timer is used to determine whether to enter the cell reselection process.
  • the first node enters the cell reselection process when the first timer counts down to "0".
  • the first timer is T311 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to initiating the RRC re-establishment process, and starts a countdown.
  • the first node stops the countdown of the first timer according to the selection of a suitable NR cell or the selection of a suitable other RAT (Radio Access Technology) cell.
  • a suitable NR cell or the selection of a suitable other RAT (Radio Access Technology) cell.
  • the first timer is used to determine the time from the start of RRC re-establishment to the entry of RRC_IDLE.
  • the first node enters the RRC_IDLE state when the first timer counts down to "0".
  • the RRC operation includes entering RRC_IDLE.
  • the first timer is T319 in TS 38.331.
  • the first node sets the value of the first timer to the T1 millisecond according to the transmission of the RRCResumeRequest, and starts a countdown.
  • the first node stops the first node according to the reception of RRCResume, the reception of RRCSetup, the reception of RRCRelease, the reception of RRCRelease including suspendConfig, or the reception of an RRCReject message, or cell reselection, or connection reestablishment cancellation.
  • a timer countdown the reception of RRCResume, the reception of RRCSetup, the reception of RRCRelease, the reception of RRCRelease including suspendConfig, or the reception of an RRCReject message, or cell reselection, or connection reestablishment cancellation.
  • the first timer is used to determine the RRC resume (Resume) time.
  • the first node determines that the RRC recovery fails when the first timer counts down to "0".
  • the RRC operation includes entering and performing related operations of entering RRC_IDLE and releasing the cause of "RRC recovery failure".
  • the first signal includes a reference signal.
  • the first signal includes CSI-RS (Channel State Information Reference Signal, Channel State Information Reference Signal).
  • CSI-RS Channel State Information Reference Signal, Channel State Information Reference Signal.
  • the first signal includes PTRS (Phase Tracking Reference Signal).
  • PTRS Phase Tracking Reference Signal
  • the first signal includes PRS (Positioning Reference Signal, positioning reference signal).
  • PRS Positioning Reference Signal, positioning reference signal
  • the first signal includes DMRS (Demodulation Reference Signal, demodulation reference signal).
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the meaning of the above phrase that the expiration time of the first timer is equal to T1 milliseconds includes: the time from when the first timer starts to expire is equal to T1 milliseconds.
  • the above phrase means that the expiration time of the first timer is equal to T1 milliseconds includes: the starting time when the first timer is started is T1 milliseconds, and the first timing is when the countdown reaches 0 The device is considered expired.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function, user plane function
  • S-GW Service Gateway
  • P-GW Packet Date Network Gateway
  • MME/AMF/UPF211 is a control node that processes signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the first node in this application is a terminal within the coverage of the gNB203.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a large delay network.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a large delay network.
  • the first node has GPS (Global Positioning System, Global Positioning System) capability.
  • GPS Global Positioning System, Global Positioning System
  • the first node has a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) capability.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first information is generated in the MAC352 or the MAC302.
  • the first information is generated in the RRC306.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the first timer is located in the PHY301 or the PHY351.
  • the first timer is located in the MAC352 or the MAC302.
  • the first timer is located in the RLC303 or the RLC353.
  • the first timer is located in the PDCP304 or the PDCP354.
  • the first timer is located in RRC306.
  • the RRC operation is completed in the RRC306.
  • the second signaling is generated in the PHY301 or the PHY351.
  • the second signaling is generated in the MAC352 or the MAC302.
  • the second signal is generated in the PHY301 or the PHY351.
  • the second signal is generated in the MAC352 or the MAC302.
  • the second signal is generated in the RRC306.
  • the third signal is generated in the MAC352 or the MAC302.
  • the third signal is generated in the RRC306.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 that communicate with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: firstly receive first information, which is used to determine a first time value; secondly, receive a first signal, which is used to determine the first time value; Used to determine the first channel quality; then determine that the first timer expires, and perform the RRC operation; the first channel quality is used to determine the first offset, the first time value and the first offset
  • T1 is a positive integer
  • the expiration time of the first timer is equal to T1 milliseconds
  • the start time value of the first timer is the T1 milliseconds
  • the first communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: first receiving First information, the first information is used to determine the first time value; secondly, the first signal is received, and the first signal is used to determine the first channel quality; then it is determined that the first timer has expired, and the RRC operation is performed ;
  • the first channel quality is used to determine a first offset, the first time value and the first offset are used together to determine T1, the T1 is a positive integer, and the first timing
  • the expiration time of the timer is equal to T1 milliseconds; the start time value of the first timer is the T1 milliseconds, and the countdown of the first timer to 0 indicates that the first timer expires.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: firstly send first information, which is used to determine the first time value; secondly send a first signal, which is used to determine the first channel quality; The first channel quality is used to determine a first offset, the first time value and the first offset are used together to determine T1, where T1 is a positive integer, and the first information is received
  • the first node includes a first node, the first node includes a first timer, the expiration time of the first timer is equal to T1 milliseconds; the start time value of the first timer is the T1 milliseconds, and the The countdown of the first timer to 0 indicates that the first timer expires; when the first timer expires, the first node performs an RRC operation.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: first Send first information, the first information is used to determine the first time value; secondly, send a first signal, the first signal is used to determine the first channel quality; the first channel quality is used to determine the first channel quality An offset, the first time value and the first offset are used together to determine T1, the T1 is a positive integer, the recipient of the first information includes the first node, and the first node Including a first timer, the expiration time of the first timer is equal to T1 milliseconds; the start time value of the first timer is the T1 milliseconds, and the countdown of the first timer to 0 indicates that the first timer A timer expires; when the first timer expires, the first node performs an RRC operation.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station.
  • the first communication device 450 is a ground terminal.
  • the first communication device 450 is a ground device.
  • the first communication device 450 is a near ground terminal.
  • the first communication device 450 is an airplane.
  • the first communication device 450 is an aircraft.
  • the first communication device 450 is a surface vehicle.
  • the second communication device 410 is a non-terrestrial base station.
  • the second communication device 410 is a GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite.
  • GEO Globalstar Satellite Orbiting, synchronous earth orbit
  • the second communication device 410 is a MEO (Medium Earth Orbiting, Medium Earth Orbit) satellite.
  • MEO Medium Earth Orbiting, Medium Earth Orbit
  • the second communication device 410 is a LEO (Low Earth Orbit, Low Earth Orbit) satellite.
  • LEO Low Earth Orbit, Low Earth Orbit
  • the second communication device 410 is a HEO (Highly Elliptical Orbiting, Highly Elliptical Orbiting) satellite.
  • HEO Highly Elliptical Orbiting, Highly Elliptical Orbiting
  • the second communication device 410 is an Airborne Platform.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first A message; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to send the first information .
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first A signal; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the first signal .
  • At least one of the transmitting processor 468, the receiving processor 456, and the controller/processor 459 is used to determine that the first timer expires.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to perform RRC operating.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to perform RRC operations .
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Two signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the second Signaling.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to transmit the second Signal; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used to receive the second signal.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Three signals; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and at least one of the controller/processor 475 is used to send a third signal .
  • Embodiment 5 illustrates a flow chart of the first signaling, as shown in FIG. 5.
  • the first node U1 and the second node N2 communicate via a wireless link, and the step identified by the block F0 is optional.
  • a third signal For the first node U1, received in step S10, a third signal; receiving a first message in step S11; receiving a first signal in step S12; determining a first timer expires in step S13, and performs an RRC operation.
  • step S20 the third transmission signal; a first message transmitted in step S21; transmitting a first signal in step S22.
  • the first information is used to determine the first time value
  • the first signal is used to determine the first channel quality
  • the first channel quality is used to determine the first offset
  • the first time value and the first offset are used together to determine T1, where T1 is a positive integer, and the expiration time of the first timer is equal to T1 milliseconds
  • the start time of the first timer The value is the T1 millisecond, and the countdown of the first timer to 0 indicates that the first timer expires
  • the third signal is used to indicate third information, and the third information is used to determine the A first type of time value set, and the first time value belongs to the first type of time value set.
  • the first channel quality is used to determine the path loss from the second node N2 to the first node U1.
  • the first signal includes a reference signal.
  • the first signal includes SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the first signal includes CSI-RS.
  • the physical layer channel that carries the first signal includes PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the unit of the first channel quality is dBm (millidecibel).
  • the first channel quality is RSRP (Reference Signal Received Power).
  • the first node U1 knows the transmit power value of the first signal, the first channel quality is the receive power value of the first signal, the transmit power value and The received power value is used to determine the path loss from the second node N2 to the first node U1.
  • the unit of the path loss is dB.
  • the first time value is independent of the first channel quality.
  • the first offset increases as the path loss increases.
  • the first offset decreases as the path loss decreases.
  • the value of T1 increases as the path loss increases.
  • the value of T1 decreases as the path loss decreases.
  • the first offset is equal to one of K1 candidate values
  • the K1 candidate values respectively correspond to the K1 value ranges of the path loss one-to-one
  • the K1 is a positive integer greater than 1.
  • the path loss is equal to a given value range among the K1 value ranges
  • the given value range is equal to a given candidate among the K1 candidate values
  • the first offset is equal to the given candidate value.
  • the first channel quality is used to determine the second time value between the second node N2 and the first node U1.
  • the first signal includes Msg-3 in the random access process.
  • the unit of the second time value is milliseconds.
  • the second time value is the transmission delay from the second node N2 to the first node U1.
  • the second time value is a timing advance (Timing Advance) from the first node U1 to the second node N2.
  • the first channel quality includes the second time value.
  • the first offset increases as the second time value increases.
  • the first offset decreases as the second time value decreases.
  • the value of T1 increases as the second time value increases.
  • the value of T1 decreases as the second time value decreases.
  • the first offset is equal to one of K2 candidate values
  • the K2 candidate values respectively correspond to the K2 value ranges of the second time value in a one-to-one correspondence.
  • the K2 is a positive integer greater than 1.
  • the second time value is equal to a given value range among the K2 value ranges
  • the given value range is equal to the given value among the K2 candidate values.
  • the first offset is equal to the given candidate value.
  • the unit of the first time value is milliseconds.
  • the first time value is the transmission delay from the second node N2 to the first node U1.
  • the first time value is a reference timing advance (Timing Advance) from the first node U1 to the second node N2.
  • the reference timing advance refers to the TA calculated by the second node N2 according to the distance to the perigee terminal.
  • the first channel quality includes the first time value.
  • the value of T1 increases as the first time value increases.
  • the value of T1 decreases as the first time value decreases.
  • the T1 is equal to one of K2 candidate values
  • the K2 candidate values respectively correspond to the K2 value ranges of the first time value
  • the K2 is a positive integer greater than 1.
  • the first channel quality is used to determine the service type supported by the second node N2.
  • the service type supported by the second node N2 is one of the K3 candidate service types, and the first channel quality belongs to one of the K3 value ranges ,
  • the K3 value ranges respectively correspond to the K3 candidate service types in a one-to-one manner.
  • the second node N2 supports only one service type for the first node U1.
  • the first timer is used to initiate an RRC connection re-establishment operation during handover, the first timer expires, and the performing the RRC operation includes initiating the RRC connection re-establishment.
  • the first timer is T304 in TS 38.331.
  • the first node U1 initiates handover before starting the first timer.
  • the first node U1 sends a measurement report (Measurement Report) to the second node N2 before starting the first timer.
  • the first node U1 completes synchronization and random access with the target cell in handover with the first node U1 before starting the first timer.
  • the first timer is used to determine whether the first node U1 is out of synchronization, the first timer expires, and the execution of the RRC operation includes initiating connection re-establishment.
  • the first timer is T310 in TS 38.331.
  • the first node U1 finds that out-of-sync occurs before starting the first timer.
  • the first node U1 finds that the receiving performance of the PDCCH is lower than the first threshold before starting the first timer.
  • the first threshold is BLER (Block Error Rate, block error rate).
  • the first node U1 finds that the RSRP of the received first signal is less than a second threshold before starting the first timer.
  • connection re-establishment includes RRC connection re-establishment.
  • the first information is used to indicate the first time value from the first type of time value set.
  • the first-type time value set includes Q1 first-type time values, where Q1 is a positive integer greater than 1, and the first time value is one of the Q1 first-type time values A first-class time value.
  • the third signal is a physical layer signal.
  • the third signal is a baseband signal.
  • the third information is used to determine the height of the second node N2.
  • the third information is used to determine the downtilt angle from the second node N2 to the first node U1.
  • the third information is used to indicate that the second node N2 is a GEO (Geostationary Earth Orbiting) satellite.
  • GEO Global System for Mobile Communications
  • the third information is used to indicate that the second node N2 is a MEO (Medium Earth Orbiting, Medium Earth Orbit) satellite.
  • MEO Medium Earth Orbiting, Medium Earth Orbit
  • the third information is used to indicate that the second node N2 is a LEO (Low Earth Orbit, Low Earth Orbit) satellite.
  • LEO Low Earth Orbit, Low Earth Orbit
  • the third information is used to indicate that the second node N2 is a HEO (Highly Elliptical Orbiting) satellite.
  • HEO Highly Elliptical Orbiting
  • the third information is used to indicate that the second node N2 is an Airborne Platform.
  • the second node N2 provides coverage of M1 beam areas (Beam Spot), the first node U1 is located in one beam area of the M1 beam areas, and the third information is used for Indicates the beam region where the first node U1 is located in the M1 beam regions; the M1 is a positive integer greater than 1.
  • the third information is used to indicate a downtilt angle from the second node N2 to the first node U1.
  • the second node N2 is an attached base station of a cell serving the first node U1, and the third information is used to indicate that the first node U1 is located at the edge of the cell.
  • the second node N2 is an attached base station of a cell serving the first node U1, and the third information is used to indicate that the first node U1 is located in the center of the cell.
  • the third information is used to indicate that the second node N2 is a ground base station.
  • Embodiment 6 illustrates a flow chart of the second signal, as shown in FIG. 6.
  • the first node U3 and the second node N4 communicate via a wireless link.
  • step S30 For the first point U3, receiving the second signaling in step S30; second signal is transmitted in step S31.
  • step S40 For the node N4, the second signaling transmitted in step S40; second signal is received in step S41.
  • the second signaling is used to trigger the transmission of the second signal, the start time of the time domain resource occupied by the second signaling and the time domain occupied by the second signal
  • the time interval between the start moments of the resources is equal to the first time interval, and the first time interval is associated with the first offset; the unit of the first time interval is milliseconds.
  • the second signaling includes second information
  • the second information is used to indicate a second time interval
  • the unit of the second time interval is milliseconds
  • the first time interval is equal to the The sum of the second time interval and the first offset.
  • the second signaling includes second information
  • the second information is used to indicate a second time interval
  • the unit of the second time interval is milliseconds
  • the first time interval is equal to the The difference between the second time interval and the first offset.
  • the first offset is used to determine the first time interval.
  • the time domain resource occupied by the second signaling is a time slot
  • the start time of the time domain resource occupied by the second signaling is the time slot occupied by the second signaling The starting moment.
  • the second signaling occupies all or part of the multi-carrier symbols included in the time slot.
  • the time domain resource occupied by the second signal is a time slot
  • the start time of the time domain resource occupied by the second signal is the start of the time slot occupied by the second signal. time.
  • the second signal occupies all or part of the multi-carrier symbols included in the time slot.
  • the second signaling includes Msg-3 in a random access process, and the second signal includes Msg-4 in a random access process.
  • the second signaling is a DCI (Downlink Control Information, downlink control information), and the second signal is scheduled by the second signaling.
  • DCI Downlink Control Information, downlink control information
  • the physical layer channel carrying the second signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second signaling is a DCI
  • the second signal includes CSI
  • the second signaling includes a CSI request (Request) for the CSI.
  • the physical layer channel carrying the second signal includes PUSCH.
  • the physical layer channel that carries the second signal includes PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the second signaling is a DCI, and the DCI is used to schedule a downlink signal; the second signal includes HARQ (Hybrid Automatic Repeat reQuest) for the downlink signal Request) feedback.
  • HARQ Hybrid Automatic Repeat reQuest
  • the physical layer channel carrying the second signal includes PUSCH.
  • the physical layer channel carrying the second signal includes PUCCH.
  • the second signal is a physical layer signal.
  • the second signal is a baseband signal.
  • Embodiment 7 illustrates a flowchart of judging whether the first timer expires according to an embodiment of the present application; as shown in FIG. 7.
  • the first node performs the following steps:
  • step 700 it is judged whether the first condition is met, if the first condition is met, go to step 701, if the first condition is not met, go back to step 700;
  • step 702 it is determined whether the second condition is met, if the second condition is met, go to step 703, if the second condition is not met, go to step 704;
  • step 704 the value of the first timer is subtracted by 1, and it is judged whether the value of the first timer is 0, if the value of the first timer is 0, go to step 705, if the value of the first timer is not If it is 0, go to step 702;
  • the first timer is T300.
  • the first condition includes transmitting RRCSetupRequest.
  • the second condition includes receiving an RRCSetup message.
  • the second condition includes receiving an RRCReject message.
  • the second condition includes initiating cell reselection.
  • the second condition includes a high-level abandonment of connection re-establishment.
  • the RRC operation includes resetting MAC.
  • the RRC operation includes releasing the MAC configuration.
  • the RRC operation includes re-establishing RLC for all radio bearers.
  • the RRC operation includes notifying a higher-layer RRC connection establishment failure.
  • the first timer is T301.
  • the first condition includes transmitting RRCReestablishmentRequest.
  • the second condition includes receiving an RRCReestablishment message.
  • the second condition includes receiving an RRCSetup message.
  • the second condition includes that the cell selection becomes unsuitable.
  • the RRC operation includes entering the RRC_IDLE state.
  • the first timer is T302.
  • the first condition includes receiving RRCReject during RRC connection re-establishment or restoration.
  • the second condition includes entering RRC_CONNECTED or entering cell reselection.
  • the RRC operation includes notifying a higher layer to prohibit mitigation.
  • the first timer is T304.
  • the first condition includes receiving an RRCReconfiguration message including reconfigurationWithSync.
  • the second condition includes the successful completion of random access to the relevant serving cell.
  • the RRC operation includes initiating an RRC re-establishment process.
  • the first timer is T310.
  • the first condition includes a detected physical layer channel problem of the serving cell.
  • the first condition includes the received N310 continuous out-of-synchronization indication.
  • the second condition includes the received N311 synchronization instruction.
  • the second condition includes receiving RRCReconfigurationWithSync.
  • the second condition includes initiating a connection re-establishment process.
  • the RRC operation includes notifying RLF (Radio Link Failure, radio link failure).
  • the RRC operation includes entering RRC_IDLE.
  • the RRC operation includes initiating a connection re-establishment process.
  • the RRC operation includes initiating an SCG (Secondary Cell Group, secondary cell group) Failure.
  • SCG Secondary Cell Group, secondary cell group
  • the first timer is T311.
  • the first condition includes initiating an RRC re-establishment process.
  • the second condition includes selection of a suitable NR cell, or selection of a suitable other RAT cell.
  • the RRC operation includes entering RRC_IDLE.
  • the first timer is T311.
  • the first condition includes transmitting RRCResumeRequest.
  • the second condition includes receiving RRCResume.
  • the second condition includes receiving RRCSetup.
  • the second condition includes receiving RRCRelease including suspendConfig.
  • the second condition includes receiving an RRCReject message.
  • the second condition includes cell reselection.
  • the second condition includes cancellation of connection re-establishment.
  • the RRC operation includes entering and performing related operations of entering RRC_IDLE and releasing a cause of "RRC recovery failure".
  • Embodiment 8 illustrates a schematic diagram of the first channel quality according to an embodiment of the present application, as shown in FIG. 8.
  • the value of the first channel quality belongs to one of the X value ranges, and the schematic diagrams of the positions of the terminals corresponding to the X value ranges are respectively from area #1 to area in the figure.
  • #X the X is a positive integer greater than 1.
  • the distance between the area #1 to area #X shown in Figure 8 and the second node shown in the figure gradually increases, area #1 corresponds to the center position of the second node coverage, and area #X corresponds to the edge covered by the second node position.
  • the region #1 to the region #X respectively correspond to X candidate values
  • the value range to which the value of the first channel quality belongs corresponds to the region #1 to the region #X
  • the first offset is equal to the candidate value corresponding to the given area among the X candidate values.
  • Embodiment 9 illustrates a schematic diagram of the first channel quality and the first offset according to an embodiment of the present application, as shown in FIG. 9.
  • the first channel quality belongs to a value range of Y value ranges, the Y value ranges respectively correspond to Y candidate values, and the first offset is equal to the Y candidate values.
  • the candidate value corresponding to the value range to which the first channel quality belongs; the Y is a positive integer greater than 1; W in the figure represents the first channel quality; the Y value ranges are respectively It is the value range #1 to the value range #Y, in the figure y L (1) and y U (1) represent the upper and lower bounds of the value range #1, y L (2) and y U (2) Represents the upper and lower bounds of the value range #2 respectively, and so on, y L (Y) and y U (Y) represent the upper and lower bounds of the value range #Y respectively; the candidate value #1 to the candidate shown in the figure The value #Y corresponds to the Y candidate values respectively.
  • the first channel quality belongs to a given value range among Y value ranges
  • the given value range corresponds to a given candidate value among the Y candidate values
  • the first deviation The shift amount is equal to the given candidate value
  • the units of the upper limit and the lower limit of any value range in the Y value ranges are both dBm.
  • the units of the upper limit and the lower limit of any value range in the Y value ranges are both dB.
  • the units of the upper limit and the lower limit of any value range in the Y value ranges are both ms.
  • the y U (i) and y L (i+1) are equal, and the i is a positive integer greater than 1 and less than (Y-1).
  • Embodiment 10 illustrates a schematic diagram of the second signaling and the second signal according to an embodiment of the present application, as shown in FIG. 10.
  • the first node receives the second signaling in a first time window, and sends a second signal in the second time window; the start time of the first time window is the same as the first time window.
  • the time interval of the two time windows is equal to the first time interval, and the first time interval is associated with the first offset.
  • the first time window and the second time window are both a time slot (Slot).
  • the first time window and the second time window are both a subframe (Subframe).
  • the first time window and the second time window are both a sub-slot.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols, and the positive integer is less than 14.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols, and the positive integer is less than 14.
  • the second signaling includes second information
  • the second information is used to indicate a second time interval
  • the unit of the second time interval is milliseconds
  • the first time interval is equal to the The sum of the second time interval and the first offset.
  • Embodiment 11 illustrates a schematic diagram of a service type according to an embodiment of the present application, as shown in FIG. 11.
  • the first channel quality is used to determine the type of service provided by the second node to the first node.
  • the value of the first channel quality belongs to one of the Z value ranges, and the schematic diagrams of the positions of the terminals corresponding to the Z value ranges are respectively area #1 to area #Z in the figure.
  • Z is a positive integer greater than 1; the Z areas respectively correspond to Z types of services; the value of the first channel quality belongs to a given value range among the Z value ranges, and the given value range corresponds to For a given service type among the Z service types, the second node provides the given service type for the first node; W in the figure represents the first channel quality; the Z values The ranges are from value range #1 to value range #Z.
  • y L (1) and y U (1) represent the upper and lower bounds of value range #1
  • y L (2) and y U ( 2) Represent the upper and lower bounds of the value range #2
  • y L (Z) and y U (Z) represent the upper and lower bounds of the value range #Z, respectively
  • business types 1 to The service type Z corresponds to the Z service types respectively.
  • the y U (i) and y L (i+1) are equal, and the i is a positive integer greater than 1 and less than (Z-1).
  • Embodiment 12 illustrates a schematic diagram of an application scenario of RRC operation according to an embodiment of the present application, as shown in FIG. 12.
  • the first timer is used for the RRC connection re-establishment operation initiated by the first node during the handover (Handover) process initiated by the first node from the serving cell to the neighboring cell.
  • the first timer expires, and the Performing RRC operations includes initiating RRC connection re-establishment.
  • the base station to which the serving cell shown in the figure is attached is the second node in this application.
  • the base station to which the neighboring cell is attached as shown in the figure is a base station device other than the second node in this application.
  • the serving cell shown in the figure is a beam spot provided by the second node in this application, and the neighboring cell shown in the figure is another beam spot provided by the second node in this application. Beam Spot.
  • Embodiment 13 illustrates a schematic diagram of an application scenario of RRC operation according to another embodiment of the present application, as shown in FIG. 13.
  • the first timer is used to determine whether the first node is out of synchronization in the serving cell, the first timer expires, and the execution of the RRC operation includes initiating connection re-establishment.
  • the base station to which the serving cell shown in the figure is attached is the second node in this application.
  • the serving cell shown in the figure is a beam spot provided by the second node in this application.
  • Embodiment 14 illustrates a schematic diagram of the first type of time value set according to an embodiment of the present application, as shown in FIG. 14.
  • the first type of time value set is a candidate time value set in P candidate time value sets; any candidate time value set in the P candidate time value sets includes multiple candidate time values
  • the third information is used to determine the first-type time value set from the P candidate time value sets; the P is a positive integer greater than 1; the P candidate time value sets respectively correspond to P Height regions, and the height at which the second node is located is one of the P height regions.
  • the P height regions shown in the figure are respectively a height region 1 to a height region P, and the height region 1 to the height region P respectively correspond to the candidate time value set #1 to the candidate time value set #P.
  • Embodiment 15 illustrates a structural block diagram in the first node, as shown in FIG. 15.
  • the first node 1500 includes a first receiver 1501, a second receiver 1502, and a first transceiver 1503.
  • the first receiver 1501 receives first information, where the first information is used to determine a first time value;
  • the second receiver 1502 receives a first signal, and the first signal is used to determine the first channel quality
  • the first transceiver 1503 determines that the first timer expires, and performs an RRC operation
  • the first channel quality is used to determine a first offset, and the first time value and the first offset are used together to determine T1, where T1 is a positive integer, and The expiration time of the first timer is equal to T1 milliseconds; the start time value of the first timer is the T1 milliseconds, and the countdown of the first timer to 0 indicates that the first timer has expired.
  • the first channel quality is used to determine the path loss from the sender of the first signal to the first node.
  • the first channel quality is used to determine a second time value between the sender of the first signal and the first node.
  • the second receiver 1502 receives the second signaling, and the first transceiver 1503 transmits the second signal; the second signaling is used to trigger the transmission of the second signal, and the The time interval between the start time of the time domain resources occupied by the second signaling and the start time of the time domain resources occupied by the second signal is equal to the first time interval, and the first time interval is equal to the first time interval.
  • the first offset is related; the unit of the first time interval is milliseconds.
  • the first channel quality is used to determine the type of service supported by the sender of the first signal.
  • the first timer is used to initiate an RRC connection re-establishment operation during handover, the first timer expires, and the performing the RRC operation includes initiating the RRC connection re-establishment.
  • the first timer is used to determine whether the first node is out of synchronization, the first timer expires, and the performing the RRC operation includes initiating connection re-establishment.
  • the first receiver 1501 receives a third signal; the third signal is used to indicate third information, the third information is used to determine the first type of time value set, and the The first time value belongs to the first type of time value set.
  • the first receiver 1501 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the second receiver 1502 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transceiver 1503 includes the antenna 452, the receiver/transmitter 454, the multi-antenna receiving processor 458, the receiving processor 456, the multi-antenna transmitting processor 457, and the transmitting processor in the fourth embodiment. 468. At least the first 6 of the controller/processor 459.
  • Embodiment 16 illustrates a structural block diagram in the second node, as shown in FIG. 16.
  • the second node 1600 includes a first transmitter 1601 and a second transmitter 1602.
  • the first transmitter 1601 sends first information, where the first information is used to determine the first time value;
  • the second transmitter 1602 sends a first signal, and the first signal is used to determine the first channel quality
  • the first channel quality is used to determine a first offset, and the first time value and the first offset are jointly used to determine T1, where T1 is a positive integer, and
  • the recipient of the first information includes a first node, the first node includes a first timer, the expiration time of the first timer is equal to T1 milliseconds; the start time value of the first timer is the T1 Milliseconds, and the first timer counts down to 0, indicating that the first timer expires; when the first timer expires, the first node performs an RRC operation.
  • the first channel quality is used to determine the path loss from the second node to the first node.
  • the first channel quality is used to determine the path loss from the second node to the first node.
  • the first channel quality is used to determine a second time value between the second node and the first node.
  • the second transmitter 1602 sends second signaling
  • the second node 1600 further includes a third receiver 1603, and the second receiver 1603 receives a second signal
  • the second signal Let used to trigger the transmission of the second signal, the time interval between the start time of the time domain resource occupied by the second signaling and the start time of the time domain resource occupied by the second signal Equal to the first time interval, the first time interval is associated with the first offset; the unit of the first time interval is milliseconds.
  • the first channel quality is used to determine the type of service supported by the second node.
  • the first timer is used to initiate an RRC connection re-establishment operation during handover, the first timer expires, and the performing the RRC operation includes initiating the RRC connection re-establishment.
  • the first timer is used to determine whether the first node is out of synchronization, the first timer expires, and the performing the RRC operation includes initiating connection re-establishment.
  • the first transmitter 1601 sends a third signal; the third signal is used to indicate third information, the third information is used to determine the first type of time value set, and the The first time value belongs to the first type of time value set.
  • the first transmitter 1601 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the second transmitter 1602 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the third receiver 1603 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the first and second nodes in this application include, but are not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSU, aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNBs, gNBs, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, air base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一信息,所述第一信息被用于确定第一时间值;其次接收第一信号,所述第一信号被用于确定第一信道质量;随后所述第一节点确定第一定时器超时并执行RRC操作;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器超时。本申请通过采用所述第一信道质量确定所述T1,进而优化所述第一节点的定时器配置,以适应无线通信中不同的应用场景。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中非地面网络(NTN,Non-Terrestrial Networks)中的传输方法和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
在NTN网络中,用户设备(UE,User Equipment)和卫星或者飞行器通过5G网络进行通信,由于卫星或飞行器到达用户设备的距离要远远大于地面基站到达用户设备的距离,因而导致卫星或飞行器与用户设备进行通信传输时存在较长的传输延迟(Propagation Delay)。除此之外,当卫星被用作地面站的中继设备时,卫星与地面站之间的支线链路(Feeder Link)的延迟会更加增大用户设备与基站间传输延迟。另一方面,由于卫星和飞行器的覆盖范围和地面网络(Terrestrial Networks)相比要大得多,同时由于地面设备到卫星或飞行器的倾角不同,造成在NTN中的同一卫星服务下,不同终端因为处于卫星覆盖的中心和边缘的缘故导致TA(Timing Advance,定时提前)的差别很大。在现有的LTE(Long Term Evolution,长期演进)或5G NR***中,一个终端会维系多个定时器以应用于RRC(Radio Resource Control,无线资源控制)重建(Re-establishment)、小区重选(Cell-reselection)、进入RRC_IDLE态等步骤或操作的判断,然后上述定时器的起始值的配置往往基于地面网络的特点,对NTN网络中传输延迟以及处理延迟大等特点的考虑较少。
针对大延迟网络,特别是NTN通信场景中大延迟的问题,本申请提供了一种解决方案。需要说明的是,上述问题描述中,NTN场景仅作为本申请所提供方案的一个应用场景的举例;本申请也同样适用于例如地面网络的场景,取得类似NTN场景中的技术效果。类似的,本申请也同样适用于例如存在UAV(Unmanned Aerial Vehicle,无人驾驶空中飞行器),或物联网设备的网络的场景,以取得类似NTN场景中的技术效果。此外,不同场景(包括但不限于NTN场景和地面网络场景)采用统一解决方案还有助于降低硬件复杂度和成本。
需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信息,所述第一信息被用于确定第一时间值;
接收第一信号,所述第一信号被用于确定第一信道质量;
确定第一定时器过期,并执行RRC操作;
其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
作为一个实施例,上述方法的一个好处在于:所述第一节点通过所述第一信道质量估计所述第一节点和所述第一信息的发送者之间的传输延迟和处理延迟,并在配置的第一时间值的基础上加入所述第一偏移量,进而起到根据所述第一节点实际感知的延迟而优化定时器的设计。
作为一个实施例,上述方法的另一个好处在于:不需要通过额外的信令来指示所述第一偏移量,降低信令开销,提高频谱效率。
作为一个实施例,上述方法的再一个好处在于:上述方法仅需要所述第一节点通过所述第一信道质量确所述第一偏移量,并不需要知道所述第一信息的发送者的高度、卫星类型等其他信息,是一种应用范围更为广泛且适应性更强的方案。
作为一个实施例,上述方法的本质在于:所述第一节点通过所述第一信道质量以推断所述第一信息的发送者到所述第二节点之间的延迟,进而调整所述第一节点的RRC操作中的定时器的起始值,以容忍更高的延迟,避免多个RRC状态或操作之间的频繁切换,提高***效率。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第一信号的发送者到所述第一节点的路径损耗。
作为一个实施例,上述方法的好处在于:路径损耗能够间接体现传输延迟,进而帮助所述第一节点较为准确的调整所述第一偏移量。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第一信号的发送者与所述第一节点之间的第二时间值。
作为一个实施例,上述方法的好处在于:当所述第一信道质量直接用于表示传输延迟时,所述第二时间值能够直接用于定时器初始值的调整,进而优化定时器的设计。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令;
发送第二信号;
其中,所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
作为一个实施例,上述方法的好处在于:将所述第一时间间隔与所述第一偏移量建立联系,进而优化各种调度延迟,当调度延迟的指示通过动态信令指示时,上述方式避免引入过多的动态信令比特,而仅通过所述第一偏移量在所述第一节点侧引入额外的偏移量,进而以适应不同的传输延迟的场景,以应对本申请中所述第二节点所在的高度不同的情况,以及所述第一节点所在位置不同的情况。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第一信号的发送者所支持的业务类型。
作为一个实施例,上述方法的好处在于:根据所述第一节点所感知的不同的传输延迟,对所述第一节点所能够被提供的服务类型进行改变;即当延迟较大时,对延迟要求较高的业务将不会被提供,进而优化整个网络的性能。
根据本申请的一个方面,上述方法的特征在于,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
根据本申请的一个方面,上述方法的特征在于,所述第一定时器被用于判断所述第一节点是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信号;
其中,所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
作为一个实施例,上述方法的好处在于:将第三信息与所述第一信息的发送者的高度建立联系,进而所述第一节点通过所述第三信息确定所述第一时间值的取值范围,从而提高所述第一时间值的取值精度,且避免所述第一信息占用过多的比特而造成的***信令开销过大的问题。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信息,所述第一信息被用于确定第一时间值;
发送第一信号,所述第一信号被用于确定第一信道质量;
其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第二节点到所述第一节点的路径损耗。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第二节点到所述第一节点的路径损耗。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第二节点与所述第一节点之间的第二时间值。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令;
接收第二信号;
其中,所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
根据本申请的一个方面,上述方法的特征在于,所述第一信道质量被用于确定所述第二节点所支持的业务类型。
根据本申请的一个方面,上述方法的特征在于,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
根据本申请的一个方面,上述方法的特征在于,所述第一定时器被用于判断所述第一节点是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信号;
其中,所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信息,所述第一信息被用于确定第一时间值;
第二接收机,接收第一信号,所述第一信号被用于确定第一信道质量;
第一收发机,确定第一定时器过期,并执行RRC操作;
其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第一发射机,发送第一信息,所述第一信息被用于确定第一时间值;
第二发射机,发送第一信号,所述第一信号被用于确定第一信道质量;
其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.所述第一节点通过所述第一信道质量以推断所述第一信息的发送者到所述第二节点之间的延迟,进而调整所述第一节点的RRC操作中的定时器的起始值,以容忍更高的延迟,避免多个RRC状态或操作之间的频繁切换,提高***效率;
-.本申请在配置的第一时间值的基础上加入所述第一偏移量,进而在通过所述第一时间值保证配置灵活性下,起到根据所述第一节点实际感知的延迟而优化定时器的设计;且不需要通过额外的信令来指示所述第一偏移量,降低信令开销,提高频谱效率;
-.将所述第一时间间隔与所述第一偏移量建立联系,进而优化各种调度延迟,当调度延迟的指示通过动态信令指示时,上述方式避免引入过多的动态信令比特,而仅通过所述第一偏移量在所述第一节点侧引入额外的偏移量,进而以适应不同的传输延迟的场景,以应对本申请中所述第二节点所在的高度不同的场景,以及所述第一节点所在位置不同的场景。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信息的流程图;
图6示出了根据本申请的一个实施例的第二信号的流程图;
图7示出了根据本申请的一个实施例的判断第一定时器是否过期的流程图;
图8示出了根据本申请的一个实施例的第一信道质量的示意图;
图9示出了根据本申请的一个实施例的第一信道质量和第一偏移量的示意图;
图10示出了根据本申请的一个实施例的第二信令和第二信号的示意图;
图11示出了根据本申请的一个实施例的业务类型的示意图;
图12示出了根据本申请的一个RRC操作的应用场景示意图;
图13示出了根据本申请的另一个RRC操作的应用场景示意图;
图14示出了根据本申请的一个第一类时间值集合的示意图;
图15示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图16示出了根据本申请的一个实施例的用于第二节点中的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101接收第一信息,所述第一信息被用于确定第一时间值;在步骤102接收第一信号,所述第一信号被用于确定第一信道质量;在步骤103确定第一定时器过期,并执行RRC操作。
实施例1中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
作为一个实施例,所述第一时间值的单位是毫秒。
作为一个实施例,所述第一偏移量的单位是毫秒。
作为一个实施例,所述第一时间值等于T2毫秒,所述第一偏移量等于T3毫米,所述T1等于所述T2与所述T3的和。
作为一个实施例,所述第一时间值等于T2毫秒,所述第一偏移量等于T3毫米,所述T1等于所述T2与所述T3的差。
作为上述两个实施例的一个子实施例,所述T2和所述T3均是正整数。
作为上述两个实施例的一个子实施例,所述T2大于所述T3。
作为一个实施例,所述第一信息是小区公共的。
作为一个实施例,所述第一信息是用户设备专属的。
作为一个实施例,承载所述第一信息的信令是RRC信令。
作为一个实施例,承载所述第一信息的信令是广播信令。
作为一个实施例,承载所述第一信息的信令是SIB(System Information Block,***信息块)。
作为一个实施例,TS(Technical Specification,技术规范)38.331中的RLF-TimersAndConstants IE(Information Elements,信息单元)包括所述第一信息。
作为一个实施例,TS 38.331中的UE-TimersAndConstants IE包括所述第一信息。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,上述短语所述第一定时器过期的意思包括包括所述第一定时器过期(Expire)。
作为一个实施例,上述短语所述第一定时器过期的意思包括所述第一定时器等于0。
作为一个实施例,所述第一定时器是TS 38.331中的T300,所述第一节点根据RRCSetupRequest的传输,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一定时器是TS 38.331中的T300,所述第一节点根据RRCSetup的接收或RRCReject的接收,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用于确定所述第一节点在所述T1毫秒内RRC Setup(设置)是否成功。
作为一个实施例,所述RRC操作包括重置(Reset)MAC(Medium Access Control,媒体接入控制)。
作为一个实施例,所述RRC操作包括释放(Release)MAC配置。
作为一个实施例,所述RRC操作包括为所有的无线承载重建RLC。
作为一个实施例,所述RRC操作包括通知高层RRC连接建立失败。
作为一个实施例,所述第一定时器是TS 38.331中的T301。
作为一个实施例,所述第一节点根据RRCReestablishmentRequest的传输,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据RRCReestablishment的接收或RRCSetup消息(Message)的接收,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用于确定所述第一节点是否需要进入RRC_IDLE状态。
作为一个实施例,所述RRC操作包括进入RRC_IDLE状态。
作为一个实施例,所述第一定时器是TS 38.331中的T302。
作为一个实施例,所述第一节点根据当操作RRC连接建立或恢复时RRCReject的接收,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据进入RRC_CONNECTED状态以及根据小区重选,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用于确定所述第一节点是否需要进入RRC重建。
作为一个实施例,所述RRC操作包括通知高层阻止缓解(Barring Alleviation)。
作为一个实施例,所述第一定时器是TS 38.331中的T304。
作为一个实施例,所述第一节点根据包括reconfigurationWithSync中的RRCReconfiguration消息的接收,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据成功完成相关服务小区的随机接入,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用于所述第一节点的小区切换中。
作为一个实施例,所述第一节点在所述第一定时器倒计时至“0”之前未完成小区切换,所述第一节点进入RRC重建(Reestablishment)进程(Procedure)。
作为一个实施例,所述RRC操作包括发起RRC重建进程。
作为一个实施例,所述第一定时器是TS 38.331中的T310。
作为一个实施例,所述第一节点根据检测(Detecting)的服务小区物理层信道问题,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据接收到的N310持续失步(out-of-sync)指示,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据接收到的N311同步(in-sync)指示,停止所述第一定时器的倒计时。
作为一个实施例,所述第一节点根据接收到的RRCReconfigurationWithSync,停止所述第一定时器的倒计时。
作为一个实施例,所述第一节点根据发起连接重建过程,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用于判断是否需要进入RRC连接重建过程。
作为一个实施例,所述第一节点在所述第一定时器倒计时至“0”时进入RRC连接重建过程。
作为一个实施例,所述第一定时器被用于判断是否需要进入小区重选过程。
作为一个实施例,所述第一节点在所述第一定时器倒计时至“0”时进入小区重选过程。
作为一个实施例,所述第一定时器是TS 38.331中的T311。
作为一个实施例,所述第一节点根据发起RRC重建进程,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据一个合适的NR小区的选择,或者合适的其他RAT(Radio Access Technology,无线接入技术)小区的选择,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用确定从RRC重建开始到进入RRC_IDLE的时间。
作为一个实施例,所述第一节点在所述第一定时器倒计时至“0”时进入RRC_IDLE状态。
作为一个实施例,所述RRC操作包括进入RRC_IDLE。
作为一个实施例,所述第一定时器是TS 38.331中的T319。
作为一个实施例,所述第一节点根据RRCResumeRequest的传输,将所述第一定时器的值设置为所述T1毫秒,并开始倒计时。
作为一个实施例,所述第一节点根据RRCResume的接收、RRCSetup的接收、RRCRelease的接收、包括suspendConfig的RRCRelease的接收、或RRCReject消息的接收,或小区重选,或连接重建取消,停止所述第一定时器的倒计时。
作为一个实施例,所述第一定时器被用确定RRC恢复(Resume)的时间。
作为一个实施例,所述第一节点在所述第一定时器倒计时至“0”时确定RRC恢复失败。
作为一个实施例,所述RRC操作包括进入执行进入RRC_IDLE的相关操作且释放理由(cause)“RRC恢复失败”。
作为一个实施例,所述第一信号包括参考信号。
作为一个实施例,所述第一信号包括CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一信号包括PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)。
作为一个实施例,所述第一信号包括PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述第一信号包括DMRS(Demodulation Reference Signal,解调参考信号)。
作为一个实施例,上述短语所述第一定时器的过期时间等于T1毫秒的意思包括:所述第一定时器从开始计时到过期的时间等于T1毫秒。
作为一个实施例,上述短语所述第一定时器的过期时间等于T1毫秒的意思包括:所述第一定时器启动时的起始时刻是T1毫秒,且在倒计时至0时所述第一定时器被认为过期。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、 移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大延迟网络中的传输。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大延迟网络中的传输。
作为一个实施例,所述第一节点具有GPS(Global Positioning System,全球定位***)能力。
作为一个实施例,所述第一节点具有GNSS(Global Navigation Satellite System,全球导航卫星***)能力。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线 电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信息生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信息生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一定时器位于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一定时器位于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一定时器位于所述RLC303,或者所述RLC353。
作为一个实施例,所述第一定时器位于所述PDCP304,或者所述PDCP354。
作为一个实施例,所述第一定时器位于RRC306。
作为一个实施例,所述RRC操作在所述RRC306完成。
作为一个实施例,所述第二信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信号生成于所述RRC306。
作为一个实施例,所述第三信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第三信号生成于所述RRC306。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每 一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息,所述第一信息被用于确定第一时间值;其次接收第一信号,所述第一信号被用于确定第一信道质量;随后确定第一定时器过期,并执行RRC操作;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且 所述第一定时器倒计时至0表示所述第一定时器过期。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息,所述第一信息被用于确定第一时间值;其次接收第一信号,所述第一信号被用于确定第一信道质量;随后确定第一定时器过期,并执行RRC操作;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信息,所述第一信息被用于确定第一时间值;其次发送第一信号,所述第一信号被用于确定第一信道质量;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信息,所述第一信息被用于确定第一时间值;其次发送第一信号,所述第一信号被用于确定第一信道质量;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第一通信设备450是一个地面终端。
作为一个实施例,所述第一通信设备450是一个地面设备。
作为一个实施例,所述第一通信设备450是一个近地终端。
作为一个实施例,所述第一通信设备450是一架飞机。
作为一个实施例,所述第一通信设备450是一个飞行器。
作为一个实施例,所述第一通信设备450是一艘水面交通工具。
作为一个实施例,所述第二通信设备410是一个非地面基站。
作为一个实施例,所述第二通信设备410是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星。
作为一个实施例,所述第二通信设备410是MEO(Medium Earth Orbiting,中地球轨道)卫星。
作为一个实施例,所述第二通信设备410是LEO(Low Earth Orbit,低地球轨道)卫星。
作为一个实施例,所述第二通信设备410是HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星。
作为一个实施例,所述第二通信设备410是Airborne Platform(空中平台)。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信息;所述天线420, 所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信号。
作为一个实施例,所述发射处理器468,所述接收处理器456,所述所述控制器/处理器459中的至少之一被用于确定第一定时器过期。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于执行RRC操作。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于执行RRC操作。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第二信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第二信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第三信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第三信号。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信,其中方框F0标识的步骤是可选的。
对于 第一节点U1,在步骤S10中接收第三信号;在步骤S11中接收第一信息;在步骤S12中接收第一信号;在步骤S13中确定第一定时器过期,并执行RRC操作。
对于 第二节点N2,在步骤S20中发送第三信号;在步骤S21中发送第一信息;在步骤S22中发送第一信号。
实施例5中,所述第一信息被用于确定第一时间值,所述第一信号被用于确定第一信道质量;所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
作为一个实施例,所述第一信道质量被用于确定所述第二节点N2到所述第一节点U1的路径损耗。
作为该实施例的一个子实施例,所述第一信号包括参考信号。
作为该实施例的一个子实施例,所述第一信号包括SSB(Synchronization Signal Block,同步信号块)。
作为该实施例的一个子实施例,所述第一信号包括CSI-RS。
作为该实施例的一个子实施例,承载所述第一信号的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为该实施例的一个子实施例,所述第一信道质量的单位是dBm(毫分贝)。
作为该实施例的一个子实施例,所述第一信道质量是RSRP(Reference Signal Received Power,参考信号接收功率)。
作为该实施例的一个子实施例,所述第一节点U1知道所述第一信号的发送功率值,所述第一信道质量是所述第一信号的接收功率值,所述发送功率值和所述接收功率值被用于确定所述第二节点N2到所述第一节点U1的所述路径损耗。
作为该实施例的一个子实施例,所述路径损耗的单位是dB。
作为该实施例的一个子实施例,所述第一时间值与所述第一信道质量无关。
作为该实施例的一个子实施例,所述第一偏移量随所述路径损耗的增大而增大。
作为该实施例的一个子实施例,所述第一偏移量随所述路径损耗的减小而减小。
作为该实施例的一个子实施例,所述T1的值随所述路径损耗的增大而增大。
作为该实施例的一个子实施例,所述T1的值随所述路径损耗的减小而减小。
作为该实施例的一个子实施例,所述第一偏移量等于K1个候选值中的一个,所述K1个候选值分别与所述路径损耗的K1个取值范围一一对应,所述K1是大于1的正整数。
作为该子实施例的一个附属实施例,所述路径损耗等于所述K1个取值范围中的给定取值范围,所述给定取值范围与所述K1候选值之中的给定候选值对应,所述第一偏移量等于所述给定候选值。
作为一个实施例,所述第一信道质量被用于确定所述第二节点N2与所述第一节点U1之间的第二时间值。
作为该子实施例的一个附属实施例,所述第一信号包括随机接入过程中的Msg-3。
作为该子实施例的一个附属实施例,所述第二时间值的单位是毫秒。
作为该子实施例的一个附属实施例,所述第二时间值是所述第二节点N2到所述第一节点U1的传输延迟。
作为该子实施例的一个附属实施例,所述第二时间值是所述第一节点U1到所述第二节点N2的定时提前(Timing Advance)。
作为该子实施例的一个附属实施例,所述第一信道质量包括所述第二时间值。
作为该子实施例的一个附属实施例,所述第一偏移量随所述第二时间值的增大而增大。
作为该子实施例的一个附属实施例,所述第一偏移量随所述第二时间值的减小而减小。
作为该子实施例的一个附属实施例,所述T1的值随所述第二时间值的增大而增大。
作为该子实施例的一个附属实施例,所述T1的值随所述第二时间值的减小而减小。
作为该子实施例的一个附属实施例,所述第一偏移量等于K2个候选值中的一个,所述K2个候选值分别与所述第二时间值的K2个取值范围一一对应,所述K2是大于1的正整数。
作为该子实施例的一个附属实施例,所述第二时间值等于所述K2个取值范围中的给定取值范围,所述给定取值范围与所述K2候选值之中的给定候选值对应,所述第一偏移量等于所述给定候选值。
作为一个实施例,所述第一时间值的单位是毫秒。
作为一个实施例,所述第一时间值是所述第二节点N2到所述第一节点U1的传输延迟。
作为一个实施例,所述第一时间值是所述第一节点U1到所述第二节点N2的参考定时提前(Timing Advance)。
作为该实施例的一个子实施例,所述参考定时提前是指所述第二节点N2根据到近地点终端的距离计算的TA。
作为一个实施例,所述第一信道质量包括所述第一时间值。
作为一个实施例,所述T1的值随所述第一时间值的增大而增大。
作为一个实施例,所述T1的值随所述第一时间值的减小而减小。
作为一个实施例,所述T1等于K2个候选值中的一个,所述K2个候选值分别与所述第一时间值的K2个取值范围一一对应,所述K2是大于1的正整数。
作为一个实施例,所述第一信道质量被用于确定所述第二节点N2所支持的业务类型。
作为该实施例的一个子实施例,所述第二节点N2所支持的业务类型是K3个候选业务类型中的一个候选业务类型,所述第一信道质量属于K3个取值范围中的之一,所述K3个取值范围分别与所述K3个候选业务类型一一对应。
作为该实施例的一个子实施例,所述第二节点N2对于所述第一节点U1而言仅支持一种业务类型。
作为一个实施例,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
作为该实施例的一个子实施例,所述第一定时器是TS 38.331中的T304。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前发起切换。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前向所述第二节点N2发送测量汇报(Measurement Report)。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前完成与所述第一节点U1切换中的目标小区的同步与随机接入。
作为一个实施例,所述第一定时器被用于判断所述第一节点U1是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
作为该实施例的一个子实施例,所述第一定时器是TS 38.331中的T310。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前发现出现out-of-sync。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前发现PDCCH的接收性能低于第一阈值。
作为该子实施例的一个附属实施例,所述第一阈值是BLER(Block Error Rate,块误码率)。
作为该实施例的一个子实施例,所述第一节点U1在启动所述第一定时器之前发现接收到的所述第一信号的RSRP小于第二阈值。
作为该实施例的一个子实施例,所述连接重建包括RRC连接重建。
作为一个实施例,所述第一信息被用于从所述第一类时间值集合中指示所述第一时间值。
作为一个实施例,所述第一类时间值集合包括Q1个第一类时间值,所述Q1是大于1的正整数,所述第一时间值是所述Q1个第一类时间值中的一个第一类时间值。
作为一个实施例,所述第三信号是物理层信号。
作为一个实施例,所述第三信号是基带信号。
作为一个实施例,所述第三信息被用于确定所述第二节点N2的高度。
作为一个实施例,所述第三信息被用于确定所述第二节点N2到所述第一节点U1的下倾角。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是MEO(Medium Earth Orbiting,中地球轨道)卫星。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是LEO(Low Earth Orbit,低地球轨道)卫星。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是Airborne Platform(空中平台)。
作为一个实施例,所述第二节点N2提供M1个波束区域(Beam Spot)的覆盖,所述第一节点U1位于所述M1个波束区域中的一个波束区域,所述第三信息被用于指示所述M1个波束区域中所述第一节点U1所位于的波束区域;所述M1是大于1的正整数。
作为一个实施例,所述第三信息被用于指示所述第二节点N2到所述第一节点U1的下倾角。
作为一个实施例,所述第二节点N2是为所述第一节点U1提供服务的小区的附着基站,所述第三信息被用于指示所述第一节点U1位于所述小区的边缘。
作为一个实施例,所述第二节点N2是为所述第一节点U1提供服务的小区的附着基站,所述第三信息被用于指示所述第一节点U1位于所述小区的中心。
作为一个实施例,所述第三信息被用于指示所述第二节点N2是一个地面基站。
实施例6
实施例6示例了一个第二信号的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。
对于 第一节点U3,在步骤S30中接收第二信令;在步骤S31中发送第二信号。
对于 第二节点N4,在步骤S40中发送第二信令;在步骤S41中接收第二信号。
实施例6中,所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
作为一个实施例,所述第二信令包括第二信息,所述第二信息被用于指示第二时间间隔,所述第二时间间隔的单位是毫秒,所述第一时间间隔等于所述第二时间间隔和所述第一偏移量的和。
作为一个实施例,所述第二信令包括第二信息,所述第二信息被用于指示第二时间间隔,所述第二时间间隔的单位是毫秒,所述第一时间间隔等于所述第二时间间隔和所述第一偏移量的差。
作为一个实施例,所述第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第二信令所占用的时域资源是一个时隙,所述第二信令所占用的时域资源的起始时刻是所述第二信令所占用的时隙的起始时刻。
作为该实施例的一个子实施例,所述第二信令占用所述时隙所包括的全部或部分多载波符号。
作为一个实施例,所述第二信号所占用的时域资源是一个时隙,所述第二信号所占用的时域资源的起始时刻是所述第二信号说占用的时隙的起始时刻。
作为该实施例的一个子实施例,所述第二信号占用所述时隙所包括的全部或部分多载波符号。
作为一个实施例,所述第二信令包括随机接入过程中的Msg-3,所述第二信号包括随机接入过程中的Msg-4。
作为一个实施例,所述第二信令是一个DCI(Downlink Control Information,下行控制信息),所述第二信号被所述第二信令调度。
作为该实施例的一个子实施例,承载所述第二信号的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第二信令是一个DCI,所述第二信号包括CSI,所述第二信令包括针对所述CSI的CSI请求(Request)。
作为该实施例的一个子实施例,承载所述第二信号的物理层信道包括PUSCH。
作为该实施例的一个子实施例,承载所述第二信号的物理层信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第二信令是一个DCI,且所述DCI被用于调度一个下行信号;所述第二信号包括针对所述下行信号的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈。
作为该实施例的一个子实施例,承载所述第二信号的物理层信道包括PUSCH。
作为该实施例的一个子实施例,承载所述第二信号的物理层信道包括PUCCH。
作为一个实施例,所述第二信号是物理层信号。
作为一个实施例,所述第二信号是基带信号。
实施例7
实施例7示例了根据本申请的一个实施例的判断第一定时器是否过期的流程图;如附图7所示。在实施例7中,所述第一节点执行以下步骤:
-.在步骤700判断是否满足第一条件,如果满足第一条件则进入步骤701,如果不满足第一条件则回到步骤700;
-.在步骤701启动第一定时器,并将初始值设置为T1毫秒;
-.在步骤702中判断是否满足第二条件,若满足第二条件进入步骤703,若不满足第二条件则进入步骤704;
-.在步骤703中停止第一定时器,并回到步骤700;
-.在步骤704中将第一定时器的值减1,并判断第一定时器的值是否为0,若第一定时器的值为0则进入步骤705,若第一定时器的值不为0则进入步骤702;
-.在步骤705执行RRC操作,并回到步骤703。
作为一个实施例,所述第一定时器是T300。
作为该实施例的一个子实施例,所述第一条件包括传输RRCSetupRequest。
作为该实施例的一个子实施例,所述第二条件包括收到RRCSetup消息。
作为该实施例的一个子实施例,所述第二条件包括收到RRCReject消息。
作为该实施例的一个子实施例,所述第二条件包括发起小区重选。
作为该实施例的一个子实施例,所述第二条件包括高层放弃连接重建。
作为该实施例的一个子实施例,所述RRC操作包括重置MAC。
作为该实施例的一个子实施例,所述RRC操作包括释放MAC配置。
作为该实施例的一个子实施例,所述RRC操作包括为所有的无线承载重建RLC。
作为该实施例的一个子实施例,所述RRC操作包括通知高层RRC连接建立失败。
作为一个实施例,所述第一定时器是T301。
作为该实施例的一个子实施例,所述第一条件包括传输RRCReestablishmentRequest。
作为该实施例的一个子实施例,所述第二条件包括收到RRCReestablishment消息。
作为该实施例的一个子实施例,所述第二条件包括收到RRCSetup消息。
作为该实施例的一个子实施例,所述第二条件包括选择小区变得不合适(unsuitable)。
作为该实施例的一个子实施例,所述RRC操作包括进入RRC_IDLE状态。
作为一个实施例,所述第一定时器是T302。
作为该实施例的一个子实施例,所述第一条件包括在进行RRC连接重建或恢复时收到RRCReject。
作为该实施例的一个子实施例,所述第二条件包括进入RRC_CONNECTED,或进入小区重选。
作为该实施例的一个子实施例,所述RRC操作包括通知高层禁止缓解。
作为一个实施例,所述第一定时器是T304。
作为该实施例的一个子实施例,所述第一条件包括收到包括reconfigurationWithSync的RRCReconfiguration消息。
作为该实施例的一个子实施例,所述第二条件包括成功完成相关服务小区的随机接入。
作为该实施例的一个子实施例,所述RRC操作包括发起RRC重建进程。
作为一个实施例,所述第一定时器是T310。
作为该实施例的一个子实施例,所述第一条件包括检测的服务小区物理层信道问题。
作为该实施例的一个子实施例,所述第一条件包括收到的N310持续失步指示。
作为该实施例的一个子实施例,所述第二条件包括收到的N311同步指示。
作为该实施例的一个子实施例,所述第二条件包括收到RRCReconfigurationWithSync。
作为该实施例的一个子实施例,所述第二条件包括发起连接重建过程。
作为该实施例的一个子实施例,所述RRC操作包括通知RLF(Radio Link Failure,无线链路失败)。
作为该实施例的一个子实施例,所述RRC操作包括进入RRC_IDLE。
作为该实施例的一个子实施例,所述RRC操作包括发起连接重建过程。
作为该实施例的一个子实施例,所述RRC操作包括发起SCG(Secondary Cell Group,辅小区组)Failure。
作为一个实施例,所述第一定时器是T311。
作为该实施例的一个子实施例,所述第一条件包括发起RRC重建进程。
作为该实施例的一个子实施例,所述第二条件包括选择到一个合适的NR小区的选择,或者选择到一个合适的其他RAT小区。
作为该实施例的一个子实施例,所述RRC操作包括进入RRC_IDLE。
作为一个实施例,所述第一定时器是T311。
作为该实施例的一个子实施例,所述第一条件包括传输RRCResumeRequest。
作为该实施例的一个子实施例,所述第二条件包括接收RRCResume。
作为该实施例的一个子实施例,所述第二条件包括接收RRCSetup。
作为该实施例的一个子实施例,所述第二条件包括接收包括suspendConfig的RRCRelease。
作为该实施例的一个子实施例,所述第二条件包括接收RRCReject消息。
作为该实施例的一个子实施例,所述第二条件包括小区重选。
作为该实施例的一个子实施例,所述第二条件包括连接重建取消。
作为该实施例的一个子实施例,所述RRC操作包括进入执行进入RRC_IDLE的相关操作且释放理由(cause)“RRC恢复失败”。
实施例8
实施例8示例了根据本申请的一个实施例的第一信道质量的示意图,如附图8所示。附图8中,所述第一信道质量的值属于X个取值范围中的一个取值范围,所述X个取值范围所对应的终端的位置示意图分别是图中的区域#1至区域#X,所述X是大于1的正整数。图8所示区域#1至区域#X与图中所示的第二节点之间的距离依次渐远,区域#1对应第二节点覆盖的中心位置,区域#X对应第二节点覆盖的边缘位置。
作为一个实施例,所述区域#1至所述区域#X分别对应X个候选值,所述第一信道质量的值所属于的取值范围对应所述区域#1至所述区域#X中的给定区域,所述第一偏移量等于所述X个候选值中与所述给定区域对应的候选值。
实施例9
实施例9示例了根据本申请的一个实施例的第一信道质量和第一偏移量的示意图,如附图9所示。图9中,所述第一信道质量属于Y个取值范围中的一个取值范围,所述Y个取值范围分别对应Y个候选值,所述第一偏移量等于所述Y个候选值中与所述第一信道质量所属于的取值范围对应的候选值;所述Y是大于1的正整数;图中的W表示所述第一信道质量;所述Y个取值范围分别是取值范围#1至取值范围#Y,图中y L(1)和y U(1)分别表示取值范围#1的上界和下界,y L(2)和y U(2)分别表示取值范围#2的上界和下界,依次类推y L(Y)和y U(Y)分别表示取值范围#Y的上界和下界;图中所示的候选值#1至候选值#Y分别对应所述Y个候选值。
作为一个实施例,所述第一信道质量属于Y个取值范围中给定取值范围,所述给定取值范围对应所述Y个候选值中的给定候选值,所述第一偏移量等于所述给定候选值。
作为一个实施例,所述Y个取值范围中任一取值范围的上限和下限的值的单位均是dBm。
作为一个实施例,所述Y个取值范围中任一取值范围的上限和下限的值的单位均是dB。
作为一个实施例,所述Y个取值范围中任一取值范围的上限和下限的值的单位均是ms。
作为一个实施例,所述y U(i)和y L(i+1)相等,所述i是大于1且小于(Y-1)的正整数。
实施例10
实施例10示例了根据本申请的一个实施例的第二信令和第二信号的示意图,如附图10所示。附图10中,所述第一节点在第一时间窗中接收所述第二信令,且在第二时间窗中发送第二信号;所述第一时间窗的起始时刻与所述第二时间窗的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的。
作为一个实施例,所述第一时间窗和所述第二时间窗均是一个时隙(Slot)。
作为一个实施例,所述第一时间窗和所述第二时间窗均是一个子帧(Subframe)。
作为一个实施例,所述第一时间窗和所述第二时间窗均是一个微时隙(Sub-slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号,所述正整数小于14。
作为一个实施例,所述第二时间窗包括正整数个连续的多载波符号,所述正整数小于14。
作为一个实施例,所述第二信令包括第二信息,所述第二信息被用于指示第二时间间隔,所述第二时间间隔的单位是毫秒,所述第一时间间隔等于所述第二时间间隔和所述第一偏移量的和。
实施例11
实施例11示例了根据本申请的一个实施例的业务类型的示意图,如附图11所示。附图11中,所述第一信道质量被用于确定所述第二节点为所述第一节点提供的业务类型。所述第一信道质量的值属于Z个取值范围中的一个取值范围,所述Z个取值范围所对应的终端的位置示意图分别是图中的区域#1至区域#Z,所述Z是大于1的正整数;所述Z个区域分别对应Z种业务类型;所述第一信道质量的值属于Z个取值范围中的给定取值范围,所述给定取值范围对应所述Z种业务类型中的给定业务类型,所述第二节点为所述第一节点提供所述给定业务类型;图中的W表示所述第一信道质量;所述Z个取值范围分别是取值范围#1至取值范围#Z,图中y L(1)和y U(1)分别表示取值范围#1的上界和下界,y L(2)和y U(2)分别表示取值范围#2的上界和下界,依次类推y L(Z)和y U(Z)分别表示取值范围#Z的上界和下界;图中所示的业务类型1至业务类型Z分别对应所述Z种业务类型。
作为一个实施例,所述y U(i)和y L(i+1)相等,所述i是大于1且小于(Z-1)的正整数。
实施例12
实施例12示例了根据本申请的一个实施例的RRC操作的应用场景示意图,如附图12所示。附图12中,所述第一定时器被用于所述第一节点从服务小区向相邻小区发起切换(Handover)过程中发起的RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
作为一个实施例,图中所示的服务小区附着的基站是本申请中的第二节点。
作为一个实施例,图中所示的相邻小区附着的基站是本申请中的第二节点之外的基站设备。
作为一个实施例,图中所示的服务小区是本申请中的第二节点提供的一个波束点(Beam Spot),图中所示的相邻小区是本申请中的第二节点提供的另一个波束点(Beam Spot)。
实施例13
实施例13示例了根据本申请的另一个实施例的RRC操作的应用场景示意图,如附图13所示。附图13中,所述第一定时器被用于判断所述第一节点在服务小区中是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
作为一个实施例,图中所示的服务小区附着的基站是本申请中的第二节点。
作为一个实施例,图中所示的服务小区是本申请中的第二节点提供的一个波束点。
实施例14
实施例14示例了根据本申请的一个实施例的第一类时间值集合的示意图,如附图14所示。附图14中,所述第一类时间值集合是P个候选时间值集合中的一个候选时间值集合;所述P个候选时间值集合中的任一候选时间值集合包括多个候选时间值;所述第三信息被用于从所述P个候选时间值集合中确定所述第一类时间值集合;所述P是大于1的正整数;所述P个候选时间值集合分别对应P个高度区域,所述第二节点所在的高度是所述P个高度区域中的之一。图中所示的P个高度区域分别是高度区域1至高度区域P,所述高度区域1至所述高度区域P分别对应候选时间值集合#1至候选时间值集合#P。
实施例15
实施例15示例了一个第一节点中的结构框图,如附图15所示。附图15中,第一节点1500包括第一接收机1501、第二接收机1502和第一收发机1503。
第一接收机1501,接收第一信息,所述第一信息被用于确定第一时间值;
第二接收机1502,接收第一信号,所述第一信号被用于确定第一信道质量;
第一收发机1503,确定第一定时器过期,并执行RRC操作;
实施例15中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
作为一个实施例,所述第一信道质量被用于确定所述第一信号的发送者到所述第一节点的路径损耗。
作为一个实施例,所述第一信道质量被用于确定所述第一信号的发送者与所述第一节点之间的第二时间值。
作为一个实施例,所述第二接收机1502接收第二信令,所述第一收发机1503发送第二信号;所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
作为一个实施例,所述第一信道质量被用于确定所述第一信号的发送者所支持的业务类型。
作为一个实施例,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
作为一个实施例,所述第一定时器被用于判断所述第一节点是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
作为一个实施例,所述第一接收机1501接收第三信号;所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
作为一个实施例,所述第一接收机1501包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二接收机1502包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1503包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、接收处理器456、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前6者。
实施例16
实施例16示例了一个第二节点中的结构框图,如附图16所示。附图16中,第二节点1600包括第一发射机1601和第二发射机1602。
第一发射机1601,发送第一信息,所述第一信息被用于确定第一时间值;
第二发射机1602,发送第一信号,所述第一信号被用于确定第一信道质量;
实施例16中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
作为一个实施例,所述第一信道质量被用于确定所述第二节点到所述第一节点的路径损耗。
作为一个实施例,所述第一信道质量被用于确定所述第二节点到所述第一节点的路径损耗。
作为一个实施例,所述第一信道质量被用于确定所述第二节点与所述第一节点之间的第二时间值。
作为一个实施例,所述第二发射机1602发送第二信令,且所述第二节点1600还包括第三接收机1603,所述第二接收机1603接收第二信号;所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
作为一个实施例,所述第一信道质量被用于确定所述第二节点所支持的业务类型。
作为一个实施例,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
作为一个实施例,所述第一定时器被用于判断所述第一节点是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
作为一个实施例,所述第一发射机1601发送第三信号;所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
作为一个实施例,所述第一发射机1601包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二发射机1602包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1603包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信息,所述第一信息被用于确定第一时间值;
    第二接收机,接收第一信号,所述第一信号被用于确定第一信道质量;
    第一收发机,确定第一定时器过期,并执行RRC操作;
    其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一信道质量被用于确定所述第一信号的发送者到所述第一节点的路径损耗。
  3. 根据权利要求1所述的第一节点,其特征在于,所述第一信道质量被用于确定所述第一信号的发送者与所述第一节点之间的第二时间值。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第二接收机接收第二信令,所述第一收发机发送第二信号;所述第二信令被用于触发所述第二信号的发送,所述第二信令所占用的时域资源的起始时刻与所述第二信号所占用的时域资源的起始时刻之间的时间间隔等于第一时间间隔,所述第一时间间隔与所述第一偏移量是关联的;所述第一时间间隔的单位是毫秒。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一信道质量被用于确定所述第一信号的发送者所支持的业务类型。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一定时器被用于切换中发起RRC连接重建操作,所述第一定时器过期,所述执行RRC操作包括发起RRC连接重建。
  7. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一定时器被用于判断所述第一节点是否失同步,所述第一定时器过期,所述执行RRC操作包括发起连接重建。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第三信号;所述第三信号被用于指示第三信息,所述第三信息被用于确定所述第一类时间值集合,所述第一时间值属于所述第一类时间值集合。
  9. 一种被用于无线通信的第二节点,其特征在于包括:
    第一发射机,发送第一信息,所述第一信息被用于确定第一时间值;
    第二发射机,发送第一信号,所述第一信号被用于确定第一信道质量;
    其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信息,所述第一信息被用于确定第一时间值;
    接收第一信号,所述第一信号被用于确定第一信道质量;
    确定第一定时器过期,并执行RRC操作;
    其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被共同用于确定T1,所述T1是正整数,且所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信息,所述第一信息被用于确定第一时间值;
    发送第一信号,所述第一信号被用于确定第一信道质量;
    其中,所述第一信道质量被用于确定第一偏移量,所述第一时间值和所述第一偏移量被 共同用于确定T1,所述T1是正整数,所述第一信息的接收者包括第一节点,所述第一节点包括第一定时器,所述第一定时器的过期时间等于T1毫秒;所述第一定时器的起始时间值是所述T1毫秒,且所述第一定时器倒计时至0表示所述第一定时器过期;当所述第一定时器过期时,所述第一节点执行RRC操作。
PCT/CN2020/115948 2019-09-23 2020-09-17 一种被用于无线通信的节点中的方法和装置 WO2021057598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910900382.6 2019-09-23
CN201910900382.6A CN112543463B (zh) 2019-09-23 2019-09-23 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2021057598A1 true WO2021057598A1 (zh) 2021-04-01

Family

ID=75012931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115948 WO2021057598A1 (zh) 2019-09-23 2020-09-17 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (2) CN115022898A (zh)
WO (1) WO2021057598A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115956372A (zh) * 2021-08-10 2023-04-11 北京小米移动软件有限公司 传输增强的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682246A (zh) * 2014-11-21 2016-06-15 成都鼎桥通信技术有限公司 非竞争随机接入方法及装置
WO2018222851A1 (en) * 2017-06-02 2018-12-06 Hughes Network Systems, Llc System and method for mitigating impact of hybrid automatic repeat request (harq) on delay sensitive bearers
WO2019066353A1 (en) * 2017-09-26 2019-04-04 Samsung Electronics Co., Ltd. APPARATUS AND METHOD FOR CONTROLLING THE OPERATING CYCLE OF AN ELECTRONIC DEVICE IN A WIRELESS COMMUNICATION SYSTEM
CN109756891A (zh) * 2017-11-08 2019-05-14 夏普株式会社 数据传输方法、设备和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287476B2 (ja) * 2004-01-26 2009-07-01 ケンブリッジ ポジショニング システムズ リミテッド 移動端末における較正時間情報の転送
EP2112775B1 (en) * 2008-04-25 2018-06-06 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for compensation for propagation delay in a wireless communication system
US20130343215A1 (en) * 2010-12-02 2013-12-26 Interdigital Patent Holdings, Inc. Systems and Methods for Improving Channel Quality Indication Feedback Accuracy In Wireless Communication
KR102156798B1 (ko) * 2014-01-16 2020-09-16 삼성전자주식회사 무선 통신 시스템에서 단말의 타이밍을 제어하기 위한 방법 및 그 전자 장치
CN105376849B (zh) * 2014-09-01 2020-04-24 上海朗帛通信技术有限公司 一种蜂窝通信中的laa方法和装置
WO2018197097A1 (en) * 2017-04-24 2018-11-01 Nokia Technologies Oy Timer for autonomous mobility of a communication device in cellular networks
CN110034832B (zh) * 2018-01-12 2020-08-07 华为技术有限公司 监控信道质量的方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682246A (zh) * 2014-11-21 2016-06-15 成都鼎桥通信技术有限公司 非竞争随机接入方法及装置
WO2018222851A1 (en) * 2017-06-02 2018-12-06 Hughes Network Systems, Llc System and method for mitigating impact of hybrid automatic repeat request (harq) on delay sensitive bearers
WO2019066353A1 (en) * 2017-09-26 2019-04-04 Samsung Electronics Co., Ltd. APPARATUS AND METHOD FOR CONTROLLING THE OPERATING CYCLE OF AN ELECTRONIC DEVICE IN A WIRELESS COMMUNICATION SYSTEM
CN109756891A (zh) * 2017-11-08 2019-05-14 夏普株式会社 数据传输方法、设备和存储介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "FL summary#0 for physical layer control procedures for NTN", 3GPP DRAFT; R1-1909485 FEATURE LEAD SUMMARY#0 ON PHYSICAL LAYER CONTROL PROCEDURES FOR NTN, vol. RAN WG1, 3 September 2019 (2019-09-03), Prague, Czech Republic, pages 1 - 8, XP051766087 *
ERICSSON: "Impacts of propagation delay on control plane", 3GPP DRAFT; R2-1817763 IMPACTS OF PROPAGATION DELAY ON CONTROL PLANE, vol. RAN WG2, 1 November 2018 (2018-11-01), Spokane USA, pages 1 - 4, XP051481653 *
HUAWEI, HISILICON: "Discussion on timer impacts in NTN", 3GPP DRAFT; R2-1818246 DISCUSSION ON TIMER IMPACTS IN NTN, vol. RAN WG2, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 3, XP051482119 *
NOMOR RESEARCH GMBH, THALES: "Considerations on MAC Timers and on RTD Compensation Offset in Non-Terrestrial Networks (NTN)", 3GPP TSG-RAN WG2 #104, R2-1818511, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 5, XP051482367 *
ZTE: "Summary of 7.2.5.3 on UL timing and PRACH for NTN", 3GPP DRAFT; R1-1909479 SUMMARY OF 7.2.5.3 ON UL TIMING AND PRACH FOR NTN_V4, vol. RAN WG1, 3 September 2019 (2019-09-03), Prague, CZ, pages 1 - 15, XP051766081 *

Also Published As

Publication number Publication date
CN112543463B (zh) 2022-07-01
CN112543463A (zh) 2021-03-23
CN115022898A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
US11284323B2 (en) Method and device in node for wireless communication
CN113630905A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021057598A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113709911B (zh) 一种被用于无线通信的节点中的方法和装置
CN113938841B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115379530A (zh) 一种被用于无线通信的方法和设备
CN113747610A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113543369A (zh) 一种被用于无线通信的方法和设备
CN113676989B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021115079A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021098469A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120191A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021057621A1 (zh) 一种被用于无线通信的方法和设备
WO2023202413A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN118283721A (zh) 一种被用于无线通信的方法和设备
CN117858277A (zh) 一种被用于无线通信的方法和设备
CN117812645A (zh) 一种被用于无线通信的方法和设备
CN117896786A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869607

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20869607

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20869607

Country of ref document: EP

Kind code of ref document: A1