WO2021114460A1 - 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法 - Google Patents

基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法 Download PDF

Info

Publication number
WO2021114460A1
WO2021114460A1 PCT/CN2020/072399 CN2020072399W WO2021114460A1 WO 2021114460 A1 WO2021114460 A1 WO 2021114460A1 CN 2020072399 W CN2020072399 W CN 2020072399W WO 2021114460 A1 WO2021114460 A1 WO 2021114460A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
temperature
acetanilide
reactors
chlorosulfonic acid
Prior art date
Application number
PCT/CN2020/072399
Other languages
English (en)
French (fr)
Inventor
张子恕
Original Assignee
山东金德新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东金德新材料有限公司 filed Critical 山东金德新材料有限公司
Publication of WO2021114460A1 publication Critical patent/WO2021114460A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/04Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups
    • C07C303/08Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups by reaction with halogenosulfonic acids

Definitions

  • the invention relates to a method for realizing the chlorosulfonation of aryl compounds using a dual-temperature zone continuous flow reactor, and specifically uses acetanilide and chlorosulfonic acid in an inert organic solvent to synthesize p-acetamidobenzene with high selectivity and efficiency Sulfonyl chloride method.
  • P-acetamidobenzenesulfonyl chloride is a key intermediate of several sulfonamides as follows:
  • chlorosulfonic acid alone has its limitations. Because the solubility of acetanilide in chlorosulfonic acid is poor, if chlorosulfonic acid is added to acetanilide, the reaction system will be viscous due to solid-liquid mixing, difficult to stir, and poor heat and mass transfer capabilities, which makes the reaction difficult to control, and by-products many. Adding slightly more than the reaction equivalent of chlorosulfonic acid to the system often results in incomplete reaction, resulting in difficulty in product refining; if a large excess of chlorosulfonic acid is used, it will bring serious safety hazards, and at the same time, a large amount of waste acid will be discharged. Serious environmental problems.
  • the introduction of these reagents increases on the one hand
  • the cost of the reaction on the other hand, increases the difficulty of the reaction wastewater treatment, especially the introduction of phosphorus-
  • this reaction is a large exothermic reaction.
  • the heat transfer is difficult, especially the addition of chlorosulfonic acid to the solid acetanilide system is more prominent, the temperature is not well controlled, the brown oil is often obtained, the by-products increase, and the yield is reduced.
  • Microchannel continuous flow reactor is essentially a continuous flow pipeline reactor, including mixers, heat exchangers, reactors, controllers, etc. required by chemical units. It has superior heat and mass transfer capabilities. Compared with conventional tank reactors, it can increase the reaction speed ten times or even hundreds of times. At the same time, due to the small volume of the reaction system, it can solve the intrinsic safety problems in production.
  • the problem to be solved by the present invention is to use the microchannel continuous flow reactor technology to realize the continuous, stabilization, high-efficiency and safe production of p-acetamidobenzenesulfonyl chloride.
  • the route adopted in the present invention is to dissolve acetanilide in an inert halogen-containing solvent, and the inert halogen-containing solvent includes dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane Any one of 1,3-dichloropropane or a mixture of any two, chlorosulfonic acid is diluted with the same solvent as acetanilide. After dilution, the viscosity of chlorosulfonic acid is reduced and it is convenient and accurate to measure.
  • the reaction liquid flowing out of the first group of reactors is introduced into the second group of reactors, the second group of reactors are controlled at 60-100 degrees Celsius, and 1.1-3.0 equivalents of chlorosulfonic acid are pumped in according to the feeding amount of acetanilide , Maintain the reaction time 45-120 seconds.
  • the entire reaction system needs to be equipped with a back pressure valve, which regulates the pressure at 1-5 atmospheres.
  • the reaction solution enters the storage tank for layering, collects the organic layer, puts the acid layer into ice water and takes it with a corresponding inert halogen-containing solvent; merges the organic layers, washes with water, and removes the solvent to obtain the product.
  • the reaction liquid can also be stored in a liquid storage tank and cooled, and then directly introduced into ice for subsequent purification operations.
  • the weight-volume (g/ml) ratio of acetanilide to the inert halogen-containing solvent is 1:4-12; the preferred weight-volume (g/ml) ratio is 1:6-8.
  • the temperature of the first group of reactors used in the present invention is controlled at 10-40 degrees Celsius, preferably at 15-25 degrees Celsius; the temperature of the second group of reactors is controlled at 60-100 degrees Celsius, preferably at 70-80 degrees Celsius.
  • the present invention has the following beneficial effects:
  • the heat and mass transfer capacity of the reaction can increase the reaction speed by hundreds of times compared with the conventional tank reactor; at the same time, because the volume of the reaction system is small, it can solve the problem of production It uses continuous reaction instead of batch reaction to reduce the gap between different batches; the precise control of reaction time and temperature is conducive to improving yield and selectivity.
  • Figure 1 is a flow chart of the reaction of the present invention.
  • Acetanilide (270.4g, 2.0mol) was dissolved in 1,2-dichloroethane (a solution (1200mL)).
  • the temperature of the first group of microchannel reactors was adjusted to 25 degrees Celsius, and the temperature of the second group of microchannel reactors was adjusted to 75 degrees Celsius.
  • the emptying pressure of the regulating back pressure valve is 1atm.
  • 1,2-dichloroethane as the solvent to calibrate the flow rates of the two injection pumps.
  • the empirical speed of the chlorosulfonic acid feed pump is 21mL/min.
  • reaction liquid enters the collection tank, and then each 200 ml of 1,2-dichloroethane is used to clean the injection pump.
  • the cleaning liquid enters the collection tank together. After cooling to room temperature, it is added to 1600 grams of crushed ice to separate the organic layer.
  • the acid layer was extracted with 500 ml of 1,2-dichloroethane, the organic layers were combined, washed with water, dried, and the solvent was removed to obtain 448.8 g of a crude product with a purity of 98.5% and a yield of 96%.
  • Acetanilide (270.4 g, 2.0 mol) was dissolved in 1,2-dichloroethane to prepare a solution (1200 mL).
  • the temperature of the first group of microchannel reactors was adjusted to 15 degrees Celsius, and the temperature of the second group of microchannel reactors was adjusted to 65 degrees Celsius.
  • the emptying pressure of the regulating back pressure valve is 1atm.
  • 1,2-dichloroethane as the solvent to calibrate the flow rates of the two injection pumps.
  • the empirical speed of the chlorosulfonic acid feed pump is 21mL/min.
  • the reaction of the raw materials is complete (there is a small amount of converted acetamidobenzene sulfonic acid less than 3%), and there is no ortho-sulfonated product.
  • the reaction solution enters the collection tank and then washes the injection pump with 200 ml of 1,2-dichloroethane.
  • the cleaning solution enters the collection tank together. After cooling to room temperature, it is added to 1600 g of crushed ice to separate the organic layer.
  • the acid layer was extracted with 500 ml of 1,2-dichloroethane, the organic layers were combined, washed with water, dried, and the solvent was removed to obtain 434.7 g of a crude product with a purity of 97.7% and a yield of 93%.
  • Acetanilide (270.4 g, 2.0 mol) was dissolved in 1,2-dichloroethane to prepare a solution (1200 mL).
  • the temperature of the first group of microchannel reactors was adjusted to 15 degrees Celsius, and the temperature of the second group of microchannel reactors was adjusted to 80 degrees Celsius.
  • the emptying pressure of the regulating back pressure valve is 1atm.
  • 1,2-dichloroethane as the solvent to calibrate the flow rates of the two injection pumps.
  • the empirical speed of the chlorosulfonic acid feed pump is 23mL/min.
  • Samples are taken during the reaction for 3 minutes and 10 minutes, the reaction is terminated in crushed ice, 1,2-dichloroethane is extracted, dried, and the solvent is removed to obtain a white product. The reaction of the raw materials is complete, and there are no ortho-sulfonated products.
  • reaction liquid enters the collection tank, and then each 200 ml of 1,2-dichloroethane is used to clean the injection pump.
  • the cleaning liquid enters the collection tank together. After cooling to room temperature, it is added to 1600 grams of crushed ice to separate the organic layer.
  • the acid layer was extracted with 500 ml of 1,2-dichloroethane, the organic layers were combined, washed with water, dried, and the solvent was removed to obtain 458.2 g of a white product with a purity of 99.2% and a yield of 98%.
  • Examples 4-8 reflect the reaction conditions when different solvents are used respectively, as shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法,乙酰苯胺跟氯磺酸反应生成对乙酰胺基苯磺酸,再由对乙酰胺基苯磺酸和氯磺酸反应生成对乙酰胺基苯磺酰氯;并利用微通道反应器高效传质和传热、反应时间和反应温度可控、连续化生产和本质安全等特点,用双温区微通道反应器,第一反应段采用较低温度,有利于生成对位磺化产物;第二反应阶段采用较高温度,有利于生成磺酰氯。本发明解决了温度低反应慢,温度高导致副产物生成的问题;避免了生产过程中大量反应热放出导致安全事故;通过控制反应时间和反应温度保证了稳定化生产;减少了间歇生产过程中使用过量氯磺酸导致的污染。

Description

基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法 技术领域
本发明涉及的是用双温区连续流反应器来实现芳基化合物氯磺化的方法,具体的是用乙酰苯胺和氯磺酸在惰性有机溶剂中高选择性、高效地合成对乙酰胺基苯磺酰氯的方法。
背景技术
对乙酰胺基苯磺酰氯是几个磺胺类药品的关键中间体如下所示:
Figure PCTCN2020072399-appb-000001
目前主流的生产方法都采用乙酰苯胺和过量的氯磺酸。虽然有不少文献报道了其他的方法,如:CN106866466,CN106810476,CN108640860,CN108640862都报道用三氧化硫作为磺化试剂,和其他磺酸酰氯化试剂来实现对乙酰胺基苯磺酰氯的合成;CN108558712更是利用氯气和二氧化硫完成对乙酰胺基苯磺酰氯的合成。这些方法虽然都具有原始创新性,但在实际生产操作中,考虑到原料价格,操作参数,废水处理等方面,与单纯使用氯磺酸相比,仍缺乏竞争性。
但单纯使用氯磺酸也有其局限性。因为由于乙酰苯胺在氯磺酸中的溶解性差,如果将氯磺酸加入乙酰苯胺中,则因为固液混合, 反应体系粘稠,难以搅拌,传热传质能力差导致反应难以控制,副产物多。按照稍多于反应当量的氯磺酸加入体系中,经常出现反应不完全的现象,导致产品的精制困难;如果用大过量氯磺酸,又带来严重的安全隐患,同时大量废酸排放造成严重的环境问题。如果采用过量的氯磺酸,将乙酰苯胺分批加入的方法,虽然可以解决部分反应中的问题,但会导致反应选择性变差,反应加料时盐酸气的泄露,造成生产环境恶劣,过量的氯磺酸的排放导致的环境压力仍然没有解决。
CN108640859,CN107556221,CN1384099,CN108558713,利用氯磺酸和五氧化二磷,CN108640859,CN108395390,CN108530324,CN101613308利用氯磺酸和五氯化磷,CN107556221,CN104448920,CN104592786,CN104370780,CN104277493,CN104672949,CN108395390,CN105237446,CN104496866利用氯磺酸和氯化亚砜等作为乙酰苯胺氯磺化的反应试剂,在一定程度上解决了产率偏低,反应产物纯度不高等问题,但这些试剂的引入,一方面增加了反应的成本,另一方面增加了反应废水处理的难度,尤其是含磷试剂的引入,使得废水的处理成本大大提升。
另外,这个反应是一个大放热反应。不论是何种加料方法,热量的传递存在困难,尤其是氯磺酸加到固体乙酰苯胺体系中的情况更加突出,控温不好,经常得到的褐色油状物,副产物增多,产率降低。CN108640859,CN108530324,CN101613308,CN108276346,CN108558713,CN103694151,CN102304070,CN105237446和《河南化工》2002,(4)20-22,等文献都用到了反应溶剂,对于反应的传热和控温起到了积极的作用,虽然有的文献中氯磺酸用量不足或者反应温度控制的问题,导致的产率并不突出,但溶剂的使用,使反应的控制和产品质量有了很大提高。传统的釜式反应器由于反应热移除还不够高效,较大规模的生产仍然需要很长的反应时间,影响了生产 效率,导致副产物的增加。
寻找安全、高效、环保的生产方法代替传统的生产方法是中国化工生产的当务之急和发展方向。微通道连续流反应器技术作为一项新兴的反应技术,在过去的短短几年中发展迅速,在药物、精细化工产品及中间体的合成中得到了越来越多的应用。微通道连续流反应器从本质上讲是一种连续流动的管道式反应器,包括化工单元所需要的混和器、换热器、反应器、控制器等等。它具有优越的传热传质能力,和常规的釜式反应器相比,可以成十倍、甚至上百倍地提升反应速度,同时由于反应体系体积小,可以解决生产中的本质安全问题。它用连续化反应替代了间歇式反应,减小不同批次之间的差距;高效传质导致瞬间混和,充分提升了反应速度,减少和防止产物的次级反应和活泼化合物分解;反应时间和温度得到精确控制,有利于提高收率和选择性。
发明内容
本发明所要解决的问题是,利用微通道连续流反应器技术实现乙酰苯胺的连续化、稳定化、高效化、安全化生产对乙酰胺基苯磺酰氯的方法。
本发明采取的路线是,将乙酰苯胺用惰性的含卤素溶剂溶解,所述惰性的含卤素溶剂包括二氯甲烷、氯仿、1,2-二氯乙烷,1,1,2-三氯乙烷,1,3-二氯丙烷中的任意一种或任意两种的混合物,氯磺酸用与乙酰苯胺同样的溶剂进行稀释,,稀释后降低了氯磺酸的黏度并方便准确计量,用计量泵将两种溶液按照摩尔比为乙酰苯胺:氯磺酸=1:1.1~1.5泵入第一组微通道反应器中,控温在10-40摄氏度之间,维持反应时间45-120秒;第一组反应器流出的反应液引入第二组反应器中,将第二组反应器控温在60-100摄氏度,并按照乙酰苯胺的投料量泵入1.1~3.0倍当量的氯磺酸,维持反应时间45-120秒。整个反应***需要安装背压阀,背压阀调节压力在1-5大气压。反应液进入 存储罐分层,收集有机层,酸层投入冰水中并用相应的惰性的含卤素溶剂取;合并有机层,水洗,脱溶剂后即可得产品。也可将反应液存放在储液罐中冷却后,直接导入冰中,进行后续纯化操作。
本发明中,乙酰苯胺与惰性的含卤素溶剂的重量体积(g/ml)比为1:4~12;优选的重量体积(g/ml)比为1:6~8。
本发明使用的反应器第一组控温在10-40摄氏度,优选温度为15-25摄氏度;第二组反应器控温在60-100摄氏度,优选温度为70-80摄氏度。
本发明与现有技术相比具有以下有益效果:
本发明借助于碳化硅微通道反应器,反应的传热传质能力,和常规的釜式反应器相比,可以上百倍地提升反应速度;同时由于反应体系真正反应的体积小,可以解决生产中的本质安全问题;它用连续化反应替代了间歇式反应,减小不同批次之间的差距;反应时间和温度得到精确控制,有利于提高收率和选择性。
附图说明
图1为本发明反应流程图。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1
将乙酰苯胺(270.4g,2.0mol)溶解在1,2-二氯乙烷中(配成溶液(1200mL)。
将氯磺酸(582.7g,5.0mol)和1,2-二氯乙烷配成溶液(800mL)。
将第一组微通道反应器的温度调至25摄氏度,将第二组微通 道反应器的温度调至75摄氏度。
调节背压阀的排空压力是1atm。
以1,2-二氯乙烷为溶剂,校准两个进样泵的流速。设定乙酰苯胺溶液的进样速度为60mL/分钟,与第一组微通道反应器的相连接的氯磺酸进料泵经验速度为19mL/分钟,与第二组微通道反应器的相连接的氯磺酸进料泵经验速度为21mL/分钟.分别在反应3分钟,10分钟取样,在碎冰中终止反应,1,2-二氯乙烷萃取,干燥,除去溶剂后得白色产物,原料反应完全,没有邻位磺化的产物。
反应液进入收集罐,然后各用200毫升1,2-二氯乙烷清洗进样泵,清洗液一并进入收集罐,冷却到室温后,加到1600克碎冰中,分出有机层,酸层用500毫升1,2-二氯乙烷萃取,合并有机层,水洗,干燥,除去溶剂得粗产品448.8克,纯度98.5%,产率,96%。
实施例2
将乙酰苯胺(270.4g,2.0mol)溶解在1,2-二氯乙烷中,配成溶液(1200mL)。
将氯磺酸(512.8g,4.4mol)和1,2-二氯乙烷配成溶液(800mL)。
将第一组微通道反应器的温度调至15摄氏度,将第二组微通道反应器的温度调至65摄氏度。
调节背压阀的排空压力是1atm。
以1,2-二氯乙烷为溶剂,校准两个进样泵的流速。设定乙酰苯胺溶液的进样速度为60mL/分钟,与第一组微通道反应器的相连接的氯磺酸进料泵经验速度为19mL/分钟,与第二组微通道反应器的相连接的氯磺酸进料泵经验速度为21mL/分钟.分别在反应3分钟,10分钟取样,在碎冰中终止反应,1,2-二氯乙烷萃取,干燥,除去溶剂后得白色产物,原料反应完全(有少量为转化的乙酰胺基苯磺酸少于3%),没有邻位磺化的产物。
反应液进入收集罐然后各用200毫升1,2-二氯乙烷清洗进样泵, 清洗液一并进入收集罐,,冷却到室温后,加到1600克碎冰中,分出有机层,酸层用500毫升1,2-二氯乙烷萃取,合并有机层,水洗,干燥,除去溶剂得粗产品434.7克,纯度97.7%,产率,93%。
实施例3
将乙酰苯胺(270.4g,2.0mol)溶解在1,2-二氯乙烷中,配成溶液(1200mL)。
将氯磺酸(652.7g,5.6mol)和1,2-二氯乙烷配成溶液(900mL)。
将第一组微通道反应器的温度调至15摄氏度,将第二组微通道反应器的温度调至80摄氏度。
调节背压阀的排空压力是1atm。
以1,2-二氯乙烷为溶剂,校准两个进样泵的流速。设定乙酰苯胺溶液的进样速度为60mL/分钟,与第一组微通道反应器的相连接的氯磺酸进料泵经验速度为22mL/分钟,与第二组微通道反应器的相连接的氯磺酸进料泵经验速度为23mL/分钟.分别在反应3分钟,10分钟取样,在碎冰中终止反应,1,2-二氯乙烷萃取,干燥,除去溶剂后得白色产物,原料反应完全,没有邻位磺化的产物。
反应液进入收集罐,然后各用200毫升1,2-二氯乙烷清洗进样泵,清洗液一并进入收集罐,冷却到室温后,加到1600克碎冰中,分出有机层,酸层用500毫升1,2-二氯乙烷萃取,合并有机层,水洗,干燥,除去溶剂得白色产品458.2克,纯度99.2%,产率,98%。
对比实施例1
将乙酰苯胺2.7克溶解在10毫升1,2-二氯乙烷中,在25摄氏度下,一次加入5.8克氯磺酸,大量气体产生,反应体系中因为气体的产生体积膨胀了约60%,十分钟后检测,原料剩余约5%,仅有少量产物生成,大部分以对乙酰胺基苯磺酸的形式存在。加热到75摄氏度,25分钟后检测,原料消失,大部分转化为产物,仍有少量对乙酰胺基苯磺酸,继续加热30分钟,冷却后倒入冰中,后处理得浅咖啡色产物 4.35,纯度98.1%,产率,93%。
对比实施例2
将5.8克氯磺酸溶解在10毫升1,2-二氯乙烷中,在25摄氏度下,分三次加入2.7克乙酰苯胺,每次0.9克,间隔3分钟。每次加入都会有大量气体产生,泡沫导致乙酰苯胺漂浮在反应体系表面,边反应,边溶解。温度最高上升到61摄氏度。十分钟后检测,乙酰苯胺原料没有剩余,仍有少量对乙酰胺基苯磺酸,大部分生成了产物。加热到75摄氏度,45分钟后检测,反应完全,冷却后倒入冰中,后处理得浅红棕色产物3.97克,伴随少量黑色油滴状物质,纯度95.6%(含邻位磺化产物3.8%),产率,85%。
实施例4-8
参照实施例1的投料比和反应条件,实施例4-8反映了分别用不同的溶剂时的反应情况如表1所示。
表1
Figure PCTCN2020072399-appb-000002

Claims (9)

  1. 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法,其特征在于:利用连续流微通道反应器,采用双温区分别在低温区发生磺化反应,在高温区发生对乙酰胺基苯磺酸和氯磺酸的反应。
  2. 根据权利要求1所属的方法,其特征在于,将乙酰苯胺用惰性的含卤素溶剂溶解,氯磺酸用与乙酰苯胺同样的溶剂稀释,用计量泵将两种溶液按照摩尔比为乙酰苯胺:氯磺酸=1:1.1~1.5泵入第一组微通道反应器中,控温在10-40摄氏度之间,维持反应时间45-120秒;第一组反应器流出的反应液引入第二组反应器中,将第二组反应器控温在60-100摄氏度,并按照乙酰苯胺的投料量泵入1.1~3.0倍当量的氯磺酸,维持反应时间45-120秒;整个反应***需要安装背压阀,背压阀调节压力在1-5大气压。
  3. 根据权利要求2所述的方法,其特征在于,所述惰性的含卤素溶剂溶解包括二氯甲烷、氯仿、1,2-二氯乙烷,1,1,2-三氯乙烷,1,3-二氯丙烷中的任意一种或任意两种的混合物。
  4. 根据权利要求2所述的方法,其特征在于,所述乙酰苯胺与溶剂的重量体积比为1:4~12。
  5. 根据权利要求4所述的方法,其特征在于,所述乙酰苯胺与溶剂的重量体积比为1:6~8。
  6. 根据权利要求2所述的方法,其特征在于,所述氯磺酸与溶剂的体积比为1:1~3。
  7. 根据权利要求2所述的方法,其特征在于,第一组微通道反应器中,控温在15-25摄氏度,第二组反应器控温在,70-80摄氏度。
  8. 根据权利要求2所述的方法,其特征在于,所述方法中还包括从第二组反应器中流出的反应液进入存储罐分层,收集有机层,酸层投入冰水中并用惰性的含卤素溶剂萃取;合并有机层,水洗,脱溶剂后即得乙酰胺基苯磺酰氯。
  9. 根据权利要求2所述的方法,其特征在于,所述方法中还包括从第二组反应器中流出的反应液存放在储液罐中冷却后,直接导入冰中,进行后续纯化即得乙酰胺基苯磺酰氯。
PCT/CN2020/072399 2019-12-09 2020-01-16 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法 WO2021114460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911248993.3A CN111039829B (zh) 2019-12-09 2019-12-09 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法
CN201911248993.3 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021114460A1 true WO2021114460A1 (zh) 2021-06-17

Family

ID=70235118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072399 WO2021114460A1 (zh) 2019-12-09 2020-01-16 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法

Country Status (2)

Country Link
CN (1) CN111039829B (zh)
WO (1) WO2021114460A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704555B (zh) * 2020-06-17 2023-08-01 爱斯特(成都)生物制药股份有限公司 一种采用连续流反应器合成4-甲氧基-2-硝基苯胺的方法
CN115710204B (zh) * 2022-11-21 2024-01-09 金华双宏化工有限公司 连续合成苯磺酰氯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866468A (zh) * 2017-03-28 2017-06-20 吴赣药业(苏州)有限公司 一种4‑乙酰氨基苯磺酰氯的环保制备方法
CN109796376A (zh) * 2019-01-24 2019-05-24 南通远航医药化工有限公司 一种磺胺中间体酰氨基类苯磺酰氯的生产工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996541A (en) * 1958-10-03 1961-08-15 Berkeley Chemical Corp Purification of p (nu-acetyl amino) benzene sulfonyl chloride
US3108137A (en) * 1959-08-31 1963-10-22 Chemetron Corp Production of organic sulfonyl chlorides
US3649686A (en) * 1969-05-12 1972-03-14 American Cyanamid Co Continuous process for the preparation of acylsulfanilyl chloride
US3705920A (en) * 1969-12-10 1972-12-12 Merck & Co Inc Sulfonylphenylphosphonic acids
JPS5212146A (en) * 1975-07-18 1977-01-29 Nissan Chem Ind Ltd Process for preparation of p- acetylaminobenzene-sufonylchloride
CN104496866B (zh) * 2014-12-15 2016-09-07 浙江奇彩环境科技股份有限公司 一种合成对氨基苯基-β-羟乙基砜硫酸酯的连续磺化工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866468A (zh) * 2017-03-28 2017-06-20 吴赣药业(苏州)有限公司 一种4‑乙酰氨基苯磺酰氯的环保制备方法
CN109796376A (zh) * 2019-01-24 2019-05-24 南通远航医药化工有限公司 一种磺胺中间体酰氨基类苯磺酰氯的生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG, YONGFENG: "Study on the Synthesis of p-Aminobenzenesulfonamide", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I, 1 May 2015 (2015-05-01), pages 1 - 66, XP055820324, [retrieved on 20210701], DOI: 10.3969/j.issn.1008-1496.2010.01.006 *
QU, Q. ; TANG, X. ; WANG, C. ; YANG, G. ; HU, X. ; LU, X. ; LIU, Y. ; LI, S. ; YAN, C.: "Characterization and application of a new ultraviolet derivatization reagent for amino acids analysis in capillary electrophoresis", ANALYTICA CHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 572, no. 2, 21 July 2006 (2006-07-21), AMSTERDAM, NL, pages 212 - 218, XP027913013, ISSN: 0003-2670 *

Also Published As

Publication number Publication date
CN111039829B (zh) 2021-03-12
CN111039829A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2022000881A1 (zh) 羧酸类化合物、其制备方法及应用
WO2021114460A1 (zh) 基于连续流反应的双温区两段法生产对乙酰胺基苯磺酰氯的方法
WO2018000404A1 (zh) 一种制备牛磺酸的方法
CN103265426A (zh) 一种基于两相中自由基反应制备2-(4-溴甲基苯基)丙酸的绿色环保性方法
WO2023010649A1 (zh) 连续合成对甲苯磺酰氯的方法
CN109912469A (zh) 一种4,4’-二氯二苯砜的制备工艺
CN114917848A (zh) 一种合成硫酸乙烯酯的装置和方法
CN107311868A (zh) 一种制备对叔丁基苯甲酸甲酯的方法
CN108218810A (zh) 一种合成2,2’-二硫代二苯并噻唑的微反应方法
CN111153803A (zh) 一种合成5-硝基间苯二甲酸的方法
CN106349121B (zh) 一种3,5-二氯苯甲酰氯的制备方法
CN104250218B (zh) 一种叔丁基丙烯酰胺磺酸生产方法
CN106279097A (zh) 一种丙烯基‑1,3‑磺酸内酯的制备方法
CN105017024B (zh) 一种生产硝基苯的方法及装置
CN104250219B (zh) 一种叔丁基丙烯酰胺磺酸的生产方法
CN105503513A (zh) 二氧化硅负载的磷钨酸催化合成4,4’-二氯甲基联苯的方法
CN112876449B (zh) 环状碳酸酯的连续生产方法及***
CN105566171B (zh) 一种制备h‑酸的装置
CN110746293B (zh) 一种连续催化氧化制备对甲基苯甲酸的工艺
CN107445959A (zh) 一种2‑氮杂双环[2.2.1]‑庚‑5‑烯‑3‑酮的制备方法
CN106146356B (zh) 连续生产1-萘磺酸的方法
CN110511182A (zh) 一种连续流反应合成7-硝基-1,2,3,4-四氢喹啉的方法
CN109364869A (zh) 一种气液逆流法连续生产氯代物的装置
CN112830892A (zh) 一种吡啶-3-磺酰氯的合成方法
CN1185191C (zh) 脂环酮和烷基取代脂环酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900586

Country of ref document: EP

Kind code of ref document: A1